Connexive implication in substructural logics

Gavin St. John

Università degli Studi di Salerno

gavinstjohn@gmail.com

Joint work with Davide Fazio (U. Terarmo)

LATD-MOSAIC 2022 Paestum, Italy

7 September 2022

The basic ideas of connexive logic have been traced back to Aristotle's *Prior Analytics* and to Boethius' *De hypotheticis syllogismis* (see McCall 1975).

The basic ideas of connexive logic have been traced back to Aristotle's *Prior Analytics* and to Boethius' *De hypotheticis syllogismis* (see McCall 1975).

Connexive principles reflect a *connection*, or *compatibility*, between the antecedent and consequent of sound conditionals.

Specifically, they establish that a conditional "if A then B"

is sound provided that the negation of B is incompatible with A.

- $\sim (A \Rightarrow \sim A)$
- $\sim (\sim A \Rightarrow A)$

Boethius' Theses:

- $(A \Rightarrow B) \Rightarrow \sim (A \Rightarrow \sim B)$
- $\bullet (A \Rightarrow \sim B) \Rightarrow \sim (A \Rightarrow B)$

- $\sim (A \Rightarrow \sim A)$
- $\sim (\sim A \Rightarrow A)$

Boethius' Theses:

- $(A \Rightarrow B) \Rightarrow \sim (A \Rightarrow \sim B)$
- $(A \Rightarrow \sim B) \Rightarrow \sim (A \Rightarrow B)$

All the above theses fail in classical logic for material implication and negation, i.e., $\sim = \neg$ and $\Rightarrow = \rightarrow$.

- $\sim (A \Rightarrow \sim A)$
- $\sim (\sim A \Rightarrow A)$

Boethius' Theses:

- $(A \Rightarrow B) \Rightarrow \sim (A \Rightarrow \sim B)$
- $\bullet (A \Rightarrow \sim B) \Rightarrow \sim (A \Rightarrow B)$

They are satisfied for material bi-implication in classical logic, i.e., $\sim = \neg$ and $\Rightarrow = \leftrightarrow$, however bi-implication is obviously symmetric.

- $\sim (A \Rightarrow \sim A)$
- $\sim (\sim A \Rightarrow A)$

Boethius' Theses:

- $(A \Rightarrow B) \Rightarrow \sim (A \Rightarrow \sim B)$
- $(A \Rightarrow \sim B) \Rightarrow \sim (A \Rightarrow B)$

A connexive logic is nothing but a logic having the above formulas as theorems w.r.t. a negation \sim , and a non-symmetric implication \Rightarrow .

However, less has been said on the possibility of defining connexive implications within well established sub-logics of classical logic or some expansion thereof.

However, less has been said on the possibility of defining connexive implications within well established sub-logics of classical logic or some expansion thereof.

A systematic (programmatic) investigation of connexive implication connectives which are *term-definable* within well known systems of non-classical logic has not been offered yet.

However, less has been said on the possibility of defining connexive implications within well established sub-logics of classical logic or some expansion thereof.

A systematic (programmatic) investigation of connexive implication connectives which are *term-definable* within well known systems of non-classical logic has not been offered yet.

We base our work in the context of *Substructural logics*, and investigate them through the lens of their algebraic semantics of residuated lattices.

Residuated lattices and FL-algebras

A **commutative residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \rightarrow, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a commutative monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \rightarrow z,$$

where \leq is the induced lattice order: $x \leq y \iff x \land y = x$

Residuated lattices and FL-algebras

A **commutative residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \rightarrow, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R,\cdot,1)$ is a commutative monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \rightarrow z,$$

where \leq is the induced lattice order: $x \leq y \iff x \land y = x$

An FL_e-algebra is simply a 0-pointed commutative residuated lattice, i.e., an expansion of a CRL by an arbitrary constant 0.

Double negation image

In the language of FL_e , we define the unary operation \neg via:

 $\neg x \coloneqq x \rightarrow 0$

The following (quasi-) identites hold in FLe:

- $x \leq \neg \neg x$
- $x \le y \implies \neg y \le \neg x \text{ and } \neg \neg x \le \neg \neg y$
- ¬¬¬ $x \approx \neg x$ and so ¬¬(¬¬x) $\approx \neg \neg x$
- ▶ ¬¬x · ¬¬y ≤ ¬¬(xy) [equivalently, ¬¬(¬x · ¬¬y) ≈ ¬¬(xy)]

Double negation image

In the language of FL_e , we define the unary operation \neg via:

 $\neg x \coloneqq x \rightarrow 0$

The following (quasi-) identites hold in FLe:

•
$$x \leq \neg \neg x$$

•
$$x \leq y \implies \neg y \leq \neg x \text{ and } \neg \neg x \leq \neg \neg y$$

• ¬¬¬
$$x \approx \neg x$$
 and so ¬¬(¬¬ x) $\approx \neg \neg x$

▶ ¬¬x·¬¬y ≤ ¬¬(xy) [equivalently, ¬¬ $(¬¬x·¬¬y) \approx ¬¬<math>(xy)$]

Nuclear image of $\neg \neg$

Let $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ be an FL_e-algebra. Then $\neg \neg \mathbf{A} := \langle \neg \neg A, \wedge, \vee_{\neg \neg}, \cdot_{\neg \neg}, \rightarrow, 0, \neg \neg 1 \rangle$ is an FL_e-algebra where $\neg \neg A := \{\neg \neg a : a \in A\}$ $x \cdot_{\neg \neg} y := \neg \neg (x \cdot y)$ $x \vee_{\neg \neg} y := \neg \neg (x \vee y)$

For every substructural logic L, L is algebraizable with
 V(L) := FL_e ∩ Mod({1 ≤ φ : ⊢_L φ}).
 as its equivalent algebraic semantics. In particular, for any set of
 formulas Φ ∪ {γ}.

 $\Phi \vdash_{\mathbf{L}} \psi \text{ iff } \{ 1 \leq \varphi : \varphi \in \Phi \} \vDash_{\mathsf{V}(\mathbf{L})} 1 \leq \psi,$

 For any subvariety V ⊆ FL_e, V is the equivalent algebraic semantics of the logic

 $\mathbf{L}(\mathsf{V}) \coloneqq \{\varphi \in \mathit{Fm}_{\mathcal{L}} : \mathsf{V} \vDash 1 \leq \varphi\}, \text{ and }$

Specifically, for any set of equations $E \cup \{s \approx t\}$ one has: $E \models_{\mathsf{V}} s \approx t \text{ iff } \{u \rightarrow v, v \rightarrow u : (u \approx v) \in E\} \vdash_{\mathsf{L}(\mathsf{V})} (s \rightarrow t) \land (t \rightarrow s).$

Equational Connexive Laws

Let **A** an FL_e -algebra, and define $\neg x \coloneqq x \rightarrow 0$. Suppose \Rightarrow is binary operation that is term-definable in the language of FL_e .

Equational Connexive Laws

Let A an FL_e-algebra, and define $\neg x \coloneqq x \rightarrow 0$. Suppose \Rightarrow is binary operation that is term-definable in the language of FL_e.

We say (\mathbf{A},\Rightarrow) is proto-connexive if:

• Equational Aristotle Theses:

$$1 \le \neg (x \Rightarrow \neg x) \tag{AT}$$

$$1 \le \neg(\neg x \Rightarrow x) \tag{AT'}$$

Equational Boethius Theses:

$$1 \le (x \Rightarrow y) \Rightarrow \neg (x \Rightarrow \neg y) \tag{BT}$$

$$1 \le (x \Rightarrow \neg y) \Rightarrow \neg (x \Rightarrow y) \tag{BT'}$$

Equational Connexive Laws

Let A an FL_e-algebra, and define $\neg x \coloneqq x \rightarrow 0$. Suppose \Rightarrow is binary operation that is term-definable in the language of FL_e.

We say (\mathbf{A},\Rightarrow) is proto-connexive if:

• Equational Aristotle Theses:

$$1 \le \neg (x \Rightarrow \neg x) \tag{AT}$$

$$1 \le \neg(\neg x \Rightarrow x) \tag{AT'}$$

Equational Boethius Theses:

$$1 \le (x \Rightarrow y) \Rightarrow \neg (x \Rightarrow \neg y) \tag{BT}$$

$$1 \le (x \Rightarrow \neg y) \Rightarrow \neg (x \Rightarrow y) \tag{BT'}$$

(NS)

We say (\mathbf{A},\Rightarrow) is connexive if it further satisfies

► *Non-symmetry*: \Rightarrow is not a symmetric relation on *A*, i.e., (**A**, \Rightarrow) $\nvDash x \Rightarrow y \approx y \Rightarrow x$

Proposition

Let ${\bf A}$ be an $\mathsf{FL}_e\text{-algebra}$ with and \Rightarrow some binary operation. If the following hold in ${\bf A}\text{:}$

$$1 \le x \Rightarrow \neg \neg x$$
 (P1)

$$\neg \neg (x \Rightarrow y) \approx \neg (x \Rightarrow \neg y), \tag{P2}$$

then $(\mathbf{A}, \Rightarrow)$ is proto-connexive.

Definition

Let \Rightarrow be a binary operation term-definable in the language $\{\wedge,\vee,\cdot,\rightarrow,0,1\}.$ Let K be a class of FL_e-algebras and ${\bf L}$ a substructural logic.

 We say (K,⇒) is proto-connexive if every member of K is proto-connexive.

Definition

Let \Rightarrow be a binary operation term-definable in the language $\{\wedge,\vee,\cdot,\rightarrow,0,1\}.$ Let K be a class of FL_e-algebras and ${\bf L}$ a substructural logic.

- We say (K,⇒) is proto-connexive if every member of K is proto-connexive.
- We say (K,⇒) is connexive if it has at least one connexive member, namely K ⊭ (NS).

Definition

Let \Rightarrow be a binary operation term-definable in the language $\{\wedge,\vee,\cdot,\rightarrow,0,1\}.$ Let K be a class of FL_e-algebras and ${\bf L}$ a substructural logic.

- We say (K,⇒) is proto-connexive if every member of K is proto-connexive.
- We say (K,⇒) is connexive if it has at least one connexive member, namely K ⊭ (NS).
- We say (L,⇒) is (proto-) connexive if (V(L),⇒) is (proto-) connexive.

Definition

Let \Rightarrow be a binary operation term-definable in the language $\{\wedge,\vee,\cdot,\rightarrow,0,1\}.$ Let K be a class of FL_e-algebras and ${\bf L}$ a substructural logic.

- We say (K,⇒) is proto-connexive if every member of K is proto-connexive.
- We say (K,⇒) is connexive if it has at least one connexive member, namely K ⊭ (NS).
- We say (L,⇒) is (proto-) connexive if (V(L),⇒) is (proto-) connexive.

Note

In our setting, a substructural logic being connexive exactly corresponds to the conventional one. Namely, both Aristotle's and Boethius' theses hold and the connective \Rightarrow is not symmetric.

The obvious place to start: $\Rightarrow = \rightarrow$

Proposition

The following are equivalent for $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle \in \mathsf{FL}_{e}$:

- $(\mathbf{A}, \rightarrow)$ is proto-connexive.
- $(\mathbf{A}, \rightarrow) \vDash (\mathsf{AT}).$
- 0 is the greatest element in **A**.

The obvious place to start: $\Rightarrow = \rightarrow$

Proposition

The following are equivalent for $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle \in \mathsf{FL}_e$:

- $(\mathbf{A}, \rightarrow)$ is proto-connexive.
- $(\mathbf{A}, \rightarrow) \vDash (\mathsf{AT}).$
- 0 is the greatest element in **A**.

Proposition

Let
$$V^0 \coloneqq FL_e + (x \le 0)$$
. Then (V^0, \Rightarrow) is connexive.

Note: $V^0 \vDash \neg x \approx 0$.

The obvious place to start: $\Rightarrow = \rightarrow$

Proposition

The following are equivalent for $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle \in \mathsf{FL}_e$:

- $(\mathbf{A}, \rightarrow)$ is proto-connexive.
- $(\mathbf{A}, \rightarrow) \vDash (\mathsf{AT}).$
- 0 is the greatest element in **A**.

Proposition

Let
$$V^0 \coloneqq FL_e + (x \le 0)$$
. Then (V^0, \Rightarrow) is connexive.

Note:
$$V^0 \vDash \neg x \approx 0$$
.

But this is unsatisfying...

Let $\mathbf{L}^{0} \coloneqq \mathbf{L}(\mathsf{V}^{0})$. Then for any formula $\varphi, \vdash_{\mathbf{L}^{0}} \varphi \rightarrow \neg \varphi$.

We define the connective \Rightarrow_{\wedge} via $x \Rightarrow_{\wedge} y \coloneqq (x \rightarrow y) \land (y \rightarrow \neg \neg x),$ where $\neg x \coloneqq x \rightarrow 0.$

We define the connective \Rightarrow_{\wedge} via $x \Rightarrow_{\wedge} y \coloneqq (x \rightarrow y) \land (y \rightarrow \neg \neg x),$ where $\neg x \coloneqq x \rightarrow 0.$

 $\Rightarrow_{\!\!\wedge}$ can be considered as the best candidate for embodying the adage:

"No plausible statement can be implied by an implausible one," whenever "it is plausible that x" is formalized as $\neg \neg x$.

We define the connective \Rightarrow_{\wedge} via $x \Rightarrow_{\wedge} y := (x \rightarrow y) \land (y \rightarrow \neg \neg x),$ where $\neg x := x \rightarrow 0.$

Note, for any FL_e -algebra \mathbf{A} , one has that

- $1 \le x \Rightarrow_{\wedge} y$ iff $x \le y$ and $\neg x = \neg y$.
- $x \Rightarrow_{\wedge} y$ is the largest $c \in A$ such that $x \cdot c \leq y$ and $y \cdot c \leq \neg \neg x$.

We define the connective \Rightarrow_{\wedge} via $x \Rightarrow_{\wedge} y := (x \rightarrow y) \land (y \rightarrow \neg \neg x),$ where $\neg x := x \rightarrow 0.$

In fact:

Proposition

For an FL_e-algebra \mathbf{A} , $(\mathbf{A}, \Rightarrow_{\wedge}) \models (P1)$: $1 \le x \Rightarrow_{\wedge} \neg \neg x$, and the following are equivalent:

•
$$(\mathbf{A}, \Rightarrow_{\wedge})$$
 is proto-connexive.

$$\bullet (\mathbf{A}, \Rightarrow_{\wedge}) \vDash (\mathsf{BT}): 1 \le (x \Rightarrow y) \Rightarrow \neg (x \Rightarrow \neg y).$$

$$\bullet (\mathbf{A}, \Rightarrow_{\wedge}) \vDash (\mathsf{BT}'): 1 \le (x \Rightarrow \neg y) \Rightarrow \neg (x \Rightarrow y).$$

$$\bullet (\mathbf{A}, \Rightarrow_{\wedge}) \vDash (\mathsf{P2}) : \neg \neg (x \Rightarrow y) \approx \neg (x \Rightarrow \neg y).$$

$$\bullet (\mathbf{A}, \Rightarrow_{\wedge}) \vDash (\mathsf{P3}) : \neg(x \Rightarrow y) \approx x \Rightarrow \neg y.$$

Lemma

Let A be an FL_e -algebra. If $(A, \Rightarrow_{\wedge})$ is proto-connexive then the following hold:

• A satisfies the identity $x \rightarrow y \approx x \Rightarrow_{\wedge} (\neg \neg x \land y)$.

Lemma

Let A be an FL_e -algebra. If $(A, \Rightarrow_{\wedge})$ is proto-connexive then the following hold:

- A satisfies the identity $x \rightarrow y \approx x \Rightarrow_{\wedge} (\neg \neg x \land y)$.
- A has largest element $\neg \neg 1$, i.e., $\neg \neg A$ is integral.
- A is pseudo-complemented, i.e., satisfies $x \land \neg x \leq 0$.
- A satisfies $1 \leq \neg \neg (\neg \neg x \rightarrow x)$.

Let L and K be substructural logics. We say the *Glivenko property* holds for K relative to L iff

$$\vdash_{\mathbf{L}} \varphi \iff \vdash_{\mathbf{K}} \neg \neg \varphi,$$

for every formula φ .

Let L and K be substructural logics. We say the *Glivenko property holds for* K *relative to* L iff

$$\vdash_{\mathbf{L}} \varphi \iff \vdash_{\mathbf{K}} \neg \neg \varphi,$$

for every formula φ .

Equivalently, this holds iff $V(\mathbf{L}) \models 1 \le t \iff V(\mathbf{K}) \models 1 \le \neg \neg t$ for every FL_e -term t.

Let L and K be substructural logics. We say the *Glivenko property holds for* K *relative to* L iff

$$\vdash_{\mathbf{L}} \varphi \iff \vdash_{\mathbf{K}} \neg \neg \varphi,$$

for every formula φ .

Which is further equivalent to $V(\mathbf{L}) \models s \approx t \iff V(\mathbf{K}) \models \neg s \approx \neg t$ for any FL_e -terms s, t.

Let L and K be substructural logics. We say the *Glivenko property holds for* K *relative to* L iff

$$\vdash_{\mathbf{L}} \varphi \iff \vdash_{\mathbf{K}} \neg \neg \varphi,$$

for every formula φ .

Let V and W be subvarieties of FL_e . We say the *equational Glivenko* property holds for W relative to V iff

$$\mathsf{V} \vDash s \approx t \iff \mathsf{W} \vDash \neg s \approx \neg t$$

for every equation $s \approx t$ in the language of FL_e.

Let L and K be substructural logics. We say the *Glivenko property holds for* K *relative to* L iff

$$\vdash_{\mathbf{L}} \varphi \iff \vdash_{\mathbf{K}} \neg \neg \varphi,$$

for every formula φ .

Let V and W be subvarieties of FL_e . We say the *equational Glivenko* property holds for W relative to V iff

$$\mathsf{V} \vDash s \approx t \iff \mathsf{W} \vDash \neg s \approx \neg t$$

for every equation $s \approx t$ in the language of FL_e .

- By G_{FLe}(V) we denote the largest subvariety W such that the equational Glivenko property holds for W relative to V.
- ▶ $\mathbf{G}_{U}(V) \coloneqq \mathbf{G}_{FL_{e}}(V) \cap U$, where U is a subvariety of FL_{e} .

Let L and K be substructural logics. We say the *Glivenko property holds for* K *relative to* L iff

$$\vdash_{\mathbf{L}} \varphi \iff \vdash_{\mathbf{K}} \neg \neg \varphi,$$

for every formula φ .

Let V and W be subvarieties of FL_e . We say the *equational Glivenko* property holds for W relative to V iff

$$\mathsf{V} \vDash s \approx t \iff \mathsf{W} \vDash \neg s \approx \neg t$$

for every equation $s \approx t$ in the language of FL_e .

- By G_{FLe}(L) we denote the weakest substructural logic K such that the Glivenko property holds for K relative to L.
- $\blacktriangleright \ \mathbf{G}_{\mathbf{K}}(\mathbf{L})\coloneqq \mathbf{G}_{\mathbf{FL}_{\mathbf{e}}}(\mathbf{L}) \lor \mathbf{K}, \text{ where } \mathbf{K} \text{ is an extension of } \mathbf{FL}_{\mathbf{e}}.$

Theorem (Galatos & Ono 2006)

 $\begin{aligned} \mathbf{G}_{\mathsf{FL}_{\mathsf{e}}}(\mathsf{BA}) & \text{ is axiomatized relative to } \mathsf{FL}_{\mathsf{e}} \text{ by the following identities:} \\ \textbf{(a)} \quad \neg(x \cdot y) \approx \neg(x \wedge y) \\ \textbf{(b)} \quad \neg(x \rightarrow y) \approx \neg(\neg x \lor y) \\ \text{Alternatively, (b) can be replaced by } 1 \leq \neg \neg(\neg \neg x \rightarrow x). \end{aligned}$

Theorem (Galatos & Ono 2006)

 $\begin{aligned} \mathbf{G}_{\mathsf{FL}_{\mathsf{e}}}(\mathsf{BA}) \text{ is axiomatized relative to } \mathsf{FL}_{\mathsf{e}} \text{ by the following identities:} \\ \textbf{(a)} \quad \neg(x \cdot y) \approx \neg(x \wedge y) \\ \textbf{(b)} \quad \neg(x \rightarrow y) \approx \neg(\neg x \lor y) \end{aligned}$

Alternatively, (b) can be replaced by $1 \leq \neg \neg (\neg \neg x \rightarrow x)$.

Lemma

For an FL_e -algebra A, the following are equivalent:

- $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{e}}(\mathsf{BA}).$
- A is pseudo-complemented, satisfies $1 \le \neg \neg (\neg \neg x \rightarrow x)$, and has $\neg \neg 1$ as its greatest element (i.e., $\neg \neg A$ is integral).
- $\neg \neg \mathbf{A}$ is Boolean and $\mathbf{A} \models 1 \le \neg \neg (\neg \neg x \rightarrow x)$.

Recall

For an FL_e-algebra A, if $(A, \Rightarrow_{\wedge})$ is proto-connexive then:

- $\neg \neg 1$ is the greatest element of **A**.
- A is pseudo-complemented.
- $\mathbf{A} \models 1 \leq \neg \neg (\neg \neg x \rightarrow x).$

Corollary

Let \mathbf{A} be an FL_e -algebra. If $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive then $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_e}(\mathsf{BA})$.

Corollary

Let \mathbf{A} be an FL_e -algebra. If $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive then $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_e}(\mathsf{BA})$.

Lemma

If $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{e}}(\mathsf{BA})$ *then* $(\mathbf{A}, \Rightarrow_{\wedge})$ *is proto-connexive.*

Corollary

Let \mathbf{A} be an FL_e -algebra. If $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive then $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_e}(\mathsf{BA})$.

Lemma

If $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_e}(\mathsf{BA})$ then $(\mathbf{A}, \Rightarrow_{\!\!\wedge})$ is proto-connexive.

Proof.

Boolean algebras are involutive and have $\wedge = \cdot$, so it follows that

$$\mathbf{G}_{\mathsf{FL}_{\mathsf{e}}}(\mathsf{BA}) \vDash \neg [x \Rightarrow_{\wedge} y] \approx \neg [(x \rightarrow y) \land (y \rightarrow x)].$$

Corollary

Let \mathbf{A} be an FL_e -algebra. If $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive then $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_e}(\mathsf{BA})$.

Lemma

If $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{e}}(\mathsf{BA})$ then $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive.

Proof.

Boolean algebras are involutive and have $\wedge = \cdot$, so it follows that

$$\mathbf{G}_{\mathsf{FL}_{\mathsf{e}}}(\mathsf{BA}) \vDash \neg [x \Rightarrow_{\wedge} y] \approx \neg [(x \rightarrow y) \land (y \rightarrow x)].$$

Furthermore, it is easily verified that Boolean algebras satisfy the identity $\neg[(x \rightarrow y) \land (y \rightarrow x)] \approx (x \rightarrow \neg y) \land (\neg y \rightarrow x)$.

Corollary

Let \mathbf{A} be an FL_e -algebra. If $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive then $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_e}(\mathsf{BA})$.

Lemma

If $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{e}}(\mathsf{BA})$ then $(\mathbf{A},\Rightarrow_{\wedge})$ is proto-connexive.

Proof.

Boolean algebras are involutive and have $\wedge = \cdot$, so it follows that

$$\mathbf{G}_{\mathsf{FL}_{\mathsf{e}}}(\mathsf{BA}) \vDash \neg [x \Rightarrow_{\wedge} y] \approx \neg [(x \rightarrow y) \land (y \rightarrow x)].$$

Furthermore, it is easily verified that Boolean algebras satisfy the identity $\neg[(x \rightarrow y) \land (y \rightarrow x)] \approx (x \rightarrow \neg y) \land (\neg y \rightarrow x)$. Hence it follows that $\mathbf{G}_{\mathsf{FL}_{e}}(\mathsf{BA})$ satisfies $\neg(x \Rightarrow_{\land} y) \approx x \Rightarrow_{\land} \neg y$.

Let V be a subvariety of FL_e -algebras. Then the following are equivalent:

- $(V, \Rightarrow_{\wedge})$ is proto-connexive.
- $(V, \Rightarrow_{\wedge}) \models (BT), (BT'), (P2), or (P3).$
- $V \subseteq \mathbf{G}_{FL_e}(\mathsf{BA})$

Consequently, the largest variety of FL_e -algebras for which \Rightarrow_{\wedge} is proto-connexive is exactly $G_{FL_e}(BA)$.

Let V be a subvariety of FL_e -algebras. Then the following are equivalent:

- $(V, \Rightarrow_{\wedge})$ is proto-connexive.
- $(V, \Rightarrow_{\wedge}) \models (BT), (BT'), (P2), or (P3).$
- $V \subseteq \mathbf{G}_{FL_e}(\mathsf{BA})$

Consequently, the largest variety of FL_e -algebras for which \Rightarrow_{\wedge} is proto-connexive is exactly $G_{FL_e}(BA)$.

Facts

Let $\mathbf{A} \in \mathsf{FL}_e$ and suppose $(\mathbf{A}, \Rightarrow_{\wedge})$ is proto-connexive. Then

- \Rightarrow_{\wedge} is material bi-implication in $\neg \neg A$.
- $(\mathbf{A}, \Rightarrow_{\circ})$ is also proto-connexive, where $x \Rightarrow_{\circ} y \coloneqq (x \rightarrow y) \cdot (y \rightarrow \neg \neg x)$ [The converse does not hold]. However....

Let V be a subvariety of FL_e -algebras. Then the following are equivalent:

- $(V, \Rightarrow_{\wedge})$ is proto-connexive.
- $(V, \Rightarrow_{\wedge}) \vDash (BT), (BT'), (P2), or (P3).$
- $V \subseteq \mathbf{G}_{FL_e}(\mathsf{BA})$

Consequently, the largest variety of FL_e -algebras for which \Rightarrow_{\wedge} is proto-connexive is exactly $G_{FL_e}(BA)$.

Theorem

Let \forall be a subvariety of FL_e -algebras. And define \Rightarrow_\circ via: $x \Rightarrow_\circ y := (x \rightarrow y) \cdot (y \rightarrow \neg \neg x).$

Then,

 $(V, \Rightarrow_{\wedge})$ is proto-connexive iff (V, \Rightarrow_{\circ}) is proto-connexive and $V \models x \le \neg \neg 1$.

Let V be a subvariety of $\mathsf{FL}_e\text{-algebras}.$ Then the following are equivalent:

- $(V, \Rightarrow_{\wedge})$ is proto-connexive.
- $(V, \Rightarrow_{\wedge}) \vDash (BT), (BT'), (P2), or (P3).$
- $V \subseteq \mathbf{G}_{FL_e}(\mathsf{BA})$

Consequently, the largest variety of FL_e -algebras for which \Rightarrow_{\wedge} is proto-connexive is exactly $G_{FL_e}(BA)$.

Theorem

Let
$$\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{e}}(\mathsf{BA})$$
 and $\Rightarrow \in \{\Rightarrow_{\circ}, \Rightarrow_{\wedge}\}$. Then
 (A, \Rightarrow) proto-connexive
but \Rightarrow is symmetric iff \mathbf{A} is a Boolean algebra.

The integral case: FL_{ei}

Recall:

$$x \Longrightarrow y \coloneqq (x \to y) \cdot (y \to \neg \neg x) \quad \text{and} \quad x \Longrightarrow_{\wedge} y \coloneqq (x \to y) \wedge (y \to \neg \neg x)$$

The integral case: FL_{ei}

Recall:

$$x {\Rightarrow_{\!\!\!\!\circ}} y \coloneqq (x {\rightarrow} y) {\cdot} (y {\rightarrow} \neg \neg x) \quad \text{and} \quad x {\Rightarrow_{\!\!\!\!\wedge}} y \coloneqq (x {\rightarrow} y) {\wedge} (y {\rightarrow} \neg \neg x)$$

Let FL_{ei} denote the variety of integral FL_{e} -algebras, i.e., those satisfying the equation $x \leq 1$.

Fact

 $\mathsf{FL}_{\mathsf{ei}} \vDash x \cdot y \le x \land y$, and hence $\mathsf{FL}_{\mathsf{ei}} \vDash x \Rightarrow_{\circ} y \le x \Rightarrow_{\wedge} y$

The integral case: FL_{ei}

Recall:

$$x {\Rightarrow_{\!\!\!\!\circ}} y \coloneqq (x {\rightarrow} y) {\cdot} (y {\rightarrow} \neg \neg x) \quad \text{and} \quad x {\Rightarrow_{\!\!\!\!\wedge}} y \coloneqq (x {\rightarrow} y) {\wedge} (y {\rightarrow} \neg \neg x)$$

Let FL_{ei} denote the variety of integral FL_{e} -algebras, i.e., those satisfying the equation $x \leq 1$.

Fact

$$\mathsf{FL}_{\mathsf{ei}} \vDash x \cdot y \le x \land y$$
, and hence $\mathsf{FL}_{\mathsf{ei}} \vDash x \Rightarrow_{\circ} y \le x \Rightarrow_{\wedge} y$

Let A be an integral FL_e-algebra. By $[\Rightarrow_0, \Rightarrow_{\wedge}]$ we denote the (nonempty) interval of binary operators between \Rightarrow_0 and \Rightarrow_{\wedge} , i.e.,

$$f \in [\Rightarrow,\Rightarrow] \iff (\forall x,y \in A)[x \Rightarrow y \le f(x,y) \le x \Rightarrow y]$$

Let \mathbf{A} be an integral FL_{e} -algebra. Then the following are equivalent:

- $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{\mathsf{ei}}}(\mathsf{BA}).$
- For all $\Rightarrow \in [\Rightarrow_{\diamond}, \Rightarrow_{\wedge}]$, $(\mathbf{A}, \Rightarrow)$ is proto-connexive.
- There exists $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}]$ such that $(\mathbf{A}, \Rightarrow) \models (\mathsf{BT})$.

Let \mathbf{A} be an integral FL_{e} -algebra. Then the following are equivalent:

- $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{\mathsf{ei}}}(\mathsf{BA}).$
- For all $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}]$, $(\mathbf{A}, \Rightarrow)$ is proto-connexive.
- There exists $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}]$ such that $(\mathbf{A}, \Rightarrow) \models (\mathsf{BT})$.

Theorem

Let A be an integral FL_e -algebra and $\Rightarrow \in [\Rightarrow_o, \Rightarrow_h]$. Then (A, \Rightarrow) proto-connexive but \Rightarrow is symmetric iff A is a Boolean algebra.

The case with weakening: $\mathsf{FL}_{\mathsf{ew}}$

Let FL_{ew} denote the variety of 0-bounded integral FL_e -algebras.

Fact

 $\mathbf{G}_{\mathsf{FL}_{\mathsf{ew}}}(\mathsf{BA})$ is exactly the variety of pseudo-complemented $\mathsf{FL}_{\mathsf{ew}}\text{-algebras}.$

The case with weakening: $\mathsf{FL}_{\mathsf{ew}}$

Let FL_{ew} denote the variety of 0-bounded integral FL_{e} -algebras.

Fact

 $\mathbf{G}_{\mathsf{FL}_{\mathsf{ew}}}(\mathsf{BA})$ is exactly the variety of pseudo-complemented $\mathsf{FL}_{\mathsf{ew}}\text{-}\mathsf{algebras}.$

Corollary

Let $\mathbf{A} \in \mathsf{FL}_{\mathsf{ew}}$. Then the following are equivalent.

- $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{ew}}(\mathsf{BA})$ (i.e., \mathbf{A} is pseudo-complemented).
- For all $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}], (\mathbf{A}, \Rightarrow)$ is proto-connexive.
- There exists $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}]$ such that $(\mathbf{A}, \Rightarrow) \models (\mathsf{AT})$.

The case with weakening: $\mathsf{FL}_{\mathsf{ew}}$

Let FL_{ew} denote the variety of 0-bounded integral FL_{e} -algebras.

Fact

 $\mathbf{G}_{\mathsf{FL}_{\mathsf{ew}}}(\mathsf{BA})$ is exactly the variety of pseudo-complemented $\mathsf{FL}_{\mathsf{ew}}\text{-}\mathsf{algebras}.$

Corollary

Let $\mathbf{A} \in \mathsf{FL}_{ew}$. Then the following are equivalent.

- $\mathbf{A} \in \mathbf{G}_{\mathsf{FL}_{ew}}(\mathsf{BA})$ (i.e., \mathbf{A} is pseudo-complemented).
- For all $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}], (\mathbf{A}, \Rightarrow)$ is proto-connexive.
- There exists $\Rightarrow \in [\Rightarrow_{\circ}, \Rightarrow_{\wedge}]$ such that $(\mathbf{A}, \Rightarrow) \models (\mathsf{AT})$.

Corollary

Let $\Rightarrow \in \{\Rightarrow_{\circ}, \Rightarrow_{\wedge}\}$. Then (HA, \Rightarrow) is connexive.

Let $\Rightarrow \in \{\Rightarrow_{\circ}, \Rightarrow_{\wedge}\}$. Then for any variety $V \subseteq FL_{e}$, if $HA \subseteq V \subseteq G_{FL_{e}}(BA)$, then (V, \Rightarrow) is connexive.

 $\begin{array}{l} \text{Let} \Rightarrow \in \{\Rightarrow_{\circ},\Rightarrow_{\wedge}\}. \text{ Then for any variety } V \subseteq \mathsf{FL}_{\mathsf{e}}, \\ \text{if } \mathsf{HA} \subseteq V \subseteq \mathbf{G}_{\mathsf{FL}_{\mathsf{e}}}(\mathsf{BA}), \text{ then } (\mathsf{V},\Rightarrow) \text{ is connexive.} \end{array}$

Let **CPL** and **IPL** denote classical and intuitionistic propositional logic, respectively.

Theorem

 $Let \Rightarrow \in \{\Rightarrow_{\circ}, \Rightarrow_{\wedge}\}$. Then for any logic L in the interval between $G_{FL_{e}}(CPL)$ and IPL, (L, \Rightarrow) is connexive.

Definition (Wansing & Unterhuber (2019))

A logic called *weakly connexive* if it satisfies Aristotle's theses and the following two *weak* versions of Boethius theses:

$$A \Rightarrow B \vdash \sim (A \Rightarrow \sim B)$$
$$A \Rightarrow \sim B \vdash \sim (A \Rightarrow B)$$

Definition (Wansing & Unterhuber (2019))

A logic called *weakly connexive* if it satisfies Aristotle's theses and the following two *weak* versions of Boethius theses:

$$A \Rightarrow B \vdash \sim (A \Rightarrow \sim B)$$
$$A \Rightarrow \sim B \vdash \sim (A \Rightarrow B)$$

Definition (Kapsner (2012))

A logic called *strongly connexive* is \Rightarrow is non-symmetric and the following hold:

- ▶ In no model, $A \Rightarrow \neg A$ is satisfiable nor $\neg A \Rightarrow A$ is satisfiable.
- In no model, $A \Rightarrow B$ and $A \Rightarrow \neg B$ are simultaneously satisfiable.

Definition (Wansing & Unterhuber (2019))

A logic called *weakly connexive* if it satisfies Aristotle's theses and the following two *weak* versions of Boethius theses:

 $A \Rightarrow B \vdash \sim (A \Rightarrow \sim B)$ $A \Rightarrow \sim B \vdash \sim (A \Rightarrow B)$

Definition (Kapsner (2012))

A logic called *strongly connexive* is \Rightarrow is non-symmetric and the following hold:

- ▶ In no model, $A \Rightarrow \neg A$ is satisfiable nor $\neg A \Rightarrow A$ is satisfiable.
- In no model, $A \Rightarrow B$ and $A \Rightarrow \neg B$ are simultaneously satisfiable.

Theorem

The conditions of weakly connexive, proto-connexive, connexive, strongly connexive, are equivalent to Aristotle's thesis for any logic in the interval \mathbf{FL}_{ew} to \mathbf{IPL} .

Definition (Wansing & Unterhuber (2019))

A logic called *weakly connexive* if it satisfies Aristotle's theses and the following two *weak* versions of Boethius theses:

 $A \Rightarrow B \vdash \sim (A \Rightarrow \sim B)$ $A \Rightarrow \sim B \vdash \sim (A \Rightarrow B)$

Definition (Kapsner (2012))

A logic called *strongly connexive* is \Rightarrow is non-symmetric and the following hold:

- ▶ In no model, $A \Rightarrow \neg A$ is satisfiable nor $\neg A \Rightarrow A$ is satisfiable.
- In no model, $A \Rightarrow B$ and $A \Rightarrow \neg B$ are simultaneously satisfiable.

Theorem

The conditions of weakly connexive, proto-connexive, connexive, strongly connexive, are equivalent to Aristotle's thesis for any logic in the interval FL_{ew} to IPL. Furthermore, they all hold in the interval $G_{FL_{ew}}(CPL)$ to IPL.

Thank you!

References I

J. Cantwell.

The Logic of Conditional Negation.

Notre Dame Journal of Formal Logic, 49, 2008, 245–260.

- D. Fazio, A. Ledda, and F. Paoli, Intuitionistic logic is a connexive logic. Submitted.
- N. Galatos, and H. Ono, Glivenko theorems for substructural logics over FL, *Journal of Symbolic Logic*, 71(4), 2006, pp. 1353-1384
- 1
 - G. Gherardi, and E. Orlandelli: Super-strict implications. Bulletin of the Section of Logic, 50(1), 2021, pp. 1–34.
 - A. Kapsner, Connexivity and the Pragmatics of Conditionals. Erkenntnis, 2020.

References II

- A. Kapsner, Strong Connexivity. *Thought*, 1, 2012, pp. 141–145.
- A. Kapsner, and H. Omori, Counterfactuals in Nelson Logic. Proceedings of LORI 2017, Springer, 2017, pp. 497–511.
 - S. McCall.

Connexive Implication.

§29.8 in A.R. Anderson and N.D. Belnap, *Entailment. The Logic of Relevance and Necessity*, vol. 1, Princeton University Press, 1975, pp. 434–446.

S. McCall, A History Of Connexivity. In Dov M. Gabbay, Francis Jeffry Pelletier, and John Woods (eds.), *Handbook of the History of Logic*, North-Holland, Volume 11, 2012, pp. 415–449.

References III

- N. Pfeifer, Experiments on Aristotle'ffs Thesis: Towards an experimental philosophy of conditionals. *The Monist*, 95, 2012, pp. 223–240.
- N. Pfeifer, and L. Tulkki, Conditionals, Counterfactuals, and Rational Reasoning. An Experimental Study on Basic Principles. *Minds and Machines*, 27, 2017, pp. 119–165.
- C. Pizzi. Decision procedures for logics of consequential implication. *Notre Dame Journal of Formal Logic*, 32, 1991, pp. 618–636.
- R. Routley, Semantics for Connexive Logics. I. Studia Logica, 37, 1978, pp. 393–412.

References IV

H. Wansing.

Connexive Logic.

The Stanford Encyclopedia of Philosophy (E. N. Zalta ed.), https://plato.stanford.edu/archives/spr2021/ entries/logic-connexive/, Metaphysics Research Lab, Stanford University, Spring 2021 edition.

- H. Wansing, H. Omori, Connexive Logics. An overview and current trends. *Logic and Logical Philosophy*, 28, 2019, pp. 371–387.
- H. Wansing, and M. Unterhuber, Connexive Conditional Logic. Part I. Logic and Logical Philosophy, 28, 2019, pp. 567–610
- W. Young, From Interior Algebras to Unital ℓ-Groups: A Unifying Treatment of Modal Residuated Lattices. *Studia Logica*, 103, 2015, 265–286.