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Connexive logic

The basic ideas of connexive logic have been traced back to
Aristotle’s Prior Analytics and to Boethius’ De hypotheticis
syllogismis (see McCall 1975).

Connexive principles reflect a connection, or compatibility, between
the antecedent and consequent of sound conditionals.

Specifically, they establish that a conditional
“if A then B”

is sound provided that the negation of B is incompatible with A.
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Connexive logic, cont.

Connexitivty can be expressed in a language containing a unary
(negation) connective ∼ and a binary (implication) connective⇒:
Aristotle’s Theses:

▸ ∼(A⇒∼A)

▸ ∼(∼A⇒A)

Boethius’ Theses:
▸ (A⇒B)⇒∼(A⇒∼B)

▸ (A⇒∼B)⇒∼(A⇒B)
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▸ ∼(∼A⇒A)

Boethius’ Theses:
▸ (A⇒B)⇒∼(A⇒∼B)

▸ (A⇒∼B)⇒∼(A⇒B)

All the above theses fail in classical logic for material implication
and negation, i.e., ∼ = ¬ and⇒ = →.
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Connexive logic, cont.

Connexitivty can be expressed in a language containing a unary
(negation) connective ∼ and a binary (implication) connective⇒:
Aristotle’s Theses:

▸ ∼(A⇒∼A)

▸ ∼(∼A⇒A)

Boethius’ Theses:
▸ (A⇒B)⇒∼(A⇒∼B)

▸ (A⇒∼B)⇒∼(A⇒B)

They are satisfied for material bi-implication in classical logic,
i.e., ∼ = ¬ and⇒ =↔,
however bi-implication is obviously symmetric.
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Connexive logic, cont.

Connexitivty can be expressed in a language containing a unary
(negation) connective ∼ and a binary (implication) connective⇒:
Aristotle’s Theses:

▸ ∼(A⇒∼A)

▸ ∼(∼A⇒A)

Boethius’ Theses:
▸ (A⇒B)⇒∼(A⇒∼B)

▸ (A⇒∼B)⇒∼(A⇒B)

A connexive logic is nothing but a logic having the above formulas
as theorems w.r.t. a negation ∼, and a non-symmetric implication⇒.
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The literature on this subject o�ers a large amount of connexive
logical systems “built from scratch” having interesting
proof-theoretical features and, in some cases, transparent and
elegant semantics.

However, less has been said on the possibility of defining connexive
implications within well established sub-logics of classical logic or
some expansion thereof.

A systematic (programmatic) investigation of connexive implication
connectives which are term-definable within well known systems of
non-classical logic has not been o�ered yet.

We base our work in the context of Substructural logics, and
investigate them through the lens of their algebraic semantics of
residuated la�ices.
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Residuated la�ices and FL-algebras

A commutative residuated la�ice is an algebraic structure
R = (R,∨,∧, ⋅,→,1), such that

▸ (R,∨,∧) is a la�ice
▸ (R, ⋅,1) is a commutative monoid
▸ For all x, y, z ∈ R

x ⋅ y ≤ z ⇐⇒ y ≤ x→z,

where ≤ is the induced la�ice order: x ≤ y ⇐⇒ x ∧ y = x

An FLe-algebra is simply a 0-pointed commutative residuated
la�ice, i.e., an expansion of a CRL by an arbitrary constant 0.
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Double negation image

In the language of FLe, we define the unary operation ¬ via:

¬x ∶= x→0

The following (quasi-) identites hold in FLe:
▸ x ≤ ¬¬x

▸ x ≤ y Ô⇒ ¬y ≤ ¬x and ¬¬x ≤ ¬¬y

▸ ¬¬¬x ≈ ¬x and so ¬¬(¬¬x) ≈ ¬¬x

▸ ¬¬x ⋅ ¬¬y ≤ ¬¬(xy) [equivalently, ¬¬(¬¬x ⋅ ¬¬y) ≈ ¬¬(xy)]

Nuclear image of ¬¬

Let A = ⟨A,∧,∨, ⋅,→,0,1⟩ be an FLe-algebra. Then
¬¬A ∶= ⟨¬¬A,∧,∨¬¬, ⋅¬¬,→,0,¬¬1⟩ is an FLe-algebra where
¬¬A ∶= {¬¬a ∶ a ∈ A} x⋅¬¬y ∶= ¬¬(x⋅y) x∨¬¬y ∶= ¬¬(x∨y)
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Algebrbraization

Theorem

▸ For every substructural logic L, L is algebraizable with
V(L) ∶= FLe ∩Mod({1 ≤ ϕ ∶ ⊢L ϕ}).

as its equivalent algebraic semantics. In particular, for any set of
formulas Φ ∪ {γ}.

Φ ⊢L ψ i� {1 ≤ ϕ ∶ ϕ ∈ Φ} ⊧V(L) 1 ≤ ψ,

▸ For any subvariety V ⊆ FLe, V is the equivalent algebraic
semantics of the logic

L(V) ∶= {ϕ ∈ FmL ∶ V ⊧ 1 ≤ ϕ}, and
Specifically, for any set of equations E ∪ {s ≈ t} one has:

E ⊧V s ≈ t i� {u→ v, v → u ∶ (u ≈ v) ∈ E} ⊢L(V) (s→t) ∧ (t→s).
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Equational Connexive Laws

Let A an FLe-algebra, and define ¬x ∶= x→ 0.
Suppose⇒ is binary operation that is term-definable in the
language of FLe.

We say (A,⇒) is proto-connexive if:
▸ Equational Aristotle Theses:

1 ≤ ¬(x⇒¬x) (AT)

1 ≤ ¬(¬x⇒x) (AT’)

▸ Equational Boethius Theses:
1 ≤ (x⇒y)⇒¬(x⇒¬y) (BT)

1 ≤ (x⇒¬y)⇒¬(x⇒y) (BT’)

We say (A,⇒) is connexive if it further satisfies
▸ Non-symmetry: ⇒ is not a symmetric relation on A, i.e.,

(A,⇒) ⊭ x⇒y ≈ y⇒x (NS)
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A useful proposition

Proposition

Let A be an FLe-algebra with and⇒ some binary operation. If the
following hold in A:

1 ≤ x⇒¬¬x (P1)

¬¬(x⇒y) ≈ ¬(x⇒¬y), (P2)

then (A,⇒) is proto-connexive.
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Definitions of connexivity

Definition
Let⇒ be a binary operation term-definable in the language
{∧,∨, ⋅,→,0,1}. Let K be a class of FLe-algebras and L a
substructural logic.

▸ We say (K,⇒) is proto-connexive if every member of K is
proto-connexive.

▸ We say (K,⇒) is connexive if it has at least one connexive
member, namely K ⊭ (NS).

▸ We say (L,⇒) is (proto-) connexive if (V(L),⇒) is (proto-)
connexive.

Note
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Definitions of connexivity

Definition
Let⇒ be a binary operation term-definable in the language
{∧,∨, ⋅,→,0,1}. Let K be a class of FLe-algebras and L a
substructural logic.

▸ We say (K,⇒) is proto-connexive if every member of K is
proto-connexive.

▸ We say (K,⇒) is connexive if it has at least one connexive
member, namely K ⊭ (NS).

▸ We say (L,⇒) is (proto-) connexive if (V(L),⇒) is (proto-)
connexive.

Note
In our se�ing, a substructural logic being connexive exactly
corresponds to the conventional one. Namely, both Aristotle’s and
Boethius’ theses hold and the connective⇒ is not symmetric.
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The obvious place to start: ⇒ = →

Proposition

The following are equivalent for A = ⟨A,∧,∨, ⋅,→,0,1⟩ ∈ FLe:
▸ (A,→) is proto-connexive.
▸ (A,→) ⊧ (AT).
▸ 0 is the greatest element in A.

Proposition

Let V0 ∶= FLe + (x ≤ 0). Then (V0,⇒) is connexive.

Note: V0 ⊧ ¬x ≈ 0.

But this is unsatisfying…

Let L0 ∶= L(V0). Then for any formula ϕ, ⊢L0 ϕ→¬ϕ.
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The connective⇒∧

We define the connective⇒∧ via
x⇒∧y ∶= (x→y) ∧ (y→¬¬x),

where ¬x ∶= x→0.
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The connective⇒∧

We define the connective⇒∧ via
x⇒∧y ∶= (x→y) ∧ (y→¬¬x),

where ¬x ∶= x→0.

⇒∧ can be considered as the best candidate for embodying the
adage:

“No plausible statement can be implied by an implausible one,”
whenever “it is plausible that x” is formalized as ¬¬x.
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The connective⇒∧

We define the connective⇒∧ via
x⇒∧y ∶= (x→y) ∧ (y→¬¬x),

where ¬x ∶= x→0.

Note, for any FLe-algebra A, one has that
▸ 1 ≤ x⇒∧y i� x ≤ y and ¬x = ¬y.
▸ x⇒∧y is the largest c ∈ A such that x ⋅ c ≤ y and y ⋅ c ≤ ¬¬x.
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The connective⇒∧

We define the connective⇒∧ via
x⇒∧y ∶= (x→y) ∧ (y→¬¬x),

where ¬x ∶= x→0.

In fact:

Proposition

For an FLe-algebra A, (A,⇒∧) ⊧ (P1): 1 ≤ x⇒∧¬¬x,
and the following are equivalent:

▸ (A,⇒∧) is proto-connexive.
▸ (A,⇒∧) ⊧ (BT): 1 ≤ (x⇒y)⇒¬(x⇒¬y).
▸ (A,⇒∧) ⊧ (BT’): 1 ≤ (x⇒¬y)⇒¬(x⇒y).
▸ (A,⇒∧) ⊧ (P2) ∶ ¬¬(x⇒y) ≈ ¬(x⇒¬y).
▸ (A,⇒∧) ⊧ (P3) ∶ ¬(x⇒y) ≈ x⇒¬y.
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⇒∧ and connexivity.

Lemma
LetA be an FLe-algebra.
If (A,⇒∧) is proto-connexive then the following hold:

▸ A satisfies the identity x→y ≈ x⇒∧(¬¬x ∧ y).

▸ A has largest element ¬¬1, i.e., ¬¬A is integral.
▸ A is pseudo-complemented, i.e., satisfies x ∧ ¬x ≤ 0.
▸ A satisfies 1 ≤ ¬¬(¬¬x→x).
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The Glivenko Property

Let L and K be substructural logics. We say the Glivenko property
holds for K relative to L i�

⊢L ϕ ⇐⇒ ⊢K ¬¬ϕ,
for every formula ϕ.
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The Glivenko Property

Let L and K be substructural logics. We say the Glivenko property
holds for K relative to L i�

⊢L ϕ ⇐⇒ ⊢K ¬¬ϕ,
for every formula ϕ.

Equivalently, this holds i�
V(L) ⊧ 1 ≤ t ⇐⇒ V(K) ⊧ 1 ≤ ¬¬t

for every FLe-term t.
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The Glivenko Property

Let L and K be substructural logics. We say the Glivenko property
holds for K relative to L i�

⊢L ϕ ⇐⇒ ⊢K ¬¬ϕ,
for every formula ϕ.

Which is further equivalent to
V(L) ⊧ s ≈ t ⇐⇒ V(K) ⊧ ¬s ≈ ¬t

for any FLe-terms s, t.
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The Glivenko Property

Let L and K be substructural logics. We say the Glivenko property
holds for K relative to L i�

⊢L ϕ ⇐⇒ ⊢K ¬¬ϕ,
for every formula ϕ.

Let V and W be subvarieties of FLe. We say the equational Glivenko
property holds for W relative to V i�

V ⊧ s ≈ t ⇐⇒ W ⊧ ¬s ≈ ¬t
for every equation s ≈ t in the language of FLe.
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Let V and W be subvarieties of FLe. We say the equational Glivenko
property holds for W relative to V i�

V ⊧ s ≈ t ⇐⇒ W ⊧ ¬s ≈ ¬t
for every equation s ≈ t in the language of FLe.

▸ By GFLe(V) we denote the largest subvariety W such that the
equational Glivenko property holds for W relative to V.

▸ GU(V) ∶=GFLe(V) ∩U, where U is a subvariety of FLe.
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The Glivenko Property

Let L and K be substructural logics. We say the Glivenko property
holds for K relative to L i�

⊢L ϕ ⇐⇒ ⊢K ¬¬ϕ,
for every formula ϕ.

Let V and W be subvarieties of FLe. We say the equational Glivenko
property holds for W relative to V i�

V ⊧ s ≈ t ⇐⇒ W ⊧ ¬s ≈ ¬t
for every equation s ≈ t in the language of FLe.

▸ By GFLe(L) we denote the weakest substructural logic K
such that the Glivenko property holds for K relative to L.

▸ GK(L) ∶=GFLe(L) ∨K, where K is an extension of FLe.
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Theorem (Galatos & Ono 2006)

GFLe(BA) is axiomatized relative to FLe by the following identities:

(a) ¬(x ⋅ y) ≈ ¬(x ∧ y)

(b) ¬(x→y) ≈ ¬(¬x ∨ y)

Alternatively, (b) can be replaced by 1 ≤ ¬¬(¬¬x→x).

Lemma
For an FLe-algebraA, the following are equivalent:

▸ A ∈GFLe(BA).
▸ A is pseudo-complemented, satisfies 1 ≤ ¬¬(¬¬x→x), and has
¬¬1 as its greatest element (i.e., ¬¬A is integral).

▸ ¬¬A is Boolean andA ⊧ 1 ≤ ¬¬(¬¬x→x).
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Characterizing when⇒∧ is connexive

Recall
For an FLe-algebra A, if (A,⇒∧) is proto-connexive then:

▸ ¬¬1 is the greatest element of A.
▸ A is pseudo-complemented.
▸ A ⊧ 1 ≤ ¬¬(¬¬x→x).

Corollary

LetA be an FLe-algebra.
If (A,⇒∧) is proto-connexive thenA ∈GFLe(BA).

Lemma
If A ∈GFLe(BA) then (A,⇒∧) is proto-connexive.

Proof.
Boolean algebras are involutive and have ∧ = ⋅, so it follows that

GFLe(BA) ⊧ ¬[x⇒∧y] ≈ ¬[(x→y) ∧ (y→x)].
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Theorem
Let V be a subvariety of FLe-algebras. Then the following are
equivalent:

▸ (V,⇒∧) is proto-connexive.
▸ (V,⇒∧) ⊧ (BT), (BT’), (P2), or (P3).
▸ V ⊆GFLe(BA)

Consequently, the largest variety of FLe-algebras for which⇒∧ is
proto-connexive is exactlyGFLe(BA).
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Facts
Let A ∈ FLe and suppose (A,⇒∧) is proto-connexive. Then

▸ ⇒∧ is material bi-implication in ¬¬A.
▸ (A,⇒○) is also proto-connexive, where
x⇒○y ∶= (x→y) ⋅ (y→¬¬x) [The converse does not hold].
However….
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Theorem
Let V be a subvariety of FLe-algebras. And define⇒○ via:

x⇒○y ∶= (x→ y) ⋅ (y→¬¬x).
Then,
(V,⇒∧) is proto-connexive i� (V,⇒○) is proto-connexive and

V ⊧ x ≤ ¬¬1.
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Theorem
LetA ∈GFLe(BA) and⇒ ∈ {⇒○,⇒∧}. Then

(A,⇒) proto-connexive
but⇒ is symmetric

i� A is a Boolean algebra.
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The integral case: FLei

Recall:

x⇒○y ∶= (x→y)⋅(y→¬¬x) and x⇒∧y ∶= (x→y)∧(y→¬¬x)

Let FLei denote the variety of integral FLe-algebras, i.e., those
satisfying the equation x ≤ 1.

Fact
FLei ⊧ x ⋅ y ≤ x ∧ y, and hence FLei ⊧ x⇒○y ≤ x⇒∧y

Let A be an integral FLe-algebra. By [⇒○,⇒∧] we denote the
(nonempty) interval of binary operators between⇒○ and⇒∧, i.e.,

f ∈ [⇒○,⇒∧] ⇐⇒ (∀x, y ∈ A)[x⇒○y ≤ f(x, y) ≤ x⇒∧y]

Gavin St. John Connexive implication in substructural logics 18 / 27



The integral case: FLei

Recall:

x⇒○y ∶= (x→y)⋅(y→¬¬x) and x⇒∧y ∶= (x→y)∧(y→¬¬x)

Let FLei denote the variety of integral FLe-algebras, i.e., those
satisfying the equation x ≤ 1.

Fact
FLei ⊧ x ⋅ y ≤ x ∧ y, and hence FLei ⊧ x⇒○y ≤ x⇒∧y

Let A be an integral FLe-algebra. By [⇒○,⇒∧] we denote the
(nonempty) interval of binary operators between⇒○ and⇒∧, i.e.,

f ∈ [⇒○,⇒∧] ⇐⇒ (∀x, y ∈ A)[x⇒○y ≤ f(x, y) ≤ x⇒∧y]

Gavin St. John Connexive implication in substructural logics 18 / 27



The integral case: FLei

Recall:

x⇒○y ∶= (x→y)⋅(y→¬¬x) and x⇒∧y ∶= (x→y)∧(y→¬¬x)

Let FLei denote the variety of integral FLe-algebras, i.e., those
satisfying the equation x ≤ 1.

Fact
FLei ⊧ x ⋅ y ≤ x ∧ y, and hence FLei ⊧ x⇒○y ≤ x⇒∧y

Let A be an integral FLe-algebra. By [⇒○,⇒∧] we denote the
(nonempty) interval of binary operators between⇒○ and⇒∧, i.e.,

f ∈ [⇒○,⇒∧] ⇐⇒ (∀x, y ∈ A)[x⇒○y ≤ f(x, y) ≤ x⇒∧y]

Gavin St. John Connexive implication in substructural logics 18 / 27



The integral case: continued

Theorem
LetA be an integral FLe-algebra. Then the following are equivalent:

▸ A ∈GFLei(BA).
▸ For all⇒ ∈ [⇒○,⇒∧], (A,⇒) is proto-connexive.
▸ There exists⇒ ∈ [⇒○,⇒∧] such that (A,⇒) ⊧ (BT).

Theorem
LetA be an integral FLe-algebra and⇒ ∈ [⇒○,⇒∧]. Then

(A,⇒) proto-connexive
but⇒ is symmetric

i� A is a Boolean algebra.
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The case with weakening: FLew

Let FLew denote the variety of 0-bounded integral FLe-algebras.

Fact
GFLew(BA) is exactly the variety of pseudo-complemented
FLew-algebras.

Corollary

LetA ∈ FLew. Then the following are equivalent.
▸ A ∈GFLew(BA) (i.e., A is pseudo-complemented).
▸ For all⇒ ∈ [⇒○,⇒∧], (A,⇒) is proto-connexive.
▸ There exists⇒ ∈ [⇒○,⇒∧] such that (A,⇒) ⊧ (AT).

Corollary

Let⇒ ∈ {⇒○,⇒∧}. Then (HA,⇒) is connexive.
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Main results

Theorem
Let⇒ ∈ {⇒○,⇒∧}. Then for any variety V ⊆ FLe,
if HA ⊆ V ⊆GFLe(BA), then (V,⇒) is connexive.

Let CPL and IPL denote classical and intuitionistic propositional
logic, respectively.

Theorem
Let⇒ ∈ {⇒○,⇒∧}. Then for any logic L in the interval between
GFLe(CPL) and IPL, (L,⇒) is connexive.
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Notes on weak and strong Connexitivity

Definition (Wansing & Unterhuber (2019))

A logic called weakly connexive if it satisfies Aristotle’s theses and
the following two weak versions of Boethius theses:

A⇒B ⊢ ∼(A⇒∼B)

A⇒∼B ⊢ ∼(A⇒B)

Definition (Kapsner (2012))

A logic called strongly connexive is⇒ is non-symmetric and the
following hold:

▸ In no model, A⇒¬A is satisfiable nor ¬A⇒A is satisfiable.
▸ In no model, A⇒B and A⇒¬B are simultaneously satisfiable.

Theorem
The conditions of weakly connexive, proto-connexive, connexive,
strongly connexive, are equivalent to Aristotle’s thesis for any logic in
the interval FLew to IPL. Furthermore, they all hold in the interval
GFLew(CPL) to IPL.
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Thank you!
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