Structural completeness and lattice of extensions in many-valued logics with rational constants

Joan Gispert with Z.Haniková, T.Moraschini and M.Stronkowski

Facultat de Matemàtiques i Informàtica. Universitat de Barcelona jgispertb@ub.edu

LATD 2022

Paestum, 5-10 September 2022

Structural completeness ...

LATD 2022

Łukasiewicz, Gödel and Product logics

- L_{∞} Infinite valued Łukasiewicz logic, finite valued L_n (1920)
- **G** Gödel-Dummett Logic (1959), finite valued G_n (1932)
- P Product logic (1996)

Common frame:

- Fuzzy logics
- Algebraizable logics

LATD 2022

Axiomatic Extensions of Basic fuzzy logic

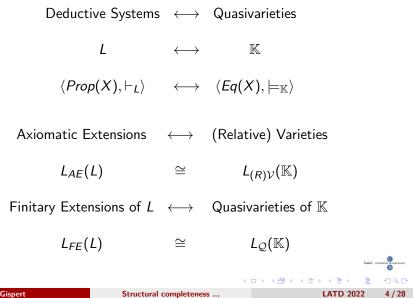
•
$$L_{\infty} = BL + \neg \neg \varphi \rightarrow \varphi$$

- $G = BL + \varphi \rightarrow \varphi * \varphi$
- $P = BL + \neg(\varphi \land \neg \varphi) + \neg \varphi \lor ((\varphi \to \varphi * \psi) \to \psi)$
- L_{∞} , G and P have some type of strong standard completeness theorem
- L_{∞} is algebraizable and the class *MVA* of all MV-algebras is its equivalent (quasi)variety semantics.
- *G* is algebraizable and the class *GA* of all Gödel algebras is its equivalent (quasi)variety semantics.
- *P* is algebraizable and the class *PA* of all Product algebras is its equivalent (quasi)variety semantics.

LATD 2022 3 / 28

<ロト < 同ト < ヨト < ヨト

Algebraic logic



Admissibility Theory

A rule $\psi_0, \ldots, \psi_{n-1}/\varphi$ is *L*-admissible in *L* iff for each substitution σ , $\vdash_L \sigma(\psi_i)$ for every i < n implies $\vdash_L \sigma(\varphi)$.

A logic *L* is **structurally complete** iff every admissible rule is a derivable rule.

A logic is **hereditarily** structurally complete iff every extension is structurally complete.

Every logic L admits a unique structural completion L⁺

L is structurally complete $\longleftrightarrow \mathbb{K} = Q(\mathbf{F}_{\mathbb{K}}(\omega))$

L is hereditarily structurally complete \leftrightarrow

$$\longleftrightarrow \ L_{(R)V}(\mathbb{K}) = L_Q(\mathbb{K})$$

イロト イポト イヨト イヨト 三日

histori UNIVERSITATI EMERICAN

Łukasiewicz logic

 MVA = V([0,1]_L) = V([0,1]_L ∩ Q) = Q([0,1]_L) = Q([0,1]_L ∩ Q). Every finite valued logic Ł_n is an axiomatic extension of Ł_∞. Proper consistent axiomatic extension of L_∞ are given by

$$\{\mathbf{L}_m \mid m \in I\} \cup \{\mathbf{L}_n^{\omega} \mid n \in J\}$$

where I and J are finite subsets of integers ≥ 1 , not both empty. $L_V(MVA)$ is a countable infinite Pseudo-Boolean algebra.

 Ł_∞ is not structurally complete. Structurally complete axiomatic extensions of Ł_∞ are Ł₂ and Ł^ω₂. L_Q(MVA) is as complicated as it can be. MVA is Q-universal. i.e. For every quasivariety K of finite language, L_Q(K) ∈ HS(L_Q(MVA))

イロト 不得 トイヨト イヨト 二日

Gödel logic

 GA = V([0,1]_G) = V([0,1]_G ∩ Q) = Q([0,1]_G) = Q([0,1]_G ∩ Q). Proper axiomatic extensions of G are exactly finite valued Gödel logics G_n L_V(GA) is isomorphic to the chain ω + 1.

• G is hereditarily structurally complete. $L_Q(GA) = L_V(GA)$ is isomorphic to the chain $\omega + 1$.

<ロト < 同ト < ヨト < ヨト

LATD 2022

Product logic

• $PA = V([0,1]_P) = V([0,1]_P \cap \mathbb{Q}) = Q([0,1]_P) = Q([0,1]_P \cap \mathbb{Q}).$ P has a unique consistent proper axiomatic extension, namely CPC. $L_V(PA)$ is a 3-element chain {TA, BA, PA}.

• P is hereditarily structurally complete. $L_Q(PA) = L_V(PA)$ is a 3-element chain {TA, BA, PA}.

<ロト < 同ト < ヨト < ヨト

LATD 2022

Rational expansions

Let $C = \{c_q : q \in [0,1] \cap \mathbb{Q}\}$ be a set of new propositional constants.

Rational Łukasiewicz logic **R**Ł (Rational Gödel logic **RG**, Rational Product logic **RP**) is the expansion of L_{∞} (G, P) with the constants in C and the following bookkepping axioms:

 $(c_q \cdot c_r) \leftrightarrow c_{q*r}$ $(c_q \to c_r) \leftrightarrow c_{q \Rightarrow r}$ $c_0 \leftrightarrow \bot$ $c_1 \leftrightarrow \top$ for every $q, r \in [0, 1] \cap \mathbb{Q}$

RŁ is a conservative expansion of Ł_{∞} RG is a conservative expansion of GRP is a conservative expansion of P

< ロ > < 同 > < 回 > < 回 > < 回 > <

LATD 2022

Canonical Completeness

$$\mathbf{R}_{L} = \langle [\mathbf{0}, \mathbf{1}]_{\mathbf{L}}, \{q : q \in [0, 1] \cap Q\} \rangle$$

$$\mathbf{R}_{G} = \langle [\mathbf{0}, \mathbf{1}]_{\mathbf{G}}, \{q : q \in [0, 1] \cap Q\} \rangle$$

$$\mathbf{R}_{P} = \langle [\mathbf{0}, \mathbf{1}]_{\mathbf{P}}, \{q : q \in [0, 1] \cap Q\} \rangle$$

et $\varphi \in Prop_{C}(X)$
• $\vdash_{RL} \varphi \text{ iff } \models_{\mathbf{R}_{L}} \varphi$
• $\vdash_{RG} \varphi \text{ iff } \models_{\mathbf{R}_{G}} \varphi$
• $\vdash_{RP} \varphi \text{ iff } \models_{\mathbf{R}_{P}} \varphi$

 Q_L , Q_G , Q_P denote the rational subalgebras of R_L , R_G and R_P .

Let φ

10 / 28

э

LATD 2022

<ロト < 同ト < ヨト < ヨト

Algebraic rational expansions

- RL is algebraizable and the class RMV of all rational MV-algebras is its equivalent variety semantics. Moreover, $RMV = V(\mathbf{R}_L)$.
- *RG* is algebraizable and the class *RGA* of all rational Gödel algebras is its equivalent variety semantics. Moreover, $RGA = V(\mathbf{R}_G)$.
- *RP* is algebraizable and the class *RPA* of all rational Product algebras is its equivalent variety semantics. Moreover, $RPA = V(\mathbf{R}_P)$.

 $\mathbf{A} = \langle \mathcal{A}, \{a_q : q \in [0, 1] \cap \mathbb{Q}\} \rangle$ (i.e. $c_q^{\mathbf{A}} = a_q$) is a rational MV-algebra (rational Gödel algebra, rational Product algebra) iff $\mathcal{A} \in MVA$ (GA, PA) and following bookkepping equations hold:

 $c_q \cdot c_r \approx c_{q*r}$ $c_q \rightarrow c_r \approx c_{q\Rightarrow r}$ $c_0 \approx 0$ $c_1 \approx 1$ for every $q, r \in [0, 1] \cap \mathbb{Q}$

limited through the success

11/28

イロト 不得 トイヨト イヨト 二日

LATD 2022

To algebraically study axiomatic and finitary extensions of RL, RG and RP.

To obtain a description of $L_V(RMV)$, $L_V(RGA)$ and $L_V(RPA)$.

To obtain a description of $L_Q(RMV)$, $L_Q(RGA)$ and $L_Q(RPA)$.

To obtain a base of admissible rules for each extension.

<ロ> <問> <問> < 回> < 回> < 回>

LATD 2022

Rational Łukasiewicz logic

Canonical standard algebra

Theorem

 \mathbf{R}_L is the only standard rational MV-algebra.

Rational definability

Every rational element in [0,1] is implicitly definable in $[0,1]_L$

Unique constant interpretation $C(\mathbf{A})$ denote the constant subalgebra of \mathbf{A}

Corollary

If $\mathbf{A} \in RMV$ is non trivial, then $C(\mathbf{A}) \cong \mathbf{Q}_L$

LATD 2022

Varieties and quasivarieties of RMV

Theorem

RMV has non trivial subvarieties. $L_V(RMV)$ is a 2-element chain {TA, RMV}.

$$RMV = V(\mathbf{R}_{\mathsf{L}}) = V(\mathbf{Q}_{\mathsf{L}}) = Q(\mathbf{R}_{\mathsf{L}}) = Q(\mathbf{Q}_{\mathsf{L}})$$

$$\cup$$

$$TA$$

Theorem

RŁ is structurally complete.

Corollary

 $L_Q(RMV)$ is a 2-element chain $\{TA, RMV\}$.

J.Gispert

Structural completeness ...

LATD 2022 14 / 28

< (□) >

< = ▶

Rational Gödel Logic

Non canonical standard rational Gödel algebras: Let $r \in (0, 1]$,

$$\begin{split} \mathbf{R}_{[0,r)} &= \langle [\mathbf{0},\mathbf{1}]_{\mathbf{G}}, \{c_q^{\mathbf{R}_{[0,r)}}: q \in [0,1] \cap \mathbb{Q}\} \rangle \\ c_q^{\mathbf{R}_{[0,r)}} &= q \text{ for each } q \in [0,r) \cap \mathbb{Q} \text{ and } c_q^{\mathbf{R}_{[0,r)}} = 1 \text{ for each } q \in [r,1] \cap \mathbb{Q}. \\ \mathbf{R}_{[0,1)} &= \mathbf{R}_G \end{split}$$

Let $p \in [0,1) \cap \mathbb{Q}$,

$$\begin{split} \mathbf{R}_{[0,p]} &= \langle [\mathbf{0},\mathbf{1}]_{\mathbf{G}}, \{c_q^{\mathbf{R}_{[0,p]}}:q\in[0,1]\cap\mathbb{Q}\}\rangle\\ c_q^{\mathbf{R}_{[0,p]}} &= q \text{ for each } q\in[0,p]\cap\mathbb{Q} \text{ and } c_q^{\mathbf{R}_{[0,p]}} = 1 \text{ for each } q\in(p,1]\cap\mathbb{Q}. \end{split}$$

$${\sf R}_{[0,0]} = [0,1]_{\sf G}$$

э

15 / 28

- ∢ ⊒ →

LATD 2022

Rational Gödel Logic

$$egin{aligned} \mathbf{Q}_r &:= C(\mathbf{R}_{[0,r)}), & r \in (0,1] \ & \mathbf{Q}_p^0 &:= C(\mathbf{R}_{[0,p]}) & p \in [0,1) \cap \mathbb{Q} \end{aligned}$$

If $\mathbf{A} \in RGA$ is non trivial, then either $C(\mathbf{A}) \cong \mathbf{Q}_r$ for some $r \in (0,1]$ or $C(\mathbf{A}) \cong \mathbf{Q}_p^0$ for some $p \in [0,1) \cap \mathbb{Q}$.

$$\mathbf{Q}^{\gamma}_{\mathbf{p}} := \mathbf{Q}^{\mathbf{0}}_{\mathbf{p}} \oplus \gamma + 1 \qquad \gamma \in \omega + 1$$

《口》《聞》《臣》《臣》

LATD 2022

Varieties of RGA

Theorem

- Every nontrivial variety V of rational Gödel algebras is of the form $V(\mathbf{Q}_r)$ for some $r \in (0,1]$ or $V(\mathbf{Q}_p^{\gamma})$ for some $\gamma \in \omega + 1$ and $p \in [0,1) \cap \mathbb{Q}$. Moreover $V(\mathbf{Q}_r) = V(\mathbf{R}_{[0,r)})$ and $V(\mathbf{Q}_p^{\omega}) = V(\mathbf{R}_{[0,p]})$
- L_V(RGA) is an uncountable chain isomorphic to the poset obtained adding a new bottom element to the Dedekind–MacNeille completion of ([0,1) ∩ ℚ) ×_{lex} (ω + 1).

< ロ > < 同 > < 三 > < 三

LATD 2022

Structural completeness

Theorem

- For r ∈ (0,1], V(Q_r) is not structurally complete and Q(Q_r) is its structural completion.
- For p ∈ (0,1) ∩ Q, V(Q^γ_p) is not structurally complete and Q(Q^γ_p) is its structural completion.

Theorem

• A base for the admissible rules of RG_r is given by the following rules:

$$c_q \vee \varphi / \varphi \qquad q \in (0, r) \cap \mathbb{Q}$$

• A base for the admissible rules of RG_p^{γ} is given by the following rule:

$$c_p \lor \varphi / \varphi$$

< ロ > < 同 > < 三 > < 三

Quasivarieties of RGA

• $L_V(RGA)$ is a uncountable chain in $L_Q(RGA)$

• $\{Q(\mathbf{Q}_r): r \in (0,1]\}$ is an uncountable antichain in $L_Q(RGA)$

Is RGA Q-universal?

イロト イボト イヨト イヨト

LATD 2022

Rational Product Logic

Non canonical standard rational Product algebra:

$$\begin{split} \mathbf{SR}_{\mathbf{P}} &= \langle [\mathbf{0},\mathbf{1}]_{\mathbf{P}}, \{c_q^{\mathbf{SR}_{\mathbf{P}}}: q \in [0,1] \cap \mathbb{Q}\} \rangle \\ \text{where } c_q^{\mathbf{SR}_{\mathbf{P}}} &= 1 \text{ for every } q \in (0,1] \cap \mathbb{Q} \text{ and } c_0^{\mathbf{SR}_{\mathbf{P}}} = 0. \end{split}$$

 $\mathit{C}(\mathsf{SR}_\mathsf{P}) \cong \mathsf{B}_2$ and $\mathsf{SR}_\mathsf{P} = [0,1]_\mathsf{P}$

If $\textbf{A} \in \textit{RPA}$ is non trivial, then either

C(A) ≅ Q_P
 C(A) ≅ B₂

inter investor to sweet on

20 / 28

・ロト ・四ト ・ヨト ・ヨト

LATD 2022

Varieties of RPA

Theorem

 $L_V(RPA)$ is a four-element chain.

$$RPA = V(\mathbf{R}_{\mathbf{P}}) = V(\mathbf{Q}_{\mathbf{P}}) = Q(\{\mathbf{S}\mathbf{R}_{\mathbf{P}}, \mathbf{R}_{\mathbf{P}}\})$$

$$\cup$$

$$PA = V(\mathbf{S}\mathbf{R}_{\mathbf{P}})$$

$$\cup$$

$$BA = V(\mathbf{B}_{2})$$

$$\cup$$

$$TA$$

initial concernence avecages

21 / 28

э

LATD 2022

< □ > < □ > < □ > < □ > < □ >

Structural completeness

Theorem

RP is not structurally complete

Theorem

 $Q(\mathbf{Q}_{\mathbf{P}})$ is the structural completion of RPA.

Theorem

A base for the admissible rules of RP is given by the following rules: For every $q \in (0,1) \cap \mathbb{Q}$,

 $c_q \vee \varphi / \varphi$

For every $r \in (0,1) \cap \mathbb{Q}$, $n \in \omega$ such that $\sqrt[n]{r}$ is irrational,

$$(c_r \leftrightarrow \alpha^n) \vee \varphi/\varphi$$

< 口 > < 同 >

Quasivarieties of RPA

Theorem

RPA is Q-universal.

Proof: $S(\mathcal{P}_{<\omega}(\mathsf{Prime}))$ is the lattice of subalgebras of $\langle \mathcal{P}_{<\omega}(\mathsf{Prime}), \cup, \emptyset \rangle$

[Adams-Dziobiak] If \mathbb{K} is a quasivariety and $\mathbb{M} \in L_Q(\mathbb{K})$ and $h: L_Q(\mathbb{M}) \to S(\mathcal{P}_{<\omega}(\mathsf{Prime}))$ is surjective, then \mathbb{K} is Q-universal.

 $X = \{p_1, \dots, p_n\} \in \mathcal{P}_{<\omega}(\mathsf{Prime}),$ $\mathbf{A}_X \text{ be the subalgebra of } (\mathbf{R}_{\mathbf{P}})^n \text{ generated by } (\frac{1}{\sqrt{p_1}}, \dots, \frac{1}{\sqrt{p_n}})$ $\mathbb{M} = Q(\{\mathbf{A}_X : X \in \mathcal{P}_{<\omega}(\mathsf{Prime})\})$ $h: L_Q(\mathbb{M}) \to S(\mathcal{P}_{<\omega}(\mathsf{Prime})), h(\mathbb{H}) = \{X : \mathbf{A}_X \in \mathbb{H}\}$

LATD 2022

Resume and concluding remarks

- *R*Ł is hereditarily structurally complete and has no proper consistent extensions.
- *RG* is not structurally complete. It has an uncountable chain of axiomatic extensions, and there is an uncountable antichain of finitary extensions. We do not know if RGA is Q-universal.
- *RP* is not structurally complete. Axiomatic extensions form a 4-element chain. RPA is Q-universal.
- Adding constants may seem innocuous, however it has an impact in structural completeness and the subvariety and subquasivariety lattices.

J.Gispert

LATD 2022

Thank you

Structural completeness ...

To appear: Notre Dame Journal of Formal Logic

J.Gispert

Quasivarieties of RGA

 $\begin{aligned} &Q(\mathbf{Q}_G) = Q(\mathbf{R}_G) \subsetneq RGA \\ &c_{\frac{1}{2}} \approx 1 \Rightarrow 0 \approx 1 \text{ is valid in } \mathbf{Q}_G \text{ but does not hold in } \mathbf{Q}_{\frac{1}{2}} \in RGA \\ &r \in (0,1], \ Q(\mathbf{Q}_r) = Q(\mathbf{R}_{[0,r)}) \subsetneq V(\mathbf{Q}_r) \\ &q \in (0,r) \cap \mathbb{Q}, \\ &c_q \approx 1 \Rightarrow 0 \approx 1 \text{ is valid in } \mathbf{Q}_r \text{ but does not hold in } \mathbf{Q}_q \in V(\mathbf{Q}_r). \end{aligned}$

 $p \in (0,1) \cap \mathbb{Q}$ and $\gamma \in \omega + 1$, $Q(\mathbf{Q}_{\rho}^{\gamma}) \subsetneq V(\mathbf{Q}_{r}^{\gamma})$ $c_{\rho} \approx 1 \Rightarrow 0 \approx 1$ is valid in $\mathbf{Q}_{\rho}^{\gamma}$ but does not hold in $\mathbf{Q}_{\rho} \in V(\mathbf{Q}_{\rho}^{\gamma})$.

$$Q(\mathbf{Q}_0^\omega)=V([\mathbf{0},\mathbf{1}]_{\mathbf{G}})=\mathit{GA}$$
 and $Q(\mathbf{Q}_0^n)=V(\mathbf{G}_n)=\mathit{GA}_n$

Initial INVERTICE ANCELON

27 / 28

イロト 不得 トイヨト イヨト 二日

LATD 2022

Quasivarieties of RPA

Proposition

 $\mathit{Q}(\textbf{Q}_{\textbf{P}}) \subsetneq \mathit{Q}(\textbf{R}_{\textbf{P}}) \subsetneq \mathit{Q}(\{\textbf{S}\textbf{R}_{\textbf{P}},\textbf{R}_{\textbf{P}}\}) = \mathit{RPA}$

Proof: $c_{\frac{1}{2}} \approx 1 \Rightarrow 0 \approx 1$ is valid in $\mathbf{R}_{\mathbf{P}}$ and does not hold in $\mathbf{SR}_{\mathbf{P}}$. $x^2 \approx c_{\frac{1}{2}} \Rightarrow 0 \approx 1$ is valid in $\mathbf{Q}_{\mathbf{P}}$ and does not hold in $\mathbf{R}_{\mathbf{P}}$.

Corollary

RP is not structurally complete

LATD 2022