Some proof-theoretical aspects of non-associative, non-commutative multi-modal linear logic

Elaine Pimentel

UCL, UK

Joint work with Eben Blaisdell, Max Kanovich, Stepan Kuznetsov & Andre Scedrov LATD&MOSAIC

07 September 2022

Motivation - Categorial Grammars

- [Lambek'58] presented a logic describing natural language syntax.
- Lambek calculus contains the connectives ⊗, →, ←. Contexts are lists.

Propositional rules

$$\frac{\Gamma, F, G, \Pi \Rightarrow H}{\Gamma, F \otimes G, \Pi \Rightarrow H} \otimes L \qquad \frac{\Gamma \Rightarrow F \quad \Delta \Rightarrow G}{\Gamma, \Delta \Rightarrow F \otimes G} \otimes R$$

$$\frac{\Delta \Rightarrow F \quad \Gamma, G, \Pi \Rightarrow H}{\Gamma, \Delta, F \Rightarrow G, \Pi \Rightarrow H} \rightarrow L \qquad \frac{F, \Gamma \Rightarrow G}{\Gamma \Rightarrow F \Rightarrow G} \rightarrow R$$

$$\frac{\Delta \Rightarrow F \quad \Gamma, G, \Pi \Rightarrow H}{\Gamma, G \leftarrow F, \Delta, \Pi \Rightarrow H} \leftarrow L \qquad \frac{\Gamma, F \Rightarrow G}{\Gamma \Rightarrow G \leftarrow F} \leftarrow R$$

INITIAL AND CUT RULES

$$\frac{\Delta \Rightarrow F \quad \Gamma, F, \Pi \Rightarrow G}{\Gamma, \Delta, \Pi \Rightarrow G} \text{ cut}$$

Motivation - Natural Language

- Words are given types that correspond to syntactic categories, and parts of speech correspond to types.
- Sentence (s), noun (n), and noun phrase (np) are primitive.
- An intransitive verb is $np \rightarrow s$.
- An adjective is $n \leftarrow n$.
- One or more types are assigned to each word in the lexicon.

3/24

Motivation - Natural Language

```
Words Types

the np \leftarrow n

Hulk n

is (np \rightarrow s) \leftarrow (n \leftarrow n), (np \rightarrow s) \leftarrow np

green n \leftarrow n, np

incredible n \leftarrow n
```

(Moot, Retoré 2012)

Motivation - Natural Language

Words Types

the
$$np \leftarrow n$$

Hulk n

is $(np \rightarrow s) \leftarrow (n \leftarrow n), (np \rightarrow s) \leftarrow np$

green $n \leftarrow n, np$

incredible $n \leftarrow n$

(Moot, Retoré 2012) The grammaticality of

"The Hulk is incredible."

is attested by the proof

$$\frac{\overline{n \Rightarrow n} \text{ init } \overline{n \Rightarrow n}}{ \underbrace{n \leftarrow n, n \Rightarrow n \atop n \leftarrow n} \leftarrow L} \xrightarrow{\text{init } \overline{np \Rightarrow np} \text{ init } \overline{s \Rightarrow s}} \xrightarrow{\text{init } \overline{np, np \rightarrow s \Rightarrow s}} \leftarrow L$$

$$\frac{n \leftarrow n \Rightarrow n \leftarrow n \leftarrow R}{np \leftarrow n, n, np \rightarrow s \Rightarrow s} \leftarrow L$$

$$np \leftarrow n, n, (np \rightarrow s) \leftarrow (n \leftarrow n), n \leftarrow n \Rightarrow s \leftarrow L$$

Linguistic Problems with Associativity

- Lambek Calculus over-generates: ungrammatical sentences like
 "The Hulk is green incredible."
- Indeed:

$$np \leftarrow n, n, (np \rightarrow s) \leftarrow (n \leftarrow n), n \leftarrow n, n \leftarrow n \Rightarrow s$$

is provable. So associativity is not a good feature here!

Linguistic Problems with Associativity

- Lambek Calculus over-generates: ungrammatical sentences like
 "The Hulk is green incredible."
- Indeed:

$$np \leftarrow n, n, (np \rightarrow s) \leftarrow (n \leftarrow n), n \leftarrow n, n \leftarrow n \Rightarrow s$$

is provable. So associativity is not a good feature here!

On the other hand, the following requires associativity:

"the girl whom John loves:"

$$np \leftarrow n, n, (n \rightarrow n) \leftarrow (s \leftarrow np), np, (np \rightarrow s) \leftarrow np \Rightarrow np.$$

Linguistic Problems with Associativity

- Lambek Calculus over-generates: ungrammatical sentences like
 "The Hulk is green incredible."
- Indeed:

$$np \leftarrow n, n, (np \rightarrow s) \leftarrow (n \leftarrow n), n \leftarrow n, n \leftarrow n \Rightarrow s$$

is provable. So associativity is not a good feature here!

On the other hand, the following requires associativity:

"the girl whom John loves:"

$$np \leftarrow n, n, (n \rightarrow n) \leftarrow (s \leftarrow np), np, (np \rightarrow s) \leftarrow np \Rightarrow np.$$

How to solve that??

4/24

Capturing Grammaticality

- [Lambek'61] introduced the nonassociative calculus.
- Nested structures rather than lists.

$$\Gamma ::= F | (\Gamma, \Gamma)$$

Capturing Grammaticality

- [Lambek'61] introduced the nonassociative calculus.
- Nested structures rather than lists.

$$\Gamma ::= F | (\Gamma, \Gamma)$$

Non-associatively,

"The Hulk is incredible"

is still marked as grammatical, while

"The Hulk is green incredible"

is not.

Non-associative Lambek Calculus

Here $\Gamma\{\Delta\}$ means that Δ is a subtree of Γ .

PROPOSITIONAL RULES

$$\frac{\Gamma\{(F,G)\} \Rightarrow H}{\Gamma\{F \otimes G\} \Rightarrow H} \otimes L \qquad \frac{\Gamma_1 \Rightarrow F \quad \Gamma_2 \Rightarrow G}{(\Gamma_1, \Gamma_2) \Rightarrow F \otimes G} \otimes R$$

$$\frac{\Delta \Rightarrow F \quad \Gamma\{G\} \Rightarrow H}{\Gamma\{(\Delta, F \to G)\} \Rightarrow H} \to L \qquad \frac{(F,\Gamma) \Rightarrow G}{\Gamma \Rightarrow F \to G} \to R$$

$$\frac{\Delta \Rightarrow F \quad \Gamma\{G\} \Rightarrow H}{\Gamma\{(G \leftarrow F, \Delta)\} \Rightarrow H} \leftarrow L \qquad \frac{(\Gamma, F) \Rightarrow G}{\Gamma \Rightarrow G \leftarrow F} \leftarrow R$$

INITIAL AND CUT RULES

$$\frac{\Delta \Rightarrow F \quad \Gamma\{F\} \Rightarrow G}{\Gamma\{\Delta\} \Rightarrow F} \text{ cut}$$

Simulating Associativity

One can recapture the original associative system by introducing the following structural rules.

$$\frac{\Gamma\{((\Delta_1, \Delta_2), \Delta_3)\} \Rightarrow G}{\Gamma\{(\Delta_1, (\Delta_2, \Delta_3))\} \Rightarrow G} \text{ A1} \qquad \frac{\Gamma\{(\Delta_1, (\Delta_2, \Delta_3))\} \Rightarrow G}{\Gamma\{((\Delta_1, \Delta_2), \Delta_3)\} \Rightarrow G} \text{ A2}$$

Simulating Associativity

One can recapture the original associative system by introducing the following structural rules.

$$\frac{\Gamma\{((\Delta_1, \Delta_2), \Delta_3)\} \Rightarrow G}{\Gamma\{(\Delta_1, (\Delta_2, \Delta_3))\} \Rightarrow G} \text{ A1 } \frac{\Gamma\{(\Delta_1, (\Delta_2, \Delta_3))\} \Rightarrow G}{\Gamma\{((\Delta_1, \Delta_2), \Delta_3)\} \Rightarrow G} \text{ A2}$$

Our approach: Subexponentials!!!

Simulating Associativity

One can recapture the original associative system by introducing the following structural rules.

$$\frac{\Gamma\{((\Delta_1, \Delta_2), \Delta_3)\} \Rightarrow G}{\Gamma\{(\Delta_1, (\Delta_2, \Delta_3))\} \Rightarrow G} \text{ A1} \qquad \frac{\Gamma\{(\Delta_1, (\Delta_2, \Delta_3))\} \Rightarrow G}{\Gamma\{((\Delta_1, \Delta_2), \Delta_3)\} \Rightarrow G} \text{ A2}$$

Our approach: Subexponentials!!!

Why: They allow more fine-grained control over usage of structural rules.

Outline

- Linear logic with sub-exponentials (SELL)
- Non-commutativity/associativity SELL
- Undecidability
- Concluding remarks

Outline

- Linear logic with sub-exponentials (SELL)
- 2 Non-commutativity/associativity SELL
- Undecidability
- Concluding remarks

Intuitionistic linear logic in a nutshell

• Linear conjunctions: & (additive) and ⊗ (multiplicative)

Linear disjunction: ⊕ (additive)

Unities: 1, ⊥

Linear implication: →

Exponential: !

Intuitionistic linear logic in a nutshell

Linear conjunctions: & (additive) and ⊗ (multiplicative)
 Linear disjunction: ⊕ (additive)

Unities: 1. ⊥

Linear implication: →

Exponential: !

- By composing a proof of $F \multimap G$ and a proof of F we consume them to get a proof of G.
- Linear logic formulas behave like resources.
- Exponentials recover the full expressive power of intuitionistic and classical logic: in ! F and ?F we are allowed to use contraction and weakening.

Subexponentials [Danos, Joinet, Schellinx'93]

Exponentials in ILL:

$$\frac{\Gamma, F \Rightarrow G}{\Gamma, ! F \Rightarrow G} !_{L} \qquad \frac{! F_{1}, \dots, ! F_{n} \Rightarrow F}{! F_{1}, \dots, ! F_{n} \Rightarrow ! F} !_{R}$$

Subexponentials [Danos, Joinet, Schellinx'93]

Sub-exponentials in ILL:

$$\frac{\Gamma, F \Rightarrow G}{\Gamma, !^{a}F \Rightarrow G} !^{a}L \qquad \frac{!^{a_{1}}F_{1}, \dots, !^{a_{n}}F_{n} \Rightarrow F}{!^{a_{1}}F_{1}, \dots, !^{a_{n}}F_{n} \Rightarrow !^{a}F} !^{a}_{R}, \text{ provided } a \leq a_{i}$$

Subexponentials [Danos, Joinet, Schellinx'93]

Sub-exponentials in ILL:

$$\frac{\Gamma, F \Rightarrow G}{\Gamma, !^a F \Rightarrow G} !^a L \qquad \frac{!^{a_1} F_1, \dots, !^{a_n} F_n \Rightarrow F}{!^{a_1} F_1, \dots, !^{a_n} F_n \Rightarrow !^a F} !^a R, \text{ provided } a \leq a_i$$

Then:

$$!^a F \not\equiv !^b F$$
 for any $a \neq b$.

Outline

- Linear logic with sub-exponentials (SELL)
- Non-commutativity/associativity SELL
- Undecidability
- Concluding remarks

Sequents:

 $\Gamma \vdash \Delta$

Sequents:

 $\Gamma \vdash \Delta$

Shape of contexts:

Sets

Sequents:

$$\Gamma \vdash \Delta$$

Shape of contexts:

- Sets
- Multisets

$$\{A_1,A_2,\ldots,A_n\}$$

Sequents:

$$\Gamma \vdash \Delta$$

Shape of contexts:

- Sets
- Multisets

$$\{A_1, A_2, \ldots, A_n\}$$

lack of commutativity → lists

$$[A_1,A_2,\ldots,A_n]$$

Sequents:

$$\Gamma \vdash \Delta$$

Shape of contexts:

- Sets
- Multisets

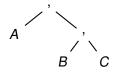
$$\{A_1, A_2, \ldots, A_n\}$$

lack of commutativity → lists

$$[A_1,A_2,\ldots,A_n]$$

lack of associativity

 trees − (A, (B, C))



If the subexponential a allow for:

If the subexponential a allow for:

weakening

$$\frac{\Gamma\{\} \Rightarrow G}{\Gamma\{!^{w}\Delta\} \Rightarrow G} W$$

If the subexponential a allow for:

weakening

$$\frac{\Gamma\{\} \Rightarrow G}{\Gamma\{!^{w}\Delta\} \Rightarrow G} W$$

contraction

$$\frac{\Gamma\left\{^{1}!^{c}\Delta\right\}\ldots\left\{^{n}!^{c}\Delta\right\}\Rightarrow G}{\Gamma\left\{^{1}\right\}\ldots\left\{^{k}!^{c}\Delta\right\}\ldots\left\{^{n}\right\}\Rightarrow G}\ C$$

If the subexponential a allow for:

weakening

$$\frac{\Gamma\{\} \Rightarrow G}{\Gamma\{!^{w}\Delta\} \Rightarrow G} \ \mathsf{W}$$

contraction

$$\frac{\Gamma\{^{1}!^{c}\Delta\}\dots\{^{n}!^{c}\Delta\}\Rightarrow G}{\Gamma\{^{1}\}\dots\{^{k}!^{c}\Delta\}\dots\{^{n}\}\Rightarrow G} C$$

exchange

$$\frac{\Gamma\{(\Delta_2,!^e\Delta_1)\}\Rightarrow G}{\Gamma\{(!^e\Delta_1,\Delta_2)\}\Rightarrow G} \text{ E1 } \qquad \frac{\Gamma\{(!^e\Delta_2,\Delta_1)\}\Rightarrow G}{\Gamma\{(\Delta_1,!^e\Delta_2)\}\Rightarrow G} \text{ E2}$$

If the subexponential a allow for:

weakening

$$\frac{\Gamma\{\} \Rightarrow G}{\Gamma\{!^{w}\Delta\} \Rightarrow G} W$$

contraction

$$\frac{\Gamma\left\{{}^{1}!{}^{c}\Delta\right\}\dots\left\{{}^{n}!{}^{c}\Delta\right\}\Rightarrow G}{\Gamma\left\{{}^{1}\right\}\dots\left\{{}^{k}!{}^{c}\Delta\right\}\dots\left\{{}^{n}\right\}\Rightarrow G}\ C$$

exchange

$$\frac{\Gamma\{(\Delta_2,!^e\Delta_1)\}\Rightarrow G}{\Gamma\{(!^e\Delta_1,\Delta_2)\}\Rightarrow G} \text{ E1 } \qquad \frac{\Gamma\{(!^e\Delta_2,\Delta_1)\}\Rightarrow G}{\Gamma\{(\Delta_1,!^e\Delta_2)\}\Rightarrow G} \text{ E2}$$

associavitity

$$\frac{\Gamma\{((!^a\Delta_1,\Delta_2),\Delta_3)\}\Rightarrow G}{\Gamma\{(!^a\Delta_1,(\Delta_2,\Delta_3))\}\Rightarrow G} \text{ A1 } \frac{\Gamma\{(\Delta_1,(\Delta_2,!^a\Delta_3))\}\Rightarrow G}{\Gamma\{((\Delta_1,\Delta_2),!^a\Delta_3)\}\Rightarrow G} \text{ A2}$$

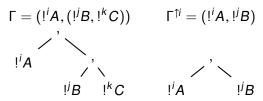
About exponential rules...

$$\frac{\Gamma^{\uparrow i} \Rightarrow F}{\Gamma \Rightarrow !^{i}F} !^{i}R \qquad \frac{\Gamma\{F\} \Rightarrow G}{\Gamma\{!^{i}F\} \Rightarrow G} \text{ der}$$

About exponential rules...

$$\frac{\Gamma^{\uparrow i} \Rightarrow F}{\Gamma \Rightarrow !^{i}F} !^{i}R \qquad \frac{\Gamma\{F\} \Rightarrow G}{\Gamma\{!^{i}F\} \Rightarrow G} \text{ der}$$

Example. Suppose that $i \le j$ but $i \not\le k$, and $W \in f(k)$.



System $acLL_{\Sigma}$

Subexponential signature $\Sigma = (I, \leq, f)$ with:

- A set of labels I.
- ② A set of structural rules f(i) licensed by each i.
- **3** A preorder (I, \leq) such that if $i \leq j$ then $!^j F \Rightarrow !^i F$.
- **4** Upward-closure: if $i \le j$, then $f(i) \subseteq f(j)$.

System $acLL_{\Sigma}$

Subexponential signature $\Sigma = (I, \leq, f)$ with:

- A set of labels I.
- ② A set of structural rules f(i) licensed by each i.
- **3** A preorder (I, \leq) such that if $i \leq j$ then $!^j F \Rightarrow !^i F$.
- **1** Upward-closure: if $i \le j$, then $f(i) \subseteq f(j)$.

Theorem

If the sequent $\Gamma \Rightarrow F$ is provable in $acLL_{\Sigma}$, then it has a proof with no instances of the rule mcut:

$$\frac{\Delta \Rightarrow F \quad \Gamma\{^{1}F\} \dots \{^{n}F\} \Rightarrow G}{\Gamma\{^{1}\Delta\} \dots \{^{n}\Delta\} \Rightarrow G} \text{ meut}$$

Linguistic Examples

 The necessity of this more fine-grained control of associativity (instead of global associativity) is seen via a combination of these two examples.

Linguistic Examples

- The necessity of this more fine-grained control of associativity (instead of global associativity) is seen via a combination of these two examples.
- Phrases like "The superhero whom Hawkeye killed was incredible" and "... was green" are analysed using !a:

$$(np \leftarrow n, (n, ((n \rightarrow n) \leftarrow (s \leftarrow !^{a}np), (np, (np \rightarrow s) \leftarrow np)))),$$

$$((np \rightarrow s) \leftarrow (n \leftarrow n), n \leftarrow n) \Rightarrow s.$$

Linguistic Examples

- The necessity of this more fine-grained control of associativity (instead of global associativity) is seen via a combination of these two examples.
- Phrases like "The superhero whom Hawkeye killed was incredible" and "... was green" are analysed using !a:

$$(np \leftarrow n, (n, ((n \rightarrow n) \leftarrow (s \leftarrow !^{a}np), (np, (np \rightarrow s) \leftarrow np)))),$$
$$((np \rightarrow s) \leftarrow (n \leftarrow n), n \leftarrow n) \Rightarrow s.$$

 On the other hand, global non-associativity prevents from deriving incorrect phrases like "The superhero whom Hawkeye killed was green incredible."

Outline

- Linear logic with sub-exponentials (SELL)
- 2 Non-commutativity/associativity SELL
- Undecidability
- Concluding remarks

Decidability and undecidability Results

Acronym	System	Decidable?
L	Lambek calculus	√
LL	(propositional) linear logic	X
ILL	intuitionistic LL	X
MALL	multiplicative-additive LL	✓
iMALL	intuitionistic MALL	✓
FL	full (multiplicative-additive) L	✓
cLL	non-commutative iMALL	✓
$acLL_{\Sigma}$	non-commutative, non-associative ILL with subexponentials	_
NL	non-associative L	✓
FNL	full (multiplicative-additive) NL	✓
MELL	multiplicative-exponential LL	unknown
SDML	simply dependent multimodal linear logics	_
$SMALC_\Sigma$	FL with subexponentials	_

Our undecidability Results

Theorem

If there exists such $s \in I$ that $f(s) \supseteq \{C, W\}$, then the derivability problem in $acLL_{\Sigma}$ is undecidable. Moreover, this holds for the fragment with only \otimes , \rightarrow , \oplus , ! s .

Our undecidability Results

Theorem

If there exists such $s \in I$ that $f(s) \supseteq \{C, W\}$, then the derivability problem in $acLL_{\Sigma}$ is undecidable. Moreover, this holds for the fragment with only \otimes , \rightarrow , \oplus , ! s .

This result follows from undecidability of derivability from hypotheses (consequence relation) for the multiplicative-additive Lambek calculus [Chvalovský'15]. This result is a refinement of a result by [Tanaka'19].

Undecidability Results

Theorem

If there are $a, c \in I$ such that $f(a) = \{A1, A2\}$ and $f(c) \supseteq \{C, W, A1, A2\}$ then the derivability problem in $acLL_{\Sigma}$ is undecidable, in the fragment with only \rightarrow , $!^a$, $!^c$.

Undecidability Results

Theorem

If there are $a, c \in I$ such that $f(a) = \{A1, A2\}$ and $f(c) \supseteq \{C, W, A1, A2\}$ then the derivability problem in $acLL_{\Sigma}$ is undecidable, in the fragment with only \rightarrow , $!^a$, $!^c$.

This result is a purely multiplicative one, and it is based on the corresponding result for the associative system [Kanovich et al.'19].

Outline

- Linear logic with sub-exponentials (SELL)
- 2 Non-commutativity/associativity SELL
- Undecidability
- Concluding remarks

We are working on:

- Decidability results on the intersection of the two undecidable fragments.
- Focusing.
- extensions to other normal modalities.

Thanks!!!

