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Residuated lattices

We work within the general framework of residuated lattices, that
is, algebras A = (A;∧,∨, ·, \, /, 1) such that

(RL1) (A;∧,∨) is a lattice,

(RL2) (A; ·, 1) is a monoid,

(RL3) the equivalences

y ≤ x \ z ⇔ xy ≤ z ⇔ x ≤ z / y

hold for all x , y , z ∈ A.



FL-algebras

Expansions of residuated lattices by an additional constant 0 are
known as FL-algebras and it is there only to make it possible to
define negations, that is, the operations

x− := 0 / x and x∼ := x \ 0.

An FL-algebra A is integral if 1 is the largest element of A; it is
0-bounded if 0 is the smallest element of A. Integral 0-bounded
FL-algebras are known as FLw -algebras (w for weakening), so
according to our conventions FLw will stand for the variety of
FLw -algebras.
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ℓ-groups and some derived residuated lattices

Definition
A lattice ordered group (ℓ-group) is an algebra
L = (L;∧,∨, ·,−1, e) where (L;∧,∨) is a lattice, (L; ·,−1, e) is a
group and

x(y ∧ z)w = (xyw) ∧ (xzw),

x(y ∨ z)w = (xyw) ∨ (xzw)

hold for any x , y , z ,w ∈ L.



ℓ-groups and some derived residuated lattices
For our purposes here, it will suffice to recall that any ℓ-group L is
completely determined by the residuation structure of its negative
cone L− = {x ∈ L : x ≤ e}. Namely, defining the algebra

L− = (L−;∧,∨, ·, \, /, e)

where e, ∧, ∨ and · are inherited from L, and

x / y := (xy−1) ∧ e, y \ x := (y−1x) ∧ e

we obtain an integral residuated lattice satisfying the identities

xy / y = x = y \ yx (Can)

x /(y \ x) = x ∨ y = (x / y) \ x . ( Luk)

The first of these is equivalent over residuated lattices to the usual
cancellation laws

zx = zy ⇒ x = y and xz = yz ⇒ x = y .

The second amounts to a non-commutative rendering of the
 Lukasiewicz axiom (x → y) → y = (y → x) → x .
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ℓ-groups and some derived residuated lattices

Members of the variety CanIGMV of cancellative integral
generalised MV-algebras are (up to isomorphism) precisely the
negative cones of ℓ-groups. Namely, there exists functors

− : LG → CanIGMV and ℓ : CanIGMV → LG

such that ℓ(A)− = A for any A ∈ CanIGMV and ℓ(L−) ∼= L for
any L ∈ LG. These functors establish a categorical equivalence
between LG and CanIGMV. In particular, the subvariety lattices of
LG and CanIGMV are isomorphic.



Pseudo MV-algebras

Pseudo MV-algebras were originally defined and studied by
Georgescu and Iorgulescu, as algebras (A;⊕,− ,∼ , 0, 1) satisfying
the identities:

(A1) x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z ,

(A2) x ⊕ 0 = x ,

(A3) x ⊕ 1 = 1,

(A4) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,

(A5) (x ⊕ y∼)− ⊕ x− = y ⊕ (x− ⊕ y)∼,

(A6) x ⊕ (y− ⊕ x)∼ = y ⊕ (x− ⊕ y)∼

(A7) x−∼ = x ,

(A8) 0− = 1.

The identities 0⊕ x = x and 1⊕ x = 1 follow, as well as
1− = 0 = 1∼, and x∼− = x .



Pseudo MV-algebras

In any pseudo MV-algebra defined by (A1)–(A8), the lattice
operations, multiplication and residuals are defined by

▶ x ∨ y := x ⊕ (y ⊙ x∼) and x ∧ y := (x− ⊕ y)⊙ x ,

▶ x · y := (x− ⊕ y−)∼,

▶ x \ y := y ⊕ x∼ and y / x := x− ⊕ y .

Then pseudo MV-algebras are (equivalently) bounded
IGMV-algebras and the variety ΨMV of pseudo MV-algebras is a
subvariety of FLw
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Perfect FLw -algebras

Definition
An FLw -algebra A is perfect if there is a homomorphism
hA : A → 2 such that for any x ∈ h−1

A (0) and any y ∈ h−1
A (1) the

inequality x ≤ y holds.

Lemma
Let A be a perfect FLw -algebra. Then the homomorphism
fA : A → 2 is unique. Hence A has a unique maximal normal filter.
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Perfect FLw -algebras

For any class K of FLw -algebras, we denote the subclass of all its
perfect members by Kpf. We say that a variety V of FLw -algebras
is perfectly generated if it is generated by its perfect members,
that is, if V = V (Vpf).

Theorem
A subvariety V of FLw is perfectly generated if and only if V is
nontrivial and satisfies the following identities:

α(x / x−) ∨ β(x− / x) = 1, (1)

α((x ∨ x−) · (y ∨ y−))− ≤ α((x ∨ x−) · (y ∨ y−)), (2)

x ∧ x− ≤ y ∨ y− (3)

for every A ∈ V and all α,β ∈ cPol(A).



Perfect FLw -algebras

Corollary

Any nontrivial subvariety of a perfectly generated variety is also
perfectly generated.

Since the trivial variety is not perfectly generated, the variety BA
of Boolean algebras is the smallest perfectly generated variety.
Indeed, perfectly generated varieties form a lattice ideal in the
lattice Λ+(FLw), as we will now show.

Theorem
Perfectly generated varieties form an ideal in Λ+(FLw).



Kites

Definition
Let L be an ℓ-group and λ : L → L be an automorphism. We
define the algebra

K(L, λ) := (L− ⊎ L+;∧,∨,⊙, \, /, 0, 1)

where L− ⊎ L+ is a disjoint union, 0 := e ∈ L+, 1 := e ∈ L−, and
the other operations are given by

x ∧ y :=


x ∧ y ∈ L− if x , y ∈ L−,

x ∈ L+ if x ∈ L+, y ∈ L−

y ∈ L+ if x ∈ L−, y ∈ L+,

x ∧ y ∈ L+ if x , y ∈ L+,



x ∨ y :=


x ∨ y ∈ L− if x , y ∈ L−,

y ∈ L− if x ∈ L+, y ∈ L−

x ∈ L− if x ∈ L−, y ∈ L+,

x ∨ y ∈ L+ if x , y ∈ L+,

x ⊙ y :=


x · y ∈ L− if x , y ∈ L−,

λ(x) · y ∨ e ∈ L+ if x ∈ L−, y ∈ L+

x · y ∨ e ∈ L+ if x ∈ L+, y ∈ L−,

e ∈ L+ if x , y ∈ L+,



x \ y :=


x−1 · y ∧ e ∈ L− if x , y ∈ L−,

e ∈ L− if x ∈ L+, y ∈ L−

λ(x)−1 · y ∨ e ∈ L+ if x ∈ L−, y ∈ L+,

x−1 · y ∧ e ∈ L− if x , y ∈ L+,

y / x :=


y · x−1 ∧ e ∈ L− if x , y ∈ L−,

e ∈ L− if x ∈ L+, y ∈ L−

y · x−1 ∨ e ∈ L+ if x ∈ L−, y ∈ L+,

λ−1(y · x−1) ∧ e ∈ L− if x , y ∈ L+,



Kites
Now, in any perfect pseudo MV-algebra A the normal filter FA is
the universe of a cancellative IGMV-algebra FA. Since pseudo
MV-algebras satisfy the identities

(x ∧ y)∼∼ = x∼∼ ∧ y∼∼

(x ∨ y)∼∼ = x∼∼ ∨ y∼∼

(x · y)∼∼ = x∼∼ · y∼∼

x−∼∼ = x∼∼−

the map −∼∼ is an automorphism of FA. Applying the functor ℓ
we lift −∼∼ to an automorphism

ℓ≈ : ℓ(FA) → ℓ(FA)

defined, obviously, as ℓ≈(−) := ℓ(−∼∼).

Theorem
Let A be a perfect pseudo MV-algebra. Then A ∼= K(ℓ(FA), ℓ

≈).



Kites

Definition
We define LGA to be the category of ℓ-groups with a distinguished
automorphism. The objects are algebras (L, λ) where L is an
ℓ-group and λ is an automorphism of L. The morphisms are
ℓ-group homomorphisms commuting with the distinguished
automorphism.

Theorem
The categories pfΨMV of perfect pseudo MV-algebras, and LGA of
ℓ-groups with a distinguished automorphism, are equivalent.

Corollary (Di Nola, Lettieri)

Let AbLG be the category of Abelian ℓ-groups with
homomorphisms and let pfMV be the category of perfect
MV-algebras with homomorphisms. Then AbLG and pfMV are
equivalent.



Definition
A monounary algebra B = (B;β) where β is a bijection on B will
be called a B-cycle. Homomorphisms of B-cycles are maps
f : B → C satisfying f ◦ λB = λC ◦ f . Objects of the category BC
are B-cycles and arrows are homomorphisms.

Remark
B-cycles are not a variety, but as we will often need β−1, we could
have equivalently defined B-cycles as a variety of bi-unary algebras
(B, β, δ) satisfying β(δ(x)) = x = δ(β(x)), and write β−1 for δ.



Definition
Let B = (B;β) be a B-cycle and L and ℓ-group. A kite over B and
L is the algebra

KB(L) := K(LB , λ)

where λ : LB → LB is the automorphism given by
λ(x(i)) = x(β(i)) for any i ∈ B.



Let L be an ℓ-group, and let f : B → C be a homomorphism of
B-cycles. Then f naturally lifts to a homomorphism

Kf (L) : KC(L) → KB(L)

defined by (Kf (L))(x) = x ◦ f . Moreover

K−(L) : BC → pfΨMV

is a contravariant functor.



Definition
For a perfect MV-algebra A and an ℓ-group L we define a B-cycle
[A,L] := ([A, L];λ), where

[A, L] := {α ∈ (L−)FA : α is a homomorphism in CanIGMV}

given by λ(α(x)) := α(x∼∼) for any α ∈ [A, L].



For any perfect pseudo MV-algebra A there exists a homomorphism

ηA : A → K[A,L](L).

(defined by

(ηA(x))(α) =

{
α(x) if x ∈ FA,

α(x∼)−1 if x ∈ CA.

for any x ∈ |A| and any α ∈ [A, L])

Theorem
Let A be a perfect pseudo MV-algebra, B be a B-cycle and L be
an ℓ-group. Then for any homomorphism f : A → KB(L) there
exists a unique homomorphism of B-cycles g : B → [A,L] such
that the following diagram commutes:

A K[A,L](L)
ηA //A

KB(L).

f

))SSS
SSS

SSS
SSS

SSS
SSS

SSS
SSS

S K[A,L](L)

KB(L).

Kg (L)

��
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Varieties generated by Dvurečenskij/Kowalski’s kites

Throughout the section D will stand for the lattice (N; |) of natural
numbers under the divisibility ordering.

For any bijection λ on a nonempty set B, we define the dimension
of λ as follows:

dim(λ) := minD{n ∈ N : λn = idB}.

For a B-cycle B = (B;λ), we put dim(B) := dim(λ) and call it
the dimension of B.

Lemma
We have Λ+(BC) ∼= D and Λ(BC) ∼= 1⊕ D, that is, the ordinal
sum of the trivial lattice 1 and D.

We will write Cn for the variety defined by λn(x) = x , so in
particular BC = C0.
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Varieties generated by kites

For any pseudo MV-algebra A, the operation −≈ is a bijection on
A, so for any A we define the dimension of A to be dim(−≈). This
is essential for the rest of the section, so we state it formally.

Definition
Let A ∈ PMV and V ∈ ΨMV. Then

1. dim(A) := dim(−≈),

2. dim(V) := minD{dim(A) | n : for all A ∈ V},

3. PΨMVn := PΨMV ∩ Mod{λn(x) = x}, for any n ∈ D.



Varieties generated by kites

Definition
We define two pairs of maps

ψ : Λ(PΨMV) → Λ(CanIGMV), where ψ(V) = V {FA : A ∈ Vpf},
Ψ: Λ(PΨMV) → Λ(CanIGMV)× D, where Ψ(V) = (ψ(V), dim(V)),

for any V ∈ Λ(PΨMV) and

δ : Λ(CanIGMV) → Λ(PΨMV), where δ(V) = V {A ∈ pfΨMV : FA ∈ V},
∆: Λ(CanIGMV)× D → Λ(PΨMV), where ∆(V, n) = δ(V) ∩ PΨMVn,

for any V ∈ Λ(CanIGMV) and n ∈ D.



Varieties generated by kites

Lemma
Let V ∈ Λ(CanIGMV), let E be an equational base for V, and let
A ∈ PΨMV. The following are equivalent.

1. A ∈ δ(V),
2. A |= t(x1 ∨ x−

1 , . . . , xk ∨ x−
k ) = 1 for all terms t in the

language of residuated lattices, such that
V |= t(x1, . . . , xk) = 1.

3. A |= tε(x1 ∨ x−
1 , . . . , xk ∨ x−

k ) = 1 for all equations
ε(x1, . . . , xk) ∈ E .



Varieties generated by kites

Theorem
For any V ∈ Λ+(CanIGMV) and any n ∈ D, we have

(V, n) = Ψ∆(V, n).

Lemma
For any V ∈ Λ(PΨMV) we have

V ⊆ ∆Ψ(V).

Theorem
Let V ∈ Λ(PΨMV). The following are equivalent.

1. V is generated by kites.

2. V = ∆Ψ(V).
3. V = ∆(W, n) for some W ∈ Λ(CanIGMV) and some n ∈ D.
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Theorem
Varieties generated by kites form a complete sublattice of
Λ(PΨMV) with PΨMV being its largest, and BA its smallest
element.

Theorem
Let K be the lattice of subvarieties of PΨMV generated by kites.

K ∼= 1⊕
(
Λ+(CanIGMV)× D

) ∼= 1⊕
(
Λ+(LG)× D

)
where 1 is the trivial lattice and ⊕ is the operation of ordinal sum.



Thank you for your attention!


	Residuated lattices and FL-algebras

