Kites and representations of pseudo MV-algebras

Michal Botur, Tomasz Kowalski

September 10, 2022

Residuated lattices

We work within the general framework of residuated lattices, that is, algebras $\mathbf{A}=(A ; \wedge, \vee, \cdot, \backslash, /, 1)$ such that
$(\mathrm{RL} 1)(A ; \wedge, \vee)$ is a lattice,
(RL2) $(A ; \cdot, 1)$ is a monoid,
(RL3) the equivalences

$$
y \leq x \backslash z \quad \Leftrightarrow \quad x y \leq z \quad \Leftrightarrow \quad x \leq z / y
$$

hold for all $x, y, z \in A$.

FL-algebras

Expansions of residuated lattices by an additional constant 0 are known as FL-algebras and it is there only to make it possible to define negations, that is, the operations

$$
x^{-}:=0 / x \quad \text { and } \quad x^{\sim}:=x \backslash 0
$$

FL-algebras

Expansions of residuated lattices by an additional constant 0 are known as FL-algebras and it is there only to make it possible to define negations, that is, the operations

$$
x^{-}:=0 / x \quad \text { and } \quad x^{\sim}:=x \backslash 0
$$

An FL-algebra \mathbf{A} is integral if 1 is the largest element of A; it is 0 -bounded if 0 is the smallest element of A. Integral 0 -bounded FL-algebras are known as FL_{w}-algebras (w for weakening), so according to our conventions FL_{w} will stand for the variety of FL_{w}-algebras.

ℓ-groups and some derived residuated lattices

Definition

A lattice ordered group (ℓ-group) is an algebra
$\mathbf{L}=\left(L ; \wedge, \vee, \cdot,{ }^{-1}, e\right)$ where $(L ; \wedge, \vee)$ is a lattice, $\left(L ; \cdot,^{-1}, e\right)$ is a group and

$$
\begin{aligned}
& x(y \wedge z) w=(x y w) \wedge(x z w) \\
& x(y \vee z) w=(x y w) \vee(x z w)
\end{aligned}
$$

hold for any $x, y, z, w \in L$.

ℓ-groups and some derived residuated lattices

For our purposes here, it will suffice to recall that any ℓ-group \mathbf{L} is completely determined by the residuation structure of its negative cone $L^{-}=\{x \in L: x \leq e\}$. Namely, defining the algebra

$$
\mathbf{L}^{-}=\left(L^{-} ; \wedge, \vee, \cdot, \backslash, /, e\right)
$$

where e, \wedge, \vee and \cdot are inherited from \mathbf{L}, and

$$
x / y:=\left(x y^{-1}\right) \wedge e, \quad y \backslash x:=\left(y^{-1} x\right) \wedge e
$$

ℓ-groups and some derived residuated lattices

For our purposes here, it will suffice to recall that any ℓ-group \mathbf{L} is completely determined by the residuation structure of its negative cone $L^{-}=\{x \in L: x \leq e\}$. Namely, defining the algebra

$$
\mathbf{L}^{-}=\left(\mathbf{L}^{-} ; \wedge, \vee, \cdot, \backslash, /, e\right)
$$

where e, \wedge, \vee and are inherited from \mathbf{L}, and

$$
x / y:=\left(x y^{-1}\right) \wedge e, \quad y \backslash x:=\left(y^{-1} x\right) \wedge e
$$

we obtain an integral residuated lattice satisfying the identities

$$
\begin{align*}
x y / y & =x=y \backslash y x \tag{Can}\\
x /(y \backslash x) & =x \vee y=(x / y) \backslash x . \tag{Łuk}
\end{align*}
$$

The first of these is equivalent over residuated lattices to the usual cancellation laws

$$
z x=z y \Rightarrow x=y \quad \text { and } \quad x z=y z \Rightarrow x=y
$$

The second amounts to a non-commutative rendering of the $\nsucceq u k a s i e w i c z$ axiom $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$.

ℓ-groups and some derived residuated lattices

Members of the variety CanIGMV of cancellative integral generalised MV-algebras are (up to isomorphism) precisely the negative cones of ℓ-groups. Namely, there exists functors

$$
{ }^{-}: \text {LG } \rightarrow \text { CanIGMV and } \ell: \text { CanIGMV } \rightarrow \text { LG }
$$

such that $\ell(\mathbf{A})^{-}=\mathbf{A}$ for any $\mathbf{A} \in \operatorname{CanIGMV}$ and $\ell\left(\mathbf{L}^{-}\right) \cong \mathbf{L}$ for any $\mathbf{L} \in \mathrm{LG}$. These functors establish a categorical equivalence between LG and CanIGMV. In particular, the subvariety lattices of LG and CanIGMV are isomorphic.

Pseudo MV-algebras

Pseudo MV-algebras were originally defined and studied by
Georgescu and lorgulescu, as algebras $(A ; \oplus,-, \sim, 0,1)$ satisfying the identities:

```
\((\mathrm{A} 1) x \oplus(y \oplus z)=(x \oplus y) \oplus z\),
(A2) \(x \oplus 0=x\),
(A3) \(x \oplus 1=1\),
(A4) \(\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-}\),
(A5) \(\left(x \oplus y^{\sim}\right)^{-} \oplus x^{-}=y \oplus\left(x^{-} \oplus y\right)^{\sim}\),
(A6) \(x \oplus\left(y^{-} \oplus x\right)^{\sim}=y \oplus\left(x^{-} \oplus y\right)^{\sim}\)
(A7) \(x^{-\sim}=x\),
(A8) \(0^{-}=1\).
```

The identities $0 \oplus x=x$ and $1 \oplus x=1$ follow, as well as $1^{-}=0=1^{\sim}$, and $x^{\sim-}=x$.

Pseudo MV-algebras

In any pseudo MV-algebra defined by (A1)-(A8), the lattice operations, multiplication and residuals are defined by

- $x \vee y:=x \oplus\left(y \odot x^{\sim}\right)$ and $x \wedge y:=\left(x^{-} \oplus y\right) \odot x$,
- $x \cdot y:=\left(x^{-} \oplus y^{-}\right)^{\sim}$,
- $x \backslash y:=y \oplus x^{\sim}$ and $y / x:=x^{-} \oplus y$.

Pseudo MV-algebras

In any pseudo MV-algebra defined by (A1)-(A8), the lattice operations, multiplication and residuals are defined by
$\checkmark x \vee y:=x \oplus\left(y \odot x^{\sim}\right)$ and $x \wedge y:=\left(x^{-} \oplus y\right) \odot x$,

- $x \cdot y:=\left(x^{-} \oplus y^{-}\right)^{\sim}$,
- $x \backslash y:=y \oplus x^{\sim}$ and $y / x:=x^{-} \oplus y$.

Then pseudo MV-algebras are (equivalently) bounded
IGMV-algebras and the variety $\Psi \mathrm{MV}$ of pseudo MV-algebras is a subvariety of FL_{w}

Perfect FL_{w}-algebras

Perfect FL_{w}-algebras

Definition

An $F L_{w}$-algebra \mathbf{A} is perfect if there is a homomorphism $h_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{2}$ such that for any $x \in h_{\mathbf{A}}^{-1}(0)$ and any $y \in h_{\mathbf{A}}^{-1}(1)$ the inequality $x \leq y$ holds.

Perfect FL_{w}-algebras

Definition

An $F L_{w}$-algebra \mathbf{A} is perfect if there is a homomorphism $h_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{2}$ such that for any $x \in h_{\mathbf{A}}^{-1}(0)$ and any $y \in h_{\mathbf{A}}^{-1}(1)$ the inequality $x \leq y$ holds.

Lemma
Let \mathbf{A} be a perfect $F L_{w}$-algebra. Then the homomorphism
$f_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{2}$ is unique. Hence \mathbf{A} has a unique maximal normal filter.

Perfect FL_{w}-algebras

For any class \mathcal{K} of FL_{w}-algebras, we denote the subclass of all its perfect members by $\mathcal{K}_{p f}$. We say that a variety \mathcal{V} of FL_{w}-algebras is perfectly generated if it is generated by its perfect members, that is, if $\mathcal{V}=V\left(\mathcal{V}_{p f}\right)$.
Theorem
A subvariety \mathcal{V} of FL_{w} is perfectly generated if and only if \mathcal{V} is nontrivial and satisfies the following identities:

$$
\begin{align*}
& \boldsymbol{\alpha}\left(x / x^{-}\right) \vee \boldsymbol{\beta}\left(x^{-} / x\right)=1 \tag{1}\\
& \boldsymbol{\alpha}\left(\left(x \vee x^{-}\right) \cdot\left(y \vee y^{-}\right)\right)^{-} \leq \boldsymbol{\alpha}\left(\left(x \vee x^{-}\right) \cdot\left(y \vee y^{-}\right)\right), \tag{2}\\
& x \wedge x^{-} \leq y \vee y^{-} \tag{3}
\end{align*}
$$

for every $\mathbf{A} \in \mathcal{V}$ and all $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \operatorname{cPol}(\mathbf{A})$.

Perfect FL_{w}-algebras

Corollary

Any nontrivial subvariety of a perfectly generated variety is also perfectly generated.
Since the trivial variety is not perfectly generated, the variety BA of Boolean algebras is the smallest perfectly generated variety. Indeed, perfectly generated varieties form a lattice ideal in the lattice $\Lambda^{+}\left(F L_{w}\right)$, as we will now show.
Theorem
Perfectly generated varieties form an ideal in $\Lambda^{+}\left(\mathrm{FL}_{w}\right)$.

Kites

Definition

Let \mathbf{L} be an ℓ-group and $\lambda: \mathbf{L} \rightarrow \mathbf{L}$ be an automorphism. We define the algebra

$$
\mathcal{K}(\mathbf{L}, \lambda):=\left(L^{-} \uplus L^{+} ; \wedge, \vee, \odot, \backslash, /, 0,1\right)
$$

where $L^{-} \uplus L^{+}$is a disjoint union, $0:=e \in L^{+}, 1:=e \in L^{-}$, and the other operations are given by

$$
x \wedge y:= \begin{cases}x \wedge y \in L^{-} & \text {if } x, y \in L^{-} \\ x \in L^{+} & \text {if } x \in L^{+}, y \in L^{-} \\ y \in L^{+} & \text {if } x \in L^{-}, y \in L^{+} \\ x \wedge y \in L^{+} & \text {if } x, y \in L^{+}\end{cases}
$$

$$
\begin{aligned}
& x \vee y:= \begin{cases}x \vee y \in L^{-} & \text {if } x, y \in L^{-}, \\
y \in L^{-} & \text {if } x \in L^{+}, y \in L^{-} \\
x \in L^{-} & \text {if } x \in L^{-}, y \in L^{+}, \\
x \vee y \in L^{+} & \text {if } x, y \in L^{+},\end{cases} \\
& x \odot y:= \begin{cases}x \cdot y \in L^{-} & \text {if } x, y \in L^{-}, \\
\lambda(x) \cdot y \vee e \in L^{+} & \text {if } x \in L^{-}, y \in L^{+} \\
x \cdot y \vee e \in L^{+} & \text {if } x \in L^{+}, y \in L^{-}, \\
e \in L^{+} & \text {if } x, y \in L^{+},\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& x \backslash y:= \begin{cases}x^{-1} \cdot y \wedge e \in L^{-} & \text {if } x, y \in L^{-}, \\
e \in L^{-} & \text {if } x \in L^{+}, y \in L^{-} \\
\lambda(x)^{-1} \cdot y \vee e \in L^{+} & \text {if } x \in L^{-}, y \in L^{+}, \\
x^{-1} \cdot y \wedge e \in L^{-} & \text {if } x, y \in L^{+},\end{cases} \\
& y / x:= \begin{cases}y \cdot x^{-1} \wedge e \in L^{-} & \text {if } x, y \in L^{-}, \\
e \in L^{-} & \text {if } x \in L^{+}, y \in L^{-} \\
y \cdot x^{-1} \vee e \in L^{+} & \text {if } x \in L^{-}, y \in L^{+}, \\
\lambda^{-1}\left(y \cdot x^{-1}\right) \wedge e \in L^{-} & \text {if } x, y \in L^{+},\end{cases}
\end{aligned}
$$

Kites

Now, in any perfect pseudo MV-algebra \mathbf{A} the normal filter $F_{\mathbf{A}}$ is the universe of a cancellative IGMV-algebra $\mathbf{F}_{\mathbf{A}}$. Since pseudo MV-algebras satisfy the identities

$$
\begin{aligned}
(x \wedge y)^{\sim \sim} & =x^{\sim \sim} \wedge y^{\sim \sim} \\
(x \vee y)^{\sim \sim} & =x^{\sim \sim} \vee y^{\sim \sim} \\
(x \cdot y)^{\sim \sim} & =x^{\sim \sim} \cdot y^{\sim \sim} \\
x^{-\sim \sim} & =x^{\sim \sim-}
\end{aligned}
$$

the map $-\sim \sim$ is an automorphism of $\mathbf{F}_{\mathbf{A}}$. Applying the functor ℓ we lift $\sim^{\sim \sim}$ to an automorphism

$$
\ell \approx: \ell\left(\mathbf{F}_{\mathbf{A}}\right) \rightarrow \ell\left(\mathbf{F}_{\mathbf{A}}\right)
$$

defined, obviously, as $\ell \approx(-):=\ell\left(-^{\sim \sim}\right)$.
Theorem
Let \mathbf{A} be a perfect pseudo MV-algebra. Then $\mathbf{A} \cong \mathcal{K}\left(\ell\left(\mathbf{F}_{\mathbf{A}}\right), \ell \approx\right)$.

Kites

Definition

We define LGA to be the category of ℓ-groups with a distinguished automorphism. The objects are algebras (\mathbf{L}, λ) where \mathbf{L} is an ℓ-group and λ is an automorphism of \mathbf{L}. The morphisms are ℓ-group homomorphisms commuting with the distinguished automorphism.

Theorem

The categories $\mathrm{pf} \Psi \mathrm{MV}$ of perfect pseudo MV-algebras, and LGA of ℓ-groups with a distinguished automorphism, are equivalent.

Corollary (Di Nola, Lettieri)

Let AbLG be the category of Abelian ℓ-groups with homomorphisms and let pfMV be the category of perfect MV-algebras with homomorphisms. Then AbLG and pfMV are equivalent.

Definition

A monounary algebra $\mathbf{B}=(B ; \beta)$ where β is a bijection on B will be called a B-cycle. Homomorphisms of B-cycles are maps
$f: \mathbf{B} \rightarrow \mathbf{C}$ satisfying $f \circ \lambda^{\mathbf{B}}=\lambda^{\mathbf{C}} \circ f$. Objects of the category $\mathbf{B C}$ are B-cycles and arrows are homomorphisms.

Remark
B-cycles are not a variety, but as we will often need β^{-1}, we could have equivalently defined B-cycles as a variety of bi-unary algebras (B, β, δ) satisfying $\beta(\delta(x))=x=\delta(\beta(x))$, and write β^{-1} for δ.

Definition

Let $\mathbf{B}=(B ; \beta)$ be a B-cycle and \mathbf{L} and ℓ-group. A kite over \mathbf{B} and
\mathbf{L} is the algebra

$$
\mathcal{K}_{\mathbf{B}}(\mathbf{L}):=\mathcal{K}\left(\mathbf{L}^{B}, \lambda\right)
$$

where $\lambda: \mathbf{L}^{B} \rightarrow \mathbf{L}^{B}$ is the automorphism given by $\lambda(x(i))=x(\beta(i))$ for any $i \in B$.

Let \mathbf{L} be an ℓ-group, and let $f: \mathbf{B} \rightarrow \mathbf{C}$ be a homomorphism of B-cycles. Then f naturally lifts to a homomorphism

$$
\mathcal{K}_{f}(\mathbf{L}): \mathcal{K}_{\mathbf{C}}(\mathbf{L}) \rightarrow \mathcal{K}_{\mathbf{B}}(\mathbf{L})
$$

defined by $\left(\mathcal{K}_{f}(\mathbf{L})\right)(x)=x \circ f$. Moreover

$$
\mathcal{K}_{-}(\mathbf{L}): \mathrm{BC} \rightarrow \mathrm{pf} \Psi \mathrm{MV}
$$

is a contravariant functor.

Definition

For a perfect $M V$-algebra \mathbf{A} and an ℓ-group \mathbf{L} we define a B-cycle $[\mathbf{A}, \mathbf{L}]:=([A, L] ; \lambda)$, where
$[A, L]:=\left\{\alpha \in\left(L^{-}\right)^{F_{\mathrm{A}}}: \alpha\right.$ is a homomorphism in CanIGMV $\}$
given by $\lambda(\alpha(x)):=\alpha\left(x^{\sim \sim}\right)$ for any $\alpha \in[A, L]$.

For any perfect pseudo MV-algebra \mathbf{A} there exists a homomorphism

$$
\eta_{\mathbf{A}}: \mathbf{A} \rightarrow \mathcal{K}_{[\mathbf{A}, \mathbf{L}]}(\mathbf{L})
$$

(defined by

$$
\left(\eta_{\mathbf{A}}(x)\right)(\alpha)= \begin{cases}\alpha(x) & \text { if } x \in F_{\mathbf{A}} \\ \alpha\left(x^{\sim}\right)^{-1} & \text { if } x \in C_{\mathbf{A}}\end{cases}
$$

for any $x \in|\mathbf{A}|$ and any $\alpha \in[A, L])$

For any perfect pseudo MV-algebra A there exists a homomorphism

$$
\eta_{\mathbf{A}}: \mathbf{A} \rightarrow \mathcal{K}_{[\mathbf{A}, \mathbf{L}]}(\mathbf{L})
$$

(defined by

$$
\left(\eta_{\mathbf{A}}(x)\right)(\alpha)= \begin{cases}\alpha(x) & \text { if } x \in F_{\mathbf{A}} \\ \alpha\left(x^{\sim}\right)^{-1} & \text { if } x \in C_{\mathbf{A}}\end{cases}
$$

for any $x \in|\mathbf{A}|$ and any $\alpha \in[A, L])$

Theorem

Let \mathbf{A} be a perfect pseudo MV-algebra, \mathbf{B} be a B-cycle and \mathbf{L} be an ℓ-group. Then for any homomorphism $f: \mathbf{A} \rightarrow \mathcal{K}_{\mathbf{B}}(\mathbf{L})$ there exists a unique homomorphism of B-cycles $g: \mathbf{B} \rightarrow[\mathbf{A}, \mathbf{L}]$ such that the following diagram commutes:

Varieties generated by Dvurečenskij/Kowalski's kites

Throughout the section \mathbb{D} will stand for the lattice $(\mathbb{N} ; \mid)$ of natural numbers under the divisibility ordering.

Varieties generated by Dvurečenskij/Kowalski's kites

Throughout the section \mathbb{D} will stand for the lattice $(\mathbb{N} ; \mid)$ of natural numbers under the divisibility ordering.
For any bijection λ on a nonempty set B, we define the dimension of λ as follows:

$$
\operatorname{dim}(\lambda):=\min ^{\mathbb{D}}\left\{n \in \mathbb{N}: \lambda^{n}=i d_{B}\right\}
$$

For a B-cycle $\mathbf{B}=(B ; \lambda)$, we put $\operatorname{dim}(\mathbf{B}):=\operatorname{dim}(\lambda)$ and call it the dimension of \mathbf{B}.

Varieties generated by Dvurečenskij/Kowalski's kites

Throughout the section \mathbb{D} will stand for the lattice $(\mathbb{N} ; \mid)$ of natural numbers under the divisibility ordering.
For any bijection λ on a nonempty set B, we define the dimension of λ as follows:

$$
\operatorname{dim}(\lambda):=\min ^{\mathbb{D}}\left\{n \in \mathbb{N}: \lambda^{n}=i d_{B}\right\}
$$

For a B-cycle $\mathbf{B}=(B ; \lambda)$, we put $\operatorname{dim}(\mathbf{B}):=\operatorname{dim}(\lambda)$ and call it the dimension of \mathbf{B}.

Lemma
We have $\Lambda^{+}(\mathrm{BC}) \cong \mathbb{D}$ and $\Lambda(\mathrm{BC}) \cong \mathbf{1} \oplus \mathbb{D}$, that is, the ordinal sum of the trivial lattice 1 and \mathbb{D}.

Varieties generated by Dvurečenskij/Kowalski's kites

Throughout the section \mathbb{D} will stand for the lattice $(\mathbb{N} ; \mid)$ of natural numbers under the divisibility ordering.
For any bijection λ on a nonempty set B, we define the dimension of λ as follows:

$$
\operatorname{dim}(\lambda):=\min ^{\mathbb{D}}\left\{n \in \mathbb{N}: \lambda^{n}=i d_{B}\right\}
$$

For a B-cycle $\mathbf{B}=(B ; \lambda)$, we put $\operatorname{dim}(\mathbf{B}):=\operatorname{dim}(\lambda)$ and call it the dimension of \mathbf{B}.

Lemma

We have $\Lambda^{+}(\mathrm{BC}) \cong \mathbb{D}$ and $\Lambda(\mathrm{BC}) \cong \mathbf{1} \oplus \mathbb{D}$, that is, the ordinal sum of the trivial lattice 1 and \mathbb{D}.
We will write C_{n} for the variety defined by $\lambda^{n}(x)=x$, so in particular $B C=C_{0}$.

Varieties generated by kites

For any pseudo MV-algebra \mathbf{A}, the operation $-\approx$ is a bijection on A, so for any \mathbf{A} we define the dimension of \mathbf{A} to be $\operatorname{dim}(-\approx)$. This is essential for the rest of the section, so we state it formally.

Definition

Let $\mathbf{A} \in \mathrm{PMV}$ and $\mathcal{V} \in \Psi M V$. Then

1. $\operatorname{dim}(\mathbf{A}):=\operatorname{dim}(-\approx)$,
2. $\operatorname{dim}(\mathcal{V}):=\min ^{\mathbb{D}}\{\operatorname{dim}(\mathbf{A}) \mid n:$ for all $\mathbf{A} \in \mathcal{V}\}$,
3. $\mathrm{P} \Psi \mathrm{MV}_{n}:=\mathrm{P} \Psi \mathrm{MV} \cap \operatorname{Mod}\left\{\lambda^{n}(x)=x\right\}$, for any $n \in \mathbb{D}$.

Varieties generated by kites

Definition

We define two pairs of maps
$\psi: \Lambda(\mathrm{P} \Psi \mathrm{MV}) \rightarrow \Lambda($ CanIGMV $)$, where $\psi(\mathcal{V})=\vee\left\{\mathbf{F}_{\mathbf{A}}: \mathbf{A} \in \mathcal{V}_{p f}\right\}$, $\Psi: \Lambda(\mathrm{P} \Psi \mathrm{MV}) \rightarrow \Lambda($ CanIGMV $) \times \mathbb{D}$, where $\Psi(\mathcal{V})=(\psi(\mathcal{V}), \operatorname{dim}(\mathcal{V}))$,
for any $\mathcal{V} \in \Lambda(P \Psi M V)$ and
$\delta: \Lambda($ CanIGMV $) \rightarrow \Lambda(\mathrm{P} \Psi \mathrm{MV})$, where $\delta(\mathcal{V})=V\left\{\mathbf{A} \in \operatorname{pf} \Psi \mathrm{MV}: \mathbf{F}_{\mathbf{A}} \in \mathcal{V}\right\}$
$\Delta: \Lambda($ CanIGMV $) \times \mathbb{D} \rightarrow \Lambda(\mathrm{P} \Psi \mathrm{MV})$, where $\Delta(\mathcal{V}, n)=\delta(\mathcal{V}) \cap \mathrm{P} \Psi \mathrm{MV}_{n}$,
for any $\mathcal{V} \in \Lambda($ CanIGMV) and $n \in \mathbb{D}$.

Varieties generated by kites

Lemma

Let $\mathcal{V} \in \Lambda(C a n I G M V)$, let E be an equational base for \mathcal{V}, and let $\mathbf{A} \in \mathrm{P} \Psi \mathrm{MV}$. The following are equivalent.

1. $\mathbf{A} \in \delta(\mathcal{V})$,
2. $\mathbf{A} \models t\left(x_{1} \vee x_{1}^{-}, \ldots, x_{k} \vee x_{k}^{-}\right)=1$ for all terms t in the language of residuated lattices, such that $\mathcal{V} \models t\left(x_{1}, \ldots, x_{k}\right)=1$.
3. $\mathbf{A} \models t_{\varepsilon}\left(x_{1} \vee x_{1}^{-}, \ldots, x_{k} \vee x_{k}^{-}\right)=1$ for all equations $\varepsilon\left(x_{1}, \ldots, x_{k}\right) \in E$.

Varieties generated by kites

Theorem
For any $\mathcal{V} \in \Lambda^{+}($CanIGMV) and any $n \in \mathbb{D}$, we have

$$
(\mathcal{V}, n)=\Psi \Delta(\mathcal{V}, n)
$$

Lemma
For any $\mathcal{V} \in \Lambda(P \Psi M V)$ we have

$$
\mathcal{V} \subseteq \Delta \Psi(\mathcal{V})
$$

Varieties generated by kites

Theorem
For any $\mathcal{V} \in \Lambda^{+}(\mathrm{CanIGMV})$ and any $n \in \mathbb{D}$, we have

$$
(\mathcal{V}, n)=\Psi \Delta(\mathcal{V}, n)
$$

Lemma
For any $\mathcal{V} \in \Lambda(P \Psi M V)$ we have

$$
\mathcal{V} \subseteq \Delta \Psi(\mathcal{V})
$$

Theorem
Let $\mathcal{V} \in \Lambda(P \Psi M V)$. The following are equivalent.

1. \mathcal{V} is generated by kites.
2. $\mathcal{V}=\Delta \Psi(\mathcal{V})$.
3. $\mathcal{V}=\Delta(\mathcal{W}, n)$ for some $\mathcal{W} \in \Lambda($ CanIGMV) and some $n \in \mathbb{D}$.

Theorem
Varieties generated by kites form a complete sublattice of $\Lambda(\mathrm{P} \Psi \mathrm{MV})$ with $\mathrm{P} \Psi \mathrm{MV}$ being its largest, and BA its smallest element.

Theorem
Let \mathbb{K} be the lattice of subvarieties of $\mathrm{P} \Psi \mathrm{MV}$ generated by kites.

$$
\mathbb{K} \cong \mathbf{1} \oplus\left(\Lambda^{+}(\text {CanIGMV }) \times \mathbb{D}\right) \cong \mathbf{1} \oplus\left(\Lambda^{+}(\mathrm{LG}) \times \mathbb{D}\right)
$$

where $\mathbf{1}$ is the trivial lattice and \oplus is the operation of ordinal sum.

Thank you for your attention!

