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What is a proof?

When two proofs are the same?
...and why should we care about?
What is a Combinatorial Proof?
When two proofs are the same?
What about modal logics?

...and their proof identity?
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A proof is...

@ A sequence of instructions
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A proof is...

@ A sequence of instructions
@ A strategy to win an argumentation

@ The sound relations between the components of a statement
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When two proofs are the same?

5/51



Pythagorean theorem

There are many different proofs of the Pythagorean theorem
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There are many different proofs of the Pythagorean theorem
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More proofs (122) available at
http://www.cut-the-knot.org/pythagoras/index.shtml
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Why should we care about?
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Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as
formal mathematical objects.
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The 24th Hilbert problem’:

Criteria of simplicity, or proof of the greatest simplicity of certain proofs. [...]

"Found on notes discovered by Thiele in 2000
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The 24th Hilbert problem’:

Criteria of simplicity, or proof of the greatest simplicity of certain proofs. [...]
Under a given set of conditions there can be but one simplest proof. [...]

Quite generally, if there are two proofs for a theorem, you must keep going until
you have derived each from the other, or until it becomes quite evident what
variant conditions (and aids) have been used in the two proofs. [...]

"Found on notes discovered by Thiele in 2000
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Why computer scientists should we care about proof
equivalence?
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“[God] caused a tumult among them, by producing in them diverse
languages, and causing that, through the multitude of those languages,
they should not be able to understand one another.”

(Flavius Josephus, Antiquities of the Jews, c. 94 CE)
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“[God] caused a tumult among them, by producing in them diverse
languages, and causing that, through the multitude of those languages,
they should not be able to understand one another.”

(Flavius Josephus, Antiquities of the Jews, c. 94 CE)
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Equivalence via rule permutations
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We consider some derivations to be the same proof:

— AX — AX

a,a b,
a,a®b,b ®© c,C d,d
a® (@®b),b c,c®d,d
a®@®b),b®c,dc®d
a®@®b),b®c)¥d,c®d
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We consider some derivations to be the same proof:
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Sequences are... sequential (no space for parallelism)
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Tracking relations instead of permuting rules
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~ AX — AX
a b,b
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/<y

~
?y/
a®a®b), b®c)Rd, c®d

This is an MLL-proof net [Girard '87]
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| have a bad news and a good news
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Problem: no proof nets* for extensions of MLL
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Problem: no proof nets* for extensions of MLL

— aX —ax ——ax — aX
a,a a,a a,a b,b
1 —ax = — = — ax e |
a,a, L b,b a,a®b,a a,a b,b, L
a,a®b,b, L a,a®b,b, L a,a®b,b, L
S A @) (@) ONE
L a & b a & b L

* :proof equivalence is P-space BUT translation and check are P-time
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We have combinatorial proofs [Hughes 2006]
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We have combinatorial proofs [Hughes 2006]

Q1<
Q, <«
<
()
N

@nb)v( oA )V (

@ Canonical representation of proofs
@ Proof system (Cook-Reckhow)
@ Classical, Intuitionistic, Relavant, Modal, MELL, Costructive Modal
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Combinatorial Proofs for Classical Logic
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Classical Logic

Formulas
AB=al|a|AANB|AVB

Sequent Calculus LK

I'A,B IA B,A r IAA
ax— Vv A W— C
a,a I"AVB ILAABA I'A I,A

Theorem
LK is a sound and complete proof system for classical logic.
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Classical Logic

Formulas
A,B=al|la|AANB|AVB
Sequent Calculus LK

I'A,B I'A BA r IAA A ANA
ax — Vv A W— C cut
a,a I'"AVB I AAB,A A I,A A

Theorem
LK is a sound and complete proof system for classical logic.

Theorem
Cut elimination holds in LK.
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Combinatorial Proofs
Definition
A combinatorial proof of a formula F is an axiom-preserving skew fibration

[:G = [F]

from a RB-cograph G to the cograph of F.

.\._. * .\.—. :
A Y Y a ¥ A\
(a Vb)A @) Vv ‘a iy — ‘“

Ideas:
@ cograph = graph enconding a formula
@ RB-cograph = MLL proof nets
@ skew fibration = {W, C,}-derivations
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Cographs?

2Duffin 1965
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Cographs?
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Cographs

Definition

A cograph is a graph containing no four vertices such that

N

Theorem
A graph is a cograph iff constructed from single-vertices graphs using the
graph operations

GBH
G H
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RB-cographs®

3Retoré 1993
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RB-cographs®

3Retoré 1993
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RB-cographs encoding proofs

a a b—b @
a——a——b—0> “>
a b
‘ -
a b
a———b
o] e
@b

Theorem
A RB-cograph is the encoding of an MLL-derivation iff it is ae-connected
and ae-acyclic
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RB-cographs encoding proofs
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Skew Fibrations*

4Hughes 2005; StraBburger RTA2007
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Skew Fibration

G O fon

Definition
@ A graph homomorphism /: H — G between two graphs is a map
f: Vo — Vg preserving —-edges;

29/51



Skew Fibration

G O

Definition
@ A graph homomorphism /: H — G between two graphs is a map
f: Vo — Vg preserving —-edges;

29/51



Skew Fibration

G O fon

Definition
@ A graph homomorphism /: H — G between two graphs is a map
f: Vo — Vg preserving —-edges;
@ A fibration is an homomorphism f: H — G such that

FEZrw) = vEw

29/51



Skew Fibration

G O fon

Definition
@ A graph homomorphism /: H — G between two graphs is a map
f: Vo — Vg preserving —-edges;
@ A fibration is an homomorphism f: H — G such that

FEZrw) = vEw

29/51



Skew Fibration

G O fon

Definition
@ A graph homomorphism /: H — G between two graphs is a map
f: Vo — Vg preserving —-edges;
@ A fibration is an homomorphism f: H — G such that

FEZrw) = vEw

29/51
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ClB] CIAV A]
‘CiBval | ¢ el
A
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30/51



w,

C[B]
C[BVA]

fibration
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w,

C[B]
C[BVA]

fibration
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Skew Fibrations®

Theorem (Decomposition)

W,.Cp)

F' — F = there is a skew fibration [ : [F'] — [F]

[F1
F bijective
fIm, [[Gvf]]
F’ G’
ltw;.c;} = |lac;, = surjective
F G v
flw, (Gl
F Y
injecive
v
[F1

SHughes 2005 ; StraBburger RTA2007

CI[(AANC)V (BAD)]
™ CIAVB)A(C VD)

ClaVal
Clal

acy

CIB]
" CIAVBI
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Reassembling the pieces
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Combinatorial Proofs

Theorem (Decomposition)

LK mL WGyl
—F—=—F — F

LK

]

~

Theorem
Every LK derivation can be represented by a combinatorial proof
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Combinatorial Proofs

Theorem (Decomposition)

LK mL WGyl
—F—=—F — F

D’HMLL
”LK N F’
F D H {(W,.c,})
F

Theorem
Every LK derivation can be represented by a combinatorial proof
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Combinatorial Proofs

Theorem (Decomposition)

LK mL WGyl
—F—=—F — F

D’HMLL IRB-cograph encoding
”LK F’ o
- - skew fibration for ©
F TH{W»CL}

F cograph of F

Theorem
Every LK derivation can be represented by a combinatorial proof
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Combinatorial Proofs form a Proof System

Fact (Cook-Reckhow)

Check whether a syntactic object represents a valid proof can be done by
means of a polynomial time algorithm.

@ Check if a graph is a cograph

@ Check if a RB-cograph is a-connected and ae-acyclic

@ Checkifamapf: H — G between cograph is a skew fibration
@ Check if f is axiom-preserving

Theorem
Combinatorial Proofs form a proof system for classical logic.
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Proof equivalence in Classical Logic
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Iy,00, A3

1

[, M0, A3 T3,A4 LA
TLAL DA, = Tulnina, ¢ Taag
P P2
Independent 1, 12,13, 51, 5 1,015,515
rules LA A I ALA, [LALAy Ta Ay I ALA,
P1 P2 2 p1
LI,Ay  =TA1L% I, I2,A,% =T,%,A Iy, Az
r.zlyzzpz X, m F[,FZ,Z],ZZPI I,0,5,5 P2
IA,A,B,B+C r
— — 2 XV — 2 xW r
= [LAVBAVB I'A,B = w
C IMAVB
IAVB IAvB
WC-comonad
T.A _ = LAA = TALB
- w
A A BB LA ABB_|
- B R
Fxaising A A —C LA T.A,AABB
and PA BA L = =W LA AB =, St
Unfolding rAASB S8 AN FTANB
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Combinatorial Proofs for Modal Logic
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Modal Logic S4 [A. & StraBburger 2019]
Modal Formulas

A,B=al|a|AANB|AVB|DOA| QA

Sequent Calculus Rules

AT AT CIlA] C[OQA]
LKU? K , D , Ty s A
oA, oI CA, OT C[CA] C[CA]
O o
0@ .
\(} .
((<>z>a} vob) A sz5 v P

@ Encode modalities using special vertices and additional edges
@ Encode K and D as classes of modal vertices
@ Encode T and 4, as graphs homomorphisms
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AT AT A,B A A

z
C (where |Z| > 0)

K D M ’
DA, 0o OA, o DA, OB DA ©A 0A 0%
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Proof equivalence in Classical Modal Logic
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2,00, A3 T3,A4 T A T Ay A3
[LAL TlnAnT, = Tohaina, 0 D
P1 P2
Independent T, 05,5, 5, I, 13,5, 5
rules LALA,  TALA LALA, Tady  TALA
B T e P2 Pl
I.%, A T,AL L T2, ALE, =T.2,4 T2, A3
ruLn” rnn” nnILn” Mo
IA,AB,B ILAAB,B+C
2 2xV r
/ = = w
ILAVB
WCGC-comonad
0w )
= TAA LAAL = TALE
T,
N A BB LA ABB |
- ,B, e
Excising —Ww A c LA TLAAABB
and A B,A = o w LA AB S CTAAABANE ob
i — JAAN —_— JLLAANBANA
Unfolding T,ALADB T,AAB " —_——
ILAAANB
A ra I,B,B.A I,B.B.A
Structural vs K I,B,A =c  olLoA T,B,A =, OIL,0B,0B,0A
oI, 0B,0A oI, 0B, 0A oI, 0B,0A oI, 0B, 0A



Constructive Modal Logic
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Intuitionistic Logic [Heijltjes, Hughes & StraBburger 2019]

Formulas

AB=a|AAB|ADB

Sequent Calculus Rules

I'BrA _ TI,B,CrA

I'tA A+B R I'rA A,B+C

ax o)
atra I'tBDA I'LBACFA

A

A
I ,A+AAB ILANADB+C

| I''B,BrA T'rA
A1 I''BrA I''BrA
b=—""=sb a=——">»q
b=—=—""=b a=""——"">q

L
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Constructive Modal Logic [A. & StraBburger 2022]
Modal Formulas

AB:=a|AANB|ADB|OA| QA |1
Additional Sequent Calculus Rules

T'rA BTHA BTHA
oC+oA © OB, Ol + OA © ol + OA

b=—"=sb az= sq

| % >0

O( b 5> b )> & a )d0(ana)
@ Encode modalities using special vertices and additional edges
@ Encode K and D as by links on modal vertices
@ Encode T and 4, as graphs homomorphisms
— Game Semantics for CK and CD [A., Catta & StraBburger 2021]
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@ Arenas for modal formulas
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@ Arenas for modal formulas
@ Linear proofs = arenas + specific vertices partitions
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@ Arenas for modal formulas
@ Linear proofs = arenas + specific vertices partitions
@ Deep-WC derivations = Specific morphisms

(0 (bo>b)>o a )o>0(aha)
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@ Arenas for modal formulas

@ Linear proofs = arenas + specific vertices partitions
@ Deep-WC derivations = Specific morphisms

@ We can factorize CK proofs

TMLL-x®

o ( b > b )o & (ana) )dDO(ana)

flLie

(o (b > b ) 0 a )D<O(aAna)
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@ Arenas for modal formulas

@ Linear proofs = arenas + specific vertices partitions
@ Deep-WC derivations = Specific morphisms

@ We can factorize CK proofs

@ We have combinatorial proofs for CK!
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As advertised:
@ Polynomial Correcntess Criterion

@ Sound and Complete w.r.t. sequent calculus

@ Rule-free representation of proofs
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Proof equivalence in Constructive Modal Logic
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Independent _
rules -
I AABBFC .
-2 XA
= /«Bmi o
WC-comonad
= TLAAWB = TArB
T+A ABBKC
isi ArC A.B.B+C — ot
Excising ST w ArC =" "¢ IvA T,AASBBrC
and THA BAKC | = =========W TtA ABHC | =y ——— ot
Unfoldin e ILAASB+C —— IL[L,ALADBADBC
niolding TLAADB+C TLADBrC _——
[LAADBFC
I'rA w r+A IB,BFrA I''B.B+A
TBrA = OfroA N IL.BFA =o ONLOBOBFOA
Structural vs K or,oBroA ol,0B + DA of,oBroA © ol,oB + DA
ructural vs
I.BrA I.BrA ILB.C.CrA ILB.C.CFA
K, e OnoBroA M [.B,.CrA =oc OF,0B,0C,0CO F OA
or, B,0C,F DA * ol ¢B,oC - DA or, 0B,0CF OA - al, ¢B.0C + OA
r+A I'+A
) LBEA neea
umps B — =, [
P aroBroA o M OhoCroA
arl, ¢B,oC + OA al, ©B,oC + OA
Scpi= (EU=e U=) == (Scp U =y) =wis = (Ea U =me)  =ow = (Ewis U =nc)
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o

brb
r—b A br—b A
"55b° ara . F55b° ara .

(bob)dara (b:b):ur—aAR

(b>ob)da(bob)darara
(b>o>b)ydarana
¢,(bo>b)darana

oc, D((bDb)Da)l-O(a/\a)

D(bDb)Da)D(orDo(a/\a))

m’*" ™ e
cbrb aaraha
HYEY araha |

c(bob)darana
©c,0((b 2 b) 5 a) F O(a A a)
D(b)b))a))((}c:)()(a/\a))

ara ara |

a,araha

brb "o araha

S arana
Fbob carana |

c(bob)d>araha
©c,0((b > b) 2 a) F O(a A a)
a(b > b) 2 a) > (Oc D OaAa)

o @ > b o @ o

@ > B > @ 5 & > O @

S 5 b @
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Sum up:
@ We have combinatorial Proofs for

o Classical (Normal) Modal Logics in the S4 hyper-cube
@ Constructive Modal Logics CK and CD

@ ...which are proof systems [Cook-Reckhow]
@ ...providing a (resource-sensitive) proof equivalence
@ it is possible to define stronger proof equivalences

Related works/Future works/Works in Progress:
@ Game semantics for CK and CD [A., Catta & StraBburger 2021]
@ Combinatorial Proofs and Game Semantics for CS4 [WIP]
@ Combinatorial Proofs as proof certificates (with modules)
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Thanks



Thanks

Questions?
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