On proof equivalence for Modal Logics

Matteo Acclavio
Università Roma Tre

Mosaic Kickoff Meeting 2022
10/09/22

- What is a proof?
- When two proofs are the same?
- ... and why should we care about?
- What is a Combinatorial Proof?
- When two proofs are the same?
- What about modal logics?
- ... and their proof identity?

What is a proof?

A proof is...

- A sequence of instructions

A proof is...

- A sequence of instructions
- A strategy to win an argumentation

A proof is...

- A sequence of instructions
- A strategy to win an argumentation
- The sound relations between the components of a statement

When two proofs are the same?

Pythagorean theorem

There are many different proofs of the Pythagorean theorem

Pythagorean theorem

There are many different proofs of the Pythagorean theorem

Pythagorean theorem

There are many different proofs of the Pythagorean theorem

Pythagorean theorem

There are many different proofs of the Pythagorean theorem

More proofs (122) available at http://www.cut-the-knot.org/pythagoras/index.shtml

Pythagorean theorem

There are many different proofs of the Pythagorean theorem

More proofs (122) available at http://www.cut-the-knot.org/pythagoras/index.shtml

Why should we care about?

Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as formal mathematical objects.

Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as formal mathematical objects.

Every definition of a mathematical object comes with a notion of identity

Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as formal mathematical objects.

Every definition of a mathematical object comes with a notion of identity

PROBLEM: no agreement on the meaning of "the same"

Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as formal mathematical objects.

Every definition of a mathematical object comes with a notion of identity

PROBLEM: no agreement on the meaning of "the same"

Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as formal mathematical objects.

Every definition of a mathematical object comes with a notion of identity

PROBLEM: no agreement on the meaning of "the same"

The 24th Hilbert problem ${ }^{1}$:

Criteria of simplicity, or proof of the greatest simplicity of certain proofs. [...]
${ }^{1}$ Found on notes discovered by Thiele in 2000

The 24th Hilbert problem ${ }^{1}$:

Criteria of simplicity, or proof of the greatest simplicity of certain proofs. [...] Under a given set of conditions there can be but one simplest proof. [. . .]
${ }^{1}$ Found on notes discovered by Thiele in 2000

The 24th Hilbert problem ${ }^{1}$:

Criteria of simplicity, or proof of the greatest simplicity of certain proofs. [...] Under a given set of conditions there can be but one simplest proof. [...] Quite generally, if there are two proofs for a theorem, you must keep going until you have derived each from the other, or until it becomes quite evident what variant conditions (and aids) have been used in the two proofs. [...]
${ }^{1}$ Found on notes discovered by Thiele in 2000

Why computer scientists should we care about proof equivalence?

"[God] caused a tumult among them, by producing in them diverse languages, and causing that, through the multitude of those languages, they should not be able to understand one another." (Flavius Josephus, Antiquities of the Jews, c. 94 CE)

"[God] caused a tumult among them, by producing in them diverse languages, and causing that, through the multitude of those languages, they should not be able to understand one another." (Flavius Josephus, Antiquities of the Jews, c. 94 CE)

$$
\begin{aligned}
& =\frac{\mathbf{t}}{\mathrm{s}_{\mathrm{ail} \frac{\mathbf{t}}{\bar{c} \vee c}}^{\overline{\mathrm{c}}} \wedge \sqrt{\mathrm{ai} \downarrow \frac{\mathbf{t}}{\bar{d} \vee d}}} \\
& =\frac{\mathrm{s} \frac{(\bar{c} \vee c) \wedge \bar{d}) \vee d}{(\bar{c} \wedge \bar{d}) \vee d \vee c}}{\overline{\mathrm{w} \downarrow \frac{\mathbf{f}}{\bar{a} \wedge \bar{b}}} \vee(\bar{c} \wedge \bar{d}) \vee c \vee d} \\
& =\frac{(\bar{a} \wedge \bar{b}) \vee(\bar{c} \wedge \bar{d}) \vee c \vee d}{}
\end{aligned}
$$

$$
\frac{[(a \vee b) \wedge(c \vee d) \wedge \bar{c} \wedge \bar{d}]}{\frac{[a \vee b][(c \vee d) \wedge \bar{c} \wedge \bar{d}]}{\frac{[a \vee b][c \vee d][\bar{c} \wedge \bar{d}]}{[a \vee b][]}} \wedge} \wedge \operatorname{Res}^{c \vee d}
$$

"[God] caused a tumult among them, by producing in them diverse languages, and causing that, through the multitude of those languages, they should not be able to understand one another." (Flavius Josephus, Antiquities of the Jews, c. 94 CE)

Coq $\leftrightarrow \leadsto$ Lean

Equivalence via rule permutations

$$
\begin{array}{ccc}
\frac{\Gamma_{1}, \Delta_{1}}{\frac{\Gamma_{2}, \Delta_{2}, \Delta_{3} \Gamma_{3}, \Delta_{4}}{\Gamma_{2}, \Gamma_{3}, \Delta_{2}, \Sigma_{2}} \rho_{2}} \rho_{2}, \Gamma_{3}, \Sigma_{1}, \Sigma_{2} & \equiv & \frac{\Gamma_{1}, \Delta_{1} \Gamma_{1}, \Delta_{2}, \Delta_{3}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Delta_{2},} \rho_{1} \Gamma_{3}, \Delta_{4} \\
\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Sigma_{1}, \Sigma_{2} & \rho_{2} \\
\frac{\Gamma, \Delta_{1}, \Delta_{2}}{\Gamma, \Sigma_{1}, \Delta_{2}} \rho_{1} \\
\Gamma, \Sigma_{1}, \Sigma_{2} & \rho_{2} & \frac{\Gamma, \Delta_{1}, \Delta_{2}}{\frac{\Gamma, \Delta_{1}, \Sigma_{2}}{\Gamma, \Sigma_{1}, \Sigma_{2}} \rho_{1}} \\
\frac{\Gamma, \Delta_{1}, \Delta_{2} \Gamma_{2}, \Delta_{3}}{\Gamma_{1}, \Gamma_{2}, \Delta_{1}, \Sigma_{2}} \rho_{2} \\
\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2} & 1 & \equiv \\
\frac{\frac{\Gamma, \Delta_{1}, \Delta_{2}}{\Gamma, \Sigma_{1}, \Delta_{2}} \rho_{1} \Gamma_{2}, \Delta_{3}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{2}
\end{array}
$$

We consider some derivations to be the same proof:

We consider some derivations to be the same proof:

$$
\begin{aligned}
& \frac{\frac{\overline{a, \bar{a}}}{} \mathrm{AX} \overline{\bar{b}, b} \mathrm{AX}}{\frac{a, \bar{a} \otimes \bar{b}, b}{c, \bar{c}} \mathrm{AX} \quad \frac{\overline{\bar{d}}, d}{c, \bar{c} \otimes \bar{d}, d} \mathrm{AX}} \otimes \\
& \frac{\frac{a,(\bar{a} \otimes \bar{b}), b \otimes c, d, \bar{c} \otimes \bar{d}}{a \ngtr(\bar{a} \otimes \bar{b}), b \otimes c, d, \bar{c} \otimes \bar{d}} \gamma_{a} \ngtr(\bar{a} \otimes \bar{b}),(b \otimes c)^{\gamma 8}, \bar{c} \otimes \bar{d}}{\gamma}
\end{aligned}
$$

We consider some derivations to be the same proof:

We consider some derivations to be the same proof:

$$
\begin{aligned}
& \frac{\overline{\bar{b}, b} \mathrm{AX} \overline{c, \bar{c}} \mathrm{AX}}{\overline{\bar{b}, b \otimes c, \bar{c}} \otimes \overline{\bar{d}, d}} \mathrm{AX} \\
& \frac{\bar{b}, b \otimes c, \bar{c} \otimes \bar{d}, d}{(b \otimes c) \curvearrowright d, \bar{c} \otimes \bar{d}} \otimes \\
& \frac{\bar{b},(b \otimes c) \gamma d, \bar{c} \otimes \bar{d}}{\bar{b}),(b \otimes c) \curvearrowright d, \bar{c} \otimes \bar{d}} \otimes
\end{aligned}
$$

We consider some derivations to be the same proof:

Sequences are... sequential (no space for parallelism)

$$
\begin{aligned}
& \frac{\frac{\vdash a, \bar{a}}{} \mathrm{AX} \frac{\vdash b, \bar{b}}{\vdash a, \bar{a} \wedge \bar{b}, b} \wedge}{\frac{\mathrm{FX}}{\vdash a \vee(\bar{a} \wedge \bar{b}), b} \vee \frac{\vdash c, \bar{c}}{\vdash \mathrm{AX} \overline{\vdash d, \bar{d}}} \mathrm{fc,} \mathrm{\bar{c}} \mathrm{\wedge} \mathrm{\bar{d}, d}} \mathrm{AX} \\
& \frac{\vdash a \vee(\bar{a} \wedge \bar{b}), b \wedge c, d, \bar{c} \wedge \bar{d}}{\vdash a \vee(\bar{a} \wedge \bar{b}),(b \wedge c) \vee d, \bar{c} \wedge \bar{d}} \vee
\end{aligned}
$$

$$
\frac{\frac{\stackrel{\vdash b, \bar{b}}{ } \mathrm{AX} \overline{\vdash c, \bar{c}} \mathrm{AX}}{\frac{\vdash \bar{b}, b \wedge c, \bar{c}}{} \wedge \overline{\vdash d, \bar{d}}} \frac{\frac{\vdash \bar{b}, b \wedge c, d, \bar{c} \wedge \bar{d}}{\vdash a, \bar{a}} \mathrm{AX}}{\frac{\vdash a,(\bar{a} \wedge \bar{b}),(b \wedge c) \vee d, \bar{c} \wedge \bar{d}}{\vdash(b \wedge c) \vee d, \bar{c} \wedge \bar{d}} \vee} \wedge}{\frac{\vdash(\bar{a} \wedge \bar{b}),(b \wedge c) \vee d, \bar{c} \wedge \bar{d}}{} \vee}
$$

Tracking relations instead of permuting rules

\simeq

\simeq

\simeq

This is an MLL-proof net [Girard '87]

I have a bad news and a good news

Problem: no proof nets* for extensions of MLL

Problem: no proof nets* for extensions of MLL

Problem: no proof nets* for extensions of MLL

Problem: no proof nets* for extensions of MLL

Problem: no proof nets* for extensions of MLL

* :proof equivalence is P-space

Problem: no proof nets* for extensions of MLL

* :proof equivalence is P-space BUT translation and check are P-time

We have combinatorial proofs [Hughes 2006]

$$
\frac{\frac{\frac{{ }_{\vdash} \bar{c}, c}{} \mathrm{AX}}{\vdash \bar{c}, c, d} \mathrm{~W}}{\vdash(\bar{a} \wedge \bar{b}), \bar{c}, c, d} \mathrm{~W} \frac{\frac{{ }_{\vdash} \bar{d}, d}{\vdash \bar{d}, c, d} \mathrm{AX}}{\vdash(\bar{a} \wedge \bar{b}), \bar{d}, c, d} \mathrm{~W} \mathrm{~W}
$$

We have combinatorial proofs [Hughes 2006]

- Canonical representation of proofs
- Proof system (Cook-Reckhow)
- Classical, Intuitionistic, Relavant, Modal, MELL, Costructive Modal

Combinatorial Proofs for Classical Logic

Classical Logic

Formulas

$$
A, B:=a|\bar{a}| A \wedge B \mid A \vee B
$$

Sequent Calculus LK

$$
\mathrm{ax} \overline{a, \bar{a}} \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \wedge \frac{\Gamma, A \quad B, \Delta}{\Gamma, A \wedge B, \Delta} \quad \mathrm{w} \frac{\Gamma}{\Gamma, A} \quad \subset \frac{\Gamma, A, A}{\Gamma, A}
$$

Theorem
LK is a sound and complete proof system for classical logic.

Classical Logic

Formulas

$$
A, B:=a|\bar{a}| A \wedge B \mid A \vee B
$$

Sequent Calculus LK

$$
\mathrm{ax} \frac{}{a, \bar{a}} \vee \frac{\Gamma, A, B}{\Gamma, A \vee B} \wedge \frac{\Gamma, A \quad B, \Delta}{\Gamma, A \wedge B, \Delta} \quad \mathrm{w} \frac{\Gamma}{\Gamma, A} \quad \text { с } \frac{\Gamma, A, A}{\Gamma, A} \left\lvert\, \frac{\Gamma, A \quad \bar{A}, \Delta}{\Gamma, \Delta}\right. \text { cut }
$$

Theorem
LK is a sound and complete proof system for classical logic.
Theorem
Cut elimination holds in LK.

Combinatorial Proofs

Definition

A combinatorial proof of a formula F is an axiom-preserving skew fibration

$$
f: \mathcal{G} \rightarrow \llbracket F \rrbracket
$$

from a RB-cograph \mathcal{G} to the cograph of F.

Ideas:

- cograph = graph enconding a formula
- RB-cograph = MLL proof nets
- skew fibration $=\left\{\mathrm{W}_{\downarrow}, \mathrm{C}_{\downarrow}\right\}$-derivations

Cographs ${ }^{2}$

${ }^{2}$ Duffin 1965

Cographs ${ }^{2}$

${ }^{2}$ Duffin 1965

Cographs

Definition

A cograph is a graph containing no four vertices such that

Theorem

A graph is a cograph iff constructed from single-vertices graphs using the graph operations

RB-cographs ${ }^{3}$

${ }^{3}$ Retoré 1993

RB-cographs ${ }^{3}$

${ }^{3}$ Retoré 1993

RB-cographs encoding proofs

us

\xrightarrow{n}

Theorem
A RB-cograph is the encoding of an MLL-derivation iff it is æ-connected and æ-acyclic

RB-cographs encoding proofs

$\underset{\operatorname{mix} \frac{\mathrm{ax}}{\operatorname{a,\overline {a}}} \frac{\mathrm{AX} \bar{b} \bar{b}}{\bar{a}, a, b, \bar{b}} \text { (Noderivation) }}{ }$

\leftrightarrow

\leftrightarrow

Theorem
A RB-cograph is the encoding of an MLL-derivation iff it is æ-connected and æ-acyclic

RB-cographs encoding proofs

\leadsto

\leadsto
\xrightarrow{u}

$$
\operatorname{mx} \frac{\mathrm{AX} \overline{a, \bar{a}} \quad \mathrm{AX} \overline{b, \bar{b}}(\text { Noderivation })}{\bar{a}, a, b, \bar{b}}
$$

$$
\otimes \frac{\mathrm{AX} \overline{a, \bar{a}} \quad \mathrm{AX} \overline{b, \bar{b}}}{\bar{a}, a \otimes b, \bar{b}}
$$

RB-cographs encoding proofs

$$
\begin{aligned}
& \operatorname{AX} \frac{\mathrm{AX} \overline{a, \bar{a}}}{b, \bar{b}} \text { (Noderivation) } \\
& \bar{a}, a, b, \bar{b}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{AX} \overline{\overline{a, \bar{a}}} \mathrm{AX} \frac{\overline{b, \bar{b}}}{\bar{a}, a \otimes b, \bar{b}}
\end{gathered}
$$

No derivation

Theorem
A RB-cograph is the encoding of an MLL-derivation iff it is æ-connected and æ-acyclic

RB-cographs encoding proofs

$$
\begin{aligned}
& \mathrm{AX} \overline{\overline{a, \bar{a}}} \mathrm{AX} \overline{b, \bar{b}}(\text { Noderivation }) \\
& \bar{a}, a, b, \bar{b}
\end{aligned}
$$

\leadsto

$$
\begin{gathered}
\mathrm{AX} \frac{\mathrm{AX} \overline{a, \bar{a}}}{b, \bar{b}} \\
\otimes \frac{\bar{a}, a \otimes b, \bar{b}}{}
\end{gathered}
$$

No derivation

$$
\begin{aligned}
& \mathrm{AX} \overline{a, \bar{a}} \mathrm{AX} \overline{b, \bar{b}} \\
& \otimes \frac{\gamma \gamma \bar{a}}{(a \gamma \bar{a}) \otimes(b 叉 \bar{b})}
\end{aligned}
$$

Theorem
A RB-cograph is the encoding of an MLL-derivation iff it is æ-connected and æ-acyclic

Skew Fibrations ${ }^{4}$

${ }^{4}$ Hughes 2005; Straßburger RTA2007

Skew Fibrations ${ }^{4}$

${ }^{4}$ Hughes 2005; Straßburger RTA2007

Skew Fibration

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;

Skew Fibration

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;

Skew Fibration

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{\mathcal{G}}{\sim} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

Skew Fibration

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{\mathcal{G}}{\sim} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

Skew Fibration

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{\mathcal{G}}{\sim} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\stackrel{G}{ }} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

- A skew fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\hookrightarrow} u \Rightarrow v \stackrel{\mathcal{H}}{\sim} w \text { for a } w \text { such that } f(w) \stackrel{\mathscr{F}}{\underset{T}{ } u}
$$

Skew Fibration

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{\mathcal{G}}{\stackrel{ }{x}} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\stackrel{1}{x}}
$$

- A skew fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{\mathcal{G}}{\curvearrowleft} u \Rightarrow v \stackrel{\mathcal{H}}{w} \text { for a } w \text { such that } f(w) \stackrel{\mathscr{F}}{ } u
$$

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\stackrel{G}{ }} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

- A skew fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\hookrightarrow} u \Rightarrow v \stackrel{\mathcal{H}}{\sim} w \text { for a } w \text { such that } f(w) \stackrel{\mathscr{F}}{\underset{T}{ } u}
$$

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\stackrel{G}{ }} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

- A skew fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\hookrightarrow} u \Rightarrow v \stackrel{\mathcal{H}}{\sim} w \text { for a } w \text { such that } f(w) \stackrel{\mathscr{F}}{\underset{T}{ } u}
$$

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\stackrel{G}{ }} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

- A skew fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\hookrightarrow} u \Rightarrow v \stackrel{\mathcal{H}}{\sim} w \text { for a } w \text { such that } f(w) \stackrel{\mathscr{F}}{\underset{T}{ } u}
$$

Definition

- A graph homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ between two graphs is a map $f: V_{\mathcal{H}} \rightarrow V_{\mathcal{G}}$ preserving \frown-edges;
- A fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\stackrel{G}{ }} f(w) \Rightarrow v \stackrel{\mathcal{H}}{\sim} w
$$

- A skew fibration is an homomorphism $f: \mathcal{H} \rightarrow \mathcal{G}$ such that

$$
f(v) \stackrel{G}{\hookrightarrow} u \Rightarrow v \stackrel{\mathcal{H}}{\sim} w \text { for a } w \text { such that } f(w) \stackrel{\mathscr{F}}{\underset{T}{ } u}
$$

Skew Fibrations ${ }^{5}$

Theorem (Decomposition)

$$
F^{\prime} \stackrel{\left\{W_{\downarrow}, C_{\downarrow}\right\rangle}{\longmapsto} F \Longrightarrow \text { there is a skew fibration } f: \llbracket F^{\prime} \rrbracket \rightarrow \llbracket F \rrbracket
$$

${ }^{5}$ Hughes 2005 ; Straßburger RTA2007

Reassembling the pieces

Theorem (Decomposition)

$$
\stackrel{\mathrm{LK}}{\llcorner } F \Longrightarrow F^{\prime} \stackrel{\left.\mid \mathrm{W}_{\downarrow}, \mathrm{C}_{\downarrow}\right\}}{{ }^{\text {MLL }}} F
$$

${ }_{F}^{\| L K}$

Theorem
Every LK derivation can be represented by a combinatorial proof

Theorem (Decomposition)

Theorem
Every LK derivation can be represented by a combinatorial proof

Theorem (Decomposition)

$$
\stackrel{\mathrm{LK}}{\llcorner } F \Longrightarrow{ }^{\text {MLL }} F^{\prime} \stackrel{\left\{\mathrm{w}_{\downarrow}, \mathrm{C}_{\downarrow}\right\}}{\longmapsto} F
$$

Theorem
Every LK derivation can be represented by a combinatorial proof

Combinatorial Proofs form a Proof System

Fact (Cook-Reckhow)

Check whether a syntactic object represents a valid proof can be done by means of a polynomial time algorithm.

- Check if a graph is a cograph
- Check if a RB-cograph is æ-connected and æ-acyclic
- Check if a $\operatorname{map} f: \mathcal{H} \rightarrow \mathcal{G}$ between cograph is a skew fibration
- Check if f is axiom-preserving

Theorem

Combinatorial Proofs form a proof system for classical logic.

Proof equivalence in Classical Logic

Combinatorial Proofs for Modal Logic

Modal Formulas

$$
A, B:=a|\bar{a}| A \wedge B|A \vee B| \square A \mid \diamond A
$$

Sequent Calculus Rules

$$
\operatorname{LK} \cup\left\{\mathrm{K} \frac{A, \Gamma}{\square A, \diamond \Gamma}, \quad \mathrm{D} \frac{A, \Gamma}{\diamond A, \diamond \Gamma}, \quad \mathrm{~T}_{\downarrow} \frac{C[A]}{C[\diamond A]}, 4 \downarrow \frac{C[\diamond \diamond A]}{C[\diamond A]}\right\}
$$

- Encode modalities using special vertices and additional edges
- Encode K and D as classes of modal vertices
- Encode T_{\downarrow} and 4_{\downarrow} as graphs homomorphisms

$\frac{A, \Gamma}{\square A, \diamond \Gamma} \mathrm{~K} \quad \frac{A, \Gamma}{\diamond A, \diamond \Gamma} \mathrm{D} \quad \frac{A, B}{\square A, \diamond B} \mathrm{M} \quad \frac{A}{\square A} \mathrm{~N} \quad \frac{A}{\diamond A} \mathrm{P} \quad \frac{A, \Sigma}{\square A, \diamond \Sigma} \mathrm{C}($ where $|\Sigma|>0)$

Proof equivalence in Classical Modal Logic

Constructive Modal Logic

Intuitionistic Logic [Heijltjes, Hughes \& Straßburger 2019]
Formulas

$$
A, B:=a|A \wedge B| A \supset B
$$

Sequent Calculus Rules

$$
\begin{array}{cccc}
\overline{a \vdash a} \mathrm{ax} & \frac{\Gamma, B \vdash A}{\Gamma \vdash B \supset A} \supset^{\mathrm{R}} & \frac{\Gamma, B, C \vdash A}{\Gamma, B \wedge C \vdash A} \wedge^{\mathrm{L}} & \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge^{\mathrm{R}} \\
& \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{\mathrm{L}} \\
\frac{\Gamma, B, B \vdash A}{\vdash} 1 & \frac{\Gamma \vdash, B \vdash A}{\Gamma} & \frac{\Gamma \vdash A}{\Gamma, B \vdash A} \mathrm{~W} &
\end{array}
$$

Constructive Modal Logic [A. \& Straßburger 2022]

Modal Formulas

$$
A, B:=a|A \wedge B| A \supset B|\square A| \diamond A \mid 1
$$

Additional Sequent Calculus Rules

$$
\frac{\Gamma \vdash A}{\square \Gamma \vdash \square A} \mathrm{~K}_{\square} \quad \frac{B, \Gamma \vdash A}{\diamond B, \square \Gamma \vdash \diamond A} \mathrm{~K}_{\diamond} \quad \frac{B, \Gamma \vdash A}{\square \Gamma \vdash \diamond A} \mathrm{D}
$$

- Encode modalities using special vertices and additional edges
- Encode K and D as by links on modal vertices
- Encode T_{\downarrow} and 4_{\downarrow} as graphs homomorphisms
\Longrightarrow Game Semantics for CK and CD [A., Catta \& Straßburger 2021]
- Arenas for modal formulas

- Arenas for modal formulas
- Linear proofs $=$ arenas + specific vertices partitions

- Arenas for modal formulas
- Linear proofs = arenas + specific vertices partitions
- Deep-WC derivations = Specific morphisms

- Arenas for modal formulas
- Linear proofs = arenas + specific vertices partitions
- Deep-WC derivations = Specific morphisms
- We can factorize CK proofs

$$
\begin{aligned}
& \text { ПIMLL-X* } \\
& \square((b \supset b) \supset \diamond(a \wedge a)) \supset \diamond(a \wedge a) \\
& \| L l_{1} \\
& \left(\square\left(\begin{array}{lllll}
\square & \supset & b & \diamond & a
\end{array}\right) \supset \diamond(a \wedge a)\right.
\end{aligned}
$$

- Arenas for modal formulas
- Linear proofs = arenas + specific vertices partitions
- Deep-WC derivations = Specific morphisms
- We can factorize CK proofs
- We have combinatorial proofs for CK!

As advertised:

- Polynomial Correcntess Criterion
- Sound and Complete w.r.t. sequent calculus
- Rule-free representation of proofs

Proof equivalence in Constructive Modal Logic

$$
\equiv \mathrm{CP}:=\left(\equiv \cup \equiv_{\mathrm{e}} \cup \equiv_{\mathrm{c}}\right) \quad \equiv_{\lambda}:=\left(\equiv_{\mathrm{CP}} \cup \equiv_{\mathrm{u}}\right) \quad \equiv_{\mathrm{WIS}}:=\left(\equiv_{\lambda} \cup \equiv_{\mathrm{\square c}}\right) \quad \equiv_{\diamond \mathrm{w}}:=\left(\equiv \mathrm{WIS} \cup \equiv_{\mathrm{\square c}}\right)
$$

Sum up:

- We have combinatorial Proofs for
- Classical (Normal) Modal Logics in the S4 hyper-cube
- Constructive Modal Logics CK and CD
- ... which are proof systems [Cook-Reckhow]
- ... providing a (resource-sensitive) proof equivalence
- it is possible to define stronger proof equivalences

Related works/Future works/Works in Progress:

- Game semantics for CK and CD [A., Catta \& Straßburger 2021]
- Combinatorial Proofs and Game Semantics for CS4 [WIP]
- Combinatorial Proofs as proof certificates (with modules)

Thanks

Thanks

Questions?

