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A General Question

What is the one-variable fragment of a first-order logic ?
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A General Question

What is the S5 modal companion of a first-order logic ?
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Some Particular Answers

The one-variable fragments of first-order classical logic and first-order
intuitionistic logic are S5 and MIPC, respectively.

More generally, the one-variable fragments of first-order intermediate
logics have been studied intensively by Bezhanishvili, Ono, and
Suzuki, and, in the setting of linear frames, by Caicedo et al.

One-variable fragments of certain first-order many-valued logics have
also been studied in some depth; notably, the one-variable fragment
of first-order  Lukasiewicz logic was axiomatized by Rutledge in 1959.
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A More Precise Question

How can we axiomatize the S5 modal companion of a first-order logic ?
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A More Precise Question

How can we find algebraic semantics for a one-variable first-order logic ?
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L-Lattices

Let L be any algebraic language such that L2 contains ∧ and ∨, where Ln
denotes the set of operation symbols of L of arity n ∈ N.

An L-lattice is an algebra A = 〈A, {?A | n ∈ N, ? ∈ Ln}〉 such that

(i) 〈A,∧A,∨A〉 is a lattice with order x ≤A y :⇐⇒ x ∧A y = x ;

(ii) ?A is an n-ary operation on A for each n ∈ N and ? ∈ Ln.

We call this algebra complete if its lattice reduct 〈A,∧,∨〉 is complete.
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Formulas and Equations

Let Fm1
∀(L) be the set of one-variable L-formulas ϕ,ψ, . . . built as usual

using unary predicates {Pi}i∈N, a variable x , connectives in L, and ∀,∃.

An Fm1
∀(L)-equation is an expression ϕ ≈ ψ, where ϕ,ψ ∈ Fm1

∀(L).

E.g., if L is the language of lattices, Fm1
∀(L)-equations include

(∀x)(P1x ∧ P2x) ≈ (∀x)(P1x) ∧ (∀x)(P2x), (∃x)(P1x) ≈ (∀x)(P1x), . . .
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Structures and Validity

An A-structure for a complete L-lattice A is an ordered pair S = 〈S , I〉
such that S is a non-empty set and I(Pi ) is a map from S to A for i ∈ N.

For u ∈ S , we define a map ‖·‖Su : Fm1
∀(L)→ A inductively by

‖Pix‖Su = I(Pi )(u)

‖?(ϕ1, . . . , ϕn)‖Su = ?A(‖ϕ1‖Su , . . . , ‖ϕn‖Su )

‖(∀x)ϕ‖Su =
∧
{‖ϕ‖Sv | v ∈ S}

‖(∃x)ϕ‖Su =
∨
{‖ϕ‖Sv | v ∈ S}.

Given any Fm1
∀(L)-equation ϕ ≈ ψ, we define

S |= ϕ ≈ ψ :⇐⇒ ‖ϕ‖Su = ‖ψ‖Su for all u ∈ S .
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Consequence

Given any class of complete L-lattices K and set of Fm1
∀(L)-equations

T ∪ {ϕ ≈ ψ}, we define

T �∀K ϕ ≈ ψ :⇐⇒ for any A ∈ K and A-structure S,

S |= ϕ′ ≈ ψ′ for all ϕ′ ≈ ψ′ ∈ T =⇒ S |= ϕ ≈ ψ.

Example

If K consists of all complete Boolean algebras or Heyting algebras, �∀K is
consequence in the one-variable fragment of first-order classical logic or
intuitionistic logic, respectively. If K consists of all totally ordered complete
Heyting algebras or MV-algebras, �∀K is consequence in the one-variable
fragment of first-order Gödel logic or  Lukasiewicz logic, respectively.
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The Challenge

Can we axiomatize �∀K ?
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The Challenge

Can we axiomatize �∀K when K satisfies certain conditions ?
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The Modal Perspective

Let Fm�(L) be the set of propositional formulas α, β, . . . built using
propositional atoms {pi}i∈N, connectives in L, and unary connectives �,♦.

The standard translation from Fm1
∀(L) to Fm�(L) is defined by

(Pix)∗ = pi

(?(ϕ1, . . . , ϕn))∗ = ?(ϕ∗1, . . . , ϕ
∗
n)

((∀x)ϕ)∗ = �ϕ∗

((∃x)ϕ)∗ = ♦ϕ∗.

This translation extends in the obvious way to (sets of) equations.
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m-Lattices

An m-lattice is an algebra 〈L,∧,∨,�,♦〉 such that 〈L,∧,∨〉 is a lattice
and the following equations are satisfied:

(L1�) �x ∧ x ≈ �x (L1♦) ♦x ∨ x ≈ ♦x
(L2�) �(x ∧ y) ≈ �x ∧�y (L2♦) ♦(x ∨ y) ≈ ♦x ∨ ♦y
(L3�) �♦x ≈ ♦x (L3♦) ♦�x ≈ �x .

It follows also that every m-lattice satisfies

(L4�) ��x ≈ �x (L4♦) ♦♦x ≈ ♦x
(L5�) x ≤ y =⇒ �x ≤ �y (L5♦) x ≤ y =⇒ ♦x ≤ ♦y .
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m-L-Lattices

An m-L-lattice is an algebra 〈A,�,♦〉 such that A is an L-lattice and
〈A,∧,∨,�,♦〉 is an m-lattice, satisfying for each ? ∈ Ln (n ∈ N):

(?�) �(?(�x1, . . . ,�xn)) ≈ ?(�x1, . . . ,�xn).

Given any variety V of L-lattices, let mV denote the variety consisting of
all m-L-lattices 〈A,�,♦〉 such that A ∈ V.

Example

If V is the variety of Boolean algebras or Heyting algebras, mV consists of
all monadic Boolean algebras or monadic Heyting algebras, respectively.
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Representing m-L-Lattices

For any m-L-lattice 〈A,�,♦〉, we obtain a subalgebra �A of A, with

�A := {�x | x ∈ A} = {♦x | x ∈ A},

satisfying �x = max{y ∈ �A | y ≤ x} and ♦x = min{y ∈ �A | x ≤ y}.

Conversely, given any subalgebra A0 of an L-lattice A such that

�0x := max{y ∈ A0 | y ≤ x} and ♦0x := min{y ∈ A0 | x ≤ y}

exist for any x ∈ A, we obtain an m-L-lattice 〈A,�0,♦0〉 with �A = A0.
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Functional m-L-Lattices

For any complete L-lattice A and set W , define for f ∈ AW and u ∈W ,

�f (u) :=
∧
v∈W

f (v) and ♦f (u) :=
∨
v∈W

f (v).

Then 〈AW ,�,♦〉 is an m-L-lattice.

We call an m-L-lattice functional if it embeds into one of these algebras.
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A Correspondence Result

For any variety V of L-lattices, let V denote the class of complete
members of V, and mVF the class of functional members of mV.

Proposition

For any variety V of L-lattices and set of Fm1
∀(L)-equations T ∪ {ϕ ≈ ψ},

T �∀V ϕ ≈ ψ ⇐⇒ T ∗ �mVF ϕ∗ ≈ ψ∗,

where �mVF denotes equational consequence in the class mVF .

Question. When can we replace mVF with mV in this equivalence ?
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A Functional Representation Theorem

Theorem (Bezhanishvili and Harding 2002)

Each monadic Heyting algebra is functional; that is, if V is the variety of
Heyting algebras, then each member of mV is functional.
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A Functional Representation Theorem

Theorem

Let V be a variety of L-lattices that admits regular completions and has
the super-amalgamation property. Then each member of mV is functional.
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Proof Idea

Given any 〈A,�,♦〉 ∈ mV, let W := N>0, and A0 := A. For each i ∈W ,
there exists a super-amalgam Ai ∈ V of 〈�A,Ai−1,A〉. Then the direct
limit L ∈ V of the Ai ’s embeds regularly into a complete L-lattice L ∈ V.

�A A

A0 A1 A2 A3

L L

· · ·

We then obtain an embedding of 〈A,�,♦〉 into 〈LW ,�,♦〉 by mapping
each x ∈ A to fx : W → L, where fx(i) is the image of x in L via Ai .
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A Completeness Theorem

Theorem

Let V be a variety of L-lattices that admits regular completions and has
the super-amalgamation property.

Then for any set of Fm1
∀(L)-equations T ∪ {ϕ ≈ ψ},

T �∀V ϕ ≈ ψ ⇐⇒ T ∗ �mV ϕ
∗ ≈ ψ∗.
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Case Studies

Our theorem applies to. . .

Boolean algebras and Heyting algebras, yielding the well-known
completeness results for S5 and MIPC;

the variety of lattices, yielding an axiomatization of the one-variable
fragment of first-order lattice logic;

certain varieties of residuated lattices, yielding axiomatizations of the
one-variable fragments of first-order substructural logics;

the variety of modal algebras, yielding an axiomatization of a
one-variable fragment of a first-order version of K.
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Concluding Remarks

We have presented a uniform axiomatization for the one-variable
fragment of any first-order logic based on a variety of L-lattices that
admits regular completions and has the super-amalgamation property.

In fact, regular completions are not needed for this result (so, e.g., it
applies to any variety of Heyting algebras with super-amalgamation),
but the functional representation theorem needs to be modified.

If a variety does not have the super-amalgamation property, we might
try a proof-theoretic approach or use the (weaker) super generalized
amalgamation property.

We would also like to extend our methods beyond varieties . . .
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