One-Variable Lattice-Valued Logics

George Metcalfe

Mathematical Insitute
University of Bern

Joint work with Petr Cintula and Naomi Tokuda

MOSAIC 2022, Paestum, 5-10 September 2022

A General Question

What is the **one-variable fragment** of a first-order logic?

A General Question

What is the **S5 modal companion** of a first-order logic?

- The one-variable fragments of first-order classical logic and first-order intuitionistic logic are S5 and MIPC, respectively.
- More generally, the one-variable fragments of first-order intermediate logics have been studied intensively by Bezhanishvili, Ono, and Suzuki, and, in the setting of linear frames, by Caicedo et al.
- One-variable fragments of certain first-order many-valued logics have also been studied in some depth; notably, the one-variable fragment of first-order Łukasiewicz logic was axiomatized by Rutledge in 1959.

- The one-variable fragments of first-order classical logic and first-order intuitionistic logic are S5 and MIPC, respectively.
- More generally, the one-variable fragments of first-order intermediate logics have been studied intensively by Bezhanishvili, Ono, and Suzuki, and, in the setting of linear frames, by Caicedo et al.
- One-variable fragments of certain first-order many-valued logics have also been studied in some depth; notably, the one-variable fragment of first-order Łukasiewicz logic was axiomatized by Rutledge in 1959.

- The one-variable fragments of first-order classical logic and first-order intuitionistic logic are S5 and MIPC, respectively.
- More generally, the one-variable fragments of first-order intermediate logics have been studied intensively by Bezhanishvili, Ono, and Suzuki, and, in the setting of linear frames, by Caicedo et al.
- One-variable fragments of certain first-order many-valued logics have also been studied in some depth; notably, the one-variable fragment of first-order Łukasiewicz logic was axiomatized by Rutledge in 1959.

- The one-variable fragments of first-order classical logic and first-order intuitionistic logic are S5 and MIPC, respectively.
- More generally, the one-variable fragments of first-order intermediate logics have been studied intensively by Bezhanishvili, Ono, and Suzuki, and, in the setting of linear frames, by Caicedo et al.
- One-variable fragments of certain first-order many-valued logics have also been studied in some depth; notably, the one-variable fragment of first-order Łukasiewicz logic was axiomatized by Rutledge in 1959.

A More Precise Question

How can we axiomatize the S5 modal companion of a first-order logic?

A More Precise Question

How can we find algebraic semantics for a one-variable first-order logic?

Let \mathcal{L} be any algebraic language such that \mathcal{L}_2 contains \wedge and \vee , where \mathcal{L}_n denotes the set of operation symbols of \mathcal{L} of arity $n \in \mathbb{N}$.

An \mathcal{L} -lattice is an algebra $\mathbf{A} = \langle A, \{\star^{\mathbf{A}} \mid n \in \mathbb{N}, \star \in \mathcal{L}_n\} \rangle$ such that

- (i) $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a lattice with order $x \leq^{\mathbf{A}} y : \iff x \wedge^{\mathbf{A}} y = x$;
- (ii) $\star^{\mathbf{A}}$ is an *n*-ary operation on A for each $n \in \mathbb{N}$ and $\star \in \mathcal{L}_n$.

Let \mathcal{L} be any algebraic language such that \mathcal{L}_2 contains \wedge and \vee , where \mathcal{L}_n denotes the set of operation symbols of \mathcal{L} of arity $n \in \mathbb{N}$.

An \mathcal{L} -lattice is an algebra $\mathbf{A}=\langle A,\{\star^\mathbf{A}\mid n\in\mathbb{N},\,\star\in\mathcal{L}_n\}\rangle$ such that

- (i) $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a lattice with order $x \leq^{\mathbf{A}} y : \iff x \wedge^{\mathbf{A}} y = x$;
- (ii) $\star^{\mathbf{A}}$ is an *n*-ary operation on A for each $n \in \mathbb{N}$ and $\star \in \mathcal{L}_n$.

Let \mathcal{L} be any algebraic language such that \mathcal{L}_2 contains \wedge and \vee , where \mathcal{L}_n denotes the set of operation symbols of \mathcal{L} of arity $n \in \mathbb{N}$.

An \mathcal{L} -lattice is an algebra $\mathbf{A} = \langle A, \{\star^{\mathbf{A}} \mid n \in \mathbb{N}, \star \in \mathcal{L}_n\} \rangle$ such that

- (i) $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a lattice with order $x \leq^{\mathbf{A}} y :\iff x \wedge^{\mathbf{A}} y = x$;
- (ii) $\star^{\mathbf{A}}$ is an *n*-ary operation on A for each $n \in \mathbb{N}$ and $\star \in \mathcal{L}_n$.

Let \mathcal{L} be any algebraic language such that \mathcal{L}_2 contains \wedge and \vee , where \mathcal{L}_n denotes the set of operation symbols of \mathcal{L} of arity $n \in \mathbb{N}$.

An \mathcal{L} -lattice is an algebra $\mathbf{A} = \langle A, \{\star^{\mathbf{A}} \mid n \in \mathbb{N}, \, \star \in \mathcal{L}_n\} \rangle$ such that

- (i) $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a lattice with order $x \leq^{\mathbf{A}} y : \iff x \wedge^{\mathbf{A}} y = x$;
- (ii) $\star^{\mathbf{A}}$ is an *n*-ary operation on A for each $n \in \mathbb{N}$ and $\star \in \mathcal{L}_n$.

Let \mathcal{L} be any algebraic language such that \mathcal{L}_2 contains \wedge and \vee , where \mathcal{L}_n denotes the set of operation symbols of \mathcal{L} of arity $n \in \mathbb{N}$.

An \mathcal{L} -lattice is an algebra $\mathbf{A} = \langle A, \{ \star^{\mathbf{A}} \mid n \in \mathbb{N}, \, \star \in \mathcal{L}_n \} \rangle$ such that

- (i) $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a lattice with order $x \leq^{\mathbf{A}} y : \iff x \wedge^{\mathbf{A}} y = x$;
- (ii) $\star^{\mathbf{A}}$ is an *n*-ary operation on A for each $n \in \mathbb{N}$ and $\star \in \mathcal{L}_n$.

Formulas and Equations

Let $\mathrm{Fm}^1_{\forall}(\mathcal{L})$ be the set of **one-variable** \mathcal{L} -**formulas** φ, ψ, \ldots built as usual using unary predicates $\{P_i\}_{i\in\mathbb{N}}$, a variable x, connectives in \mathcal{L} , and \forall , \exists .

An $\operatorname{Fm}_{\forall}^1(\mathcal{L})$ -equation is an expression $\varphi \approx \psi$, where $\varphi, \psi \in \operatorname{Fm}_{\forall}^1(\mathcal{L})$.

E.g., if $\mathcal L$ is the language of lattices, $\mathrm{Fm}^1_orall (\mathcal L)$ -equations include

$$(\forall x)(P_1x \wedge P_2x) \approx (\forall x)(P_1x) \wedge (\forall x)(P_2x), \ (\exists x)(P_1x) \approx (\forall x)(P_1x), \ ...$$

Formulas and Equations

Let $\mathrm{Fm}^1_{\forall}(\mathcal{L})$ be the set of **one-variable** \mathcal{L} -**formulas** φ, ψ, \ldots built as usual using unary predicates $\{P_i\}_{i\in\mathbb{N}}$, a variable x, connectives in \mathcal{L} , and \forall , \exists .

An $\operatorname{Fm}^1_\forall(\mathcal{L})$ -equation is an expression $\varphi \approx \psi$, where $\varphi, \psi \in \operatorname{Fm}^1_\forall(\mathcal{L})$.

E.g., if $\mathcal L$ is the language of lattices, $\operatorname{Fm}_\forall^1(\mathcal L)$ -equations include

$$(\forall x)(P_1x \wedge P_2x) \approx (\forall x)(P_1x) \wedge (\forall x)(P_2x), \ (\exists x)(P_1x) \approx (\forall x)(P_1x), \ ...$$

Formulas and Equations

Let $\mathrm{Fm}^1_{\forall}(\mathcal{L})$ be the set of **one-variable** \mathcal{L} -**formulas** φ, ψ, \ldots built as usual using unary predicates $\{P_i\}_{i\in\mathbb{N}}$, a variable x, connectives in \mathcal{L} , and \forall , \exists .

An $\operatorname{Fm}_{\forall}^1(\mathcal{L})$ -equation is an expression $\varphi \approx \psi$, where $\varphi, \psi \in \operatorname{Fm}_{\forall}^1(\mathcal{L})$.

E.g., if $\mathcal L$ is the language of lattices, $\mathrm{Fm}^1_\forall(\mathcal L)$ -equations include

$$(\forall x)(P_1x \wedge P_2x) \approx (\forall x)(P_1x) \wedge (\forall x)(P_2x), \ (\exists x)(P_1x) \approx (\forall x)(P_1x), \ \dots$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{1}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_u^{\mathfrak{S}} = \|\psi\|_u^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{orall}^1(\mathcal{L}) o A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_u^{\mathfrak{S}} = \|\psi\|_u^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_u^{\mathfrak{S}} = \|\psi\|_u^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi \iff \|\varphi\|_{u}^{\mathfrak{S}} = \|\psi\|_{u}^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbb{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_{u}^{\mathfrak{S}} = \|\psi\|_{u}^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathsf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_{u}^{\mathfrak{S}} = \|\psi\|_{u}^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1},\ldots,\varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}},\ldots,\|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_{u}^{\mathfrak{S}} = \|\psi\|_{u}^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_{u}^{\mathfrak{S}} = \|\psi\|_{u}^{\mathfrak{S}} \text{ for all } u \in S.$$

An **A-structure** for a complete \mathcal{L} -lattice **A** is an ordered pair $\mathfrak{S} = \langle S, \mathcal{I} \rangle$ such that S is a non-empty set and $\mathcal{I}(P_i)$ is a map from S to A for $i \in \mathbb{N}$.

For $u \in S$, we define a map $\|\cdot\|_u^{\mathfrak{S}} : \mathrm{Fm}_{\forall}^{\mathbf{1}}(\mathcal{L}) \to A$ inductively by

$$\|P_{i}x\|_{u}^{\mathfrak{S}} = \mathcal{I}(P_{i})(u)$$

$$\|\star(\varphi_{1}, \dots, \varphi_{n})\|_{u}^{\mathfrak{S}} = \star^{\mathbf{A}}(\|\varphi_{1}\|_{u}^{\mathfrak{S}}, \dots, \|\varphi_{n}\|_{u}^{\mathfrak{S}})$$

$$\|(\forall x)\varphi\|_{u}^{\mathfrak{S}} = \bigwedge\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}$$

$$\|(\exists x)\varphi\|_{u}^{\mathfrak{S}} = \bigvee\{\|\varphi\|_{v}^{\mathfrak{S}} \mid v \in S\}.$$

$$\mathfrak{S} \models \varphi \approx \psi :\iff \|\varphi\|_u^{\mathfrak{S}} = \|\psi\|_u^{\mathfrak{S}} \text{ for all } u \in S.$$

Given any class of complete \mathcal{L} -lattices \mathcal{K} and set of $\mathrm{Fm}^1_\forall(\mathcal{L})$ -equations $\mathcal{T} \cup \{\varphi \approx \psi\}$, we define

$$T \models_{\mathcal{K}}^{\forall} \varphi \approx \psi : \iff$$
 for any $\mathbf{A} \in \mathcal{K}$ and \mathbf{A} -structure \mathfrak{S} ,
$$\mathfrak{S} \models \varphi' \approx \psi' \text{ for all } \varphi' \approx \psi' \in T \implies \mathfrak{S} \models \varphi \approx \psi.$$

Example

Given any class of complete \mathcal{L} -lattices \mathcal{K} and set of $\mathrm{Fm}^1_\forall(\mathcal{L})$ -equations $\mathcal{T}\cup\{\varphi\approx\psi\}$, we define

$$T \vDash^{\forall}_{\mathcal{K}} \varphi \approx \psi : \iff$$
 for any $\mathbf{A} \in \mathcal{K}$ and \mathbf{A} -structure \mathfrak{S} ,
$$\mathfrak{S} \models \varphi' \approx \psi' \text{ for all } \varphi' \approx \psi' \in \mathcal{T} \implies \mathfrak{S} \models \varphi \approx \psi.$$

Example

Given any class of complete \mathcal{L} -lattices \mathcal{K} and set of $\mathrm{Fm}^1_\forall(\mathcal{L})$ -equations $\mathcal{T}\cup\{\varphi\approx\psi\}$, we define

$$\begin{split} T \vDash^\forall_{\mathcal{K}} \varphi \approx \psi \; :&\iff \text{for any } \mathbf{A} \in \mathcal{K} \text{ and } \mathbf{A}\text{-structure } \mathfrak{S}, \\ \mathfrak{S} \models \varphi' \approx \psi' \text{ for all } \varphi' \approx \psi' \in \mathcal{T} \; \Longrightarrow \; \mathfrak{S} \models \varphi \approx \psi. \end{split}$$

Example

Given any class of complete \mathcal{L} -lattices \mathcal{K} and set of $\mathrm{Fm}^1_\forall(\mathcal{L})$ -equations $\mathcal{T}\cup\{\varphi\approx\psi\}$, we define

$$\begin{split} T \vDash^\forall_{\mathcal{K}} \varphi \approx \psi \; :&\iff \text{for any } \mathbf{A} \in \mathcal{K} \text{ and } \mathbf{A}\text{-structure } \mathfrak{S}, \\ \mathfrak{S} \models \varphi' \approx \psi' \text{ for all } \varphi' \approx \psi' \in \mathcal{T} \; \implies \; \mathfrak{S} \models \varphi \approx \psi. \end{split}$$

Example

The Challenge

Can we axiomatize $\vDash^\forall_\mathcal{K}$?

The Challenge

Can we axiomatize $\vDash^\forall_\mathcal{K}$ when \mathcal{K} satisfies certain conditions?

The Modal Perspective

Let $\operatorname{Fm}_{\square}(\mathcal{L})$ be the set of propositional formulas α, β, \ldots built using propositional atoms $\{p_i\}_{i\in\mathbb{N}}$, connectives in \mathcal{L} , and unary connectives \square, \lozenge .

The standard translation from $\mathrm{Fm}^1_orall (\mathcal{L})$ to $\mathrm{Fm}_\square(\mathcal{L})$ is defined by

$$(P_{i}x)^{*} = p_{i}$$

$$\star(\varphi_{1}, \dots, \varphi_{n}))^{*} = \star(\varphi_{1}^{*}, \dots, \varphi_{n}^{*})$$

$$((\forall x)\varphi)^{*} = \Box \varphi^{*}$$

$$((\exists x)\varphi)^{*} = \Diamond \varphi^{*}.$$

This translation extends in the obvious way to (sets of) equations.

The Modal Perspective

Let $\operatorname{Fm}_{\square}(\mathcal{L})$ be the set of propositional formulas α, β, \ldots built using propositional atoms $\{p_i\}_{i\in\mathbb{N}}$, connectives in \mathcal{L} , and unary connectives \square, \lozenge .

The standard translation from $\mathrm{Fm}^1_orall (\mathcal{L})$ to $\mathrm{Fm}_\square(\mathcal{L})$ is defined by

$$(P_{i}x)^{*} = p_{i}$$

$$(\star(\varphi_{1}, \dots, \varphi_{n}))^{*} = \star(\varphi_{1}^{*}, \dots, \varphi_{n}^{*})$$

$$((\forall x)\varphi)^{*} = \Box\varphi^{*}$$

$$((\exists x)\varphi)^{*} = \Diamond\varphi^{*}.$$

This translation extends in the obvious way to (sets of) equations.

The Modal Perspective

Let $\operatorname{Fm}_{\square}(\mathcal{L})$ be the set of propositional formulas α, β, \ldots built using propositional atoms $\{p_i\}_{i\in\mathbb{N}}$, connectives in \mathcal{L} , and unary connectives \square, \lozenge .

The standard translation from $\mathrm{Fm}^1_{\forall}(\mathcal{L})$ to $\mathrm{Fm}_{\square}(\mathcal{L})$ is defined by

$$(P_{i}x)^{*} = p_{i}$$

$$(\star(\varphi_{1}, \dots, \varphi_{n}))^{*} = \star(\varphi_{1}^{*}, \dots, \varphi_{n}^{*})$$

$$((\forall x)\varphi)^{*} = \Box\varphi^{*}$$

$$((\exists x)\varphi)^{*} = \Diamond\varphi^{*}.$$

This translation extends in the obvious way to (sets of) equations.

m-Lattices

An **m-lattice** is an algebra $\langle L, \wedge, \vee, \square, \Diamond \rangle$ such that $\langle L, \wedge, \vee \rangle$ is a lattice and the following equations are satisfied:

It follows also that every m-lattice satisfies

$$\begin{array}{lll} (\mathrm{L4}_{\square}) & \square\square x \approx \square x & (\mathrm{L4}_{\Diamond}) & \Diamond \Diamond x \approx \Diamond x \\ (\mathrm{L5}_{\square}) & x \leq y \Longrightarrow \square x \leq \square y & (\mathrm{L5}_{\Diamond}) & x \leq y \Longrightarrow \Diamond x \leq \Diamond y. \end{array}$$

m-Lattices

An **m-lattice** is an algebra $\langle L, \wedge, \vee, \square, \Diamond \rangle$ such that $\langle L, \wedge, \vee \rangle$ is a lattice and the following equations are satisfied:

It follows also that every m-lattice satisfies

$$\begin{array}{lll} \text{(L4$_{\square}$)} & \square\square x \approx \square x & \text{(L4$_{\lozenge}$)} & \lozenge\lozenge x \approx \lozenge x \\ \text{(L5$_{\square}$)} & x \leq y \Longrightarrow \square x \leq \square y & \text{(L5$_{\lozenge}$)} & x \leq y \Longrightarrow \lozenge x \leq \lozenge y. \end{array}$$

$m-\mathcal{L}$ -Lattices

An **m**- \mathcal{L} -lattice is an algebra $\langle \mathbf{A}, \Box, \Diamond \rangle$ such that **A** is an \mathcal{L} -lattice and $\langle A, \wedge, \vee, \Box, \Diamond \rangle$ is an m-lattice, satisfying for each $\star \in \mathcal{L}_n$ $(n \in \mathbb{N})$:

$$(\star_{\square})$$
 $\square(\star(\square x_1,\ldots,\square x_n))\approx\star(\square x_1,\ldots,\square x_n).$

Given any variety \mathcal{V} of \mathcal{L} -lattices, let $m\mathcal{V}$ denote the variety consisting of all m- \mathcal{L} -lattices $\langle \mathbf{A}, \Box, \Diamond \rangle$ such that $\mathbf{A} \in \mathcal{V}$.

Example

If $\mathcal V$ is the variety of Boolean algebras or Heyting algebras, $m\mathcal V$ consists of all monadic Boolean algebras or monadic Heyting algebras, respectively.

$m-\mathcal{L}$ -Lattices

An **m**- \mathcal{L} -lattice is an algebra $\langle \mathbf{A}, \Box, \Diamond \rangle$ such that **A** is an \mathcal{L} -lattice and $\langle A, \wedge, \vee, \Box, \Diamond \rangle$ is an m-lattice, satisfying for each $\star \in \mathcal{L}_n$ $(n \in \mathbb{N})$:

$$(\star_{\square})$$
 $\square(\star(\square x_1,\ldots,\square x_n))\approx\star(\square x_1,\ldots,\square x_n).$

Given any variety $\mathcal V$ of $\mathcal L$ -lattices, let $m\mathcal V$ denote the variety consisting of all m- $\mathcal L$ -lattices $\langle \mathbf A,\Box,\Diamond\rangle$ such that $\mathbf A\in\mathcal V$.

Example

If $\mathcal V$ is the variety of Boolean algebras or Heyting algebras, $m\mathcal V$ consists of all monadic Boolean algebras or monadic Heyting algebras, respectively.

$m-\mathcal{L}$ -Lattices

An **m**- \mathcal{L} -lattice is an algebra $\langle \mathbf{A}, \Box, \Diamond \rangle$ such that **A** is an \mathcal{L} -lattice and $\langle A, \wedge, \vee, \Box, \Diamond \rangle$ is an m-lattice, satisfying for each $\star \in \mathcal{L}_n$ $(n \in \mathbb{N})$:

$$(\star_{\square})$$
 $\square(\star(\square x_1,\ldots,\square x_n))\approx\star(\square x_1,\ldots,\square x_n).$

Given any variety $\mathcal V$ of $\mathcal L$ -lattices, let $m\mathcal V$ denote the variety consisting of all m- $\mathcal L$ -lattices $\langle \mathbf A, \Box, \Diamond \rangle$ such that $\mathbf A \in \mathcal V$.

Example

If $\mathcal V$ is the variety of Boolean algebras or Heyting algebras, $m\mathcal V$ consists of all monadic Boolean algebras or monadic Heyting algebras, respectively.

For any m- \mathcal{L} -lattice $\langle \mathbf{A}, \Box, \Diamond \rangle$, we obtain a subalgebra $\Box \mathbf{A}$ of \mathbf{A} , with

$$\Box A := \{ \Box x \mid x \in A \} = \{ \Diamond x \mid x \in A \},\$$

satisfying $\Box x = \max\{y \in \Box A \mid y \le x\}$ and $\Diamond x = \min\{y \in \Box A \mid x \le y\}$.

Conversely, given any subalgebra ${f A}_0$ of an ${\cal L}$ -lattice ${f A}$ such that

$$\square_0 x := \max\{y \in A_0 \mid y \le x\} \quad \text{and} \quad \lozenge_0 x := \min\{y \in A_0 \mid x \le y\}$$

exist for any $x \in A$, we obtain an m- \mathcal{L} -lattice $\langle \mathbf{A}, \square_0, \lozenge_0 \rangle$ with $\square \mathbf{A} = \mathbf{A}_0$.

For any m- \mathcal{L} -lattice $\langle \mathbf{A}, \Box, \Diamond \rangle$, we obtain a subalgebra $\Box \mathbf{A}$ of \mathbf{A} , with

$$\Box A := \{ \Box x \mid x \in A \} = \{ \Diamond x \mid x \in A \},\$$

satisfying $\Box x = \max\{y \in \Box A \mid y \le x\}$ and $\Diamond x = \min\{y \in \Box A \mid x \le y\}$.

Conversely, given any subalgebra \mathbf{A}_0 of an \mathcal{L} -lattice \mathbf{A} such that

$$\square_0 x := \max\{y \in A_0 \mid y \le x\} \quad \text{and} \quad \lozenge_0 x := \min\{y \in A_0 \mid x \le y\}$$

exist for any $x \in A$, we obtain an m- \mathcal{L} -lattice $\langle \mathbf{A}, \square_0, \lozenge_0 \rangle$ with $\square \mathbf{A} = \mathbf{A}_0$.

For any m- \mathcal{L} -lattice $\langle \mathbf{A}, \Box, \Diamond \rangle$, we obtain a subalgebra $\Box \mathbf{A}$ of \mathbf{A} , with

$$\Box A := \{ \Box x \mid x \in A \} = \{ \Diamond x \mid x \in A \},\$$

satisfying
$$\Box x = \max\{y \in \Box A \mid y \le x\}$$
 and $\Diamond x = \min\{y \in \Box A \mid x \le y\}$.

Conversely, given any subalgebra A_0 of an \mathcal{L} -lattice A such that

$$\square_0 x := \max\{y \in A_0 \mid y \le x\} \quad \text{and} \quad \lozenge_0 x := \min\{y \in A_0 \mid x \le y\}$$

exist for any $x \in A$, we obtain an m- \mathcal{L} -lattice $\langle A, \square_0, \lozenge_0 \rangle$ with $\square A = A_0$.

For any m- \mathcal{L} -lattice $\langle \mathbf{A}, \square, \lozenge \rangle$, we obtain a subalgebra $\square \mathbf{A}$ of \mathbf{A} , with

$$\Box A := \{ \Box x \mid x \in A \} = \{ \Diamond x \mid x \in A \},$$

satisfying $\Box x = \max\{y \in \Box A \mid y \le x\}$ and $\Diamond x = \min\{y \in \Box A \mid x \le y\}$.

Conversely, given any subalgebra A_0 of an \mathcal{L} -lattice A such that

$$\square_0 x := \max\{y \in A_0 \mid y \le x\} \quad \text{and} \quad \lozenge_0 x := \min\{y \in A_0 \mid x \le y\}$$

exist for any $x \in A$, we obtain an m- \mathcal{L} -lattice $\langle \mathbf{A}, \square_0, \lozenge_0 \rangle$ with $\square \mathbf{A} = \mathbf{A}_0$.

Functional m-L-Lattices

For any complete \mathcal{L} -lattice **A** and set W, define for $f \in A^W$ and $u \in W$,

$$\Box f(u) := \bigwedge_{v \in W} f(v)$$
 and $\Diamond f(u) := \bigvee_{v \in W} f(v)$.

Then $\langle \mathbf{A}^W, \Box, \Diamond \rangle$ is an m- \mathcal{L} -lattice.

We call an m- \mathcal{L} -lattice **functional** if it embeds into one of these algebras.

Functional m-L-Lattices

For any complete \mathcal{L} -lattice **A** and set W, define for $f \in A^W$ and $u \in W$,

$$\Box f(u) := \bigwedge_{v \in W} f(v)$$
 and $\Diamond f(u) := \bigvee_{v \in W} f(v)$.

Then $\langle \mathbf{A}^W, \Box, \Diamond \rangle$ is an m- \mathcal{L} -lattice.

We call an m- \mathcal{L} -lattice **functional** if it embeds into one of these algebras.

Functional m-L-Lattices

For any complete \mathcal{L} -lattice **A** and set W, define for $f \in A^W$ and $u \in W$,

$$\Box f(u) := \bigwedge_{v \in W} f(v)$$
 and $\Diamond f(u) := \bigvee_{v \in W} f(v)$.

Then $\langle \mathbf{A}^W, \Box, \Diamond \rangle$ is an m- \mathcal{L} -lattice.

We call an m- \mathcal{L} -lattice **functional** if it embeds into one of these algebras.

For any variety \mathcal{V} of \mathcal{L} -lattices, let $\overline{\mathcal{V}}$ denote the class of complete members of \mathcal{V} , and $m\mathcal{V}^F$ the class of functional members of $m\mathcal{V}$.

Proposition

For any variety $\mathcal V$ of $\mathcal L$ -lattices and set of $\mathrm{Fm}^1_orall (\mathcal L)$ -equations $\mathcal T \cup \{arphi pprox \psi\}$

$$T \vDash_{\overline{\mathcal{V}}}^{\forall} \varphi \approx \psi \iff T^* \vDash_{m\mathcal{V}^F} \varphi^* \approx \psi^*,$$

where $\vDash_{m\mathcal{V}^F}$ denotes equational consequence in the class $m\mathcal{V}^F$.

For any variety \mathcal{V} of \mathcal{L} -lattices, let $\overline{\mathcal{V}}$ denote the class of complete members of \mathcal{V} , and $m\mathcal{V}^F$ the class of functional members of $m\mathcal{V}$.

Proposition

For any variety $\mathcal V$ of $\mathcal L$ -lattices and set of $\mathrm{Fm}^1_orall (\mathcal L)$ -equations $T \cup \{ \varphi pprox \psi \}$

$$T \vDash_{\overline{\mathcal{V}}}^{\forall} \varphi \approx \psi \iff T^* \vDash_{m\mathcal{V}^F} \varphi^* \approx \psi^*,$$

where $\vDash_{m\mathcal{V}^F}$ denotes equational consequence in the class $m\mathcal{V}^F$.

For any variety \mathcal{V} of \mathcal{L} -lattices, let $\overline{\mathcal{V}}$ denote the class of complete members of \mathcal{V} , and $m\mathcal{V}^F$ the class of functional members of $m\mathcal{V}$.

Proposition

For any variety $\mathcal V$ of $\mathcal L$ -lattices and set of $\mathrm{Fm}^1_\forall(\mathcal L)$ -equations $T \cup \{\varphi \approx \psi\}$

$$T \vDash_{\overline{\mathcal{V}}}^{\forall} \varphi \approx \psi \iff T^* \vDash_{m\mathcal{V}^F} \varphi^* \approx \psi^*,$$

where $\vDash_{m\mathcal{V}^F}$ denotes equational consequence in the class $m\mathcal{V}^F$.

For any variety \mathcal{V} of \mathcal{L} -lattices, let $\overline{\mathcal{V}}$ denote the class of complete members of \mathcal{V} , and $m\mathcal{V}^F$ the class of functional members of $m\mathcal{V}$.

Proposition

For any variety $\mathcal V$ of $\mathcal L$ -lattices and set of $\mathrm{Fm}^1_\forall(\mathcal L)$ -equations $\mathcal T \cup \{\varphi \approx \psi\}$,

$$T \vDash^{\forall}_{\overline{\mathcal{V}}} \varphi \approx \psi \quad \Longleftrightarrow \quad T^* \vDash_{m\mathcal{V}^F} \varphi^* \approx \psi^*,$$

where $\vDash_{m\mathcal{V}^F}$ denotes equational consequence in the class $m\mathcal{V}^F$.

For any variety \mathcal{V} of \mathcal{L} -lattices, let $\overline{\mathcal{V}}$ denote the class of complete members of \mathcal{V} , and $m\mathcal{V}^F$ the class of functional members of $m\mathcal{V}$.

Proposition

For any variety $\mathcal V$ of $\mathcal L$ -lattices and set of $\mathrm{Fm}^1_\forall(\mathcal L)$ -equations $\mathcal T \cup \{\varphi \approx \psi\}$,

$$T \vDash^{\forall}_{\overline{\mathcal{V}}} \varphi \approx \psi \quad \Longleftrightarrow \quad T^* \vDash_{m\mathcal{V}^F} \varphi^* \approx \psi^*,$$

where $\vDash_{m\mathcal{V}^F}$ denotes equational consequence in the class $m\mathcal{V}^F$.

Theorem (Bezhanishvili and Harding 2002)

Each monadic Heyting algebra is functional; that is, if V is the variety of Heyting algebras, then each member of mV is functional.

Theorem

Let V be a variety of L-lattices that admits regular completions and has the super-amalgamation property. Then each member of mV is functional.

Theorem

Let V be a variety of L-lattices that admits regular completions and has the super-amalgamation property. Then each member of mV is functional.

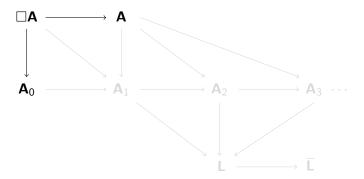
Theorem

Let V be a variety of \mathcal{L} -lattices that admits regular completions and has the super-amalgamation property. Then each member of mV is functional.

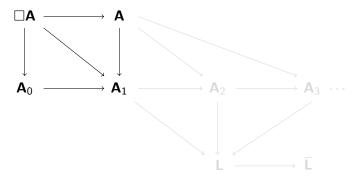
Theorem

Let V be a variety of L-lattices that admits regular completions and has the super-amalgamation property. Then each member of mV is functional.

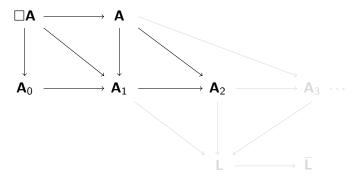
Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



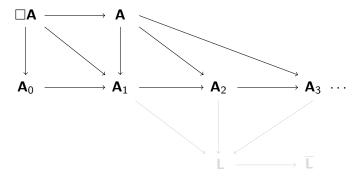
Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



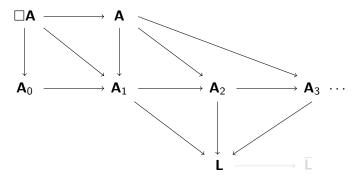
Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



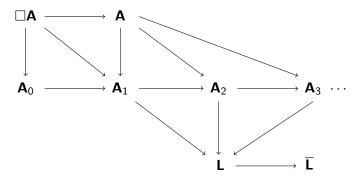
Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



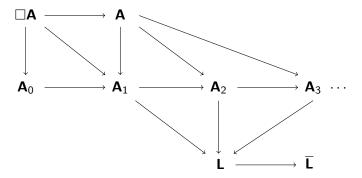
Given any $\langle \mathbf{A}, \square, \lozenge \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \square \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbb{L}} \in \mathcal{V}$.



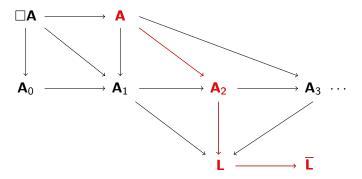
Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



Given any $\langle \mathbf{A}, \Box, \Diamond \rangle \in m\mathcal{V}$, let $W := \mathbb{N}^{>0}$, and $\mathbf{A}_0 := \mathbf{A}$. For each $i \in W$, there exists a super-amalgam $\mathbf{A}_i \in \mathcal{V}$ of $\langle \Box \mathbf{A}, \mathbf{A}_{i-1}, \mathbf{A} \rangle$. Then the direct limit $\mathbf{L} \in \mathcal{V}$ of the \mathbf{A}_i 's embeds regularly into a complete \mathcal{L} -lattice $\overline{\mathbf{L}} \in \mathcal{V}$.



A Completeness Theorem

Theorem

Let V be a variety of L-lattices that admits regular completions and has the super-amalgamation property.

Then for any set of $\operatorname{Fm}^1_{\forall}(\mathcal{L})$ -equations $T \cup \{\varphi \approx \psi\}$,

$$T \vDash_{\mathcal{V}}^{\forall} \varphi \approx \psi \iff T^* \vDash_{m\mathcal{V}} \varphi^* \approx \psi^*.$$

A Completeness Theorem

Theorem

Let V be a variety of L-lattices that admits regular completions and has the super-amalgamation property.

Then for any set of $\operatorname{Fm}^1_\forall(\mathcal{L})$ -equations $T \cup \{\varphi \approx \psi\}$,

$$T \vDash^{\forall}_{\mathcal{V}} \varphi \approx \psi \iff T^* \vDash_{m\mathcal{V}} \varphi^* \approx \psi^*.$$

- Boolean algebras and Heyting algebras, yielding the well-known completeness results for S5 and MIPC;
- the variety of lattices, yielding an axiomatization of the one-variable fragment of first-order lattice logic;
- certain varieties of residuated lattices, yielding axiomatizations of the one-variable fragments of first-order substructural logics;
- the variety of modal algebras, yielding an axiomatization of a one-variable fragment of a first-order version of K.

- Boolean algebras and Heyting algebras, yielding the well-known completeness results for S5 and MIPC;
- the variety of lattices, yielding an axiomatization of the one-variable fragment of first-order lattice logic;
- certain varieties of residuated lattices, yielding axiomatizations of the one-variable fragments of first-order substructural logics;
- the variety of modal algebras, yielding an axiomatization of a one-variable fragment of a first-order version of K.

- Boolean algebras and Heyting algebras, yielding the well-known completeness results for S5 and MIPC;
- the variety of lattices, yielding an axiomatization of the one-variable fragment of first-order lattice logic;
- certain varieties of residuated lattices, yielding axiomatizations of the one-variable fragments of first-order substructural logics;
- the variety of modal algebras, yielding an axiomatization of a one-variable fragment of a first-order version of K.

- Boolean algebras and Heyting algebras, yielding the well-known completeness results for S5 and MIPC;
- the variety of lattices, yielding an axiomatization of the one-variable fragment of first-order lattice logic;
- certain varieties of residuated lattices, yielding axiomatizations of the one-variable fragments of first-order substructural logics;
- the variety of modal algebras, yielding an axiomatization of a one-variable fragment of a first-order version of K.

- Boolean algebras and Heyting algebras, yielding the well-known completeness results for S5 and MIPC;
- the variety of lattices, yielding an axiomatization of the one-variable fragment of first-order lattice logic;
- certain varieties of residuated lattices, yielding axiomatizations of the one-variable fragments of first-order substructural logics;
- the variety of modal algebras, yielding an axiomatization of a one-variable fragment of a first-order version of K.

- We have presented a uniform axiomatization for the one-variable fragment of any first-order logic based on a variety of \mathcal{L} -lattices that admits regular completions and has the super-amalgamation property.
- In fact, regular completions are not needed for this result (so, e.g., it
 applies to any variety of Heyting algebras with super-amalgamation),
 but the functional representation theorem needs to be modified.
- If a variety does not have the super-amalgamation property, we might try a proof-theoretic approach or use the (weaker) super generalized amalgamation property.
- We would also like to extend our methods beyond varieties . . .

- We have presented a uniform axiomatization for the one-variable fragment of any first-order logic based on a variety of \mathcal{L} -lattices that admits regular completions and has the super-amalgamation property.
- In fact, regular completions are not needed for this result (so, e.g., it
 applies to any variety of Heyting algebras with super-amalgamation),
 but the functional representation theorem needs to be modified.
- If a variety does not have the super-amalgamation property, we might try a proof-theoretic approach or use the (weaker) super generalized amalgamation property.
- We would also like to extend our methods beyond varieties . . .

- ullet We have presented a uniform axiomatization for the one-variable fragment of any first-order logic based on a variety of \mathcal{L} -lattices that admits regular completions and has the super-amalgamation property.
- In fact, regular completions are not needed for this result (so, e.g., it
 applies to any variety of Heyting algebras with super-amalgamation),
 but the functional representation theorem needs to be modified.
- If a variety does not have the super-amalgamation property, we might try a proof-theoretic approach or use the (weaker) super generalized amalgamation property.
- We would also like to extend our methods beyond varieties . . .

- We have presented a uniform axiomatization for the one-variable fragment of any first-order logic based on a variety of \mathcal{L} -lattices that admits regular completions and has the super-amalgamation property.
- In fact, regular completions are not needed for this result (so, e.g., it
 applies to any variety of Heyting algebras with super-amalgamation),
 but the functional representation theorem needs to be modified.
- If a variety does not have the super-amalgamation property, we might try a proof-theoretic approach or use the (weaker) super generalized amalgamation property.
- We would also like to extend our methods beyond varieties . . .

References

G. Bezhanishvili.

Varieties of monadic Heyting algebras – part I. Studia Logica 61 (1998), no. 3, 367–402.

G. Bezhanishvili and J. Harding.

Functional monadic Heyting algebras.

Algebra universalis 48 (2002), 1-10.

X. Caicedo, G. Metcalfe, R. Rodríguez, and O. Tuyt.

One-variable fragments of intermediate logics over linear frames. *Information and Computation* 287 (2022).

P. Cintula, G. Metcalfe, and N. Tokuda.

Algebraic Semantics for One-Variable Lattice-Valued Logics. *Proceedings of AiML 2022*, College Publications (2022), 237–257.

G. Metcalfe and O. Tuyt.

A monadic logic of ordered abelian groups. Proceedings of AiML 2020, College Publications (2020), 441–457.

H. Ono and N.-Y. Suzuki.

Relations between intuitionistic modal logics and intermediate predicate logics. *Reports on Mathematical Logic* 22 (1988), 65–87

J.D. Rutledge.

A preliminary investigation of the infinitely many-valued predicate calculus.

Ph.D. Thesis, Cornell University (1959).

