What is the cost of cut?

Elaine Pimentel
UCL, UK
Joint work with T. Lang, C. Olarte and C. Fermüller
LATD\&MOSAIC

07 September 2022

Motivation

- Game interpretation of bottom-up proof search in sequent systems.

Motivation

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.

Motivation

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]

Motivation

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.

Motivation

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.
- To breathe life into the resource metaphor, we need dynamics
\Longrightarrow game semantics for substructural sequent calculi.

Motivation

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.
- To breathe life into the resource metaphor, we need dynamics \Longrightarrow game semantics for substructural sequent calculi.
- Better understanding of resource conscious reasoning, which is often cited as a motivation for substructural logics.

Motivation

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.
- To breathe life into the resource metaphor, we need dynamics
\Longrightarrow game semantics for substructural sequent calculi.
- Better understanding of resource conscious reasoning, which is often cited as a motivation for substructural logics.
- Side effect: notion of cost of cuts!

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching
4) Adding costs
(5) The cost of cut
(6) Conclusion

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching

4 Adding costs
(5) The cost of cut

6 Conclusion

Dialogues as foundations

Dialogues

A Proponent P tries to defend a logically complex statement against attacks by an Opponent O. The dialogue stepwise reduces complex assertions to their components.

Dialogues as foundations

Dialogues

A Proponent P tries to defend a logically complex statement against attacks by an Opponent O. The dialogue stepwise reduces complex assertions to their components.
X / Y stands for P / O or O / P

statement by X	attack by Y	defense by X
$A \wedge B$	I? or r ? (Y chooses)	A or B, accordingly
$A \vee B$	$?$	A or B (X chooses)
$A \supset B$	A	B

Dialogues as foundations

Dialogues

A Proponent P tries to defend a logically complex statement against attacks by an Opponent O. The dialogue stepwise reduces complex assertions to their components.
X / Y stands for P / O or O / P

statement by X	attack by Y	defense by X
$A \wedge B$	I? or r ? (Y chooses)	A or B, accordingly
$A \vee B$	$?$	A or $B(\mathrm{X}$ chooses)
$A \supset B$	A	B

Winning conditions for P :
W: O has already granted P's active formula
$\mathrm{W} \perp$: O has granted \perp
[Lorenzen'60] attempted to justify constructive logic. The completeness result w.r.t. LJ came much later [Felscher'85].

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching

4 Adding costs
(5) The cost of cut
6) Conclusion

The object-level

Linear logic in a nutshell

- Linear conjunctions: \& (additive) and \otimes (multiplicative) Linear disjunctions: \oplus (additive) and \ngtr (multiplicative) Unities: $\top, 1,0, \perp$
Linear implication: -
Exponentials: !, ?

Linear logic in a nutshell

- Linear conjunctions: \& (additive) and \otimes (multiplicative) Linear disjunctions: \oplus (additive) and \mathcal{X} (multiplicative) Unities: $\top, 1,0, \perp$ Linear implication: Exponentials: !, ?
- By composing a proof of $A \multimap B$ and a proof of A we consume them to get a proof of B.
- Linear logic formulas behave like resources.
- Exponentials recover the full expressive power of intuitionistic and classical logic: in ! B and ? B we are allowed to use contraction and weakening.

Affine intuitionistic multiplicative additive LL (C)

Sequent System for \mathcal{C}

$$
\begin{gathered}
\frac{\Delta_{1} \longrightarrow A \quad \Delta_{2} \longrightarrow B}{\Delta_{1}, \Delta_{2} \longrightarrow A \otimes B} \otimes_{R} \xrightarrow[\Gamma \longrightarrow A \& B]{\Gamma \longrightarrow B} \&_{R} \frac{\Gamma, A \longrightarrow B}{\Gamma \longrightarrow A \longrightarrow B} \multimap_{R} \\
\frac{\Gamma, A, B \longrightarrow C}{\Gamma, A \otimes B \longrightarrow C} \otimes_{L} \quad \frac{\Delta_{1} \longrightarrow A \quad \Delta_{2}, B \longrightarrow C}{\Delta_{1}, \Delta_{2}, A \longrightarrow B \longrightarrow C} \multimap_{L} \frac{\Gamma, A_{i} \longrightarrow B}{\Gamma, A_{1} \& A_{2} \longrightarrow B} \&_{L_{i}} \\
\frac{\Gamma, A \longrightarrow C}{\Gamma, A \oplus B \longrightarrow C} \oplus_{L} \frac{\Gamma \longrightarrow A_{i}}{\Gamma \longrightarrow A_{1} \oplus A_{2}} \oplus_{R_{i}} \\
\quad \frac{\Gamma, p \longrightarrow p}{} I \quad{ }_{\Gamma \longrightarrow 1}^{\Gamma \longrightarrow 0 \longrightarrow A} 0_{L}
\end{gathered}
$$

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching

4 Adding costs
(5) The cost of cut

6 Conclusion

The meta-level

The game for \mathcal{C} [Fermüller,Lang17]

- Formulas are seen as resources that can be build from atomic propositions, units 0,1 and the constructors $\otimes, \&, \oplus, \multimap$
- States: multisets of sequents of the form $\Gamma \longrightarrow F$
- Two players: P and O . Player P starts the game and selects a sequent S from the current state.
- The game proceeds in rounds with two possible succ. states:
(1) $G \cup\{S\} \sim G \cup\left\{S^{\prime}\right\}$
(2) $G \cup\{S\} \sim G \cup\left\{S_{1}\right\} \cup\left\{S_{2}\right\}$
- P chooses a sequent S among the current game state, a principal formula in S and a matching rule instance r.
- P acts as the scheduler of the game.

Multiplicative vs Additive

Both are (right) branching rules:

$$
\xrightarrow[\Gamma \longrightarrow A \Gamma \vec{\longrightarrow} \rightarrow B]{\Gamma \longrightarrow B} \&_{R} \quad \frac{\Gamma_{1} \longrightarrow A \Gamma_{2} \longrightarrow B}{\Gamma_{1}, \Gamma_{2} \longrightarrow A \otimes B} \otimes_{R}
$$

However, the intended meaning is different:

- A \& B: P must be prepared to play either A or B (O choice) but only one game is actually played.
- $A \otimes B$: both subgames, A and B must be played and P must win both.

Multiplicative vs Additive

Both are (right) branching rules:

$$
\stackrel{\Gamma \longrightarrow A \Gamma \vec{\Gamma} \rightarrow B}{\Gamma \longrightarrow A \& B} \&_{R} \quad \frac{\Gamma_{1} \longrightarrow A \Gamma_{2} \longrightarrow B}{\Gamma_{1}, \Gamma_{2} \longrightarrow A \otimes B} \otimes_{R}
$$

However, the intended meaning is different:

- A \& B: P must be prepared to play either A or B (O choice) but only one game is actually played.
- $A \otimes B$: both subgames, A and B must be played and P must win both.

Branching structure

Both definitions (a single or a parallel game) are equivalent: the existence of winning strategies for P remains the same. However, semantically, they provide different viewpoints of the connectives.

The game for \mathcal{C}

$$
\overline{p, q \oplus r \longrightarrow(p \otimes q) \oplus(p \otimes r)} \oplus_{R_{1}}
$$

The game for \mathcal{C}

$$
\frac{\overline{p, q \oplus r \longrightarrow(p \otimes q)}}{\otimes_{R}} \oplus_{R_{1}}
$$

The game for \mathcal{C}

$$
\frac{\stackrel{p \stackrel{\ominus}{\longrightarrow} p q \oplus r \longrightarrow q}{p, q \oplus r \longrightarrow(p \otimes q)} \otimes_{R}}{p, q \oplus r \longrightarrow(p \otimes q) \oplus(p \otimes r)} \oplus_{R_{1}}
$$

The game for \mathcal{C}

$$
\frac{p \stackrel{\ominus}{p} p \stackrel{q \stackrel{\ominus}{\longrightarrow} q}{q \oplus r \longrightarrow q} \oplus_{L}}{p, q \oplus r \longrightarrow(p \otimes q)} \otimes_{R} \oplus_{R_{1}}
$$

The game for \mathcal{C}

$$
\frac{p \stackrel{\ominus}{\longrightarrow} p}{p, q \oplus r \longrightarrow(p \otimes q)} \underset{p, q \oplus r \longrightarrow(p \otimes q) \oplus(p \otimes r)}{q \oplus} \otimes_{R} \oplus_{R_{1}}
$$

The game for \mathcal{C}

$$
\begin{aligned}
& \frac{p \stackrel{\ominus}{\longrightarrow} p q \stackrel{\ominus}{\longrightarrow} q}{p, q \longrightarrow(p \otimes q)} \otimes_{R} \\
& p, q \oplus(p \otimes q) \oplus(p \otimes r)
\end{aligned} \overbrace{R_{1}} \quad p, r \longrightarrow(p \otimes q) \oplus(p \otimes r) \oplus_{L}
$$

The game for \mathcal{C}

$$
\frac{p, q \longrightarrow(p \otimes q) \oplus(p \otimes r) \frac{\frac{p \stackrel{\ominus}{\rightrightarrows} p r \stackrel{\ominus}{\rightrightarrows}}{p, r \longrightarrow p \otimes r}}{p, r \longrightarrow(p \otimes q) \oplus(p \otimes r)} \otimes_{R}}{p, q \oplus r \longrightarrow(p \otimes q) \oplus(p \otimes r)} \oplus_{R_{2}}
$$

The game for \mathcal{C}

$$
\frac{\stackrel{p \stackrel{\ominus}{\longrightarrow} p q \stackrel{\ominus}{\longrightarrow} q}{p, q \longrightarrow(p \otimes q)} \otimes_{R}}{\underset{p, q \longrightarrow(p \otimes q) \oplus(p \otimes r)}{ } \oplus_{R_{1}} \frac{\stackrel{p \stackrel{\ominus}{\longrightarrow} p r}{p, r \longrightarrow p \otimes r} r}{p, r \longrightarrow(p \otimes q) \oplus(p \otimes r)} \otimes_{R}} \oplus_{R_{2}}
$$

Lafont's menu revisited

$$
\begin{aligned}
& \text { MENU (A } 75 \text { Frs) } \\
& \text { ENTRÉE } \\
& \text { quilhe lorratine a salmon furlé } \\
& \text { et } \\
& \text { PLAT } \\
& \text { POT-AU-FEU ou FILET DE CANAFD } \\
& \text { et } \\
& \text { DESSERT } \\
& \text { fruit Selon saíon: } \\
& \text { BANANE a RAISIN ou ORANGES OU ANANAJ } \\
& \text { a } \\
& \text { DEJSERTAU CHOix: } \\
& \text { MYSTERE ou GLA EE OUTARTE HUX POMMES }
\end{aligned}
$$

Lafont's menu revisited

$$
\begin{aligned}
& \text { MENU (A } 75 \text { Frs }) \\
& \text { ENTRÉE } \\
& \text { quil } H E \text { lorraine \& salmon furlé } \\
& \text { (8) } \\
& \text { PLAT } \\
& \text { POT-AU-FEU \& FILET DE CANAFD } \\
& \text { © } \\
& \text { DESSERT } \\
& \text { fruit Selon saíon: } \\
& \begin{array}{l}
\text { BANANE } \\
\&
\end{array}(\text { RAISII } \oplus \text { ORANGES } \oplus \text { ANANAJ } \\
& \text { dejsert au Choix: } \\
& \text { MYSTERE \& GLACE\& TARTE HUX POMMES }
\end{aligned}
$$

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching
4) Adding costs
(5) The cost of cut
6) Conclusion

Intended meaning

Subexponentials [Danos,Joinet,Schellinx'93]

Exponentials in ILL:

$$
\frac{\Gamma, A \longrightarrow C}{\Gamma,!A \longrightarrow C}!_{L} \quad \frac{!A_{1}, \ldots,!A_{n} \longrightarrow A}{!A_{1}, \ldots,!A_{n} \longrightarrow!A}!_{R}
$$

Subexponentials [Danos,Joinet,Schellinx'93]

Sub-exponentials in ILL:

$$
\frac{\Gamma, A \longrightarrow C}{\Gamma,!^{a} A \longrightarrow C}!_{L}^{a} \quad \frac{!^{a_{1}} A_{1}, \ldots,!^{a_{n}} A_{n} \longrightarrow A}{!^{a_{1}} A_{1}, \ldots,!^{a_{n}} A_{n} \longrightarrow!^{a} A}!^{a}, \text { provided } a \preceq a_{i}
$$

Subexponentials [Danos,Joinet,Schellinx'93]

Sub-exponentials in ILL:

$$
\frac{\Gamma, A \longrightarrow C}{\Gamma,!^{a} A \longrightarrow C}!^{a^{a}} \quad \frac{!^{a_{1}} A_{1}, \ldots,!^{a_{n}} A_{n} \longrightarrow A}{!^{a_{1}} A_{1}, \ldots,!^{a_{n}} A_{n} \longrightarrow!^{a} A}!^{a}{ }_{R}, \text { provided } a \preceq a_{i}
$$

Then:
$!^{a} A \not \equiv!^{b} A$ for any $a \neq b$.

Assumptions plus cost - system $\mathcal{C}\left(\mathbb{R}^{+}\right)$

Augment assumptions with costs, where assumptions are formulas occurring negatively on sequents.

$$
\frac{\Gamma,!^{a} A, A \longrightarrow C}{\Gamma,!^{a} A \longrightarrow C}!^{a} L, a \in \mathbb{R}^{+}
$$

The game $\mathcal{G C}_{\mathcal{C}}\left(\mathbb{R}^{+}\right)$[Lang,Olarte,Pimentel,Fermüller'19]

- States: tuples (H, b), where H is a finite multiset of \mathbb{R}^{+}-valued sequents and $b \in \mathbb{R}$ is a budget.
- Rounds: the successor state is determined according to rules that fit one of the two following schemes:
(1) $(G \cup\{S\}, b)$
\sim
$\left(G \cup\left\{S^{\prime}\right\}, b^{\prime}\right)$
(2) $(G \cup\{S\}, b) \sim\left(G \cup\left\{S^{1}\right\} \cup\left\{S^{2}\right\}, b\right)$

The game $\mathcal{G}_{\mathcal{C}}\left(\mathbb{R}^{+}\right)$[Lang,Olarte,Pimentel,Fermüller'19]

- States: tuples (H, b), where H is a finite multiset of \mathbb{R}^{+}-valued sequents and $b \in \mathbb{R}$ is a budget.
- Rounds: the successor state is determined according to rules that fit one of the two following schemes:
(1) $(G \cup\{S\}, b)$
\sim
$\left(G \cup\left\{S^{\prime}\right\}, b^{\prime}\right)$
(2) $(G \cup\{S\}, b) \sim\left(G \cup\left\{S^{1}\right\} \cup\left\{S^{2}\right\}, b\right)$
- Depending on the r, the round proceeds as follows:
(1) If the rule r is not ! L_{L}, then the game proceeds as before, with budget b.
(2) Budget decrease: $!_{\llcorner }$with premise S^{\prime} and principal formula ! ${ }^{a} A$, then the game proceeds in the game state $\left(G \cup\left\{S^{\prime}\right\}, b-a\right)$.
(3) To win the game: non negative final budget.

Properties

Labelled system $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$

- Weak adequacy: information about the budget b is lost in the proof theoretic representation.
- In other words, the game $\mathcal{G}_{\mathcal{C}}\left(\mathbb{R}^{+}\right)$is more expressive than the calculus $\mathcal{C}\left(\mathbb{R}^{+}\right)$.

Labelled system $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$

- Weak adequacy: information about the budget b is lost in the proof theoretic representation.
- In other words, the game $\mathcal{G}_{\mathcal{C}}\left(\mathbb{R}^{+}\right)$is more expressive than the calculus $\mathcal{C}\left(\mathbb{R}^{+}\right)$.
- To overcome this mismatch: a labelled extension of $\mathcal{C}\left(\mathbb{R}^{+}\right)$.
- $A \mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$-proof is build from labelled sequents

$$
b: \Gamma \longrightarrow A
$$

where $\Gamma \longrightarrow A$ is a $\mathcal{C}\left(\mathbb{R}^{+}\right)$sequent and $b \in \mathbb{R}^{+}$.

Sequent rules for $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$

Labelled sequent system for $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$

$$
\begin{gathered}
\frac{a:!\Gamma, \Delta_{1} \longrightarrow A \quad b:!\Gamma, \Delta_{2} \longrightarrow B}{a+b:!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow A \otimes B} \otimes_{R} \frac{a: \Gamma \longrightarrow A b: \Gamma \longrightarrow B}{\max \{a, b\}: \Gamma \longrightarrow A \& B} \&_{R} \\
\frac{c: \Gamma,!^{a} A, A \longrightarrow C}{a+c: \Gamma,!^{a} A \longrightarrow C}!_{L} \\
\left.\frac{b: \Gamma, p \longrightarrow p}{} \right\rvert\, b \geq 0 \stackrel{ }{b: \Gamma \longrightarrow 1} 1_{R} b \geq 0 \stackrel{ }{b: \Gamma, 0 \longrightarrow A} 0_{L} b \geq 0
\end{gathered}
$$

Example

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

Example

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

- Matching pair: $(w \otimes w) \oplus(b \otimes b)$;
- Act of drawing a random sock: ! ${ }^{1}(w \oplus b)$.

Example

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

- Matching pair: $(w \otimes w) \oplus(b \otimes b)$;
- Act of drawing a random sock: ! ${ }^{1}(w \oplus b)$.

What is the smallest n s.t. $n:!^{1}(w \oplus b) \longrightarrow(w \otimes w) \oplus(b \otimes b)$ is provable?

Example

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

- Matching pair: $(w \otimes w) \oplus(b \otimes b)$;
- Act of drawing a random sock: ! ${ }^{1}(w \oplus b)$.

What is the smallest n s.t. $n:!^{1}(w \oplus b) \longrightarrow(w \otimes w) \oplus(b \otimes b)$ is provable?

The answer, of course, is 3 :

Game theoretically, P must be prepared for any of the choices of O when she decides to select $w \oplus b$ (on the left).

Results

Theorem

Given a $\mathcal{C}\left(\mathbb{R}^{+}\right)$-proof \equiv of a sequent S, there exists a smallest budget with $\operatorname{cost}(\equiv)$ that suffices to win the game $\mathcal{G}_{\mathcal{C}}\left(\mathbb{R}^{+}\right)$on S when following the strategy corresponding to \equiv.

Spectrum $\operatorname{spec}(S):=\left\{\operatorname{cost}(\equiv) \mid \equiv\right.$ is an $\mathcal{C}\left(\mathbb{R}^{+}\right)$-proof of $\left.S\right\}$.

Theorem

If $\vdash_{\mathcal{C}\left(\mathbb{R}^{+}\right)} \Gamma \longrightarrow A$, then $\operatorname{spec}(\Gamma \longrightarrow A)$ has a least element. In other words, there is a smallest b such that $\vdash_{\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)} \Gamma \longrightarrow_{b} A$.

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching

4 Adding costs
(5) The cost of cut
6) Conclusion

Cut-elimination

$\mathcal{C}\left(\mathbb{R}^{+}\right)$inherits the admissibility of the following cut rule from SELL:

$$
\frac{!\Gamma, \Delta_{1} \longrightarrow A \quad!\Gamma, \Delta_{2}, A \longrightarrow C}{!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }
$$

Note: Remember that bangs occur negatively only.

Cut-elimination

$\mathcal{C}\left(\mathbb{R}^{+}\right)$inherits the admissibility of the following cut rule from SELL:

$$
\frac{!\Gamma, \Delta_{1} \longrightarrow A \quad!\Gamma, \Delta_{2}, A \longrightarrow C}{!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }
$$

Note: Remember that bangs occur negatively only.

Theorem

For $f(a, b)=a+b$, the following cut rule is admissible in $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$:

$$
\frac{a:!\Gamma, \Delta_{1} \longrightarrow A \quad b:!\Gamma, \Delta_{2}, A \longrightarrow C}{f(a, b):!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }_{\ell}
$$

Moreover, whenever cut $_{\ell}$ is admissible w.r.t. $f: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, then $a+b \leq f(a, b)$.

What if we add exponentials to succedents?

$$
\frac{b: \Gamma \preceq a \longrightarrow A}{b: \Gamma \longrightarrow!^{a} A}
$$

What if we add exponentials to succedents?

$$
\frac{b: \Gamma \preceq a \longrightarrow A}{b: \Gamma \longrightarrow!^{a} A}
$$

Cut-elimination FAILS!!

Theorem

There is no function $f: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that the rule

$$
\frac{a:!\Gamma, \Delta_{1} \longrightarrow A \quad b:!\Gamma, \Delta_{2}, A \longrightarrow C}{f(a, b):!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }
$$

is admissible in $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$.

What if we add exponentials to succedents?

$$
\frac{b: \Gamma \preceq a \longrightarrow A}{b: \Gamma \longrightarrow!^{a} A}
$$

Cut-elimination FAILS!!

Theorem

There is no function $f: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that the rule

$$
\frac{a:!\Gamma, \Delta_{1} \longrightarrow A \quad b:!\Gamma, \Delta_{2}, A \longrightarrow C}{f(a, b):!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }
$$

is admissible in $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$.
Proof: Take
$a:!^{1 / k} p \longrightarrow!^{1 / k} p^{\otimes(k \cdot a)}$
$b:!^{1 / k} p^{\otimes(k \cdot a)} \longrightarrow p^{\otimes(k \cdot k \cdot a \cdot b)}$
$k \cdot a \cdot b:!^{1 / k} p \longrightarrow p^{\otimes(k \cdot k \cdot a \cdot b)}$

Restrict the cut-formula!

Theorem (Lang'21)
If A is bang-free and $c \neq 0$, then the following cut rule is admissible in $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$:

$$
\frac{a:!\Gamma, \Delta_{1} \longrightarrow!^{c} A \quad b:!\Gamma, \Delta_{2},!^{c} A \longrightarrow C}{f(a, b, c):!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }_{\ell}
$$

where $f(a, b, c)=b+\lfloor b / c\rfloor \cdot a$

Restrict the cut-formula!

Theorem (Lang'21)

If A is bang-free and $c \neq 0$, then the following cut rule is admissible in $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$:

$$
\frac{a:!\Gamma, \Delta_{1} \longrightarrow!^{c} A \quad b:!\Gamma, \Delta_{2},!^{c} A \longrightarrow C}{f(a, b, c):!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \text { cut }_{\ell}
$$

where $f(a, b, c)=b+\lfloor b / c\rfloor \cdot a$

- Last case = particular case with no bangs.
- General case where A is not bang-free: open problem.

Enhance the notion of cut rule!

Definition

Let $\mathcal{E}=\left\{a_{b} \mid a, b \in \mathbb{R}^{+}\right\}$be such that
(1) $a_{b} \geq_{\mathcal{E}} a_{c}$ (i.e., the ordering $\geq_{\mathcal{E}}$ ignores the subindices).
(2) $a_{b}>_{\mathcal{E}} c_{d}$ iff $a>c$.

For any formula $A \in \mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$, we define $[A]_{C}$ as the formula that substitutes any modality ! ${ }^{a_{b}}$ with $!^{a_{b+c}}$.

Enhance the notion of cut rule!

Definition

Let $\mathcal{E}=\left\{a_{b} \mid a, b \in \mathbb{R}^{+}\right\}$be such that
(1) $a_{b} \geq_{\mathcal{E}} a_{c}$ (i.e., the ordering $\geq_{\mathcal{E}}$ ignores the subindices).
(2) $a_{b}>_{\mathcal{E}} c_{d}$ iff $a>c$.

For any formula $A \in \mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$, we define $[A]_{C}$ as the formula that substitutes any modality ! ${ }^{a_{b}}$ with $!^{a_{b+c}}$.

Enhance the notion of cut rule!

Definition

Let $\mathcal{E}=\left\{a_{b} \mid a, b \in \mathbb{R}^{+}\right\}$be such that
(1) $a_{b} \geq_{\mathcal{E}} a_{c}$ (i.e., the ordering $\geq_{\mathcal{E}}$ ignores the subindices).
(2) $a_{b}>_{\mathcal{E}} c_{d}$ iff $a>c$.

For any formula $A \in \mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$, we define $[A]_{C}$ as the formula that substitutes any modality ! ${ }^{a_{b}}$ with $!^{a_{b+c}}$.

- Sequent labels belong to \mathbb{R}^{+}, modal labels belong to \mathcal{E}.
- Promotion of $!^{a_{0}}$ has the same effect/constraints that the promotion of $!^{a b}$.
- Dereliction of the latter requires a greater budget ($a+b$ instead of a).
- ! ${ }^{a_{b}} A \equiv!{ }^{a_{c}} A$, each direction requiring a different budget.
- $\mathcal{E}_{0}=\left\{a_{0} \mid a \in \mathbb{R}^{+}\right\} \simeq \mathbb{R}^{+}$, that is, each element $a \in \mathbb{R}^{+}$can be seen as the equivalence class of a_{0} in $\mathbb{R}^{+} \times \mathbb{R}^{+}$modulo \mathbb{R}^{+}.

The new $\mathcal{C}^{\ell}\left(\mathbb{R}^{+}\right)$

Definition

A is \multimap-linear if for all subformulas of the form $B \multimap C, B$ doesn't have occurrences of! ${ }^{a}$.

Theorem (-o-linear cut)
If A is a - -linear formula, then the following rule is admissible

$$
\frac{a:!\Gamma, \Delta_{1} \longrightarrow A \quad b:!\Gamma, \Delta_{2},[A]_{a} \longrightarrow C}{a+b:!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \operatorname{cut}_{L L}
$$

Moreover, if $a: \Gamma \longrightarrow C$ is provable using cut ${ }_{L L}$, then there is a cut-free proof of $a^{\prime}: \Gamma \longrightarrow C$ for some $a \geq a^{\prime}$.

The source of evil tamed!

$$
\frac{\stackrel{c}{\pi_{1}} \underset{c: \Gamma, \Delta_{1}, A \longrightarrow B}{c: \Delta_{1} \longrightarrow A \rightarrow B}}{c+b_{1}+b_{2}:!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C} \frac{b_{1}:!\Gamma, \Delta_{2}^{\prime} \longrightarrow[A]_{c} \quad b_{2}:!\Gamma, \Delta_{2}^{\prime \prime},[B]_{c} \longrightarrow C}{b_{1}+b_{2}:!\Gamma, \Delta_{2},[A \multimap B]_{c} \longrightarrow C}
$$

reduces to

$$
\begin{aligned}
& c+b_{1}+b_{2}:!\Gamma, \Delta_{1}, \Delta_{2} \longrightarrow C
\end{aligned}
$$

Note: $[A]_{c}=[A]_{b_{1}}=A$.

Outline

(1) Lorenzen's game semantics
(2) Linear logic
(3) A game model of branching

4 Adding costs
(5) The cost of cut
(6) Conclusion

What next?

- Classical LL;
- Non-affine LL;
- Bounds of computation;
- Complexity of cut-elimination.

Thanks!!!

-

