What is the cost of cut?

Elaine Pimentel UCL, UK

Joint work with T. Lang, C. Olarte and C. Fermüller

LATD&MOSAIC

07 September 2022

The cost of cut

• Game interpretation of bottom-up proof search in sequent systems.

э

Image: A match a ma

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.
- To breathe life into the resource metaphor, we need dynamics
 - \implies game semantics for substructural sequent calculi.

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.
- To breathe life into the resource metaphor, we need dynamics

 \implies game semantics for substructural sequent calculi.

• Better understanding of resource conscious reasoning, which is often cited as a motivation for substructural logics.

- Game interpretation of bottom-up proof search in sequent systems.
- Our view of game semantics: a playground for illuminating specific intuitions underlying certain proof systems.
- Resource consciousness: motivation usually remains metaphorical [Girard'87]
- Gentzen's sequent calculus is a (the?) natural starting point for connecting inference and resource consciousness.
- To breathe life into the resource metaphor, we need dynamics

 \implies game semantics for substructural sequent calculi.

- Better understanding of resource conscious reasoning, which is often cited as a motivation for substructural logics.
- Side effect: notion of cost of cuts!

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

2 Linear logic

- A game model of branching
- 4 Adding costs
- 5 The cost of cut

э

-

Outline

Linear logic

- 3 A game model of branching
- Adding costs
- 5 The cost of cut

6 Conclusion

A (10) × A (10) × A (10)

Dialogues as foundations

Dialogues

A Proponent P tries to defend a logically complex statement against attacks by an Opponent O. The dialogue stepwise reduces complex assertions to their components.

・ 何 ト ・ ヨ ト ・ ヨ ト

Dialogues as foundations

Dialogues

A Proponent P tries to defend a logically complex statement against attacks by an Opponent O. The dialogue stepwise reduces complex assertions to their components.

statement by X	attack by Y	defense by X
$A \wedge B$	I? or r? (Y chooses)	A or B, accordingly
$A \lor B$?	A or B (X chooses)
$A \supset B$	A	В

X/Y stands for P/O or O/P

・ 何 ト ・ ヨ ト ・ ヨ ト

Dialogues as foundations

Dialogues

A Proponent P tries to defend a logically complex statement against attacks by an Opponent O. The dialogue stepwise reduces complex assertions to their components.

statement by X	attack by Y	defense by X
$A \wedge B$	I? or r? (Y chooses)	A or B, accordingly
$A \lor B$?	A or B (X chooses)
$A \supset B$	A	В

X/Y stands for P/O or O/P

Winning conditions for P:

W: O has already granted P's active formula

W_: O has granted \bot

[Lorenzen'60] attempted to *justify constructive logic*. The completeness result w.r.t. LJ came much later [Felscher'85].

Outline

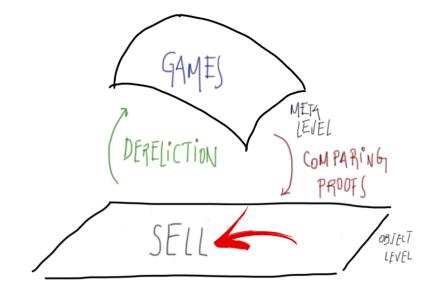
2 Linear logic

- 3 A game model of branching
- 4 Adding costs
- 5 The cost of cut

6 Conclusion

(4) (日本)

The object-level



э

A D N A B N A B N A B N

Linear logic in a nutshell

 Linear conjunctions: & (additive) and ⊗ (multiplicative) Linear disjunctions: ⊕ (additive) and 𝔅 (multiplicative) Unities: ⊤, 1, 0, ⊥
 Linear implication: -∞
 Exponentials: !,?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Linear logic in a nutshell

- Linear conjunctions: & (additive) and ⊗ (multiplicative) Linear disjunctions: ⊕ (additive) and 𝔅 (multiplicative) Unities: ⊤, 1, 0, ⊥
 Linear implication: -∞
 Exponentials: !,?
- By composing a proof of A → B and a proof of A we consume them to get a proof of B.
- Linear logic formulas behave like resources.
- Exponentials recover the full expressive power of intuitionistic and classical logic: in ! *B* and ?*B* we are allowed to use contraction and weakening.

・ 何 ト ・ ヨ ト ・ ヨ ト

Affine intuitionistic multiplicative additive LL (C)

Sequent System for
$$C$$

$$\frac{\Delta_{1} \longrightarrow A \quad \Delta_{2} \longrightarrow B}{\Delta_{1}, \Delta_{2} \longrightarrow A \otimes B} \otimes_{R} \quad \frac{\Gamma \longrightarrow A \quad \Gamma \longrightarrow B}{\Gamma \longrightarrow A \otimes B} \otimes_{R} \quad \frac{\Gamma, A \longrightarrow B}{\Gamma \longrightarrow A \multimap B} \multimap_{R}$$

$$\frac{\Gamma, A, B \longrightarrow C}{\Gamma, A \otimes B \longrightarrow C} \otimes_{L} \quad \frac{\Delta_{1} \longrightarrow A \quad \Delta_{2}, B \longrightarrow C}{\Delta_{1}, \Delta_{2}, A \multimap B \longrightarrow C} \multimap_{L} \quad \frac{\Gamma, A_{i} \longrightarrow B}{\Gamma, A_{1} \otimes A_{2} \longrightarrow B} \otimes_{L_{i}}$$

$$\frac{\Gamma, A \longrightarrow C \quad \Gamma, B \longrightarrow C}{\Gamma, A \oplus B \longrightarrow C} \oplus_{L} \quad \frac{\Gamma \longrightarrow A_{i}}{\Gamma \longrightarrow A_{1} \oplus A_{2}} \oplus_{R_{i}}$$

$$\overline{\Gamma, p \longrightarrow p} \quad I \qquad \overline{\Gamma \longrightarrow 1} \quad 1_{R} \qquad \overline{\Gamma, 0 \longrightarrow A} \quad 0_{L}$$

э

(日) (四) (日) (日) (日)

Outline

Linear logic

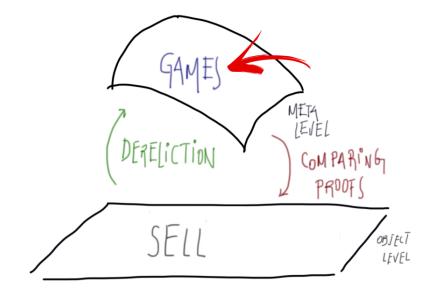
- A game model of branching
 - Adding costs
 - 5 The cost of cut

6 Conclusion

э

(日) (四) (日) (日) (日)

The meta-level



3

(日)

The game for C [Fermüller,Lang17]

- Formulas are seen as resources that can be build from atomic propositions, units 0, 1 and the constructors ⊗, &, ⊕, −∞
- States: multisets of sequents of the form $\Gamma \longrightarrow F$
- Two players: P and O. Player P starts the game and selects a sequent S from the current state.
- The game proceeds in rounds with two possible succ. states:

- P chooses a sequent S among the current game state, a principal formula in S and a matching rule instance r.
- P acts as the scheduler of the game.

イヨト イヨト イヨト

Multiplicative vs Additive

Both are (right) branching rules:

$$\frac{\Gamma \longrightarrow A \quad \Gamma \longrightarrow B}{\Gamma \longrightarrow A \& B} \&_R \qquad \frac{\Gamma_1 \longrightarrow A \quad \Gamma_2 \longrightarrow B}{\Gamma_1, \Gamma_2 \longrightarrow A \otimes B} \otimes_R$$

However, the intended meaning is different:

- A & B: P must be prepared to play either A or B (O choice) but only one game is actually played.
- $A \otimes B$: both subgames, A and B must be played and P must win both.

4 AR & A E & A E &

Multiplicative vs Additive

Both are (right) branching rules:

$$\frac{\Gamma \longrightarrow A \quad \Gamma \longrightarrow B}{\Gamma \longrightarrow A \& B} \&_R \qquad \frac{\Gamma_1 \longrightarrow A \quad \Gamma_2 \longrightarrow B}{\Gamma_1, \Gamma_2 \longrightarrow A \otimes B} \otimes_R$$

However, the intended meaning is different:

- A & B: P must be prepared to play either A or B (O choice) but only one game is actually played.
- A ⊗ B: both subgames, A and B must be played and P must win both.

Branching structure

Both definitions (a single or a parallel game) are equivalent: the existence of winning strategies for P remains the same. However, semantically, they provide different viewpoints of the connectives.

< □ > < □ > < □ > < □ > < □ > < □ >

The game for $\ensuremath{\mathcal{C}}$

$$\overline{p,q\oplus r\longrightarrow (p\otimes q)\oplus (p\otimes r)} \ \oplus_{R_1}$$

æ

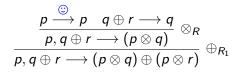
<ロト <回 > < 回 > < 回 >

The game for $\ensuremath{\mathcal{C}}$

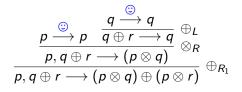
$$\frac{\overline{p,q\oplus r\longrightarrow (p\otimes q)}^{\otimes R}}{p,q\oplus r\longrightarrow (p\otimes q)\oplus (p\otimes r)}\oplus_{R_1}$$

3

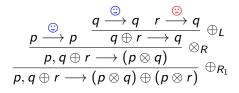
メロト メポト メヨト メヨト



イロト 不得下 イヨト イヨト 二日



イロト イポト イヨト イヨト 二日



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The game for $\ensuremath{\mathcal{C}}$

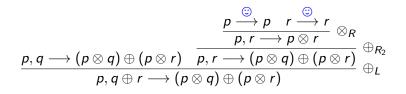
$$\frac{p \xrightarrow{\textcircled{o}} p \quad q \xrightarrow{\textcircled{o}} q}{p, q \longrightarrow (p \otimes q)} \otimes_{R}}{p, q \longrightarrow (p \otimes q) \oplus (p \otimes r)} \oplus_{R_{1}} p, r \longrightarrow (p \otimes q) \oplus (p \otimes r)} \oplus_{L}$$

$$p, q \oplus r \longrightarrow (p \otimes q) \oplus (p \otimes r)} \oplus_{L}$$

LATD&MOSAIC 14 / 35

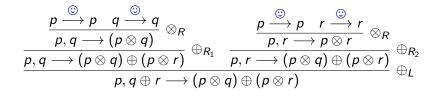
- 2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト



LATD&MOSAIC 14 / 35

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



LATD&MOSAIC 14 / 35

- ロ ト - (周 ト - (日 ト - (日 ト -)日

I afont's menu revisited M = N U (4 = 75 Frs)FNTRÉE QUILIE LOBRAINE & SALMON FUME et PLAT POT. AU-FEI OU FILET DE CANARD et DESSERT FRUIT SELON SAISON : BANANE & RAISIN OU ORANGES OU ANANAS o DEISERT AU CHOIX: MYSTERE ON GLA (E ON TARTE AUX POMME)

I afont's menu revisited M = N U (4 = 75 Frs)FNTRÉE QUICHE LOPPAINE & SALMON FUME \bigotimes PLAT POT. AU-FEU & FILET DE CANARD \bigotimes DESSERT FRUIT SELON SAISON : BANANE (RAISIN (ORANGES (ANANA) DEISERT AU CHOIX: MYSTERE & GLA [E& TARTE AUX POMME]

Outline

2 Linear logic

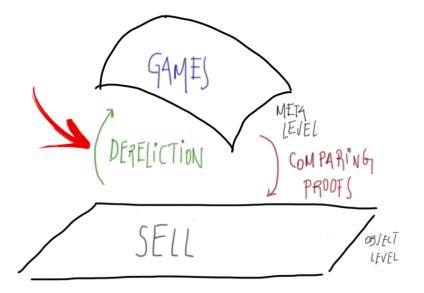
- 3 A game model of branching
- Adding costs
 - 5 The cost of cut

6 Conclusion

э

(日) (四) (日) (日) (日)

Intended meaning



3

(日)

Subexponentials [Danos, Joinet, Schellinx'93]

Exponentials in ILL:

$$\frac{\Gamma, A \longrightarrow C}{\Gamma, ! A \longrightarrow C} !_L \qquad \frac{! A_1, \dots, ! A_n \longrightarrow A}{! A_1, \dots, ! A_n \longrightarrow ! A} !_R$$

3

(日) (四) (日) (日) (日)

Subexponentials [Danos, Joinet, Schellinx'93]

Sub-exponentials in ILL:

$$\frac{\Gamma, A \longrightarrow C}{\Gamma, !^{a}A \longrightarrow C} !^{a}{}_{L} \qquad \frac{!^{a_{1}}A_{1}, \dots, !^{a_{n}}A_{n} \longrightarrow A}{!^{a_{1}}A_{1}, \dots, !^{a_{n}}A_{n} \longrightarrow !^{a}A} !^{a}{}_{R}, \text{ provided } a \preceq a_{i}$$

э

• • • • • • • • • • • •

Subexponentials [Danos, Joinet, Schellinx'93]

Sub-exponentials in ILL:

$$\frac{\Gamma, A \longrightarrow C}{\Gamma, !^{a}A \longrightarrow C} !^{a}{}_{L} \qquad \frac{!^{a_{1}}A_{1}, \dots, !^{a_{n}}A_{n} \longrightarrow A}{!^{a_{1}}A_{1}, \dots, !^{a_{n}}A_{n} \longrightarrow !^{a}A} !^{a}{}_{R}, \text{ provided } a \preceq a_{i}$$

Then:

 $!^{a}A \not\equiv !^{b}A$ for any $a \neq b$.

э

< (回) < (三) < (三) < (二) < (二) < (二) < (二) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-)

Assumptions plus cost – system $\mathcal{C}(\mathbb{R}^+)$

Augment assumptions with costs, where assumptions are formulas occurring negatively on sequents.

$$\frac{\Gamma, !^{a}A, A \longrightarrow C}{\Gamma, !^{a}A \longrightarrow C} \; !^{a}{}_{L}, \; a \in \mathbb{R}^{+}$$

(4) (日本)

The game $\mathcal{G}_{\mathcal{C}}(\mathbb{R}^+)$ [Lang,Olarte,Pimentel,Fermüller'19]

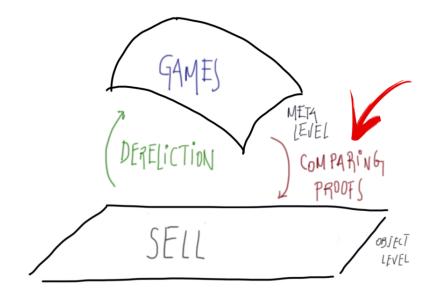
- States: tuples (H, b), where H is a finite multiset of ℝ⁺-valued sequents and b ∈ ℝ is a budget.
- Rounds: the successor state is determined according to rules that fit one of the two following schemes:

The game $\mathcal{G}_{\mathcal{C}}(\mathbb{R}^+)$ [Lang,Olarte,Pimentel,Fermüller'19]

- States: tuples (H, b), where H is a finite multiset of ℝ⁺-valued sequents and b ∈ ℝ is a budget.
- Rounds: the successor state is determined according to rules that fit one of the two following schemes:
 - (1) $(G \cup \{S\}, b)$ \sim $(G \cup \{S'\}, b')$
 - $(2) \quad (G \cup \{S\}, b) \qquad \rightsquigarrow \qquad (G \cup \{S^1\} \cup \{S^2\}, b)$
- Depending on the r, the round proceeds as follows:
 - **()** If the rule r is not $!_L$, then the game proceeds as before, with budget b.
 - **2** Budget decrease: $!_L$ with premise S' and principal formula $!^aA$, then the game proceeds in the game state $(G \cup \{S'\}, b a)$.
 - To win the game: non negative final budget.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties



э

イロト イヨト イヨト イヨト

Labelled system $\mathcal{C}^\ell(\mathbb{R}^+)$

- Weak adequacy: information about the budget *b* is lost in the proof theoretic representation.
- In other words, the game $\mathcal{G}_{\mathcal{C}}(\mathbb{R}^+)$ is more expressive than the calculus $\mathcal{C}(\mathbb{R}^+)$.

Labelled system $\mathcal{C}^\ell(\mathbb{R}^+)$

- Weak adequacy: information about the budget *b* is lost in the proof theoretic representation.
- In other words, the game $\mathcal{G}_{\mathcal{C}}(\mathbb{R}^+)$ is more expressive than the calculus $\mathcal{C}(\mathbb{R}^+)$.
- To overcome this mismatch: a labelled extension of $\mathcal{C}(\mathbb{R}^+)$.
- A $\mathcal{C}^{\ell}(\mathbb{R}^+)$ -proof is build from labelled sequents

$$b: \Gamma \longrightarrow A$$

where $\Gamma \longrightarrow A$ is a $\mathcal{C}(\mathbb{R}^+)$ sequent and $b \in \mathbb{R}^+$.

Sequent rules for $\mathcal{C}^{\ell}(\mathbb{R}^+)$

Labelled sequent system for
$$C^{\ell}(\mathbb{R}^+)$$

$$\frac{a: !\Gamma, \Delta_1 \longrightarrow A \quad b: !\Gamma, \Delta_2 \longrightarrow B}{a+b: !\Gamma, \Delta_1, \Delta_2 \longrightarrow A \otimes B} \otimes_R \quad \frac{a: \Gamma \longrightarrow A \quad b: \Gamma \longrightarrow B}{\max\{a, b\}: \Gamma \longrightarrow A \& B} \&_R$$

$$\frac{c: \Gamma, !^a A, A \longrightarrow C}{a+c: \Gamma, !^a A \longrightarrow C} !_L$$

$$\frac{b: \Gamma, p \longrightarrow p}{b} \mid b \ge 0 \quad \frac{b: \Gamma \longrightarrow 1}{b: \Gamma \longrightarrow 1} 1_R \mid b \ge 0 \quad \frac{b: \Gamma, 0 \longrightarrow A}{b: \Gamma, 0 \longrightarrow A} \mid 0_L \mid b \ge 0$$

э

イロト イヨト イヨト イヨト

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

э

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

• Matching pair: $(w \otimes w) \oplus (b \otimes b)$;

IJ

• Act of drawing a random sock: $!^1(w \oplus b)$.

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

- Matching pair: $(w \otimes w) \oplus (b \otimes b);$
- Act of drawing a random sock: !¹(w ⊕ b).
 What is the smallest n s.t. n : !¹(w ⊕ b) → (w ⊗ w) ⊕ (b ⊗ b) is provable?

You have white and black socks in a drawer in a completely dark room. How many socks do you have to take out blindly to be sure of having a matching pair?

- Matching pair: $(w \otimes w) \oplus (b \otimes b)$;
- Act of drawing a random sock: !¹(w ⊕ b).
 What is the smallest n s.t. n : !¹(w ⊕ b) → (w ⊗ w) ⊕ (b ⊗ b) is provable?

The answer, of course, is 3:

$$\underbrace{\frac{0: l^{1}(w \oplus b), w, w, w \oplus b \longrightarrow w \otimes w}{0: l^{1}(w \oplus b), w, w, w \oplus b \longrightarrow F}}_{0: l^{1}(w \oplus b), w, w, w \oplus b \longrightarrow F} \underbrace{\frac{0: l^{1}(w \oplus b), w, b, w \longrightarrow W \oplus w \otimes w}{0: l^{1}(w \oplus b), w, b, w \oplus b \longrightarrow F}}_{0: l^{1}(w \oplus b), w, w, w \oplus b, w \oplus b \longrightarrow F}} \underbrace{\frac{0: l^{1}(w \oplus b), w, w, w \oplus b, w \oplus b \longrightarrow F}{0: l^{1}(w \oplus b), w, w \oplus b \longrightarrow F}}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b), w, w \oplus b \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{3: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{3: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \longrightarrow F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \longrightarrow F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{3: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus F}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus E}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus E}_{0: l^{1}(w \oplus b) \bigoplus F} \underbrace{0: l^{1}(w \oplus b) \bigoplus E}_{0: l^{1}(w \oplus$$

Game theoretically, P must be prepared for any of the choices of O when she decides to select $w \oplus b$ (on the left).

< □ > < 同 > < 三 > < 三 >

周

Results

Theorem

Given a $\mathcal{C}(\mathbb{R}^+)$ -proof Ξ of a sequent S, there exists a smallest budget with $cost(\Xi)$ that suffices to win the game $\mathcal{G}_{\mathcal{C}}(\mathbb{R}^+)$ on S when following the strategy corresponding to Ξ .

Spectrum

$${\tt spec}(S):=\{{\tt cost}(\Xi)\mid \Xi {\tt is an } {\mathcal C}({\mathbb R}^+){\tt -proof of } S\}.$$

Theorem

If $\vdash_{\mathcal{C}(\mathbb{R}^+)} \Gamma \longrightarrow A$, then spec($\Gamma \longrightarrow A$) has a least element. In other words, there is a smallest b such that $\vdash_{\mathcal{C}^{\ell}(\mathbb{R}^+)} \Gamma \longrightarrow_b A$.

イロト イポト イヨト イヨト 二日

Outline

1 Lorenzen's game semantics

Linear logic

A game model of branching

Adding costs

5 The cost of cut

6 Conclusion

э

(日) (四) (日) (日) (日)

Cut-elimination

 $\mathcal{C}(\mathbb{R}^+)$ inherits the admissibility of the following cut rule from SELL:

$$\frac{|\Gamma, \Delta_1 \longrightarrow A \quad |\Gamma, \Delta_2, A \longrightarrow C}{|\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \ \textit{cut}$$

Note: Remember that bangs occur negatively only.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cut-elimination

 $\mathcal{C}(\mathbb{R}^+)$ inherits the admissibility of the following cut rule from SELL:

$$\frac{|\Gamma, \Delta_1 \longrightarrow A \quad |\Gamma, \Delta_2, A \longrightarrow C}{|\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \ \textit{cut}$$

Note: Remember that bangs occur negatively only.

Theorem

For f(a, b) = a + b, the following cut rule is admissible in $C^{\ell}(\mathbb{R}^+)$:

$$\frac{\boldsymbol{a}: !\Gamma, \Delta_1 \longrightarrow A \quad \boldsymbol{b}: !\Gamma, \Delta_2, A \longrightarrow C}{\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b}): !\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \quad cut_{\ell}$$

Moreover, whenever cut_{ℓ} is admissible w.r.t. $f : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$, then $a + b \leq f(a, b)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What if we add exponentials to succedents?

$$\frac{b:\Gamma^{\preceq a}\longrightarrow A}{b:\Gamma\longrightarrow !^{a}A}$$

Lang, Olarte, Pimentel & Fermüller

3

Image: A mathematical states and a mathem

What if we add exponentials to succedents?

$$\frac{b:\Gamma^{\preceq a}\longrightarrow A}{b:\Gamma\longrightarrow !^{a}A}$$

Cut-elimination FAILS!!

Theorem

There is no function $f : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ such that the rule

$$\frac{a: !\Gamma, \Delta_1 \longrightarrow A \quad b: !\Gamma, \Delta_2, A \longrightarrow C}{f(a, b): !\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \ cut$$

is admissible in $\mathcal{C}^{\ell}(\mathbb{R}^+)$.

(日) (四) (日) (日) (日)

What if we add exponentials to succedents?

$$\frac{b:\Gamma^{\preceq a}\longrightarrow A}{b:\Gamma\longrightarrow !^{a}A}$$

Cut-elimination FAILS!!

Theorem

There is no function $f : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ such that the rule

$$\frac{\boldsymbol{a}: !\Gamma, \Delta_1 \longrightarrow A \quad \boldsymbol{b}: !\Gamma, \Delta_2, A \longrightarrow C}{\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b}): !\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \quad cut$$

is admissible in $\mathcal{C}^{\ell}(\mathbb{R}^+)$.

 $\begin{array}{l} Proof: \quad \text{Take} \\ a: !^{1/k}p \longrightarrow !^{1/k}p^{\otimes (k \cdot a)} \\ b: !^{1/k}p^{\otimes (k \cdot a)} \longrightarrow p^{\otimes (k \cdot k \cdot a \cdot b)} \\ k.a.b: !^{1/k}p \longrightarrow p^{\otimes (k \cdot k \cdot a \cdot b)} \end{array}$

(日) (四) (田) (田)

Restrict the cut-formula!

Theorem (Lang'21)

If A is bang-free and $c \neq 0$, then the following cut rule is admissible in $C^{\ell}(\mathbb{R}^+)$: $\frac{a:!\Gamma, \Delta_1 \longrightarrow !^c A \quad b:!\Gamma, \Delta_2, !^c A \longrightarrow C}{f(a, b, c):!\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \quad cut_{\ell}$ where f(a, b, c) = b + |b/c|.a

(人間) トイヨト イヨト ニヨ

Restrict the cut-formula!

Theorem (Lang'21)

If A is bang-free and $c \neq 0$, then the following cut rule is admissible in $C^{\ell}(\mathbb{R}^+)$: $\frac{a:!\Gamma, \Delta_1 \longrightarrow !^c A \quad b:!\Gamma, \Delta_2, !^c A \longrightarrow C}{f(a, b, c):!\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \quad cut_{\ell}$ where $f(a, b, c) = b + \lfloor b/c \rfloor$.a

- Last case = particular case with no bangs.
- General case where A is not bang-free: open problem.

- 本間下 本臣下 本臣下 三臣

Enhance the notion of cut rule!

Definition Let $\mathcal{E} = \{a_b \mid a, b \in \mathbb{R}^+\}$ be such that **a** $a_b \geq_{\mathcal{E}} a_c$ (i.e., the ordering $\geq_{\mathcal{E}}$ ignores the subindices). **a** $a_b \geq_{\mathcal{E}} c_d$ iff a > c. For any formula $A \in C^{\ell}(\mathbb{R}^+)$, we define $[A]_c$ as the formula that substitutes any modality $!^{a_b}$ with $!^{a_{b+c}}$.

周 🕨 🖌 🖻 🕨 🔺 🖻

Enhance the notion of cut rule!

Definition Let $\mathcal{E} = \{a_b \mid a, b \in \mathbb{R}^+\}$ be such that **a**_b $\geq_{\mathcal{E}} a_c$ (i.e., the ordering $\geq_{\mathcal{E}}$ ignores the subindices). **a**_b $\geq_{\mathcal{E}} c_d$ iff a > c. For any formula $A \in C^{\ell}(\mathbb{R}^+)$, we define $[A]_c$ as the formula that substitutes any modality $!^{a_b}$ with $!^{a_{b+c}}$.

$$\frac{\overline{0_0 \cdots 0_1 \cdots \cdots 0_l}}{\overline{1_0 \cdots 1_l \cdots \cdots 1_l}}$$

通 ト イ ヨ ト イ ヨ ト

Enhance the notion of cut rule!

Definition Let $\mathcal{E} = \{a_b \mid a, b \in \mathbb{R}^+\}$ be such that **1** $a_b \geq_{\mathcal{E}} a_c$ (i.e., the ordering $\geq_{\mathcal{E}}$ ignores the subindices). **2** $a_b >_{\mathcal{E}} c_d$ iff a > c. For any formula $A \in C^{\ell}(\mathbb{R}^+)$, we define $[A]_c$ as the formula that substitutes any modality $!^{a_b}$ with $!^{a_{b+c}}$.

- Sequent labels belong to \mathbb{R}^+ , modal labels belong to \mathcal{E} .
- Promotion of !^{a0} has the same effect/constraints that the promotion of !^{ab}.
- Dereliction of the latter requires a greater budget (a + b instead of a).
- $!^{a_b}A \equiv !^{a_c}A$, each direction requiring a different budget.
- $\mathcal{E}_0 = \{a_0 \mid a \in \mathbb{R}^+\} \simeq \mathbb{R}^+$, that is, each element $a \in \mathbb{R}^+$ can be seen as the equivalence class of a_0 in $\mathbb{R}^+ \times \mathbb{R}^+$ modulo \mathbb{R}^+ .

The new $\mathcal{C}^{\ell}(\mathbb{R}^+)$

Definition

A is $-\infty$ -linear if for all subformulas of the form $B - \infty C$, B doesn't have occurrences of $!^a$.

Theorem (----linear cut)

If A is a $-\infty$ -linear formula, then the following rule is admissible

$$\frac{a: !\Gamma, \Delta_1 \longrightarrow A \quad b: !\Gamma, \Delta_2, [A]_a \longrightarrow C}{a+b: !\Gamma, \Delta_1, \Delta_2 \longrightarrow C} \quad cut_{LL}$$

Moreover, if $a : \Gamma \longrightarrow C$ is provable using cut_{LL} , then there is a cut-free proof of $a' : \Gamma \longrightarrow C$ for some $a \ge a'$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The source of evil tamed!

$$\frac{\frac{c:!\Gamma, \Delta_1, A \longrightarrow B}{c:!\Gamma, \Delta_1 \longrightarrow A \multimap B}}{\frac{b_1:!\Gamma, \Delta_2' \longrightarrow [A]_c \quad b_2:!\Gamma, \Delta_2'', [B]_c \longrightarrow C}{b_1 + b_2:!\Gamma, \Delta_2, [A \multimap B]_c \longrightarrow C}}$$

reduces to

$$\frac{b_1: !\Gamma, \Delta'_2 \longrightarrow A}{c + b_1 + b_2: !\Gamma, \Delta_1, \Delta''_2, \Delta_1, \Delta''_2, \Delta_1, \Delta''_2, \Delta_1, \Delta''_2, \Delta_1, \Delta_2 \longrightarrow C}{c + b_1 + b_2: !\Gamma, \Delta_1, \Delta_2 \longrightarrow C}$$

Note: $[A]_c = [A]_{b_1} = A$.

3

(日) (四) (日) (日) (日)

Outline

1 Lorenzen's game semantics

Linear logic

3 A game model of branching

Adding costs

5 The cost of cut

э

(日) (四) (日) (日) (日)

What next?

- Classical LL;
- Non-affine LL;
- Bounds of computation;
- Complexity of cut-elimination.

< 1 k

э

Thanks!!!

 \odot

Lang, Olarte, Pimentel & Fermüller

-2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト