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Motivations

What?
Counterfactuals are subjunctive conditional statements of the form
“If [antecedent] were the case, then [consequent] would be the
case”.

They have many applications in the philosophy of language,
linguistics, causal inference and AI.

Why?
An algebraic framework to analyze counterfactual conditionals is still
missing. Such framework would contribute to a better
understanding of their meaning, their logic, and their probability.

How?
We introduce an algebraic setting for counterfactuals reasoning
based on a modal extensions of Boolean Algebras of Conditionals
and their associated logic.
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Introduction



Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

1. Consider a finite Boolean algebra A = ⟨A ,∧,∨,¬,⊥,⊤⟩; space of
(non-conditional) events a,b, c . . . ;

2. for A′ = A \ {⊥}, consider A | A′ = {(a | b) : a ∈ A,b ∈ A′} the set of conditional
events (a | b), (a | c), . . . read as “a given b”, “a given c” etc.

3. consider all Boolean combinations of conditional events,
Free(A | A ′) = (Free(A | A ′),⊓,⊔,∼,⊥∗,⊤∗); space of conditional events

4. impose some “rules of behavior” to those conditionals (laws of probability):

(C1) (b | b) ≡C ⊤∗, for all b ∈ A ′;
(C2) (a1 | b) ⊓ (a2 | b) ≡C (a1 ∧ a2 | b), for all a1,a2 ∈ A , b ∈ A ′;
(C3) ∼(a | b) ≡C (¬a | b), for all a ∈ A , b ∈ A ′;
(C4) (a ∧ b | b) ≡C (a | b), for all a ∈ A , b ∈ A ′;

(C5) (a | b) ⊓ (b | c) ≡C (a | c), for all a ∈ A , b, c ∈ A ′ such that a ≤ b ≤ c.

Definition: Boolean Algebra of Conditionals (BAC)

The Boolean Algebra of Conditionals (BAC) of A, C(A), is the quotient structure:

C(A) = Free(A | A ′)/≡C = (C(A),⊓,⊔,∼,⊥C,⊤C)

Notation: given A, C(A) is the BAC of A
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Boolean Algebras of Conditionals (BACs)

Given a Boolean algebra A, consider C(A):

• let α1, . . . ,αn be the atoms of A, at(A) = {α1, . . . ,αn}; non-conditionals

• let ω1, . . . ,ωm be the atoms of C(A), at(C(A)) = {ω1, . . . ,ωm}; conditionals

• let Seq(A) be the permutations of at(A), Seq(A) = {⟨α1, . . . ,αn
⟩ : αi

∈ at(A)};

Atomic Structure of C(A)

1. at(C(A)) is in one-to-one correspondence with Seq(A): at(C(A))↣↠ Seq(A); so if
|at(A)| = n, then |at(C(A))| = n!;

2. each permutation ⟨α1,α2, . . . ,αn
⟩ gives rise to an atom ω ∈ at(C(A)) via the

following equation:

ω = (α1
| ⊤C) ⊓ (α2

| ¬α1) ⊓ · · · ⊓ (αn
| ¬α1

∧ · · · ∧ αn−1)

3. by 1 and 2, each atom ωi ∈ at(C(A)) can be univocally identified with the
permutation ⟨α1, . . . ,αn

⟩ that induces ωi (and viceversa);

Notation: ω[i] denotes the i-th element in the permutation identified with/that induces ω
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Boolean Algebras of Conditionals - Example

⊤

¬α3 ¬α2 ¬α1

α1 α2 α3

⊥

• at(A3) = {α1,α2,α3};

• Seq(A3) = {

⟨α1,α2,α3⟩,

⟨α1,α3,α2⟩

⟨α2,α1,α3⟩,

⟨α2,α3,α1⟩

⟨α3,α1,α2⟩,

⟨α3,α2,α1⟩

}

⟨α1,α2,α3⟩ 7→ ω1 = (α1 | ⊤) ⊓ (α2 | ¬α1)

⟨α1,α3,α2⟩ 7→ ω2 = (α1 | ⊤) ⊓ (α3 | ¬α1)

⟨α2,α1,α3⟩ 7→ ω3 = (α2 | ⊤) ⊓ (α1 | ¬α2)

⟨α2,α3,α1⟩ 7→ ω4 = (α2 | ⊤) ⊓ (α3 | ¬α2)

⟨α3,α1,α2⟩ 7→ ω5 = (α3 | ⊤) ⊓ (α1 | ¬α3)

⟨α3,α2,α1⟩ 7→ ω6 = (α3 | ⊤) ⊓ (α2 | ¬α3)
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Boolean Algebras of Conditionals - Syntax & Semantics

Consider a classical language L with finitely many p,q, r ... propositional variables. Let

⊢CPL denotes derivability in Classical Logic.

L
LBC is a language obtained by expanding L with the conditional connective |:

• if φ,ψ are formulas of L and ⊬CPL ¬φ, then (ψ | φ) is a formula of LLBC ;

• if Φ,Ψ are formulas of LLBC , then ¬Φ and Φ ∧Ψ are formulas of LLBC ;

• nothing else is a formula of LLBC .

Semantics

• Let L be the Lindenbaum Algebra L of CPL over L and consider its BAC, C(L).

• An interpretation of LLBC is any ωL ∈ at(C(L)). Observe: any ωL ∈ at(C(L)) is a
permutation of classical valuations of L.

• For all Φ ∈ LLBC we set: ωL ⊩ Φ⇔ ωL ⊑ ΦC(L)

Proposition

Consider A and its BAC C(A); for every conditional (a | b) in C(A) and ω ∈ at(C(A)),

ω ⊑ (a | b)⇔ ∃j : ω[j] ≤ a ∧ b and ∀i < j,ω[i] ≰ b
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Boolean Algebras of Conditionals - Syntax & Semantics

Hence we get:
ωL ⊩ (φ | ψ) ⇔ The first (from the left) valuation in ωL that makes ψ true

also makes φ true
ωL ⊩ ¬Φ ⇔ ωL ⊮ Φ

ωL ⊩ Φ ∧Ψ ⇔ ωL ⊩ Φ and ωL ⊩ Ψ

Example
Assume v2(ψ) = v2(φ) = 1, v1(φ) = v1(ψ) = 0, v3(φ) = 0, v3(ψ) = 1.

• ωL = ⟨v1, v2, v3, . . . ⟩, ωL ⊩ (φ | ψ)

• ωL = ⟨v1, v3, v2, . . . ⟩, ωL ⊮ (φ | ψ)

Moreover, for Γ ∪ {Φ} ⊆ LLBC we define logical consequence as:

Γ |=LBC Φ⇔ for all interpretation ωL, if ωL ⊩
∧

Γ, then ωL ⊩ Φ
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Lewis’ Logic of Counterfactuals

’If kangaroos had no tails, they would topple over’ seems to mean something

like this: in any possible state of affairs in which kangaroos have no tails,

and which resembles our actual state of affairs as much as kangaroos

having no tails permits it to, the kangaroos would topple over. I shall give a

general analysis of counterfactual conditionals along these lines. (Lewis

1973b)

Consider a classical language L with finitely many p,q, r ... propositional variables. Let
⊢CPL denotes derivability in Classical Logic.

L
� is a language obtained from L by extending it with the counterfactual connective
�, where φ � ψ can be read as if φ were the case, then ψ would be the case.
Formulas in L� are defined as:

• if φ,ψ are formulas of L and ⊬CPL ¬φ, then φ� ψ, φ and ψ are formulas of
L
�;

• if A ,B are formulas of L�, then ¬A and A ∧ B are formulas of L�;

• nothing else is a formula of L�.

Observe: we restrict to a fragment of the original Lewis’ language of counterfactuals.
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Lewis’ Logic of Counterfactuals

C1

Rules:

(MP) form φ and φ→ ψ infer ψ

(DWC) if ⊢ (φ1 ∧ · · · ∧ φn)→ ψ then ⊢ ((δ� φ1) ∧ · · · ∧ (δ� φn))→ (δ� ψ)

Axioms:

1. all (substitutions instances of) classical tautologies
2. φ� φ

3. ((φ� ψ) ∧ (ψ� φ))→ ((φ� δ)↔ (ψ� δ))

4. ((φ∨ψ)� φ)∨((φ∨ψ)� ψ)∨(((φ∨ψ)� δ)↔ ((φ� δ)∧(ψ� δ))

5. (φ� ψ)→ (φ→ ψ)

6. (φ ∧ ψ)→ (φ� ψ)

Lewis defines: φ� ψ := ¬(φ� ¬ψ); consider the following extension of C1:

C1+

All the rules and axioms of C1 plus: ⊢ (φ� ψ)→ (φ� ψ)
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Lewis’ Logic of Counterfactuals - Semantics

Definition: Sphere Model

A sphere model is a tuple Σ = (I,S , v) where:

• I is a non-empty set (of possible worlds);

• S is a function S : I → ℘(℘(I)) such that for each i ∈ I, S (i) is:

(S1) nested: for all S,T ∈ S (i), either S ⊆ T or T ⊆ S;
(S2) non-empty: for all S ∈ S (i), i ∈ S;

(S3) centered: either
⋃

S (i) = ∅, or {i} ∈ S (i).

• v is a valuation function v : P → ℘(I) that extends to compound formulas as

follows:

- v(¬Φ) = I \ v(Φ), v(Φ ∧Ψ) = v(Φ) ∩ v(Ψ), v(Φ ∨Ψ) = v(Φ) ∪ v(Ψ)

- v(ψ� φ) = {i ∈ I | v(ψ) ∩
⋃

S (i) = ∅, or

∃S ∈ S (i) (∅ , (v(ψ) ∩ S) ⊆ v(φ))};

Informally, φ� ψ is true at a world i, i ⊩ φ� ψ, iff ψ is true at all the most similar
worlds to i that make φ true.
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Sphere Model - Example

S (X1) = {

{X1}

{X1,X2,X3,X4,X5}

{X1,X2,X3,X4,X5,X6,X7}

{X1,X2,X3,X4,X5,X6,X7,X8,X9,X10}

}

X8 X7

X4 X5

X1 X9

X2 X3

X6

X10

if v(p) = {X5} and v(q) = {X5,X6}, then

X1 ⊩ p � q since X5 ⊩ p and X5 ⊩ q

SX1 is

• non-empty;

• centered in {X1};

• nested: all members of S (X1) are

totally ordered by set-inclusion.

X8 X7

X4 X5

X1 X9

X2 X3

X6

X10

if v(p) = {X5} and v(q) = {X6}, then

X1 ⊮ p � q, since X5 ⊩ p but X5 ⊮ q
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Lewis’ Logic of Counterfactuals

We define logical consequence as: for Γ ∪ {A } ⊆ L�,

Γ |=C1 A ⇔ for all the sphere models Σ, for all the worlds i in Σ, if i ⊩
∧

Γ then i ⊩ B

Proposition - Soundness & Completeness C1

Γ |=C1 A ⇔ Γ ⊢C1 A

Definition

A total sphere model is a sphere model (I,S , v) such that for all formulas φ ∈ L, if
⊬CPL ¬φ then

for all i ∈ I,
⋃

S (i) ∩ v(φ) , ∅

Γ |=C1+ A ⇔ for all the total sphere models Σ, for all the worlds i in Σ

if i ⊩
∧

Γ then i ⊩ B

Proposition - Soundness & Completeness C1+

Γ |=C1+ A ⇔ Γ ⊢C1+ A
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Modal BACs



Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra A, take its corresponding BAC C(A);

2. ⟨C(A),□⟩ is the space of modal conditional events, e.g. □(a | b), □(a | b)⊓ (c | d), . . .

Definition: Lewis Algebra

A Lewis algebra is a modal BAC L(A) = ⟨C(A),□⟩ satisfying the following equations:

• □⊤C = ⊤C;

• □(x ⊓ y) = □x ⊓ □y;

• (L1) □(a | ⊤) = (a | ⊤);

• (L2) □(a | a ∨ b) ⊔ □(b | a ∨ b) ⊔ (□(c | a ∨ b)⇒ □((c | a) ⊓ (c | b))) = ⊤C

Observe: from (L1) we derive □(a | b) ≤ (a → b | ⊤) and (a ∧ b | ⊤) ≤ □(a | b)

By Jónsson-Tarski duality, to each finite Lewis algebra L(A) we uniquely associate a
dual frame (at(C(A)),R) where R ⊆ at(C(A)) × at(C(A)) is defined as:

∀ω,ω′ ∈ at(C(A)),ωRω′ iff ∀t ∈ C(A) if ω ⊑ □t, then ω′ ⊑ t
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Definition: Lewis Algebra

A Lewis algebra is a modal BAC L(A) = ⟨C(A),□⟩ satisfying the following equations:

• □⊤C = ⊤C;

• □(x ⊓ y) = □x ⊓ □y;

• (L1) □(a | ⊤) = (a | ⊤);

• (L2) □(a | a ∨ b) ⊔ □(b | a ∨ b) ⊔ (□(c | a ∨ b)⇒ □((c | a) ⊓ (c | b))) = ⊤C

Observe: from (L1) we derive □(a | b) ≤ (a → b | ⊤) and (a ∧ b | ⊤) ≤ □(a | b)

By Jónsson-Tarski duality, to each finite Lewis algebra L(A) we uniquely associate a
dual frame (at(C(A)),R) where R ⊆ at(C(A)) × at(C(A)) is defined as:

∀ω,ω′ ∈ at(C(A)),ωRω′ iff ∀t ∈ C(A) if ω ⊑ □t, then ω′ ⊑ t
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Modal BACs - Syntax & Semantics

L
LBC
□ is a language obtained by expanding LLBC with □ and where formulas are:

• if (φ | ψ) ∈ LLBC , then □(φ | ψ), (φ | ψ) ∈ LLBC
□ ;

• if Φ,Ψ are formulas of LLBC
□ , then ¬Φ and Φ ∧Ψ are formulas of LLBC ;

• nothing else is a formula of LLBC
□ .

Semantics

• Consider any Lewis Algebra of the form (C(L),□);

• An interpretation of LLBC
□ is the dual Kripke frame ⟨at(C(L)),R⟩ of any Lewis

algebra (C(L),□)

• For all Φ ∈ LLBC and all ωL ∈ at(C(L)) we set: ωL ⊩ Φ⇔ ωL ⊑ ΦC(L)

Hence we get:
ωL ⊩ □(φ | ψ) ⇔ for all ω′L : ωLRω′L,ω

′

L ⊩ (φ | ψ)

the remaining case are defined as usual

For every LLBC
□ interpretation F = ⟨at(C(L)),R⟩, for Γ ∪ {Φ} ⊆ LLBC

□ , we set:

F |= Φ ⇔ for all ωL ∈ at(C(L)),ωL ⊩ Φ

Γ |=LBC□ Φ ⇔ for all LLBC
□ interpretation ⟨at(C(L)), for all ωL ∈ at(C(L)),

if ωL ⊩
∧

Γ, then ωL ⊩ Φ
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Duality



Lewis Frames - Characterization

We study the properties of the dual frames of Lewis algebras:

Observe: by Jónsson-Tarski duality, every LLBC
□ interpretation validates the following

L1∗ □(φ | ⊤)↔ (φ | ⊤) (dual of (L1))

L2∗ □(φ | φ ∨ ψ) ∨ □(ψ | φ ∨ ψ) ∨ (□(δ | φ ∨ ψ)↔ □((δ | φ) ∧ (δ | ψ))) (dual of (L2))

Proposition

Let F = ⟨at(C(L)),R⟩ be a LLBC
□ interpretation:

F |= L1∗ ⇔ &

∀ω∃ω′ (ωRω′) (Seriality)

∀ω,ω′ (ωRω′ → (ω[1] = ω′[1])) (Centering)

(Centering) : - all the accessible worlds/permutations begin with the same element
- dual of Centered system of spheres
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Lewis Frames - Characterization

Proposition

Let F = ⟨at(C(L)),R⟩ be a LLBC
□ interpretation:

F |= L2∗ ⇔ F has the property of Sphericity

In order to understand the meaning of Sphericity, a more intricate and a peculiar

construction is needed. The intuitive idea is that Sphericity induces a certain structure

of R[ω] = {ω′ | ωRω′} that allows us to extrapolate sphere models.

ω1 = ⟨α1,α2,α3,α4⟩

ω

ω2 = ⟨α1,α4,α2,α3⟩

R

R

Non-Spheric

ω1 = ⟨α1,α2,α3,α4⟩

ω

ω2 = ⟨α1,α3,α2,α4⟩

R

R

Spheric
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Lewis Frame - Characterization

Consider a LLBC
□ interpretation ⟨at(C(L)),R⟩. Let Rωk ,n be the k × n-matrix whose ith

raw is a certain ωL ∈ R[ω]. We may refer to Rωk ,n as the matrix generated by R[w].

Proposition - Sphericity

A LLBC
□ interpretation ⟨at(C(L)),R⟩ has the Sphericity property iff for all ω ∈ at(C(L))

there exists a spheric partition of Rωk ,n

⟨α1 α2 α3 α4 α5 α6⟩

ω ⟨α1 α3 α2 α4 α6 α5⟩

⟨α1 α4 α2 α3 α5 α6⟩

R

R

R
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From Lewis Frames to Sphere Models... - Example

From every LLBC
□ interpretation we can extrapolate a sphere model preserving validity.

We employ the sphericity and centering properties of Lewis frames.

S (α1) =

⟨α1 α2 α3 α4 α5 α6⟩

ω ⟨α1 α3 α2 α4 α6 α5⟩

⟨α1 α4 α2 α3 α5 α6⟩

R

R

R

α5

α2

α1 α3

α4

α6

{α1},
{α1,α2,α3,α4},

{α1,α2,α3,α4,α5,α6}
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...and back - Example

Given a sphere model (I,S , v), for each i ∈ I, we define a binary relation ≺i⊆ I× I such
that

j ≺i k iff for all S ∈ S (i), if k ∈ S, then j ∈ S

From every total sphere model we can extrapolate a LLBC
□ interpretation preserving

validity. We employ the totality condition and the definition of ≺i .

α5

α2

α1 α3

α4

α6

α1 ≺1 α2 ≺1 α3 ≺1 α4 ≺1 α5 ≺1 α6

α1 ≺1 α3 ≺1 α2 ≺1 α4 ≺1 α6 ≺1 α5

α1 ≺1 α4 ≺1 α2 ≺1 α3 ≺1 α5 ≺1 α6

α1 ≺1 α2 ≺1 α4 ≺1 α2 ≺1 α5 ≺1 α6

⟨α1 α2 α3 α4 α5 α6⟩

⟨α1 α3 α2 α4 α6 α5⟩

⟨α1 α4 α2 α3 α5 α6⟩

⟨α1 α2 α4 α3 α5 α6⟩
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Counterfactuals as Modal Conditionals

Observe: two languages

1. LLBC
□ : Modal Conditionals □(ψ | φ) (and Boolean combinations of those);

2. L�: Classical formulas + counterfactuals φ� ψ (and Boolean combinations
of those)

Definition

We can translate L→ into LLBC
□ :

• if φ is a formula in L, τ(φ) = □(φ | ⊤) = (φ | ⊤) by (L1)

• if φ is ψ� δ, τ(ψ� δ) = □(δ | ψ)

• if φ is a Boolean combination ¬ψ, ψ ∧ δ, τ(¬ψ) = ¬τ(ψ), τ(ψ ∧ δ) = τ(ψ) ∧ τ(δ)
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Counterfactuals as Modal Conditionals

The fact that we can go from LLBC
□ interpretation to total sphere models and back

preserving validity allows us to prove the following result

Theorem

For all φ ∈ L�,
Γ |=C1+ φ⇔ τ[Γ] |=LBC□ τ(φ)

and in particular
|=C1+ φ� ψ⇔|=LBC□ □(ψ | φ)

Counterfactuals can be interpreted as “necessary” conditionals

Observation
The counterfactual cannot be any strict conditional. (Lewis 1973b)

A strict conditional is □(φ→ ψ) where→ is classical implication:
φ� ψ . □(φ→ ψ)

if we take the non-classical implication “|” obeying the laws of conditional probability,
then a counterfactual can be interpreted as a conditional with a □ in front:
φ� ψ ≡ □(ψ | φ)
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Probability



Probability of Conditionals

Proposition

Any positive probability P : A→ [0,1] naturally extends to a positive probability
µP : C(A)→ [0,1] such that: for ω = ⟨α1, . . . ,αn⟩ ∈ at(C(A)),

µP(⟨α1,α2, . . . ,αn⟩) = P(α1) ×
P(α2 ∧ ¬α1)

P(¬α1)
× . . .

and moreover

µP(a | b) =
P(a ∧ b)

P(b)

Inside the framework of BACs, the probablity of a conditional, amounts to the corre-
sponding conditional probability.

What happens to the probability of counterfactuals?
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Belief Functions

• The theory of Belief Functions (Dempster-Schafer Theory) is a formal
framework to reason about and model epistemic uncertainty. It generalizes the
standard Bayesian framework.

• In general, belief functions are used as a way to model uncertainty where
imprecision, or lack of knowledge has to be modeled explicitly. (The Belief
Functions and Applications Society)

• Masses, m, are assigned to sets of possibilities {w1,w2, . . . ,wn} rather than
single events {w1}, {w2} . . . : their appeal rests on the fact they naturally encode
evidence in favor of propositions. Bel(A) is the degree to which the available
evidence supports A .

{w1,w2,w3}

{w1,w2} {w1,w3} {w2,w3}

{w1} {w2} {w3}

• P(w1) + P({w2}) + P({w3}) = 1

• P({w1,w2}) = P({w1}) + P(w2)

{w1,w2,w3}

{w1,w2} {w1,w3} {w2,w3}

{w1} {w2} {w3}

•
∑

Y⊆{w1,w2,w3}
m(Y) = 1

• Bel({w1,w2}) =

m({w1}) + m({w2}) + m({w1,w2})
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Belief Functions from Modal Algebras

A belief function Bel on a Boolean algebra A is a function Bel : A→ [0,1] such that:

1. Bel(⊤) = 1, Bel(⊥) = 0

2. Bel(a1∨· · ·∨an) ≥
∑n

i=1 Bel(ai)−
∑

j<k Bel(aj∧ak )+· · ·+(−1)n+1Bel(a1∧· · ·∧an)

e.g. Bel(A ∪ B) ≥ Bel(A) + Bel(B) − Bel(A ∩ B).

A mass function m over a Boolean Algebra A, m : A→ [0,1], is such that:

1. m(⊥) = 0

2.
∑

a∈A m(a) = 1

we can define a Belief function on A, Belm : A→ [0,1], as follows:

Belm(a) =
∑
b≤a

m(b)

By the results in (Harmanec, G. Klir, and Wang 1996), (Harmanec, G. J. Klir, and

Resconi 1994), connecting belief functions and modal logic, we can show the following:
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Belief Functions, Modal Algebras and Kripke Frames

Proposition

Consider a Kripke frame ⟨W ,R⟩, its dual modal algebra ⟨℘(W),□⟩ and a probability
P : ℘(W)→ [0,1]. we have that:

mp(X) =
∑

R[w]=X

P(w) is a mass function on ℘(W) (1)

BelP(X) =
∑
Y⊆X

mP(Y) =
∑

w⊩□X

P(w) = P(□X) is a Belief function on ℘(W) (2)

Proposition

Consider a Lewis algebra ⟨C(A),□⟩, its dual Lewis frame ⟨at(C(A)),R⟩, a probability
P : A→ [0,1], and its extension to C(A) µP : C(A)→ [0,1]. We get that:

µP(□(a | b)) =
∑

ω⊑□(a |b)

µP(ω) = BelµP (a | b)

The probability of a counterfactual amounts to the belief of its corresponding
conditional.
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Probability of Counterfactuals

The results above transfer to sphere models.

Given a sphere model ⟨I,S , v⟩, and a probability distribution P : I → [0,1] on I, we
can assign to each formula φ a probability:

P(φ) =
∑
i⊩φ

P(i)

Little attention has been given to the question of how to interpret P(φ � ψ) =∑
i⊩φ�ψ P(i)

More attention has been dedicated to finding a method to calculate counterfactual
probability, i.e. the probability that [consequent] would happen given that [antecedent]
were the case.

E.g. Lewis’ Imaging (Lewis 1973b), interventionist counterfactuals Pearl 2000).
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Probability of Counterfactuals - Lewis’ Imaging

Given a sphere model ⟨I,S , v⟩, and a probability distribution P : I → [0,1] on I, one
can define P(φ� ψ) = Pφ(ψ) where Pφ is a new probability obtained from P by
imaging on φ such that P(φ) = 1, i.e. φ were the case.

X7

X4 X5

X1

X2 X3

X6

δ2P(X1)

δ4P(X1)
δ5P(X1)

if X1 ⊮ φ, then:

• Pφ(X1) = 0

• X1 transfers its mass to its closest
worlds making φ true

P(φ� ψ) = Pφ(ψ) =
∑

i⊩ψ Pφ(i)
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Probability of Counterfactuals

Consider φ � ψ; Dubois (1994) proposes that instead of transferring mass to
single worlds, we can redistribute the lost mass to the entire set of closest worlds, so
defining a mass function mφ : ℘(I)→ [0,1] such that

∑
Y⊆v(φ) mφ(Y) = 1.

We formalize Dubois’ intution

X2 X4 X6

X3

X1

X7 X5

P(X1)

For Y ∈ ℘(I), we can define:

mφ(Y) =
∑

Closφ(i)=Y

P(i)

Belφ(ψ) =
∑

Y⊆v(ψ)

mφ(Y) =
∑

i⊩φ�ψ

P(i)

= P(φ� ψ)

We can interpret P(φ� ψ) as the Belief of ψ given φ

Rosella, Flaminio, Bonzio Modal Algebraic Models For Counterfactual Conditionals LATD & MOSAIC - Sep 9, 2022 28 / 36



Conclusions



Summing up

We introduced a novel framework to analyze conditional events, their
logic and their probability.

1. we have expanded the framework of BACs to the modal case by introducing
Lewis algebras and their dual Lewis frames;

2. we have analyzed the properties of this algebraic structures and characterized
the class of Lewis frames;

3. we have proved soundness and completeness of C1+ with respect to Lewis
Algebras/Lewis Frames;

4. we have provided an interpretation of counterfactual in terms of necessary
conditionals;

5. we have analyzed the probability of counterfactuals in terms of Belief functions.

To do:

1. How to interpret the Belief Belφ(ψ) (conditional belief?)

2. Study the logics arising from this framework (weaker/stronger than C1)

3. Philosophical interpretation of the modal operator □(φ | ψ)

4. Philosophical justification of this framework to analyze conditional events.
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Conclusions

Thank You!
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Egré, Paul and Hans Rott (2021). “The Logic of Conditionals”. In:
The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta.
Winter 2021. Metaphysics Research Lab, Stanford University.
Flaminio, Tommaso, Lluis Godo, and Hykel Hosni (2020).

“Boolean Algebras of Conditionals, Probability and Logic”. In:
Artificial Intelligence 286.
Galles, David and Judea Pearl (1998). “An Axiomatic

Characterization of Causal Counterfactuals”. In: Foundations of
Science 3.1, pp. 151–182. doi: 10.1023/a:1009602825894.
Halmos, Paul and Steven Givant (2009). Introduction to Boolean

Algebras. Springer New York. doi: 10.1007/978-0-387-68436-9.
Halpern, Joseph Y. (2000). “Axiomatizing Causal Reasoning”. In:

Journal of Artificial Intelligence Research 12, pp. 317–337.
— (2013). “From Causal Models to Counterfactual Structures”.

In: Review of Symbolic Logic 6.2, pp. 305–322.

Rosella, Flaminio, Bonzio Modal Algebraic Models For Counterfactual Conditionals LATD & MOSAIC - Sep 9, 2022 33 / 36

https://doi.org/10.1023/a:1009602825894
https://doi.org/10.1007/978-0-387-68436-9


References iv

Harmanec, David, George Klir, and Zhenyuan Wang (1996).
“Modal Logic Interpretation of Dempster-Shafer Theory: An
Infinite Case”. In: International Journal of Approximate Reasoning
14.2–3, pp. 81–93.
Harmanec, David, George J. Klir, and Germano Resconi (1994).

“On modal logic interpretation of Dempster–Shafer theory of
evidence”. In: International Journal of Intelligent Systems 9.10,
pp. 941–951. doi: https://doi.org/10.1002/int.4550091003.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
int.4550091003. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/int.4550091003.
Kratzer, Angelika (1979). “Conditional Necessity and Possibility”.

In: Semantics From Different Points of View. Ed. by
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