Modal Algebraic Models For Counterfactual Conditionals

Giuliano Rosella ${ }^{1}$
(j.w.w. Tommaso Flaminio ${ }^{2}$, Stefano Bonzio ${ }^{3}$)

LATD \& MOSAIC - Sep 9, 2022
${ }^{1}$ Department of Philosophy, University of Turin
${ }^{2}$ Artificial Intelligence Research Institute, IIIA-CISC, Bellaterra (Barcelona)
${ }^{3}$ Department of Mathematics and Informatics, University of Cagliari

Motivations

Motivations

What?

Counterfactuals are subjunctive conditional statements of the form "If [antecedent] were the case, then [consequent] would be the case".

They have many applications in the philosophy of language, linguistics, causal inference and AI.

Motivations

What?

Counterfactuals are subjunctive conditional statements of the form "If [antecedent] were the case, then [consequent] would be the case".

They have many applications in the philosophy of language, linguistics, causal inference and AI.

Why?

An algebraic framework to analyze counterfactual conditionals is still missing. Such framework would contribute to a better understanding of their meaning, their logic, and their probability.

Motivations

What?

Counterfactuals are subjunctive conditional statements of the form "If [antecedent] were the case, then [consequent] would be the case".

They have many applications in the philosophy of language, linguistics, causal inference and AI.

Why?

An algebraic framework to analyze counterfactual conditionals is still missing. Such framework would contribute to a better understanding of their meaning, their logic, and their probability.

> How?
> We introduce an algebraic setting for counterfactuals reasoning based on a modal extensions of Boolean Algebras of Conditionals and their associated logic.

Table of contents

1. Introduction

Booelan Algebras of Conditionals (BACs)
Lewis' Logic of Counterfactuals
2. Modal BACs

Lewis Algebras
3. Duality

Lewis Frames
4. Probability

Belief Functions
5. Conclusions

Introduction

Boolean Algebras of Conditionals (BACs)

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

1. Consider a finite Boolean algebra $\mathbf{A}=\langle A, \wedge, \vee, \neg, \perp, T\rangle$; space of (non-conditional) events $a, b, c \ldots$;

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

1. Consider a finite Boolean algebra $\mathbf{A}=\langle A, \wedge, \vee, \neg, \perp, T\rangle$; space of (non-conditional) events $a, b, c \ldots$;
2. for $\mathbf{A}^{\prime}=\mathbf{A} \backslash\{\perp\}$, consider $\mathbf{A} \mid \mathbf{A}^{\prime}=\left\{(a \mid b): a \in \mathbf{A}, b \in \mathbf{A}^{\prime}\right\}$ the set of conditional events $(a \mid b),(a \mid c), \ldots$ read as "a given b", "a given c " etc.

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

1. Consider a finite Boolean algebra $\mathbf{A}=\langle A, \wedge, \vee, \neg, \perp, T\rangle$; space of (non-conditional) events $a, b, c \ldots$;
2. for $\mathbf{A}^{\prime}=\mathbf{A} \backslash\{\perp\}$, consider $\mathbf{A} \mid \mathbf{A}^{\prime}=\left\{(a \mid b): a \in \mathbf{A}, b \in \mathbf{A}^{\prime}\right\}$ the set of conditional events $(a \mid b),(a \mid c), \ldots$ read as "a given b", "a given c " etc.
3. consider all Boolean combinations of conditional events, $\operatorname{Free}\left(A \mid A^{\prime}\right)=\left(\operatorname{Free}\left(A \mid A^{\prime}\right), \sqcap, \sqcup, \sim, \perp^{*}, \mathrm{~T}^{*}\right)$; space of conditional events

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

1. Consider a finite Boolean algebra $\mathbf{A}=\langle A, \wedge, \vee, \neg, \perp, T\rangle$; space of (non-conditional) events $a, b, c \ldots$;
2. for $\mathbf{A}^{\prime}=\mathbf{A} \backslash\{\perp\}$, consider $\mathbf{A} \mid \mathbf{A}^{\prime}=\left\{(a \mid b): a \in \mathbf{A}, b \in \mathbf{A}^{\prime}\right\}$ the set of conditional events $(a \mid b),(a \mid c), \ldots$ read as "a given b", "a given c " etc.
3. consider all Boolean combinations of conditional events,
$\operatorname{Free}\left(A \mid A^{\prime}\right)=\left(\operatorname{Free}\left(A \mid A^{\prime}\right), \sqcap, \sqcup, \sim, \perp^{*}, \top^{*}\right)$; space of conditional events
4. impose some "rules of behavior" to those conditionals (laws of probability):
(C1) $(b \mid b) \equiv \mathbb{C} T^{*}$, for all $b \in A^{\prime}$;
(C2) $\left(a_{1} \mid b\right) \sqcap\left(a_{2} \mid b\right) \equiv \mathbb{C}\left(a_{1} \wedge a_{2} \mid b\right)$, for all $a_{1}, a_{2} \in A, b \in A^{\prime}$;
(C3) $\sim(a \mid b) \equiv \mathbb{C}(\neg a \mid b)$, for all $a \in A, b \in A^{\prime}$;
(C4) $(a \wedge b \mid b) \equiv_{\mathbb{C}}(a \mid b)$, for all $a \in A, b \in A^{\prime}$;
(C5) $(a \mid b) \sqcap(b \mid c) \equiv_{\mathbb{C}}(a \mid c)$, for all $a \in A, b, c \in A^{\prime}$ such that $a \leq b \leq c$.

Definition: Boolean Algebra of Conditionals (BAC)

The Boolean Algebra of Conditionals (BAC) of $\mathbf{A}, C(\mathbf{A})$, is the quotient structure:

$$
C(\mathbf{A})=\operatorname{Free}\left(A \mid A^{\prime}\right) / \equiv_{\mathbb{C}}=\left(C(A), \sqcap, \sqcup, \sim, \perp_{\mathbb{C}}, \top_{\mathbb{C}}\right)
$$

Boolean Algebras of Conditionals (BACs)

We recall basic notions and results from (Flaminio, Godo, and Hosni 2020).

1. Consider a finite Boolean algebra $\mathbf{A}=\langle A, \wedge, \vee, \neg, \perp, T\rangle$; space of (non-conditional) events $a, b, c \ldots$;
2. for $\mathbf{A}^{\prime}=\mathbf{A} \backslash\{\perp\}$, consider $\mathbf{A} \mid \mathbf{A}^{\prime}=\left\{(a \mid b): a \in \mathbf{A}, b \in \mathbf{A}^{\prime}\right\}$ the set of conditional events $(a \mid b),(a \mid c), \ldots$ read as "a given b", "a given c " etc.
3. consider all Boolean combinations of conditional events,
$\operatorname{Free}\left(A \mid A^{\prime}\right)=\left(\operatorname{Free}\left(A \mid A^{\prime}\right), \sqcap, \sqcup, \sim, \perp^{*}, \top^{*}\right)$; space of conditional events
4. impose some "rules of behavior" to those conditionals (laws of probability):
(C1) $(b \mid b) \equiv \mathbb{C} T^{*}$, for all $b \in A^{\prime}$;
(C2) $\left(a_{1} \mid b\right) \sqcap\left(a_{2} \mid b\right) \equiv \mathbb{C}\left(a_{1} \wedge a_{2} \mid b\right)$, for all $a_{1}, a_{2} \in A, b \in A^{\prime}$;
(C3) $\sim(a \mid b) \equiv \mathbb{C}(\neg a \mid b)$, for all $a \in A, b \in A^{\prime}$;
(C4) $(a \wedge b \mid b) \equiv_{\mathbb{C}}(a \mid b)$, for all $a \in A, b \in A^{\prime}$;
(C5) $(a \mid b) \sqcap(b \mid c) \equiv_{\mathbb{C}}(a \mid c)$, for all $a \in A, b, c \in A^{\prime}$ such that $a \leq b \leq c$.

Definition: Boolean Algebra of Conditionals (BAC)

The Boolean Algebra of Conditionals (BAC) of $\mathbf{A}, C(\mathbf{A})$, is the quotient structure:

$$
C(\mathbf{A})=\operatorname{Free}\left(A \mid A^{\prime}\right) / \equiv_{\mathbb{C}}=\left(C(A), \sqcap, \sqcup, \sim, \perp_{\mathbb{C}}, \top_{\mathbb{C}}\right)
$$

Boolean Algebras of Conditionals (BACs)

Given a Boolean algebra \mathbf{A}, consider $C(\mathbf{A})$:

- let $\alpha_{1}, \ldots, \alpha_{n}$ be the atoms of $\mathbf{A}, \operatorname{at}(\mathbf{A})=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; non-conditionals
- let $\omega_{1}, \ldots, \omega_{m}$ be the atoms of $C(\mathbf{A}), \operatorname{at}(C(\mathbf{A}))=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$; conditionals
- let $\operatorname{Seq}(\mathbf{A})$ be the permutations of $\operatorname{at}(\mathbf{A}), \operatorname{Seq}(\mathbf{A})=\left\{\left\langle\alpha^{1}, \ldots, \alpha^{n}\right\rangle: \alpha^{i} \in \operatorname{at}(\mathbf{A})\right\}$;

Boolean Algebras of Conditionals (BACs)

Given a Boolean algebra \mathbf{A}, consider $C(\mathbf{A})$:

- let $\alpha_{1}, \ldots, \alpha_{n}$ be the atoms of $\mathbf{A}, \operatorname{at}(\mathbf{A})=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; non-conditionals
- let $\omega_{1}, \ldots, \omega_{m}$ be the atoms of $C(\mathbf{A}), \operatorname{at}(C(\mathbf{A}))=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$; conditionals
- let $\operatorname{Seq}(\mathbf{A})$ be the permutations of $\operatorname{at}(\mathbf{A}), \operatorname{Seq}(\mathbf{A})=\left\{\left\langle\alpha^{1}, \ldots, \alpha^{n}\right\rangle: \alpha^{i} \in \operatorname{at}(\mathbf{A})\right\}$;

Atomic Structure of $C(\mathbf{A})$

Boolean Algebras of Conditionals (BACs)

Given a Boolean algebra \mathbf{A}, consider $C(\mathbf{A})$:

- let $\alpha_{1}, \ldots, \alpha_{n}$ be the atoms of $\mathbf{A}, \operatorname{at}(\mathbf{A})=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; non-conditionals
- let $\omega_{1}, \ldots, \omega_{m}$ be the atoms of $C(\mathbf{A}), \operatorname{at}(C(\mathbf{A}))=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$; conditionals
- let $\operatorname{Seq}(\mathbf{A})$ be the permutations of $\operatorname{at}(\mathbf{A}), \operatorname{Seq}(\mathbf{A})=\left\{\left\langle\alpha^{1}, \ldots, \alpha^{n}\right\rangle: \alpha^{i} \in \operatorname{at}(\mathbf{A})\right\}$;

Atomic Structure of $C(\mathbf{A})$

1. $\operatorname{at}(C(\mathbf{A}))$ is in one-to-one correspondence with $\operatorname{Seq}(\mathbf{A}): \operatorname{at}(C(\mathbf{A})) \mapsto \operatorname{Seq}(\mathbf{A})$; so if $|\operatorname{at}(\mathbf{A})|=n$, then $|\operatorname{at}(C(\mathbf{A}))|=n!$;

Boolean Algebras of Conditionals (BACs)

Given a Boolean algebra \mathbf{A}, consider $C(\mathbf{A})$:

- let $\alpha_{1}, \ldots, \alpha_{n}$ be the atoms of $\mathbf{A}, \operatorname{at}(\mathbf{A})=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; non-conditionals
- let $\omega_{1}, \ldots, \omega_{m}$ be the atoms of $C(\mathbf{A}), \operatorname{at}(C(\mathbf{A}))=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$; conditionals
- let $\operatorname{Seq}(\mathbf{A})$ be the permutations of $\operatorname{at}(\mathbf{A}), \operatorname{Seq}(\mathbf{A})=\left\{\left\langle\alpha^{1}, \ldots, \alpha^{n}\right\rangle: \alpha^{i} \in \operatorname{at}(\mathbf{A})\right\}$;

Atomic Structure of $C(\mathbf{A})$

1. $\operatorname{at}(C(\mathbf{A}))$ is in one-to-one correspondence with $\operatorname{Seq}(\mathbf{A}): \operatorname{at}(C(\mathbf{A})) \rightarrow \operatorname{Seq}(\mathbf{A})$; so if $|\operatorname{at}(\mathbf{A})|=n$, then $|\operatorname{at}(C(\mathbf{A}))|=n!$;
2. each permutation $\left\langle\alpha^{1}, \alpha^{2}, \ldots, \alpha^{n}\right\rangle$ gives rise to an atom $\omega \in \operatorname{at}(C(\mathbf{A}))$ via the following equation:

$$
\omega=\left(\alpha^{1} \mid T_{\mathbb{C}}\right) \sqcap\left(\alpha^{2} \mid \neg \alpha^{1}\right) \sqcap \cdots \sqcap\left(\alpha^{n} \mid \neg \alpha^{1} \wedge \cdots \wedge \alpha^{n-1}\right)
$$

Boolean Algebras of Conditionals (BACs)

Given a Boolean algebra \mathbf{A}, consider $C(\mathbf{A})$:

- let $\alpha_{1}, \ldots, \alpha_{n}$ be the atoms of $\mathbf{A}, \operatorname{at}(\mathbf{A})=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; non-conditionals
- let $\omega_{1}, \ldots, \omega_{m}$ be the atoms of $C(\mathbf{A}), \operatorname{at}(C(\mathbf{A}))=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$; conditionals
- let $\operatorname{Seq}(\mathbf{A})$ be the permutations of $\operatorname{at}(\mathbf{A}), \operatorname{Seq}(\mathbf{A})=\left\{\left\langle\alpha^{1}, \ldots, \alpha^{n}\right\rangle: \alpha^{i} \in \operatorname{at}(\mathbf{A})\right\}$;

Atomic Structure of $C(\mathbf{A})$

1. at $(C(\mathbf{A}))$ is in one-to-one correspondence with $\operatorname{Seq}(\mathbf{A}): \operatorname{at}(C(\mathbf{A})) \rightarrow \operatorname{Seq}(\mathbf{A})$; so if $|\operatorname{at}(\mathbf{A})|=n$, then $|\operatorname{at}(C(\mathbf{A}))|=n!$;
2. each permutation $\left\langle\alpha^{1}, \alpha^{2}, \ldots, \alpha^{n}\right\rangle$ gives rise to an atom $\omega \in \operatorname{at}(C(\mathbf{A}))$ via the following equation:

$$
\omega=\left(\alpha^{1} \mid \top_{\mathbb{C}}\right) \sqcap\left(\alpha^{2} \mid \neg \alpha^{1}\right) \sqcap \cdots \sqcap\left(\alpha^{n} \mid \neg \alpha^{1} \wedge \cdots \wedge \alpha^{n-1}\right)
$$

3. by 1 and 2 , each atom $\omega_{i} \in \operatorname{at}(C(\mathbf{A}))$ can be univocally identified with the permutation $\left\langle\alpha^{1}, \ldots, \alpha^{n}\right\rangle$ that induces ω_{i} (and viceversa);

Notation: $\omega[i]$ denotes the i-th element in the permutation identified with/that induces ω

Boolean Algebras of Conditionals - Example

- $\operatorname{at}\left(\mathbf{A}_{3}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} ;$
- $\operatorname{Seq}\left(\mathbf{A}_{3}\right)=\{$

$$
\begin{aligned}
& \left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \\
& \left\langle\alpha_{1}, \alpha_{3}, \alpha_{2}\right\rangle \\
& \left\langle\alpha_{2}, \alpha_{1}, \alpha_{3}\right\rangle \\
& \left\langle\alpha_{2}, \alpha_{3}, \alpha_{1}\right\rangle \\
& \left\langle\alpha_{3}, \alpha_{1}, \alpha_{2}\right\rangle \\
& \left\langle\alpha_{3}, \alpha_{2}, \alpha_{1}\right\rangle \\
& \}
\end{aligned}
$$

Boolean Algebras of Conditionals - Syntax \& Semantics

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let $\vdash_{\text {CPL }}$ denotes derivability in Classical Logic.

Boolean Algebras of Conditionals - Syntax \& Semantics

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let ${ }^{\circ}$ CPL denotes derivability in Classical Logic.
$\mathcal{L}^{L B C}$ is a language obtained by expanding \mathcal{L} with the conditional connective |:

- if φ, ψ are formulas of \mathcal{L} and $\Vdash_{C P L} \neg \varphi$, then $(\psi \mid \varphi)$ is a formula of $\mathcal{L}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}^{L B C}$.

Boolean Algebras of Conditionals - Syntax \& Semantics

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let ${ }^{C}$ CPL denotes derivability in Classical Logic.
$\mathcal{L}^{L B C}$ is a language obtained by expanding \mathcal{L} with the conditional connective |:

- if φ, ψ are formulas of \mathcal{L} and $\Vdash_{C P L} \neg \varphi$, then $(\psi \mid \varphi)$ is a formula of $\mathcal{L}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}^{L B C}$.

Semantics

- Let \mathbf{L} be the Lindenbaum Algebra \mathbf{L} of $C P L$ over \mathcal{L} and consider its BAC, $C(\mathbf{L})$.

Boolean Algebras of Conditionals - Syntax \& Semantics

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let $\vdash_{C P L}$ denotes derivability in Classical Logic.
$\mathcal{L}^{L B C}$ is a language obtained by expanding \mathcal{L} with the conditional connective \mid :

- if φ, ψ are formulas of \mathcal{L} and $\Vdash_{C P L} \neg \varphi$, then $(\psi \mid \varphi)$ is a formula of $\mathcal{L}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}^{L B C}$.

Semantics

- Let \mathbf{L} be the Lindenbaum Algebra \mathbf{L} of $C P L$ over \mathcal{L} and consider its BAC, $C(\mathbf{L})$.
- An interpretation of $\mathcal{L}^{L B C}$ is any $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$. Observe: any $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$ is a permutation of classical valuations of \mathcal{L}.

Boolean Algebras of Conditionals - Syntax \& Semantics

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let $\vdash_{C P L}$ denotes derivability in Classical Logic.
$\mathcal{L}^{L B C}$ is a language obtained by expanding \mathcal{L} with the conditional connective \mid :

- if φ, ψ are formulas of \mathcal{L} and $\Vdash_{C P L} \neg \varphi$, then $(\psi \mid \varphi)$ is a formula of $\mathcal{L}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}^{L B C}$.

Semantics

- Let \mathbf{L} be the Lindenbaum Algebra \mathbf{L} of $C P L$ over \mathcal{L} and consider its BAC, $C(\mathbf{L})$.
- An interpretation of $\mathcal{L}^{L B C}$ is any $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$. Observe: any $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$ is a permutation of classical valuations of \mathcal{L}.
- For all $\Phi \in \mathcal{L}^{L B C}$ we set: $\omega_{\mathbf{L}} \Vdash \Phi \Leftrightarrow \omega_{\mathbf{L}} \sqsubseteq \Phi^{C(L)}$

Boolean Algebras of Conditionals - Syntax \& Semantics

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let ${ }^{\text {CPL }}$ denotes derivability in Classical Logic.
$\mathcal{L}^{L B C}$ is a language obtained by expanding \mathcal{L} with the conditional connective |:

- if φ, ψ are formulas of \mathcal{L} and $\digamma_{C P L} \neg \varphi$, then $(\psi \mid \varphi)$ is a formula of $\mathcal{L}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}^{L B C}$.

Semantics

- Let \mathbf{L} be the Lindenbaum Algebra \mathbf{L} of $C P L$ over \mathcal{L} and consider its BAC, $C(\mathbf{L})$.
- An interpretation of $\mathcal{L}^{L B C}$ is any $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$. Observe: any $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$ is a permutation of classical valuations of \mathcal{L}.
- For all $\Phi \in \mathcal{L}^{L B C}$ we set: $\omega_{\mathbf{L}} \Vdash \Phi \Leftrightarrow \omega_{\mathbf{L}} \sqsubseteq \Phi^{C(\mathbf{L})}$

Proposition

Consider A and its BAC $C(\mathbf{A})$; for every conditional (a|b) in $C(\mathbf{A})$ and $\omega \in$ at $(C(\mathbf{A})$),

$$
\omega \sqsubseteq(a \mid b) \Leftrightarrow \exists j: \omega[j] \leq a \wedge b \text { and } \forall i<j, \omega[i] \not \leq b
$$

Boolean Algebras of Conditionals - Syntax \& Semantics

$$
\begin{array}{lll}
\hline \text { Hence we get: } & & \\
\omega_{\mathbf{L}} \Vdash(\varphi \mid \psi) & \Leftrightarrow & \text { The first (from the left) valuation in } \omega_{\mathbf{L}} \text { that makes } \psi \text { true } \\
& & \text { also makes } \varphi \text { true } \\
\omega_{\mathbf{L}} \Vdash \neg \Phi & \Leftrightarrow & \omega_{\mathbf{L}} \nVdash \Phi \\
\omega_{\mathbf{L}} \Vdash \Phi \wedge \Psi & \Leftrightarrow & \omega_{\mathbf{L}} \Vdash \Phi \text { and } \omega_{\mathbf{L}} \Vdash \Psi
\end{array}
$$

Boolean Algebras of Conditionals - Syntax \& Semantics

```
Hence we get:
    \(\omega_{\mathbf{L}} \Vdash(\varphi \mid \psi) \Leftrightarrow\) The first (from the left) valuation in \(\omega_{\mathbf{L}}\) that makes \(\psi\) true
        also makes \(\varphi\) true
    \(\omega_{\mathbf{L}} \Vdash \neg \Phi \quad \Leftrightarrow \quad \omega_{\mathbf{L}} \nVdash \Phi\)
    \(\omega_{\mathbf{L}} \Vdash \Phi \wedge \Psi \quad \Leftrightarrow \quad \omega_{\mathbf{L}} \Vdash \Phi\) and \(\omega_{\mathbf{L}} \Vdash \Psi\)
```


Example

Assume $v_{2}(\psi)=v_{2}(\varphi)=1, v_{1}(\varphi)=v_{1}(\psi)=0, v_{3}(\varphi)=0, v_{3}(\psi)=1$.

- $\omega_{\mathbf{L}}=\left\langle v_{1}, v_{2}, v_{3}, \ldots\right\rangle, \omega_{\mathbf{L}} \mathbb{I}(\varphi \mid \psi)$
- $\omega_{\mathbf{L}}=\left\langle\boldsymbol{v}_{1}, v_{3}, v_{2}, \ldots\right\rangle, \omega_{\mathbf{L}} \nVdash(\varphi \mid \psi)$

Boolean Algebras of Conditionals - Syntax \& Semantics

$$
\begin{array}{lll}
\text { Hence we get: } & & \\
& \begin{array}{lll}
\omega_{\mathbf{L}} \Vdash(\varphi \mid \psi) & \Leftrightarrow & \text { The first (from the left) valuation in } \omega_{\mathbf{L}} \text { that makes } \psi \text { true } \\
& & \text { also makes } \varphi \text { true } \\
\omega_{\mathbf{L}} \Vdash \neg \Phi & \Leftrightarrow & \omega_{\mathbf{L}} \Vdash \Phi \\
\omega_{\mathbf{L}} \Vdash \Phi \wedge
\end{array} \\
\end{array}
$$

Example

Assume $v_{2}(\psi)=v_{2}(\varphi)=1, v_{1}(\varphi)=v_{1}(\psi)=0, v_{3}(\varphi)=0, v_{3}(\psi)=1$.

- $\omega_{\mathbf{L}}=\left\langle v_{1}, v_{2}, v_{3}, \ldots\right\rangle, \omega_{\mathbf{L}} \Vdash(\varphi \mid \psi)$
- $\omega_{\mathbf{L}}=\left\langle v_{1}, v_{3}, v_{2}, \ldots\right\rangle, \omega_{\mathbf{L}} \nVdash(\varphi \mid \psi)$

Moreover, for $\Gamma \cup\{\Phi\} \subseteq \mathcal{L}^{L B C}$ we define logical consequence as:

$$
\left\ulcorner\models _ { L B C } \Phi \Leftrightarrow \text { for all interpretation } \omega _ { \mathbf { L } } \text { , if } \omega _ { \mathbf { L } } \Vdash \bigwedge \left\ulcorner\text {, then } \omega_{\mathbf{L}} \Vdash \Phi\right.\right.
$$

Lewis' Logic of Counterfactuals

Lewis' Logic of Counterfactuals

'If kangaroos had no tails, they would topple over' seems to mean something like this: in any possible state of affairs in which kangaroos have no tails, and which resembles our actual state of affairs as much as kangaroos having no tails permits it to, the kangaroos would topple over. I shall give a general analysis of counterfactual conditionals along these lines. (Lewis 1973b)

Lewis' Logic of Counterfactuals

'If kangaroos had no tails, they would topple over' seems to mean something like this: in any possible state of affairs in which kangaroos have no tails, and which resembles our actual state of affairs as much as kangaroos having no tails permits it to, the kangaroos would topple over. I shall give a general analysis of counterfactual conditionals along these lines. (Lewis 1973b)

Consider a classical language \mathcal{L} with finitely many $p, q, r \ldots$ propositional variables. Let -CPL denotes derivability in Classical Logic.
$\mathcal{L}^{\square \rightarrow}$ is a language obtained from \mathcal{L} by extending it with the counterfactual connective $\square \rightarrow$, where $\varphi \square \rightarrow \psi$ can be read as if φ were the case, then ψ would be the case. Formulas in $\mathcal{L}^{\square} \rightarrow$ are defined as:

- if φ, ψ are formulas of \mathcal{L} and $\xi_{C P L} \neg \varphi$, then $\varphi \square \rightarrow \psi, \varphi$ and ψ are formulas of \mathcal{L}^{\square};
- if A, B are formulas of $\mathcal{L}^{\square \rightarrow}$, then $\neg A$ and $A \wedge B$ are formulas of $\mathcal{L}^{\square \rightarrow ;}$
- nothing else is a formula of $\mathcal{L}^{\square \rightarrow}$.

Observe: we restrict to a fragment of the original Lewis' language of counterfactuals.

Lewis' Logic of Counterfactuals

Lewis' Logic of Counterfactuals

C1

Rules:

(MP) form φ and $\varphi \rightarrow \psi$ infer ψ
(DWC) if $\vdash\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right) \rightarrow \psi$ then $\vdash\left(\left(\delta \square \rightarrow \varphi_{1}\right) \wedge \cdots \wedge\left(\delta \square \rightarrow \varphi_{n}\right)\right) \rightarrow(\delta \square \rightarrow \psi)$

Axioms:

1. all (substitutions instances of) classical tautologies
2. $\varphi \square \varphi$
3. $((\varphi \square \rightarrow \psi) \wedge(\psi \square \varphi)) \rightarrow((\varphi \square \rightarrow \delta) \leftrightarrow(\psi \square \rightarrow \delta))$
4. $((\varphi \vee \psi) \square \rightarrow \varphi) \vee((\varphi \vee \psi) \square \rightarrow \psi) \vee(((\varphi \vee \psi) \square \rightarrow \delta) \leftrightarrow((\varphi \square \rightarrow \delta) \wedge(\psi \square \rightarrow \delta))$
5. $(\varphi \square \psi) \rightarrow(\varphi \rightarrow \psi)$
6. $(\varphi \wedge \psi) \rightarrow(\varphi \square \rightarrow \psi)$

Lewis defines: $\varphi \diamond \rightarrow \psi:=\neg(\varphi \square \rightarrow \neg \psi)$; consider the following extension of $\mathbf{C 1}$:

C1 ${ }^{+}$

All the rules and axioms of C1 plus: $\vdash(\varphi \square \rightarrow \psi) \rightarrow(\varphi \diamond \rightarrow)$

Lewis' Logic of Counterfactuals - Semantics

Definition: Sphere Model

A sphere model is a tuple $\Sigma=(1, \mathscr{S}, v)$ where:

- I is a non-empty set (of possible worlds);
- \mathscr{S} is a function $\mathscr{S}: I \rightarrow \wp(\wp(I))$ such that for each $i \in I, \mathscr{S}(i)$ is:
(S1) nested: for all $S, T \in \mathscr{S}(i)$, either $S \subseteq T$ or $T \subseteq S$;
(S2) non-empty: for all $S \in \mathscr{S}(i), i \in S$;
(S3) centered: either $\cup \mathscr{S}(i)=\emptyset$, or $\{i\} \in \mathscr{S}(i)$.
- v is a valuation function $v: \mathcal{P} \rightarrow \wp(I)$ that extends to compound formulas as follows:

$$
\begin{aligned}
& -v(\neg \Phi)=I \backslash v(\Phi), v(\Phi \wedge \Psi)=v(\Phi) \cap v(\Psi), v(\Phi \vee \Psi)=v(\Phi) \cup v(\Psi) \\
& -v(\psi \square \rightarrow \varphi)=\{i \in I \mid v(\psi) \cap \bigcup \mathscr{S}(i)=\emptyset, \text { or } \\
& \exists S \in \mathscr{S}(i)(\emptyset \neq(v(\psi) \cap S) \subseteq v(\varphi))\} ;
\end{aligned}
$$

Informally, $\varphi \square \psi$ is true at a world $i, i \Vdash \varphi \square \rightarrow \psi$, iff ψ is true at all the most similar worlds to i that make φ true.

Sphere Model - Example

$\mathscr{S}\left(X_{1}\right)=\{$
$\left\{X_{1}\right\}$
$\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right\}$
$\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right\}$
$\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}\right\}$
\}

if $v(p)=\left\{X_{5}\right\}$ and $v(q)=\left\{X_{5}, X_{6}\right\}$, then $X_{1} \Vdash p \square \rightarrow q$ since $X_{5} \Vdash p$ and $X_{5} \Vdash q$
$\mathscr{S}_{x_{1}}$ is

- non-empty;
- centered in $\left\{X_{1}\right\}$;
- nested: all members of $\mathscr{S}\left(X_{1}\right)$ are totally ordered by set-inclusion.

if $v(p)=\left\{X_{5}\right\}$ and $v(q)=\left\{X_{6}\right\}$, then
$X_{1} \nVdash p \square \rightarrow q$, since $X_{5} \Vdash p$ but $X_{5} \nVdash q$

Lewis' Logic of Counterfactuals

We define logical consequence as: for $\Gamma \cup\{A\} \subseteq \mathcal{L}^{\square \rightarrow}$,
$\Gamma \models{ }_{\mathrm{C} 1} A \Leftrightarrow$ for all the sphere models Σ, for all the worlds i in Σ, if $i \Vdash \Lambda \Gamma$ then $i \Vdash B$
Proposition - Soundness \& Completeness C1

$$
\Gamma \models c_{1} A \Leftrightarrow \Gamma \vdash_{C 1} A
$$

Lewis' Logic of Counterfactuals

We define logical consequence as: for $\Gamma \cup\{A\} \subseteq \mathcal{L}^{\square \rightarrow}$,
$\Gamma \models_{\mathrm{C} 1} A \Leftrightarrow$ for all the sphere models Σ, for all the worlds i in Σ, if $i \Vdash \Lambda \Gamma$ then $i \Vdash B$

Proposition - Soundness \& Completeness C1

$$
\Gamma \models_{\mathrm{c} 1} A \Leftrightarrow \Gamma \vdash_{\mathrm{c} 1} A
$$

Definition

A total sphere model is a sphere model (I, \mathscr{S}, v) such that for all formulas $\varphi \in \mathcal{L}$, if $\digamma_{C P L} \neg \varphi$ then

$$
\text { for all } i \in I, \bigcup \mathscr{S}(i) \cap v(\varphi) \neq \emptyset
$$

$$
\begin{aligned}
\Gamma \models_{\mathbf{c}^{+}} A \Leftrightarrow & \text { for all the total sphere models } \Sigma \text {, for all the worlds } i \text { in } \Sigma \\
& \text { if } i \Vdash \wedge \Gamma \text { then } i \Vdash B
\end{aligned}
$$

Proposition - Soundness \& Completeness C1

$$
\Gamma \models_{\mathbf{C 1}^{+}} A \Leftrightarrow \Gamma \vdash_{\mathbf{C 1}^{+}} A
$$

Modal BACs

Lewis Algebras

Lewis Algebras

Recall the BAC construction.

Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra \mathbf{A}, take its corresponding BAC $C(\mathbf{A})$;

Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra \mathbf{A}, take its corresponding BAC $C(\mathbf{A})$;
2. $\langle C(\mathbf{A}), \square\rangle$ is the space of modal conditional events, e.g. $\square(a \mid b), \square(a \mid b) \sqcap(c \mid d), \ldots$

Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra \mathbf{A}, take its corresponding BAC $C(\mathbf{A})$;
2. $\langle C(\mathbf{A}), \square\rangle$ is the space of modal conditional events, e.g. $\square(a \mid b), \square(a \mid b) \sqcap(c \mid d), \ldots$

Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra \mathbf{A}, take its corresponding BAC $C(\mathbf{A})$;
2. $\langle C(\mathbf{A}), \square\rangle$ is the space of modal conditional events, e.g. $\square(a \mid b), \square(a \mid b) \sqcap(c \mid d), \ldots$

Definition: Lewis Algebra

A Lewis algebra is a modal BAC $\mathcal{L}(\mathbf{A})=\langle C(\mathbf{A}), \square\rangle$ satisfying the following equations:

- $\mathrm{at}_{\mathbb{C}}=\mathrm{T}_{\mathbb{E}} ;$
- $\square(x \sqcap y)=\square x \sqcap \square y ;$
- (L1) $\square(a \mid T)=(a \mid T)$;
- (L2) $\square(a \mid a \vee b) \sqcup \square(b \mid a \vee b) \sqcup(\square(c \mid a \vee b) \Rightarrow \square((c \mid a) \sqcap(c \mid b)))=T_{\mathbb{C}}$

Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra \mathbf{A}, take its corresponding BAC $C(\mathbf{A})$;
2. $\langle C(\mathbf{A}), \square\rangle$ is the space of modal conditional events, e.g. $\square(a \mid b), \square(a \mid b) \sqcap(c \mid d), \ldots$

Definition: Lewis Algebra

A Lewis algebra is a modal BAC $\mathcal{L}(\mathbf{A})=\langle C(\mathbf{A}), \square\rangle$ satisfying the following equations:

- $\mathrm{at}_{\mathbb{C}}=\mathrm{T}_{\mathbb{E}} ;$
- $\square(x \sqcap y)=\square x \sqcap \square y ;$
- (L1) $\square(a \mid T)=(a \mid T)$;
- (L2) $\square(a \mid a \vee b) \sqcup \square(b \mid a \vee b) \sqcup(\square(c \mid a \vee b) \Rightarrow \square((c \mid a) \sqcap(c \mid b)))=T_{\mathbb{C}}$

Observe: from (L1) we derive $\square(a \mid b) \leq(a \rightarrow b \mid T)$ and $(a \wedge b \mid T) \leq \square(a \mid b)$

Lewis Algebras

Recall the BAC construction.

1. for a finite Boolean algebra \mathbf{A}, take its corresponding BAC $C(\mathbf{A})$;
2. $\langle C(\mathbf{A}), \square\rangle$ is the space of modal conditional events, e.g. $\square(a \mid b), \square(a \mid b) \sqcap(c \mid d), \ldots$

Definition: Lewis Algebra

A Lewis algebra is a modal BAC $\mathcal{L}(\mathbf{A})=\langle C(\mathbf{A}), \square\rangle$ satisfying the following equations:

- $\mathrm{at}_{\mathbb{C}}=\mathrm{T}_{\mathbb{E}} ;$
- $\square(x \sqcap y)=\square x \sqcap \square y ;$
- (L1) $\square(a \mid T)=(a \mid T)$;
- (L2) $\square(a \mid a \vee b) \sqcup \square(b \mid a \vee b) \sqcup(\square(c \mid a \vee b) \Rightarrow \square((c \mid a) \sqcap(c \mid b)))=T_{\mathbb{C}}$

Observe: from (L1) we derive $\square(a \mid b) \leq(a \rightarrow b \mid T)$ and $(a \wedge b \mid T) \leq \square(a \mid b)$
By Jónsson-Tarski duality, to each finite Lewis algebra $\mathcal{L}(\mathbf{A})$ we uniquely associate a dual frame $(\operatorname{at}(C(\mathbf{A})), R)$ where $R \subseteq \operatorname{at}(C(\mathbf{A})) \times \operatorname{at}(C(\mathbf{A}))$ is defined as:
$\forall \omega, \omega^{\prime} \in \operatorname{at}(C(\mathbf{A})), \omega \mathbf{R} \omega^{\prime}$ iff $\forall \mathrm{t} \in C(\mathbf{A})$ if $\omega \sqsubseteq \square \mathrm{t}$, then $\omega^{\prime} \sqsubseteq \mathrm{t}$

Modal BACs - Syntax \& Semantics

$\mathcal{L}_{\square}^{L B C}$ is a language obtained by expanding $\mathcal{L}^{L B C}$ with \square and where formulas are:

- if $(\varphi \mid \psi) \in \mathcal{L}^{L B C}$, then $\square(\varphi \mid \psi),(\varphi \mid \psi) \in \mathcal{L}_{\square}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}_{\square}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}_{\square}^{L B C}$.

Modal BACs - Syntax \& Semantics

$\mathcal{L}_{\square}^{L B C}$ is a language obtained by expanding $\mathcal{L}^{L B C}$ with \square and where formulas are:

- if $(\varphi \mid \psi) \in \mathcal{L}^{L B C}$, then $\square(\varphi \mid \psi),(\varphi \mid \psi) \in \mathcal{L}_{\square}^{L B C}$;
- if Φ, ψ are formulas of $\mathcal{L}_{\square}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}_{\square}^{L B C}$.

Semantics

Modal BACs - Syntax \& Semantics

$\mathcal{L}_{\square}^{L B C}$ is a language obtained by expanding $\mathcal{L}^{L B C}$ with \square and where formulas are:

- if $(\varphi \mid \psi) \in \mathcal{L}^{L B C}$, then $\square(\varphi \mid \psi),(\varphi \mid \psi) \in \mathcal{L}_{\square}^{L B C}$;
- if Φ, ψ are formulas of $\mathcal{L}_{\square}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}_{\square}^{L B C}$.

Semantics

- Consider any Lewis Algebra of the form ($C(\mathbf{L}), \square)$;

Modal BACs - Syntax \& Semantics

$\mathcal{L}_{\square}^{L B C}$ is a language obtained by expanding $\mathcal{L}^{L B C}$ with \square and where formulas are:

- if $(\varphi \mid \psi) \in \mathcal{L}^{L B C}$, then $\square(\varphi \mid \psi),(\varphi \mid \psi) \in \mathcal{L}_{\square}^{L B C}$;
- if Φ, ψ are formulas of $\mathcal{L}_{\square}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}_{\square}^{L B C}$.

Semantics

- Consider any Lewis Algebra of the form ($C(\mathbf{L}), \square)$;
- An interpretation of $\mathcal{L}_{\square}^{L B C}$ is the dual Kripke frame $\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ of any Lewis algebra ($C(\mathbf{L}), \square)$

Modal BACs - Syntax \& Semantics

$\mathcal{L}_{\square}^{L B C}$ is a language obtained by expanding $\mathcal{L}^{L B C}$ with \square and where formulas are:

- if $(\varphi \mid \psi) \in \mathcal{L}^{L B C}$, then $\square(\varphi \mid \psi),(\varphi \mid \psi) \in \mathcal{L}_{\square}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}_{\square}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}_{\square}^{L B C}$.

Semantics

- Consider any Lewis Algebra of the form ($C(\mathbf{L}), \square)$;
- An interpretation of $\mathcal{L}_{\square}^{L B C}$ is the dual Kripke frame $\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ of any Lewis algebra ($C(\mathbf{L}), \square)$
- For all $\Phi \in \mathcal{L}^{L B C}$ and all $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$ we set: $\omega_{\mathbf{L}} \Vdash \Phi \Leftrightarrow \omega_{\mathbf{L}} \sqsubseteq \Phi^{C(\mathbf{L})}$ Hence we get:

$$
\omega_{\mathbf{L}} \Vdash \square(\varphi \mid \psi) \Leftrightarrow \quad \text { for all } \omega_{\mathbf{L}}^{\prime}: \omega_{\mathbf{L}} R \omega_{\mathbf{L}}^{\prime}, \omega_{\mathbf{L}}^{\prime} \Vdash(\varphi \mid \psi)
$$

the remaining case are defined as usual

Modal BACs - Syntax \& Semantics

$\mathcal{L}_{\square}^{L B C}$ is a language obtained by expanding $\mathcal{L}^{L B C}$ with \square and where formulas are:

- if $(\varphi \mid \psi) \in \mathcal{L}^{L B C}$, then $\square(\varphi \mid \psi),(\varphi \mid \psi) \in \mathcal{L}_{\square}^{L B C}$;
- if Φ, Ψ are formulas of $\mathcal{L}_{\square}^{L B C}$, then $\neg \Phi$ and $\Phi \wedge \Psi$ are formulas of $\mathcal{L}^{L B C}$;
- nothing else is a formula of $\mathcal{L}_{\square}^{L B C}$.

Semantics

- Consider any Lewis Algebra of the form ($C(\mathbf{L}), \square)$;
- An interpretation of $\mathcal{L}_{\square}^{L B C}$ is the dual Kripke frame $\langle a t(C(\mathbf{L})), R\rangle$ of any Lewis algebra ($C(\mathbf{L}), \square)$
- For all $\Phi \in \mathcal{L}^{\mathrm{LBC}}$ and all $\omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L}))$ we set: $\omega_{\mathbf{L}} \Vdash \Phi \Leftrightarrow \omega_{\mathbf{L}} \sqsubseteq \Phi^{C(\mathbf{L})}$ Hence we get:

$$
\omega_{\mathbf{L}} \Vdash \square \square(\varphi \mid \psi) \Leftrightarrow \quad \text { for all } \omega_{\mathbf{L}}^{\prime}: \omega_{\mathbf{L}} R \omega_{\mathbf{L}}^{\prime}, \omega_{\mathbf{L}}^{\prime} \Vdash(\varphi \mid \psi)
$$ the remaining case are defined as usual

For every $\mathcal{L}_{\square}^{L B C}$ interpretation $\mathcal{F}=\langle\operatorname{at}(C(\mathbf{L})), R\rangle$, for $\Gamma \cup\{\Phi\} \subseteq \mathcal{L}_{\square}^{L B C}$, we set:

$$
\begin{array}{lll}
\mathcal{F} \models \Phi & \Leftrightarrow & \text { for all } \omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L})), \omega_{\mathbf{L}} \Vdash \Phi \\
\Gamma \models_{L B C \square} \Phi & \Leftrightarrow & \text { for all } \mathcal{L}_{\square}^{L B C} \text { interpretation }\left\langle\operatorname{at}(C(\mathbf{L})), \text { for all } \omega_{\mathbf{L}} \in \operatorname{at}(C(\mathbf{L})),\right. \\
& & \text { if } \omega_{\mathbf{L}} \Vdash \wedge^{\wedge} \Gamma^{\prime} \text {, then } \omega_{\mathbf{L}} \Vdash \Phi
\end{array}
$$

Duality

Lewis Frames - Characterization

Lewis Frames - Characterization

We study the properties of the dual frames of Lewis algebras:

Lewis Frames - Characterization

We study the properties of the dual frames of Lewis algebras:

$$
\begin{aligned}
& \text { Observe: by Jónsson-Tarski duality, every } \mathcal{L}_{\square}^{L B C} \text { interpretation validates the following } \\
& \text { (dual of (L1)) } \\
& L 1^{*} \square(\varphi \mid T) \leftrightarrow(\varphi \mid T) \\
& L 2^{*} \quad \square(\varphi \mid \varphi \vee \psi) \vee \square(\psi \mid \varphi \vee \psi) \vee(\square(\delta \mid \varphi \vee \psi) \leftrightarrow \square((\delta \mid \varphi) \wedge(\delta \mid \psi)) \text {) (dual of (L2)) }
\end{aligned}
$$

Lewis Frames - Characterization

We study the properties of the dual frames of Lewis algebras:
Observe: by Jónsson-Tarski duality, every $\mathcal{L}_{\square}^{L B C}$ interpretation validates the following
$L 1^{*} \square(\varphi \mid T) \leftrightarrow(\varphi \mid T)$ (dual of (L1))
$L^{*} \quad \square(\varphi \mid \varphi \vee \psi) \vee \square(\psi \mid \varphi \vee \psi) \vee(\square(\delta \mid \varphi \vee \psi) \leftrightarrow \square((\delta \mid \varphi) \wedge(\delta \mid \psi)))$ (dual of (L2))

Proposition

Let $\mathcal{F}=\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ be a $\mathcal{L}_{\square}^{L B C}$ interpretation:

$$
\mathcal{F} \models L 1^{*} \quad \Leftrightarrow \quad \& \begin{cases}\forall \omega \exists \omega^{\prime}\left(\omega R \omega^{\prime}\right) & \text { (Seriality) } \\ \forall \omega, \omega^{\prime}\left(\omega R \omega^{\prime} \rightarrow\left(\omega[1]=\omega^{\prime}[1]\right)\right) & \text { (Centering) }\end{cases}
$$

Lewis Frames - Characterization

We study the properties of the dual frames of Lewis algebras:
Observe: by Jónsson-Tarski duality, every $\mathcal{L}_{\square}^{L B C}$ interpretation validates the following
$L 1^{*} \quad \square(\varphi \mid T) \leftrightarrow(\varphi \mid T)$ (dual of (L1))
$L^{*} \quad \square(\varphi \mid \varphi \vee \psi) \vee \square(\psi \mid \varphi \vee \psi) \vee(\square(\delta \mid \varphi \vee \psi) \leftrightarrow \square((\delta \mid \varphi) \wedge(\delta \mid \psi)))$ (dual of (L2))

Proposition

Let $\mathcal{F}=\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ be a $\mathcal{L}_{\square}^{L B C}$ interpretation:

$$
\mathcal{F} \models L 1^{*} \quad \Leftrightarrow \quad \& \begin{cases}\forall \omega \exists \omega^{\prime}\left(\omega R \omega^{\prime}\right) & \text { (Seriality) } \\ \forall \omega, \omega^{\prime}\left(\omega R \omega^{\prime} \rightarrow\left(\omega[1]=\omega^{\prime}[1]\right)\right) & \text { (Centering) }\end{cases}
$$

(Centering) : - all the accessible worlds/permutations begin with the same element - dual of Centered system of spheres

Lewis Frames - Characterization

Proposition

Let $\mathcal{F}=\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ be a $\mathcal{L}_{\square}^{L B C}$ interpretation:

$$
\mathcal{F} \vDash L 2^{*} \quad \Leftrightarrow \mathcal{F} \text { has the property of Sphericity }
$$

Lewis Frames - Characterization

Proposition

Let $\mathcal{F}=\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ be a $\mathcal{L}_{\square}^{L B C}$ interpretation:

$$
\mathcal{F} \vDash L 2^{*} \quad \Leftrightarrow \mathcal{F} \text { has the property of Sphericity }
$$

In order to understand the meaning of Sphericity, a more intricate and a peculiar construction is needed. The intuitive idea is that Sphericity induces a certain structure of $R[\omega]=\left\{\omega^{\prime} \mid \omega R \omega^{\prime}\right\}$ that allows us to extrapolate sphere models.

Lewis Frames - Characterization

Proposition

Let $\mathcal{F}=\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ be a $\mathcal{L}_{\square}^{L B C}$ interpretation:

$$
\mathcal{F} \vDash L 2^{*} \quad \Leftrightarrow \mathcal{F} \text { has the property of Sphericity }
$$

In order to understand the meaning of Sphericity, a more intricate and a peculiar construction is needed. The intuitive idea is that Sphericity induces a certain structure of $R[\omega]=\left\{\omega^{\prime} \mid \omega R \omega^{\prime}\right\}$ that allows us to extrapolate sphere models.

Non-Spheric

Spheric

Lewis Frame - Characterization

Consider a $\mathcal{L}_{\square}^{L B C}$ interpretation $\langle\operatorname{at}(C(\mathbf{L})), R\rangle$. Let $\mathbf{R}_{k, n}^{\omega}$ be the $k \times n$-matrix whose ith raw is a certain $\omega_{\mathbf{L}} \in R[\omega]$. We may refer to $\mathbf{R}_{k, n}^{\omega}$ as the matrix generated by $R[w]$.

Proposition - Sphericity

A $\mathcal{L}_{\square}^{L B C}$ interpretation $\langle\operatorname{at}(C(\mathbf{L})), R\rangle$ has the Sphericity property iff for all $\omega \in \operatorname{at}(C(\mathbf{L}))$ there exists a spheric partition of $\mathbf{R}_{k, n}^{\omega}$
(

From Lewis Frames to Sphere Models... - Example

From every $\mathcal{L}_{\square}^{L B C}$ interpretation we can extrapolate a sphere model preserving validity. We employ the sphericity and centering properties of Lewis frames.

$$
\mathscr{S}\left(\alpha_{1}\right)=
$$

...and back - Example

Given a sphere model (I, \mathscr{S}, v), for each $i \in I$, we define a binary relation $<_{i} \subseteq I \times I$ such that
$j<_{i} k$ iff for all $S \in \mathscr{S}(i)$, if $k \in S$, then $j \in S$
From every total sphere model we can extrapolate a $\mathcal{L}_{\square}^{L B C}$ interpretation preserving validity. We employ the totality condition and the definition of $<_{i}$.

$\left\langle\alpha_{1}\right.$	α_{2}	α_{3}	α_{4}	α_{5}	$\left.\alpha_{6}\right\rangle$
$\left\langle\alpha_{1}\right.$	α_{3}	α_{2}	α_{4}	α_{6}	$\left.\alpha_{5}\right\rangle$
$\left\langle\alpha_{1}\right.$	α_{4}	α_{2}	α_{3}	α_{5}	$\left.\alpha_{6}\right\rangle$
$\left\langle\alpha_{1}\right.$	α_{2}	α_{4}	α_{3}	α_{5}	$\left.\alpha_{6}\right\rangle$
	1	1	1	\vdots	\vdots

Counterfactuals as Modal Conditionals

Observe: two languages

1. $\mathcal{L}_{\square}^{L B C}:$ Modal Conditionals $\square(\psi \mid \varphi)$ (and Boolean combinations of those);
2. $\mathcal{L}^{\square \rightarrow}$: Classical formulas + counterfactuals $\varphi \square \rightarrow \psi$ (and Boolean combinations of those)

Definition

We can translate $\mathcal{L}^{\rightarrow}$ into $\mathcal{L}_{\square}^{\text {LBC }}$:

- if φ is a formula in $\mathcal{L}, \tau(\varphi)=\square(\varphi \mid T)=(\varphi \mid T)$ by $(L 1)$
- if φ is $\psi \square \rightarrow \delta, \tau(\psi \square \rightarrow \delta)=\square(\delta \mid \psi)$
- if φ is a Boolean combination $\neg \psi, \psi \wedge \delta, \tau(\neg \psi)=\neg \tau(\psi), \tau(\psi \wedge \delta)=\tau(\psi) \wedge \tau(\delta)$

Counterfactuals as Modal Conditionals

The fact that we can go from $\mathcal{L}_{\square}^{L B C}$ interpretation to total sphere models and back preserving validity allows us to prove the following result

Theorem

For all $\varphi \in \mathcal{L}^{\square \longrightarrow}$,

$$
\Gamma \models_{C 1^{+}} \varphi \Leftrightarrow \tau[\Gamma] \models_{L B C^{\square}} \tau(\varphi)
$$

and in particular

$$
\models_{C 1^{+}} \varphi \square \rightarrow \psi \Leftrightarrow \models_{\angle B C} \square(\psi \mid \varphi)
$$

Counterfactuals as Modal Conditionals

The fact that we can go from $\mathcal{L}_{\square}^{L B C}$ interpretation to total sphere models and back preserving validity allows us to prove the following result

Theorem

For all $\varphi \in \mathcal{L}^{\square \rightarrow}$,

$$
\Gamma \models_{C 1^{+}} \varphi \Leftrightarrow \tau[\Gamma] \models_{L B C^{\square}} \tau(\varphi)
$$

and in particular

$$
\models_{C 1+} \varphi \square \rightarrow \psi \Leftrightarrow \models_{\angle B C} \square(\psi \mid \varphi)
$$

Counterfactuals can be interpreted as "necessary" conditionals

Observation

The counterfactual cannot be any strict conditional.
(Lewis 1973b)
A strict conditional is $\square(\varphi \rightarrow \psi)$ where \rightarrow is classical implication:
$\varphi \square \rightarrow \psi \not \equiv \square(\varphi \rightarrow \psi)$
if we take the non-classical implication "|" obeying the laws of conditional probability, then a counterfactual can be interpreted as a conditional with a \square in front:
$\varphi \square \rightarrow \psi \equiv \square(\psi \mid \varphi)$

Probability

Probability of Conditionals

Proposition

Any positive probability $P: A \rightarrow[0,1]$ naturally extends to a positive probability $\mu_{P}: C(\mathbf{A}) \rightarrow[0,1]$ such that: for $\omega=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in \operatorname{at}(C(\mathbf{A}))$,

$$
\mu_{P}\left(\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle\right)=P\left(\alpha_{1}\right) \times \frac{P\left(\alpha_{2} \wedge \neg \alpha_{1}\right)}{P\left(\neg \alpha_{1}\right)} \times \ldots
$$

and moreover

$$
\mu_{P}(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

Probability of Conditionals

Proposition

Any positive probability $P: A \rightarrow[0,1]$ naturally extends to a positive probability $\mu_{P}: C(\mathbf{A}) \rightarrow[0,1]$ such that: for $\omega=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in \operatorname{at}(C(\mathbf{A}))$,

$$
\mu_{P}\left(\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle\right)=P\left(\alpha_{1}\right) \times \frac{P\left(\alpha_{2} \wedge \neg \alpha_{1}\right)}{P\left(\neg \alpha_{1}\right)} \times \ldots
$$

and moreover

$$
\mu_{P}(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

Inside the framework of BACs, the probablity of a conditional, amounts to the corresponding conditional probability.

Probability of Conditionals

Proposition

Any positive probability $P: A \rightarrow[0,1]$ naturally extends to a positive probability $\mu_{P}: C(\mathbf{A}) \rightarrow[0,1]$ such that: for $\omega=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in \operatorname{at}(C(\mathbf{A}))$,

$$
\mu_{P}\left(\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle\right)=P\left(\alpha_{1}\right) \times \frac{P\left(\alpha_{2} \wedge \neg \alpha_{1}\right)}{P\left(\neg \alpha_{1}\right)} \times \ldots
$$

and moreover

$$
\mu_{P}(a \mid b)=\frac{P(a \wedge b)}{P(b)}
$$

Inside the framework of BACs, the probablity of a conditional, amounts to the corresponding conditional probability.

What happens to the probability of counterfactuals?

Belief Functions

Belief Functions

Belief Functions

- The theory of Belief Functions (Dempster-Schafer Theory) is a formal framework to reason about and model epistemic uncertainty. It generalizes the standard Bayesian framework.

Belief Functions

- The theory of Belief Functions (Dempster-Schafer Theory) is a formal framework to reason about and model epistemic uncertainty. It generalizes the standard Bayesian framework.
- In general, belief functions are used as a way to model uncertainty where imprecision, or lack of knowledge has to be modeled explicitly.
(The Belief Functions and Applications Society)

Belief Functions

- The theory of Belief Functions (Dempster-Schafer Theory) is a formal framework to reason about and model epistemic uncertainty. It generalizes the standard Bayesian framework.
- In general, belief functions are used as a way to model uncertainty where imprecision, or lack of knowledge has to be modeled explicitly. Functions and Applications Society)
- Masses, m, are assigned to sets of possibilities $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ rather than single events $\left\{w_{1}\right\},\left\{w_{2}\right\} \ldots$: their appeal rests on the fact they naturally encode evidence in favor of propositions. $\operatorname{Bel}(A)$ is the degree to which the available evidence supports A.

Belief Functions

- The theory of Belief Functions (Dempster-Schafer Theory) is a formal framework to reason about and model epistemic uncertainty. It generalizes the standard Bayesian framework.
- In general, belief functions are used as a way to model uncertainty where imprecision, or lack of knowledge has to be modeled explicitly. Functions and Applications Society)
- Masses, m, are assigned to sets of possibilities $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ rather than single events $\left\{w_{1}\right\},\left\{w_{2}\right\} \ldots$: their appeal rests on the fact they naturally encode evidence in favor of propositions. $\operatorname{Bel}(A)$ is the degree to which the available evidence supports A.

- $P\left(w_{1}\right)+P\left(\left\{w_{2}\right\}\right)+P\left(\left\{w_{3}\right\}\right)=1$
- $P\left(\left\{w_{1}, w_{2}\right\}\right)=P\left(\left\{w_{1}\right\}\right)+P\left(w_{2}\right)$

- $\sum_{Y \subseteq\left\{w_{1}, w_{2}, w_{3}\right\}} m(Y)=1$
- $\operatorname{Bel}\left(\left\{w_{1}, w_{2}\right\}\right)=$

$$
m\left(\left\{w_{1}\right\}\right)+m\left(\left\{w_{2}\right\}\right)+m\left(\left\{w_{1}, w_{2}\right\}\right)
$$

Belief Functions from Modal Algebras

Belief Functions from Modal Algebras

A belief function Bel on a Boolean algebra \mathbf{A} is a function $\mathrm{Bel}: \mathbf{A} \rightarrow[0,1]$ such that:

1. $\operatorname{Bel}(T)=1, \operatorname{Bel}(\perp)=0$
2. $\operatorname{Bel}\left(a_{1} \vee \cdots \vee a_{n}\right) \geq \sum_{i=1}^{n} \operatorname{Bel}\left(a_{i}\right)-\sum_{j<k} \operatorname{Bel}\left(a_{j} \wedge a_{k}\right)+\cdots+(-1)^{n+1} \operatorname{Bel}\left(a_{1} \wedge \cdots \wedge a_{n}\right)$ e.g. $\operatorname{Bel}(A \cup B) \geq \operatorname{Bel}(A)+\operatorname{Bel}(B)-\operatorname{Bel}(A \cap B)$.

A mass function m over a Boolean Algebra $\mathbf{A}, m: \mathbf{A} \rightarrow[0,1]$, is such that:

1. $m(\perp)=0$
2. $\sum_{a \in A} m(a)=1$
we can define a Belief function on $\mathbf{A}, \mathrm{Bel}_{m}: \mathbf{A} \rightarrow[0,1]$, as follows:

$$
\operatorname{Bel}_{m}(a)=\sum_{b \leq a} m(b)
$$

By the results in (Harmanec, G. Klir, and Wang 1996), (Harmanec, G. J. Klir, and Resconi 1994), connecting belief functions and modal logic, we can show the following:

Belief Functions, Modal Algebras and Kripke Frames

Proposition

Consider a Kripke frame $\langle W, R\rangle$, its dual modal algebra $\langle\wp(W), \square\rangle$ and a probability $P: \wp(W) \rightarrow[0,1]$. we have that:

$$
\begin{gather*}
m_{p}(X)=\sum_{R[w]=X} P(w) \text { is a mass function on } \wp(W) \tag{1}\\
\operatorname{Bel}_{P}(X)=\sum_{Y \subseteq X} m_{P}(Y)=\sum_{W \Vdash \square X} P(w)=P(\square X) \text { is a Belief function on } \wp(W) \tag{2}
\end{gather*}
$$

Proposition

Consider a Lewis algebra $\langle C(\mathbf{A})$, $\square\rangle$, its dual Lewis frame $\langle\operatorname{at}(C(\mathbf{A})$), $R\rangle$, a probability $P: \mathbf{A} \rightarrow[0,1]$, and its extension to $C(\mathbf{A}) \mu_{P}: C(\mathbf{A}) \rightarrow[0,1]$. We get that:

$$
\mu_{P}(\square(a \mid b))=\sum_{\omega \sqsubseteq \square(a \mid b)} \mu_{P}(\omega)=B e l_{\mu_{P}}(a \mid b)
$$

The probability of a counterfactual amounts to the belief of its corresponding conditional.

Probability of Counterfactuals

Probability of Counterfactuals

The results above transfer to sphere models.

Probability of Counterfactuals

The results above transfer to sphere models.
Given a sphere model $\langle I, \mathscr{S}, v\rangle$, and a probability distribution $P: I \rightarrow[0,1]$ on I, we can assign to each formula φ a probability:

$$
P(\varphi)=\sum_{i-\varphi} P(i)
$$

Probability of Counterfactuals

The results above transfer to sphere models.
Given a sphere model $\langle I, \mathscr{S}, v\rangle$, and a probability distribution $P: I \rightarrow[0,1]$ on I, we can assign to each formula φ a probability:

$$
P(\varphi)=\sum_{i+\varphi} P(i)
$$

Little attention has been given to the question of how to interpret $P(\varphi \square \rightarrow \psi)=$ $\sum_{\text {ir } \varphi \square \rightarrow \psi} P(i)$

Probability of Counterfactuals

The results above transfer to sphere models.
Given a sphere model $\langle I, \mathscr{S}, v\rangle$, and a probability distribution $P: I \rightarrow[0,1]$ on I, we can assign to each formula φ a probability:

$$
P(\varphi)=\sum_{\mathrm{i}-\varphi} P(i)
$$

Little attention has been given to the question of how to interpret $P(\varphi \square \rightarrow \psi)=$ $\sum_{\text {ir } \varphi \square \rightarrow \psi} P(i)$

More attention has been dedicated to finding a method to calculate counterfactual probability, i.e. the probability that [consequent] would happen given that [antecedent] were the case.
E.g. Lewis' Imaging (Lewis 1973b), interventionist counterfactuals Pearl 2000).

Probability of Counterfactuals - Lewis' Imaging

Given a sphere model $\langle I, \mathscr{S}, v\rangle$, and a probability distribution $P: I \rightarrow[0,1]$ on I, one can define $P(\varphi \square \rightarrow \psi)=P_{\varphi}(\psi)$ where P_{φ} is a new probability obtained from P by imaging on φ such that $P(\varphi)=1$, i.e. φ were the case.

if $X_{1} \nVdash \varphi$, then:

- $P_{\varphi}\left(X_{1}\right)=0$
- X_{1} transfers its mass to its closest worlds making φ true

$$
P(\varphi \square \rightarrow \psi)=P_{\varphi}(\psi)=\sum_{i \Vdash \psi} P_{\varphi}(i)
$$

Probability of Counterfactuals

Consider $\varphi \square \rightarrow \psi$; Dubois (1994) proposes that instead of transferring mass to single worlds, we can redistribute the lost mass to the entire set of closest worlds, so defining a mass function $m_{\varphi}: \wp(I) \rightarrow[0,1]$ such that $\sum_{Y \subseteq v(\varphi)} m_{\varphi}(Y)=1$.

We formalize Dubois' intution

For $Y \in \wp(I)$, we can define:

$$
\begin{gathered}
m_{\varphi}(Y)=\sum_{\operatorname{Clos}_{\varphi}(i)=Y} P(i) \\
\operatorname{Bel}_{\varphi}(\psi)=\sum_{Y \subseteq V(\psi)} m_{\varphi}(Y)=\sum_{i i \vdash \varphi \square \rightarrow \psi} P(i) \\
=P(\varphi \square \rightarrow \psi)
\end{gathered}
$$

We can interpret $P(\varphi \square \rightarrow \psi)$ as the Belief of ψ given φ

Conclusions

Summing up

We introduced a novel framework to analyze conditional events, their logic and their probability.

1. we have expanded the framework of BACs to the modal case by introducing Lewis algebras and their dual Lewis frames;
2. we have analyzed the properties of this algebraic structures and characterized the class of Lewis frames;
3. we have proved soundness and completeness of $\mathbf{C 1}{ }^{+}$with respect to Lewis Algebras/Lewis Frames;
4. we have provided an interpretation of counterfactual in terms of necessary conditionals;
5. we have analyzed the probability of counterfactuals in terms of Belief functions.

To do:

1. How to interpret the $\left.\operatorname{Belief}^{\operatorname{Bel}}\right|_{\varphi}(\psi)$ (conditional belief?)
2. Study the logics arising from this framework (weaker/stronger than C1)
3. Philosophical interpretation of the modal operator $\square(\varphi \mid \psi)$
4. Philosophical justification of this framework to analyze conditional events.

Conclusions

Thank You!

References i

- Barbero, Fausto and Gabriel Sandu (Dec. 2020). "Team Semantics for Interventionist Counterfactuals: Observations vs. Interventions". In: Journal of Philosophical Logic 50.3, pp. 471-521. Dol: 10.1007/s10992-020-09573-6.
圊 Blackburn, Patrick, Maarten de Rijke, and Yde Venema (June 2001). Modal Logic. Cambridge University Press. doו: 10.1017/cbo9781107050884.

Bradley, Richard B. (2021). "Probabilities of Counterfactuals". In: Argumenta 2.6, pp. 179-193.
囯 Briggs, Rachael (May 2012). "Interventionist counterfactuals". In:
Philosophical Studies 160.1, pp. 139-166. dol:
10.1007/s11098-012-9908-5.

References if

固 Ciardelli, Ivano, Linmin Zhang, and Lucas Champollion (2018). "Two Switches in the Theory of Counterfactuals: A Study of Truth Conditionality and Minimal Change". In: Linguistics and Philosophy 6. dol: 10.1007/s10988-018-9232-4.
Davey, B. A. and H. A. Priestley (Apr. 2002). Introduction to Lattices and Order. Cambridge University Press. Dol:
10.1017/cbo9780511809088.

Dempster, A. P. (1968). "A Generalization of Bayesian Inference".
In: Journal of the Royal Statistical Society. Series B (Methodological) 30.2, pp. 205-247. Issn: 00359246. URL: http://www.jstor.org/stable/2984504 (visited on 05/10/2022).
D Dubois, Didier and Henri Prade (1994). "A survey of belief revision and updating rules in various uncertainty models". In: International Journal of Intelligent Systems 9.1, pp. 61-100. do: 10.1002/int. 4550090105.

References iii

Egré, Paul and Hans Rott (2021). "The Logic of Conditionals". In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter 2021. Metaphysics Research Lab, Stanford University.
Elaminio, Tommaso, Lluis Godo, and Hykel Hosni (2020). "Boolean Algebras of Conditionals, Probability and Logic". In: Artificial Intelligence 286.
E Galles, David and Judea Pearl (1998). "An Axiomatic Characterization of Causal Counterfactuals". In: Foundations of Science 3.1, pp. 151-182. dol: 10.1023/a: 1009602825894.
围 Halmos, Paul and Steven Givant (2009). Introduction to Boolean Algebras. Springer New York. dol: 10.1007/978-0-387-68436-9.
Halpern, Joseph Y. (2000). "Axiomatizing Causal Reasoning". In: Journal of Artificial Intelligence Research 12, pp. 317-337.

- (2013). "From Causal Models to Counterfactual Structures".

In: Review of Symbolic Logic 6.2, pp. 305-322.

References iv

Harmanec, David, George Klir, and Zhenyuan Wang (1996). "Modal Logic Interpretation of Dempster-Shafer Theory: An Infinite Case". In: International Journal of Approximate Reasoning 14.2-3, pp. 81-93.

R Harmanec, David, George J. Klir, and Germano Resconi (1994). "On modal logic interpretation of Dempster-Shafer theory of evidence". In: International Journal of Intelligent Systems 9.10, pp. 941-951. Dol: https://doi.org/10.1002/int. 4550091003. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ int.4550091003. URL: https://onlinelibrary.wiley.com/doi/ abs/10.1002/int. 4550091003.
Kratzer, Angelika (1979). "Conditional Necessity and Possibility". In: Semantics From Different Points of View. Ed. by Rainer Bäuerle, Urs Egli, and Arnim von Stechow. Springer Verlag, pp. 117-147.

References v

Rewis, David (1971a). "Completeness and Decidability of Three Logics of Counterfactual Conditionals". In: Theoria 37.1, pp. 74-85.

- (1971b). "Completeness and Decidability of Three Logics of Counterfactual Conditionals". In: Theoria 37.1, pp. 74-85. doו: 10.1111/j.1755-2567.1971.tb00061.x.
- (1973a). "Causation". In: Journal of Philosophy 70.17, pp. 556-567. doו: 10.2307/2025310.
- (1973b). Counterfactuals. Blackwell.
(Nute, Donald (1980). Topics in Conditional Logic. Boston, MA, USA: Reidel.
(Ono, Hiroakira (2019). Proof Theory and Algebra in Logic. Singapore: Springer Singapore.
國 Pearl, Judea (2000). Causality. Cambridge University Press.

References vi

固 Schulz，Katrin（Sept．2010）．＂IIf you＇d wiggled A，then B would＇ve changed＇＂．In：Synthese 179．2，pp．239－251．doו： 10．1007／s11229－010－9780－9．
軎 Shafer，Glenn（Dec．1976）．A Mathematical Theory of Evidence． Princeton University Press．DoI：10．1515／9780691214696．
Stalnaker，Robert C．（1968）．＂A Theory of Conditionals＂．In：IFS． Springer Netherlands，pp．41－55．doו：
10．1007／978－94－009－9117－0＿2．
围 Veltman，F．J．M．M．（1976）．＂Prejudices，Presuppositions，and the Theory of Counterfactuals＂．In：Amsterdam Papers in Formal Grammar．Ed．by J．Groenendijk et al．Vol．1．Amsterdam： Centrale Interfaculteit，Universiteit van Amsterdam，pp．248－282．
E Weiss，Yale（2019）．Frontiers in Conditional Logic．

