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Qualitative probability

An approach to (foundations of) probability, taking comparisons of events
as a primitive notion.

α ⊴ β I find α less likely than β

Arguably more realistic basis for representing uncertainty.
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De Finetti axioms (De Finetti, 1931)

Definition (qualitative probability)

(A,⊴) is a qualitative probability if A is a boolean algebra and

1 ⊴ is a total preorder over A;

2 ⊥ ◁⊤;

3 if α ⊑ β then α ⊴ β and

4 if α ∧ γ = ⊥ and β ∧ γ = ⊥ then

α ⊴ β if and only if α ∨ γ ⊴ β ∨ γ.
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From qualitative to quantitative probability

Definition ( Representability)

A qualitative probability (A,⊴) is said to be :

almost representable if there exists a finitely additive probability P
such that α ⊴ β implies P(α) ≤ P(β).

representable if there exists a finitely additive probability P such that
α ⊴ β iff P(α) ≤ P(β);

Not all qualitative probabilities are representable (Kraft C., Pratt J., and
Seidenberg A., 1959).
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Two problems

Qualitative probabilities are based on classical logic/Boolean algebras,
and they inherit its computational untractability.

To obtain representability one need to add further, less intuitive
axioms. In particular (Savage, 1972) requires that a qualitative
probability allows for arbitrarily fine-grained comparisons.

More
precisely:

Definition

A qualitative probability (A,⊴) is said to be fine if, for any α ∈ A such
that ⊥ ◁ α, there exists a partition β1, . . . , βn of A such that βi ◁ α for
each i = 1, . . . , n.
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Depth-bounded Boolean logics

We base our construction on the hierarchy {⊢k}k∈N of Depth-bounded
Boolean logics (D’Agostino, Finger, and Gabbay, 2013).

k is a parameter capturing the maximum nested use of hypothetical
information allowed, ⊢0 does not allow for any use of hypothetical
information.
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0-depth: the logic of actual information
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0-depth: the logic of actual information

p ⊢0 p ∨ ¬p

¬p ⊢0 p ∨ ¬p ̸⊢0 p ∨ ¬p

⊢0 is tractable, decidable in polynomial time.

Has also a non-deterministic information-based three-valued
semantics. ( v(φ) = 1 means: I am informed that φ is the case)
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k-depth logics: using hypothetical information

Γ ⊢1 α :

Γ

¬β

α

β

α

0 0
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k-depth logics: using hypothetical information

Γ ⊢2 α:

Γ

¬β

¬γ

α

γ

α

β

¬δ

α

δ

α

0 0 0 0
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The hierarchy of DBBLs

For each k, we have ⊢k⊂⊢k+1

The hierarchy approximate classical logic : limk→∞ ⊢k = ⊢
Each ⊢k is feasible, i.e. decidable in PTIME.
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Our framework

We define sequences of qualitative probabilities

Based on the ideas of Depth-Bounded logics. Key distinction
between:

Information that an agent can initially compare. May also be due to
statistical information.
Hypothetical information employed in refining comparisons.

Qualitative, and bounded counterparts of Belief functions.

Two refinements processes at once

From qualitative probabilities based on depth-bounded logics to
qualitative probabilities based on classical logic.

From qualitative to quantitative: refine qualitative probabilities, so to
obtain (almost) representability.
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Refining comparisons: from qualitative to quantitative

How likely do I find it that it will rain tomorrow? (R)

(Very roughly): R is less likely than obtaining tails when flipping a
coin

( P(R) < 0.5 )

...

(More refined): R is more likely than obtaining three tails when
flipping three times a coin, less likely than obtaining two tails, when
flipping it two times (1/8 ≤ P(R) ≤ 1/4)

Requires manipulation of hypothetical information
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An example

Let R denote “It will rain tomorrow”, Tn “n-th flip of a coin gives tails”

Initial information

R T1

Define a qualitative probability ⊴0 on subsets of {R,T1}, e.g. letting
{R} ◁0 {T1}.
Expand the tree, up to depth 3

R T1

T2

T3 ¬T3

¬T2

T3 ¬T3

Define a qualitative probability ⊴3 on subsets of the leaves. For
instance, we might have:

{T1 ∧ T2 ∧ T3} ⊴3 {R} ⊴3 {T1 ∧ T2 ∧ T3,T1 ∧ T2 ∧ ¬T3}
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Our framework: actual and hypothetical information

The agent starts with a set Supp ⊆ Fm which represents the formulas
upon which explicit information is provided.

Supp is at each iteration enriched by case-distinctions (RB). Not due
to external information, but to hypothetical reasoning performed by
the agent.

We thus build a sequence of forests, representing an exploration of
hypothetical information, starting from Supp. We denote by Suppk
all the leaves of a forest at depth k.
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Definition (Qualitative sequence)

We say that F = (Fk)k∈N is a depth-bounded qualitative sequence
(qualitative sequence, for short), if:

Each Fk = (P(Suppk),⊴k) is a qualitative probability.

(Stable) For every k ∈ N, and every ∆, Γ ⊆ Suppk , we have that
∆ ⊴k Γ implies (∆)k ′ ⊴k ′ (Γ)k ′ for every k ′ ≥ k.

Each Fk plays the role of a (qualitative,depth-bounded) mass
function in Dempster-Shafer theory.

The support is only over the formulas in Suppk .
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Extending the order

⊴k is a total order, defined only for the (sets of) formulas which are
explored in our approximating sequence.

We can extend it in two ways to all the formulas of the language:
φ ⊴b

k ψ iff

{α ∈ Suppk | α ⊢0 φ} ⊴k {α ∈ Suppk | α ⊢0 ψ}.

φ ⊴pl
k ψ iff

{α ∈ Suppk | α ̸⊢0 ¬φ} ⊴k {α ∈ Suppk | α ̸⊢0 ¬ψ}.
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Properties of ⊴b
k and DBBLs

Let F = (Fk)k∈N be a qualitative sequence. The relation ⊴b
k satisfies the

following:

1 ⊴b
k is a total preorder.

2 ⊥ ◁bk ⊤.

3 For any φ,ψ ∈ Fm, if φ ⊢k ψ then there is a n ≥ k such that φ ⊴b
n ψ.

4 Let φ, χ, ψ ∈ Fm, with φ, χ ⊢0 ⊥ and ψ, χ ⊢0 ⊥. There is a k such
that then φ ⊴b

k ψ iff φ ∨ χ ⊴b
k ψ ∨ χ, for any k ≥ k .

5 Let φ,ψ, γ ∈ Fm, with φ ⊢ ψ and ψ, χ ⊢0 ⊥. Then there is a k such
that φ ∨ χ ◁bk ψ ∨ χ

Baldi,Hosni (Unimi) Logical approximations of Qual. Probability 17 / 23



The limit of a sequence

Definition (Limit)

Consider the sequence of structures (Suppk ,⊴k)k∈N.
The limit of the sequence is the structure (Fm,⊴) defined by:

φ ⊴ ψ iff there is a k such that φ ⊴b
k ψ for every k ≥ k
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The main results: Qualitative probabilities in the limit

Theorem

The (Lindenbaum-Tarski algebra of the) limit of a qualitative sequence is a
qualitative probability.

Theorem

Let A be the Lindenbaum-Tarski algebra over a countable language. If
(A,⊴) is an almost representable qualitative probability, then there exists
a qualitative sequence F such that (A,⊴) is the limit of F .
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The main results: from qualitative to quantitative

A qualitative sequence (P(Suppk),⊴k)k∈N is:

Refinable if whenever α ⊴k β for some α, β ∈ Suppk and k ∈ N,
there is a k ′ ≥ k such that

for every γ ∈ (β)k ′ we have γ ◁k ′ (α)k ′ .

Coverable if whenever α ◁k β for some α, β ∈ Suppk and k ∈ N, there
is a k ′ ≥ k and C ⊆ Suppk ′ such that C ∩ αk ′ = ∅ and

(α)k ′ ∪ C ��k ′(β)k ′

Theorem

(Baldi and Hosni, 2021)

If F is refinable, then the corresponding limit structure is almost
representable.

If F is defined over a finite language and is coverable, then the
corresponding limit structure is representable.
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Conclusions and Future Work

Two approximations processes at once:

Approximate classical logic by DBBLs
Approximate standard probabilities by increasingly more refined
qualitative probabilities

Computational complexity: we have results (Baldi and Hosni, 2022)
to the effect that a probabilistic satisfiability problem (PSAT) dealing
with approximations of (quantitative) probability at a given depth k,
is feasible. The same should hold in the qualitative setting.

Modal logics with qualitative probabilities in the language.

Apply these ideas in broader decision-theoretic framework.
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