Logical approximations of Qualitative Probability

Paolo Baldi Hykel Hosni

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FILOSOFIA "PIERO MARTINETTI"

MOSAIC/LATD 2022

September 8, 2022

Baldi, Hosni (Unimi)

Logical approximations of Qual. Probability

An approach to (foundations of) probability, taking *comparisons* of events as a primitive notion.

$$\alpha \trianglelefteq \beta$$
 I find α less likely than β

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

æ

An approach to (foundations of) probability, taking *comparisons* of events as a primitive notion.

$$\alpha \trianglelefteq \beta$$
 I find α less likely than β

• Arguably more realistic basis for representing uncertainty.

一回 ト イヨト イヨト

э

Definition (qualitative probability)

(A, ⊴) is a qualitative probability if A is a boolean algebra and
⊴ is a total preorder over A;
⊥ ⊲ ⊤;
if α ⊑ β then α ⊴ β and
if α ∧ γ = ⊥ and β ∧ γ = ⊥ then
α ⊲ β if and only if α ∨ γ ⊴ β ∨ γ.

Definition (Representability)

A qualitative probability $(\mathcal{A}, \trianglelefteq)$ is said to be :

- almost representable if there exists a finitely additive probability P such that α ≤ β implies P(α) ≤ P(β).
- representable if there exists a finitely additive probability P such that $\alpha \trianglelefteq \beta$ iff $P(\alpha) \le P(\beta)$;

Definition (Representability)

A qualitative probability $(\mathcal{A}, \trianglelefteq)$ is said to be :

- almost representable if there exists a finitely additive probability P such that α ≤ β implies P(α) ≤ P(β).
- representable if there exists a finitely additive probability P such that $\alpha \trianglelefteq \beta$ iff $P(\alpha) \le P(\beta)$;

Not all qualitative probabilities are representable (Kraft C., Pratt J., and Seidenberg A., 1959).

- Qualitative probabilities are based on classical logic/Boolean algebras, and they inherit its computational untractability.
- To obtain representability one need to add further, less intuitive axioms. In particular (Savage, 1972) requires that a qualitative probability allows for arbitrarily fine-grained comparisons.

- Qualitative probabilities are based on classical logic/Boolean algebras, and they inherit its computational untractability.
- To obtain representability one need to add further, less intuitive axioms. In particular (Savage, 1972) requires that a qualitative probability allows for arbitrarily fine-grained comparisons. More precisely:

Definition

A qualitative probability $(\mathcal{A}, \trianglelefteq)$ is said to be *fine* if, for any $\alpha \in \mathcal{A}$ such that $\bot \triangleleft \alpha$, there exists a partition β_1, \ldots, β_n of \mathcal{A} such that $\beta_i \triangleleft \alpha$ for each $i = 1, \ldots, n$.

We base our construction on the hierarchy $\{\vdash_k\}_{k\in\mathbb{N}}$ of Depth-bounded Boolean logics (D'Agostino, Finger, and Gabbay, 2013).

 k is a parameter capturing the maximum nested use of hypothetical information allowed, ⊢₀ does not allow for any use of hypothetical information.

0-depth: the logic of actual information

$$\begin{array}{cccc} \frac{\varphi}{\varphi \wedge \psi} & (\wedge \mathcal{I}) & \frac{\neg \varphi}{\neg (\varphi \wedge \psi)} & (\neg \wedge \mathcal{I}1) & \frac{\neg \psi}{\neg (\varphi \wedge \psi)} & (\neg \wedge \mathcal{I}2) \\ \frac{\neg \varphi}{\neg (\varphi \vee \psi)} & (\neg \vee \mathcal{I}) & \frac{\varphi}{\varphi \vee \psi} & (\vee \mathcal{I}1) & \frac{\psi}{\varphi \vee \psi} & (\vee \mathcal{I}2) \\ \frac{\varphi}{\neg \varphi} & (\perp \mathcal{I}) & \frac{\varphi}{\neg \neg \varphi} & (\neg \neg \mathcal{I}) \\ \frac{\varphi \vee \psi}{\psi} & (\vee \mathcal{E}1) & \frac{\varphi \vee \psi}{\varphi} & (\vee \mathcal{E}2) & \frac{\neg (\varphi \vee \psi)}{\neg \varphi} & (\neg \vee \mathcal{E}1) \\ \frac{\neg (\varphi \vee \psi)}{\neg \psi} & (\neg \vee \mathcal{E}2) & \frac{\varphi \wedge \psi}{\varphi} & (\wedge \mathcal{E}1) & \frac{\varphi \wedge \psi}{\psi} & (\wedge \mathcal{E}2) \\ \frac{\neg (\varphi \wedge \psi)}{\neg \psi} & (\neg \wedge \mathcal{E}1) & \frac{\neg (\varphi \wedge \psi)}{\neg \varphi} & (\neg \wedge \mathcal{E}2) \\ \frac{\neg \neg \varphi}{\varphi} & (\neg \neg \mathcal{E}) & \frac{\bot}{\varphi} & (\bot \mathcal{E}) \end{array}$$

Logical approximations of Qual. Probability

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

æ

0-depth: the logic of actual information

$p \vdash_0 p \lor \neg p$

Baldi,Hosni (Unimi)

Logical approximations of Qual. Probability

- 4 回 ト 4 三 ト 4 三 ト

æ

0-depth: the logic of actual information

$p \vdash_0 p \lor \neg p \quad \neg p \vdash_0 p \lor \neg p$

Baldi, Hosni (Unimi)

Logical approximations of Qual. Probability

イロト イ団ト イヨト イヨト

2

$p \vdash_0 p \lor \neg p$ $\neg p \vdash_0 p \lor \neg p$ $\nvdash_0 p \lor \neg p$

Logical approximations of Qual. Probability

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

$p \vdash_0 p \lor \neg p$ $\neg p \vdash_0 p \lor \neg p$ $\nvdash_0 p \lor \neg p$

• \vdash_0 is tractable, decidable in polynomial time.

- * 伊 * * 王 * 王 * 三 * のへで

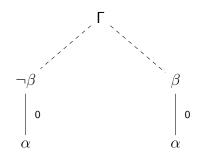
$p \vdash_0 p \lor \neg p \quad \neg p \vdash_0 p \lor \neg p \quad \not\vdash_0 p \lor \neg p$

- \vdash_0 is tractable, decidable in polynomial time.
- Has also a non-deterministic information-based three-valued semantics. (v(φ) = 1 means: I am informed that φ is the case)

▲母▶▲臣▶▲臣▶ 臣 のへで

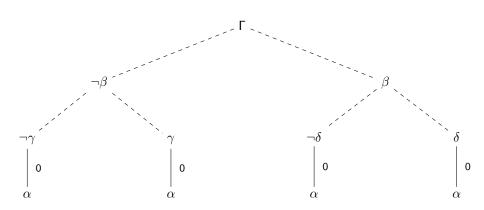
k-depth logics: using hypothetical information

 $\Gamma \vdash_1 \alpha$:



k-depth logics: using hypothetical information

 $\Gamma \vdash_2 \alpha$:



- For each k, we have $\vdash_k \subset \vdash_{k+1}$
- The hierarchy approximate classical logic : $\lim_{k\to\infty} \vdash_k = \vdash_k$
- Each \vdash_k is feasible, i.e. decidable in PTIME.

Logical approximations of Qual. Probability

- Based on the ideas of Depth-Bounded logics. Key distinction between:
 - Information that an agent can initially compare. May also be due to statistical information.
 - Hypothetical information employed in refining comparisons.

- Based on the ideas of Depth-Bounded logics. Key distinction between:
 - Information that an agent can initially compare. May also be due to statistical information.
 - Hypothetical information employed in refining comparisons.
- Qualitative, and bounded counterparts of Belief functions.

- Based on the ideas of Depth-Bounded logics. Key distinction between:
 - Information that an agent can initially compare. May also be due to statistical information.
 - Hypothetical information employed in refining comparisons.
- Qualitative, and bounded counterparts of Belief functions.

Two refinements processes at once

- From qualitative probabilities based on depth-bounded logics to qualitative probabilities based on classical logic.
- From qualitative to quantitative: refine qualitative probabilities, so to obtain (almost) representability.

• (Very roughly): R is less likely than obtaining tails when flipping a coin

• (Very roughly): R is less likely than obtaining tails when flipping a coin (P(R) < 0.5)

• (Very roughly): R is less likely than obtaining tails when flipping a coin (P(R) < 0.5)

...

Baldi,Hosni (Unimi)

Logical approximations of Qual. Probability

- (Very roughly): R is less likely than obtaining tails when flipping a coin (P(R) < 0.5)
- ...
- (More refined): R is more likely than obtaining three tails when flipping three times a coin, less likely than obtaining two tails, when flipping it two times

- (Very roughly): R is less likely than obtaining tails when flipping a coin (P(R) < 0.5)
- ...
- (More refined): R is more likely than obtaining three tails when flipping three times a coin, less likely than obtaining two tails, when flipping it two times $(1/8 \le P(R) \le 1/4)$

Requires manipulation of hypothetical information

Let R denote "It will rain tomorrow", T_n "n-th flip of a coin gives tails" • Initial information

R

 T_1

< ロト < 同ト < ヨト < ヨト

2

Let R denote "It will rain tomorrow", T_n "n-th flip of a coin gives tails" • Initial information

R

Define a qualitative probability \leq_0 on subsets of $\{R, T_1\}$, e.g. letting $\{R\} \leq_0 \{T_1\}$.

 T_1

æ

Let R denote "It will rain tomorrow", T_n "n-th flip of a coin gives tails"

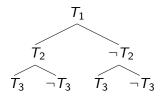
R

Initial information

Define a qualitative probability \leq_0 on subsets of $\{R, T_1\}$, e.g. letting $\{R\} \leq_0 \{T_1\}$.

• Expand the tree, up to depth 3

R



 T_1

Let R denote "It will rain tomorrow", T_n "n-th flip of a coin gives tails"

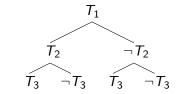
R

Initial information

Define a qualitative probability \leq_0 on subsets of $\{R, T_1\}$, e.g. letting $\{R\} \leq_0 \{T_1\}$.

• Expand the tree, up to depth 3

R



 T_1

Define a qualitative probability \trianglelefteq_3 on subsets of the leaves. For instance, we might have:

$$\{T_1 \land T_2 \land T_3\} \trianglelefteq_3 \{R\} \trianglelefteq_3 \{T_1 \land T_2 \land T_3, T_1 \land T_2 \land \neg T_3\}$$

- The agent starts with a set *Supp* ⊆ *Fm* which represents the formulas upon which explicit information is provided.
- *Supp* is at each iteration enriched by case-distinctions (RB). Not due to external information, but to hypothetical reasoning performed by the agent.
- We thus build a sequence of forests, representing an exploration of hypothetical information, starting from *Supp*. We denote by *Supp*_k all the leaves of a forest at depth k.

Definition (Qualitative sequence)

We say that $\mathcal{F} = (\mathcal{F}_k)_{k \in \mathbb{N}}$ is a *depth-bounded qualitative sequence* (qualitative sequence, for short), if:

• Each $\mathcal{F}_k = (\mathcal{P}(Supp_k), \leq_k)$ is a qualitative probability.

э

Definition (Qualitative sequence)

We say that $\mathcal{F} = (\mathcal{F}_k)_{k \in \mathbb{N}}$ is a *depth-bounded qualitative sequence* (qualitative sequence, for short), if:

- Each $\mathcal{F}_k = (\mathcal{P}(Supp_k), \trianglelefteq_k)$ is a qualitative probability.
- (Stable) For every $k \in \mathbb{N}$, and every $\Delta, \Gamma \subseteq Supp_k$, we have that $\Delta \trianglelefteq_k \Gamma$ implies $(\Delta)_{k'} \trianglelefteq_{k'} (\Gamma)_{k'}$ for every $k' \ge k$.

Definition (Qualitative sequence)

We say that $\mathcal{F} = (\mathcal{F}_k)_{k \in \mathbb{N}}$ is a *depth-bounded qualitative sequence* (qualitative sequence, for short), if:

- Each $\mathcal{F}_k = (\mathcal{P}(Supp_k), \trianglelefteq_k)$ is a qualitative probability.
- (Stable) For every $k \in \mathbb{N}$, and every $\Delta, \Gamma \subseteq Supp_k$, we have that $\Delta \trianglelefteq_k \Gamma$ implies $(\Delta)_{k'} \trianglelefteq_{k'} (\Gamma)_{k'}$ for every $k' \ge k$.
- Each \mathcal{F}_k plays the role of a (qualitative,depth-bounded) mass function in Dempster-Shafer theory.
- The support is only over the formulas in Supp_k.

< □ > < @ > < B > < B > <</pre>

• ⊴_k is a total order, defined only for the (sets of) formulas which are explored in our approximating sequence.

э

- ⊴_k is a total order, defined only for the (sets of) formulas which are explored in our approximating sequence.
- We can extend it in two ways to all the formulas of the language:

- ≤_k is a total order, defined only for the (sets of) formulas which are explored in our approximating sequence.
- We can extend it in two ways to all the formulas of the language: $\varphi \trianglelefteq^b_k \psi$ iff

$$\{\alpha \in \mathsf{Supp}_k \mid \alpha \vdash_0 \varphi\} \ \trianglelefteq_k \ \{\alpha \in \mathsf{Supp}_k \mid \alpha \vdash_0 \psi\}.$$

э

- \trianglelefteq_k is a total order, defined only for the (sets of) formulas which are explored in our approximating sequence.
- We can extend it in two ways to all the formulas of the language: $\varphi \trianglelefteq^b_k \psi$ iff

$$\{\alpha \in Supp_k \mid \alpha \vdash_0 \varphi\} \ \trianglelefteq_k \ \{\alpha \in Supp_k \mid \alpha \vdash_0 \psi\}.$$
$$\trianglelefteq_k^{pl} \psi \text{ iff}$$

 $\{\alpha \in \textit{Supp}_k \mid \alpha \not\vdash_0 \neg \varphi\} \ \trianglelefteq_k \ \{\alpha \in \textit{Supp}_k \mid \alpha \not\vdash_0 \neg \psi\}.$

 φ

Let $\mathcal{F} = (\mathcal{F}_k)_{k \in \mathbb{N}}$ be a qualitative sequence. The relation \trianglelefteq_k^b satisfies the following:

$$2 \perp \triangleleft_k^b \top.$$

③ For any $\varphi, \psi \in Fm$, if $\varphi \vdash_k \psi$ then there is a $n \ge k$ such that $\varphi \trianglelefteq_n^b \psi$.

- Let $\varphi, \chi, \psi \in Fm$, with $\varphi, \chi \vdash_0 \bot$ and $\psi, \chi \vdash_0 \bot$. There is a \overline{k} such that then $\varphi \trianglelefteq^b_k \psi$ iff $\varphi \lor \chi \trianglelefteq^b_k \psi \lor \chi$, for any $k \ge \overline{k}$.
- Solution Let φ, ψ, γ ∈ Fm, with φ ⊢ ψ and ψ, χ ⊢₀ ⊥. Then there is a k such that φ ∨ χ ⊲^b_k ψ ∨ χ

Definition (Limit)

Consider the sequence of structures $(Supp_k, \trianglelefteq_k)_{k \in \mathbb{N}}$. The *limit* of the sequence is the structure (Fm, \trianglelefteq) defined by:

 $\varphi \trianglelefteq \psi$ iff there is a \overline{k} such that $\varphi \trianglelefteq_k^b \psi$ for every $k \ge \overline{k}$

Theorem

The (Lindenbaum-Tarski algebra of the) limit of a qualitative sequence is a qualitative probability.

Theorem

The (Lindenbaum-Tarski algebra of the) limit of a qualitative sequence is a qualitative probability.

Theorem

Let \mathcal{A} be the Lindenbaum-Tarski algebra over a countable language. If $(\mathcal{A}, \trianglelefteq)$ is an almost representable qualitative probability, then there exists a qualitative sequence \mathcal{F} such that $(\mathcal{A}, \trianglelefteq)$ is the limit of \mathcal{F} .

The main results: from qualitative to quantitative

A qualitative sequence $(\mathcal{P}(Supp_k), \trianglelefteq_k)_{k \in \mathbb{N}}$ is:

• Refinable if whenever $\alpha \trianglelefteq_k \beta$ for some $\alpha, \beta \in Supp_k$ and $k \in \mathbb{N}$, there is a $k' \ge k$ such that

for every $\gamma \in (\beta)_{k'}$ we have $\gamma \triangleleft_{k'} (\alpha)_{k'}$.

The main results: from qualitative to quantitative

A qualitative sequence $(\mathcal{P}(Supp_k), \trianglelefteq_k)_{k \in \mathbb{N}}$ is:

• Refinable if whenever $\alpha \trianglelefteq_k \beta$ for some $\alpha, \beta \in Supp_k$ and $k \in \mathbb{N}$, there is a $k' \ge k$ such that

for every $\gamma \in (\beta)_{k'}$ we have $\gamma \triangleleft_{k'} (\alpha)_{k'}$.

• Coverable if whenever $\alpha \triangleleft_k \beta$ for some $\alpha, \beta \in Supp_k$ and $k \in \mathbb{N}$, there is a $k' \ge k$ and $C \subseteq Supp_{k'}$ such that $C \cap \alpha_{k'} = \emptyset$ and $(\alpha)_{k'} \cup C \bowtie_{k'}(\beta)_{k'}$

The main results: from qualitative to quantitative

A qualitative sequence $(\mathcal{P}(Supp_k), \trianglelefteq_k)_{k \in \mathbb{N}}$ is:

• Refinable if whenever $\alpha \trianglelefteq_k \beta$ for some $\alpha, \beta \in Supp_k$ and $k \in \mathbb{N}$, there is a $k' \ge k$ such that

for every $\gamma \in (\beta)_{k'}$ we have $\gamma \triangleleft_{k'} (\alpha)_{k'}$.

Coverable if whenever α ⊲_k β for some α, β ∈ Supp_k and k ∈ N, there is a k' ≥ k and C ⊆ Supp_{k'} such that C ∩ α_{k'} = Ø and
 (α)_{k'} ∪ C ⊳⊲_{k'}(β)_{k'}

Theorem

(Baldi and Hosni, 2021)

- If \mathcal{F} is refinable, then the corresponding limit structure is almost representable.
- If \mathcal{F} is defined over a finite language and is coverable, then the corresponding limit structure is representable.

Baldi,Hosni (Unimi)

- Two approximations processes at once:
 - Approximate classical logic by DBBLs
 - Approximate standard probabilities by increasingly more refined qualitative probabilities

- Two approximations processes at once:
 - Approximate classical logic by DBBLs
 - Approximate standard probabilities by increasingly more refined qualitative probabilities
- Computational complexity: we have results (Baldi and Hosni, 2022) to the effect that a probabilistic satisfiability problem (PSAT) dealing with approximations of (quantitative) probability at a given depth k, is feasible. The same should hold in the qualitative setting.
- Modal logics with qualitative probabilities in the language.
- Apply these ideas in broader decision-theoretic framework.

References I

- Baldi, Paolo and Hykel Hosni (2021). "Logical Approximations of Qualitative Probability". In: ISIPTA. Vol. 147. Proceedings of Machine Learning Research. PMLR, pp. 12–21.
- (May 2022). "A logic-based tractable approximation of probability". In: Journal of Logic and Computation. exac038. ISSN: 0955-792X. DOI: 10.1093/logcom/exac038. eprint: https://academic.oup.com/logcom/advance-articlepdf/doi/10.1093/logcom/exac038/43874921/exac038.pdf. URL: https://doi.org/10.1093/logcom/exac038.
- D'Agostino, Marcello, Marcelo Finger, and Dov Gabbay (2013).
 "Semantics and proof-theory of depth bounded Boolean logics". In: *Theoretical Computer Science* 480, pp. 43–68. ISSN: 03043975. DOI: 10.1016/j.tcs.2013.02.014.
- Kraft C., Pratt J., and Seidenberg A. (1959). "Intuitive Probability on Finite Sets". In: 30.2, pp. 408–419.

References II

Savage, Leonard J. (1972). The Foundations of Statistics. 2nd. Dover.

Baldi, Hosni (Unimi)

Logical approximations of Qual. Probability

æ