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Is the first-order relevant logic RQ sound and complete w.r.t. constant domain semantics?
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I Yes
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2 / 23



Is the first-order relevant logic RQ sound and complete w.r.t. constant domain semantics?

I No

I Yes

I Maybe

2 / 23



Is the first-order relevant logic RQ sound and complete w.r.t. constant domain semantics?

I No

I Yes

I Maybe

2 / 23



Is the first-order relevant logic RQ sound and complete w.r.t. constant domain semantics?

I No

I Yes

I Maybe

2 / 23



Outline

I History of the problem
I RQ
I Fine’s incompleteness proof for constant domains
I Fine’s semantics

I Mares-Goldblatt Semantics for RQ

I Constant domains and Tarskian interpretations!?

I Analogous results in quantified modal classical logic

I What would such a model look like for RQ?

3 / 23



History of the problem
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The Logic RQ

(Id) A → A
(B) (A → B)→ ((C → A)→ (C → B))
(C) (A → (B → C))→ (B → (A → C))

(W) (A → (A → B))→ (A → B)
(∧E) A∧ B → A,A∧ B → B
(∧I) (A → B) ∧ (A → C)→ (A → B ∧ C)
(∨I) A → A∨B,B → A∨ B

(∨E) (A → C) ∧ (B → C)→ (A∨ B → C)
(Dist) A∧ (B ∨ C)→ (A∧ B) ∨ C

(DNE) A ↔ ¬¬A
(Cont) (A → ¬B)→ (B → ¬A)
(RCM) (A → ¬A)→ ¬A

(t) t

(rt) A ↔ t→ A
(R◦) A → (B → C)WV (A ◦ B)→ C

(∀E) ∀xA → A[τ/x ], with τ free for x in A

(EC) ∀x(A∨ Bx )→ ∀xA∨ Bx

(rMP) A → B,AV B
(rAdj) A,B V A∧ B

(r∀I) Ax → B V Ax → ∀xB
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Ternary Relation Semantics for R

An R-frame is a tuple F = 〈K ,N,R, ∗〉, where ∅ 6= N ⊆ K ,R ⊆ K3, ∗ : K −→ K , and where
(with lower-case Greek letters range over K ), we have the following:

(DF1) α ≤ β =df ∃γ ∈ N(Rγαβ)

(DF2) ℘(K )↑ =df {X ⊆ K | ∀α, β ∈ K ((α ≤ β & α ∈ X )⇒ β ∈ X )}

(C1) 〈K ,≤〉 is a pre-ordered set (≤ is reflexive, transitive)

(C2) N ∈ ℘(K )↑

(C3) Rαβγ & α′ ≤ α & β′ ≤ β & γ ≤ γ′ ⇒ Rα′β′γ′ (for short, R ↓↓↑)
(C4) Rαβγ⇒ Rβαγ

(C5) ∃x(Rαβx & Rxγδ)⇒ ∃x(Rαγx & Rxβδ)

(C6) Rααα

(C7) Rαβγ⇒ Rαγ∗β∗

(C8) α∗∗ = α
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Ternary Relation Semantics - the Basic Framework

Given a frame F , and X ,Y ⊆ W , define X ∩ Y ,X ∪ Y as usual, and:

¬X = {α | α∗ /∈ X}
X → Y = {α | ∀β, γ((Rαβγ & β ∈ X )⇒ γ ∈ Y )}
X ◦ Y = {α | ∃β, γ(Rβγα & β ∈ X & γ ∈ Y )}

Fact (Heredity)
If X ,Y ∈ ℘(K )↑, then ¬X ,X ∩ Y ,X ∪ Y ,X → Y ,X ◦ Y ∈ ℘(K )↑.
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Ternary Relation Semantics - the Basic Framework

Given a frame F , a model M on F is given by a function M : P −→ ℘(K )↑, extended to a
homomorphism || · ||M : L −→ ℘(K )↑ – i.e., the following clauses obtain:

||p||M = M(p) ||t||M = N

||¬A||M = ¬(||A||M ) ||A∧ B ||M = ||A||M ∩ ||B ||M

||A→ B ||M = ||A||M → ||B ||M ||A∨ B ||M = ||A||M ∪ ||B ||M

||A ◦ B ||M = ||A||M ◦ ||B ||M

A is true in M (�M A) iff N ⊆ ||A||M .
A is true in F (�F A) iff �M A for all M on F .
A is valid in F (�F A) iff �F A for all F ∈ F.
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RQ’s Incompleteness

Standard one universal constant domain semantics build on an R-frame: add a constant
(universal) domain, set

||∀xnA||M f =
⋂

f ′∼xn f

||A||M f ′

||∃xnA||M f =
⋃

f ′∼xn f

||A||M f ′

Fine [14] demonstrated that the standard constant domain semantics, build on the typical
ternary relational R semantics, validates formulas not provable in RQ

A0 [(P → ∃xEx) ∧ ∀x((P → Fx) ∨ (Gx → Hx))]→
→ {[∀x((Ex ∧ Fx)→ Q) ∨ ∀x((Ex → Q) ∨ Gx)]→ [∃xHx ∨ (P → Q)]}
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Completeness

1988: Fine [13] gives a genius but complicated and not very intuitive semantics for which RQ:

I Many have tried to find a simpler or more intuitive semantics.

I Not displayed here due to time/space/etc.

2006: Mares and Goldblatt [23] give a simpler, more natural semantics for RQ:

I Employs general frames (a trick often used to obtain completeness results)

I Employs a non-Tarskian/Kripkean approach to the quantifiers. That is:
I Non-Kripkean:

⋂
f ′∼xn f

||A||M f ′ is not always admissible

I Non-Tarskian: not always that a, f � ∀xnA iff a, f ′ � A, for every f ′ ∼xn f

Also 1988: Ross Brady’s Content Semantics for some quantified relevant logics
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Mares-Goldblatt Semantics
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Mares Goldblatt Semantics for RQ
An MG frame is a tuple 〈K ,N,R, ∗,Prop,U,PropFun〉, where 〈K ,N,R, ∗〉 is an R-frame
complete with defined ≤ and ℘(K )↑, U is a non-empty set of individuals, N ∈ Prop ⊆ ℘(K )↑,
and PropFun ⊆ {ϕ | ϕ : Uω −→ Prop}.

Furthermore, we have the following:

(c0) Prop closed w.r.t. ∩,∪,→, ◦,¬
(c1.0) There is a ϕN ∈ PropFun s.t. for any f ∈ Dω, ϕN f = N.

(c1.1) Given ϕ ∈ PropFun, there is a ¬ϕ ∈ PropFun s.t. (¬ϕ)f = ¬(ϕf )

(c1.2) For ϕ, ψ ∈ PropFun, there is a ϕ⊗ ψ ∈ PropFun s.t. (ϕ⊗ ψ)f = ϕf ⊗ ψf
for ⊗ ∈ {∩,∪,→, ◦}

(c1.3) For any ϕ ∈ PropFun and n ∈ ω, there is a ∀nϕ ∈ PropFun s.t.

(∀nϕ)f =
l

f ′∼xn f

ϕf ′ =
⋃
{X ∈ Prop | X ⊆

⋂
f∼xn f

ϕf ′}

(c1.4) For any ϕ ∈ PropFun and n ∈ ω, there is a ∃nϕ ∈ PropFun s.t.

(∃nϕ)f =
⊔

f ′∼xn f

ϕf ′ =
⋂
{X ∈ Prop |

⋃
f ′∼xn f

ϕf ′ ⊆ X}
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Mares Goldblatt Semantics for RQ

A model on an MG frame F is a multi-type function M that assigns:

I an individual M(c) ∈ U to each constant symbol c ;

I a function M(Pn) : Un −→ Prop to each n-ary predicate symbol Pn;

I Mf (xn) = fn; Mf (c) = M(c).

Extend this to a valuation || · ||M : L −→ PropFun as follows:

I ||P(τ1, . . . , τn)||Mf = M(P)(Mf (τ1), . . . ,Mf (τn)) ||t||Mf = ϕN f = N

I ||¬A||Mf = ¬(||A||Mf )

I ||A ∧ B||Mf = ||A||Mf ∩ ||B||Mf ||A ∨ B||Mf = ||A||Mf ∪ ||B||Mf
I ||A → B||Mf = ||A||Mf → ||B||Mf ||A ◦ B||Mf = ||A||Mf ◦ ||B||Mf
I ||∀xnA||Mf = (∀n||A||M )f ||∃xnA||Mf = (∃n||A||M )f

A is satisfied on M just in case for every f ∈ Dω, N ⊆ ||A||Mf .
A is satisfied on F just if its satisfied on every M on F .
A is valid on a set F of frames just in case it’s satisfied on every F ∈ F.
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Constant domains and Tarskian Interpretations!?
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Can we Regain the Tarskian Truth Condition?

I For “weaker” relevant logics, this should be no problem
I As Fine notes, the problem appears to be with (B) and (B ′).
I Completeness for the standard constant (universal) domain should work.

But can we obtain completeness for RQ using only general frames (and retain the Tarskian
truth condition)?

Let’s look at a similar case in quantified modal classical logic.
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Analogous Results in Quantified Modal Classical Logic
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Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

I Quantified S4.2B is incomplete w.r.t. the standard constant domain first-order semantics

I Quantified S4.2B is complete w.r.t. the Mares-Goldblatt interpretation of the quantifers
I Underlying general canonical frame is an S4.2 frame, truth condition is non-Tarskian

I One may regain the Tarskian truth condition, but at the “cost” of the canonical
non-general frame no longer being an S4.2-frame, while the underlying general frame is an
S4.2-frame

I In particular, the convergence property no longer holds:
I Rab and Rac implies there is a d such that Rbd and Rcd .
I Note the existential in the consequent

I Similar results hold for QS4M + CQ and related systems for variable domain models.
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Regain the Tarskian Truth Condition?

I Note that the problematic axioms, (B) and (B ′), also have existential consequents in their
corresponding semantic condition(s).

Rabx & Rxcd ⇒ ∃y(Racy & Rybd)

I Question: Can we give a general frame, Tarskian constant domain semantics for RQ,
where the underlying frame is no longer an R-frame?
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Regain the Tarskian Truth Condition?

Idea:

I Build a canonical model
I Use only ω-complete theories
I For a closed A, ||A|| = {α ∈ K : A ∈ α}
I Prop = {X ⊆ K : X = ||A|| for a closed A}

I Show: A → B ∈ α iff Rαβγ & A ∈ β ⇒ B ∈ γ

I Show: Truth Lemma

I Soundness: All theorems of RQ are in each regular theory, closure of Prop under the right
operations ⇒ truth sets of theorems always include N.

I Completeness: The usual route with the truth lemma.
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So What Would Such a Model Look Like?
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Toy Example

a

b c

d

0

1. K = {a, b, c, d , 0};
2. N = {a, b};
3. R = {(d , a, d), (b, y , z), (y , b, z)|x ≤ y}

∪{(d , x , y )|x ≤ y ∨ (x = a & y = 0)}
∪{(x , a, a), (x , x , x)|x ∈ {a, b, c, d}};

4. a∗ = d , b∗ = c, c∗ = b, d∗ = a;

5. Prop is the set of upsets on {a, b, c, d}
6. U is some set; PropFun is full

7. ||·|| assigns every formula such that [d) is in the
truth set of no formula(-variable assignment
pair).
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Thanks!
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