Quantified Relevant logic **RQ** with Constant Domains!? A Perspective from Quantified Modal Logics

Nicholas Ferenz

Institute of Computer Science Czech Academy of Sciences

LATD 2022 & MOSAIC Kick off Meeting (07.09.22) Is the first-order relevant logic ${\bf RQ}$ sound and complete w.r.t. constant domain semantics?

Is the first-order relevant logic **RQ** sound and complete w.r.t. constant domain semantics? ► No Is the first-order relevant logic ${\bf RQ}$ sound and complete w.r.t. constant domain semantics?

- No
- Yes

Is the first-order relevant logic ${\bf RQ}$ sound and complete w.r.t. constant domain semantics?

- No
- Yes
- Maybe

Outline

- History of the problem
 - ► RQ
 - Fine's incompleteness proof for constant domains
 - Fine's semantics
- Mares-Goldblatt Semantics for RQ
- Constant domains and Tarskian interpretations!?
- Analogous results in quantified modal classical logic
- What would such a model look like for RQ?

History of the problem

The Logic **RQ**

(Id)
$$\mathcal{A} \to \mathcal{A}$$

(B) $(\mathcal{A} \to \mathcal{B}) \to ((\mathcal{C} \to \mathcal{A}) \to (\mathcal{C} \to \mathcal{B}))$
(C) $(\mathcal{A} \to (\mathcal{B} \to \mathcal{C})) \to (\mathcal{B} \to (\mathcal{A} \to \mathcal{C}))$
(W) $(\mathcal{A} \to (\mathcal{A} \to \mathcal{B})) \to (\mathcal{A} \to \mathcal{B})$
($\wedge \mathbf{E}$) $\mathcal{A} \land \mathcal{B} \to \mathcal{A}, \mathcal{A} \land \mathcal{B} \to \mathcal{B}$
($\wedge \mathbf{I}$) $(\mathcal{A} \to \mathcal{B}) \land (\mathcal{A} \to \mathcal{C}) \to (\mathcal{A} \to \mathcal{B} \land \mathcal{C})$
($\vee \mathbf{I}$) $\mathcal{A} \to \mathcal{A} \lor \mathcal{B}, \mathcal{B} \to \mathcal{A} \lor \mathcal{B}$
($\vee \mathbf{E}$) $(\mathcal{A} \to \mathcal{C}) \land (\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \lor \mathcal{B} \to \mathcal{C})$
(Dist) $\mathcal{A} \land (\mathcal{B} \lor \mathcal{C}) \to (\mathcal{A} \land \mathcal{B}) \lor \mathcal{C}$
(DNE) $\mathcal{A} \leftrightarrow \neg \neg \mathcal{A}$
(Cont) $(\mathcal{A} \to \neg \mathcal{B}) \to (\mathcal{B} \to \neg \mathcal{A})$
RCM) $(\mathcal{A} \to \neg \mathcal{A}) \to \neg \mathcal{A}$

(t) t
(rt)
$$\mathcal{A} \leftrightarrow \mathbf{t} \to \mathcal{A}$$

(Ro) $\mathcal{A} \to (\mathcal{B} \to \mathcal{C}) \iff (\mathcal{A} \circ \mathcal{B}) \to \mathcal{C}$

$$(\forall \mathsf{E}) \ \forall x \mathcal{A} \to \mathcal{A}[\tau/x], \text{ with } \tau \text{ free for } x \text{ in } \mathcal{A}$$

(EC)
$$\forall x(\mathcal{A} \lor \mathcal{B}^x) \to \forall x \mathcal{A} \lor \mathcal{B}^x$$

(rMP)
$$\mathcal{A} \to \mathcal{B}, \mathcal{A} \Rightarrow \mathcal{B}$$

(rAdj) $\mathcal{A}, \mathcal{B} \Rightarrow \mathcal{A} \land \mathcal{B}$
(r \forall I) $\mathcal{A}^{x} \to \mathcal{B} \Rightarrow \mathcal{A}^{x} \to \forall x \mathcal{B}$

An **R**-frame is a tuple $F = \langle K, N, R, * \rangle$, where $\emptyset \neq N \subseteq K, R \subseteq K^3, * : K \longrightarrow K$, and where (with lower-case Greek letters range over K), we have the following:

 $\begin{array}{l} (\mathsf{DF1}) \ \alpha \leq \beta =_{df} \exists \gamma \in \mathcal{N}(R\gamma\alpha\beta) \\ (\mathsf{DF2}) \ \wp(\mathcal{K})^{\uparrow} =_{df} \{ X \subseteq \mathcal{K} \mid \forall \alpha, \beta \in \mathcal{K}((\alpha \leq \beta \And \alpha \in X) \Rightarrow \beta \in X) \} \end{array}$

$$\begin{array}{ll} \text{(DF1)} & \alpha \leq \beta =_{df} \exists \gamma \in N(R\gamma\alpha\beta) \\ \text{(DF2)} & \wp(K)^{\uparrow} =_{df} \{X \subseteq K \mid \forall \alpha, \beta \in K((\alpha \leq \beta \& \alpha \in X) \Rightarrow \beta \in X)\} \\ \text{(C1)} & \langle K, \leq \rangle \text{ is a pre-ordered set} & (\leq \text{ is reflexive, transitive}) \\ \text{(C2)} & N \in \wp(K)^{\uparrow} \\ \text{(C3)} & R\alpha\beta\gamma \& \alpha' \leq \alpha \& \beta' \leq \beta \& \gamma \leq \gamma' \Rightarrow R\alpha'\beta'\gamma' & (\text{for short, } R \downarrow \downarrow \uparrow) \end{array}$$

$$\begin{array}{ll} \text{(DF1)} & \alpha \leq \beta =_{df} \exists \gamma \in N(R\gamma\alpha\beta) \\ \text{(DF2)} & \wp(K)^{\uparrow} =_{df} \{X \subseteq K \mid \forall \alpha, \beta \in K((\alpha \leq \beta \& \alpha \in X) \Rightarrow \beta \in X)\} \\ \text{(C1)} & \langle K, \leq \rangle \text{ is a pre-ordered set} & (\leq \text{ is reflexive, transitive}) \\ \text{(C2)} & N \in \wp(K)^{\uparrow} \\ \text{(C3)} & R\alpha\beta\gamma \& \alpha' \leq \alpha \& \beta' \leq \beta \& \gamma \leq \gamma' \Rightarrow R\alpha'\beta'\gamma' & (\text{for short, } R \downarrow \downarrow \uparrow) \\ \text{(C4)} & R\alpha\beta\gamma \Rightarrow R\beta\alpha\gamma \end{array}$$

$$\begin{array}{l} \text{(DF1)} \quad \alpha \leq \beta =_{df} \exists \gamma \in N(R\gamma\alpha\beta) \\ \text{(DF2)} \quad \wp(K)^{\uparrow} =_{df} \{X \subseteq K \mid \forall \alpha, \beta \in K((\alpha \leq \beta \& \alpha \in X) \Rightarrow \beta \in X)\} \\ \text{(C1)} \quad \langle K, \leq \rangle \text{ is a pre-ordered set} \\ \text{(C2)} \quad N \in \wp(K)^{\uparrow} \\ \text{(C3)} \quad R\alpha\beta\gamma \& \alpha' \leq \alpha \& \beta' \leq \beta \& \gamma \leq \gamma' \Rightarrow R\alpha'\beta'\gamma' \\ \text{(C4)} \quad R\alpha\beta\gamma \Rightarrow R\beta\alpha\gamma \\ \text{(C5)} \quad \exists x(R\alpha\betax \& Rx\gamma\delta) \Rightarrow \exists x(R\alpha\gammax \& Rx\beta\delta) \end{array}$$

$$\begin{array}{l} \text{(DF1)} \quad \alpha \leq \beta =_{df} \exists \gamma \in N(R\gamma\alpha\beta) \\ \text{(DF2)} \quad \wp(K)^{\uparrow} =_{df} \{X \subseteq K \mid \forall \alpha, \beta \in K((\alpha \leq \beta \& \alpha \in X) \Rightarrow \beta \in X)\} \\ \text{(C1)} \quad \langle K, \leq \rangle \text{ is a pre-ordered set} \qquad (\leq \text{ is reflexive, transitive}) \\ \text{(C2)} \quad N \in \wp(K)^{\uparrow} \\ \text{(C3)} \quad R\alpha\beta\gamma \& \alpha' \leq \alpha \& \beta' \leq \beta \& \gamma \leq \gamma' \Rightarrow R\alpha'\beta'\gamma' \qquad (\text{for short, } R \downarrow \downarrow \uparrow) \\ \text{(C4)} \quad R\alpha\beta\gamma \Rightarrow R\beta\alpha\gamma \\ \text{(C5)} \quad \exists x(R\alpha\betax \& Rx\gamma\delta) \Rightarrow \exists x(R\alpha\gammax \& Rx\beta\delta) \\ \text{(C6)} \quad R\alpha\alpha \end{array}$$

$$\begin{array}{ll} \text{(DF1)} & \alpha \leq \beta =_{df} \exists \gamma \in N(R\gamma\alpha\beta) \\ \text{(DF2)} & \wp(K)^{\uparrow} =_{df} \{X \subseteq K \mid \forall \alpha, \beta \in K((\alpha \leq \beta \& \alpha \in X) \Rightarrow \beta \in X)\} \\ \text{(C1)} & \langle K, \leq \rangle \text{ is a pre-ordered set} & (\leq \text{ is reflexive, transitive}) \\ \text{(C2)} & N \in \wp(K)^{\uparrow} \\ \text{(C3)} & R\alpha\beta\gamma \& \alpha' \leq \alpha \& \beta' \leq \beta \& \gamma \leq \gamma' \Rightarrow R\alpha'\beta'\gamma' & (\text{for short, } R \downarrow \downarrow \uparrow) \\ \text{(C4)} & R\alpha\beta\gamma \Rightarrow R\beta\alpha\gamma \\ \text{(C5)} & \exists x(R\alpha\betax \& Rx\gamma\delta) \Rightarrow \exists x(R\alpha\gamma x \& Rx\beta\delta) \\ \text{(C6)} & R\alpha\alpha\alpha \\ \text{(C7)} & R\alpha\beta\gamma \Rightarrow R\alpha\gamma^*\beta^* \\ \text{(C8)} & \alpha^{**} = \alpha \end{array}$$

Ternary Relation Semantics - the Basic Framework

Given a frame *F*, and *X*, $Y \subseteq W$, define $X \cap Y$, $X \cup Y$ as usual, and:

$$\neg X = \{ \alpha \mid \alpha^* \notin X \}$$

$$X \to Y = \{ \alpha \mid \forall \beta, \gamma((R\alpha\beta\gamma \& \beta \in X) \Rightarrow \gamma \in Y) \}$$

$$X \circ Y = \{ \alpha \mid \exists \beta, \gamma(R\beta\gamma\alpha \& \beta \in X \& \gamma \in Y) \}$$

Fact (Heredity) If $X, Y \in \wp(K)^{\uparrow}$, then $\neg X, X \cap Y, X \cup Y, X \rightarrow Y, X \circ Y \in \wp(K)^{\uparrow}$.

Ternary Relation Semantics - the Basic Framework

Given a frame F, a model M on F is given by a function $M : \mathbb{P} \longrightarrow \wp(K)^{\uparrow}$, extended to a homomorphism $|| \cdot ||^{M} : \mathcal{L} \longrightarrow \wp(K)^{\uparrow}$ – i.e., the following clauses obtain:

$$||p||^{M} = M(p)$$
$$||\neg A||^{M} = \neg(||A||^{M})$$
$$||A \rightarrow B||^{M} = ||A||^{M} \rightarrow ||B||^{M}$$
$$||A \circ B||^{M} = ||A||^{M} \circ ||B||^{M}$$

$$||t||^{M} = N$$
$$|A \wedge B||^{M} = ||A||^{M} \cap ||B||^{M}$$
$$|A \vee B||^{M} = ||A||^{M} \cup ||B||^{M}$$

A is true in $M (\vDash_M A)$ iff $N \subseteq ||A||^M$. A is true in $F (\vDash_F A)$ iff $\vDash_M A$ for all M on F. A is valid in $F (\vDash_F A)$ iff $\vDash_F A$ for all $F \in F$.

RQ's Incompleteness

Standard one universal constant domain semantics build on an R-frame: add a constant (universal) domain, set

$$||\forall x_n A||^M f = \bigcap_{f' \sim_{x_n} f} ||A||^M f'$$
$$||\exists x_n A||^M f = \bigcup_{f' \sim_{x_n} f} ||A||^M f'$$

RQ's Incompleteness

Standard one universal constant domain semantics build on an R-frame: add a constant (universal) domain, set

$$||\forall x_n A||^M f = \bigcap_{f' \sim x_n f} ||A||^M f'$$
$$||\exists x_n A||^M f = \bigcup_{f' \sim x_n f} ||A||^M f'$$

Fine [14] demonstrated that the standard constant domain semantics, build on the typical ternary relational ${\bf R}$ semantics, validates formulas not provable in ${\bf R}{\bf Q}$

$$\begin{array}{l} \mathsf{A}_0 \ \left[(P \to \exists x E x) \land \forall x ((P \to F x) \lor (G x \to H x)) \right] \to \\ \to \left\{ \left[\forall x ((E x \land F x) \to Q) \lor \forall x ((E x \to Q) \lor G x) \right] \to \left[\exists x H x \lor (P \to Q) \right] \right\} \end{array}$$

Completeness

1988: Fine [13] gives a genius but complicated and not very intuitive semantics for which RQ:

- Many have tried to find a simpler or more intuitive semantics.
- ► Not displayed here due to time/space/etc.

Completeness

1988: Fine [13] gives a genius but complicated and not very intuitive semantics for which RQ:

- Many have tried to find a simpler or more intuitive semantics.
- ► Not displayed here due to time/space/etc.

2006: Mares and Goldblatt [23] give a simpler, more natural semantics for RQ:

- Employs general frames (a trick often used to obtain completeness results)
- Employs a non-Tarskian/Kripkean approach to the quantifiers. That is:
 - ► Non-Kripkean: $\bigcap_{f' \sim v_{s}, f} ||A||^M f'$ is not always admissible
 - ▶ Non-Tarskian: not always that $a, f \vDash \forall x_n A$ iff $a, f' \vDash A$, for every $f' \sim_{x_n} f$

Completeness

1988: Fine [13] gives a genius but complicated and not very intuitive semantics for which RQ:

- Many have tried to find a simpler or more intuitive semantics.
- Not displayed here due to time/space/etc.

2006: Mares and Goldblatt [23] give a simpler, more natural semantics for RQ:

- Employs general frames (a trick often used to obtain completeness results)
- Employs a non-Tarskian/Kripkean approach to the quantifiers. That is:
 - ► Non-Kripkean: $\bigcap_{f' \sim -f} ||A||^M f'$ is not always admissible
 - ▶ Non-Tarskian: not always that $a, f \vDash \forall x_n A$ iff $a, f' \vDash A$, for every $f' \sim_{x_n} f$

Also 1988: Ross Brady's Content Semantics for some quantified relevant logics

Mares-Goldblatt Semantics

An MG frame is a tuple $\langle K, N, R, *, Prop, U, PropFun \rangle$, where $\langle K, N, R, * \rangle$ is an **R**-frame complete with defined \leq and $\wp(K)^{\uparrow}$, U is a non-empty set of individuals, $N \in Prop \subseteq \wp(K)^{\uparrow}$, and $PropFun \subseteq \{\varphi \mid \varphi : U^{\omega} \longrightarrow Prop\}$.

An MG frame is a tuple $\langle K, N, R, *, Prop, U, PropFun \rangle$, where $\langle K, N, R, * \rangle$ is an **R**-frame complete with defined \leq and $\wp(K)^{\uparrow}$, U is a non-empty set of individuals, $N \in Prop \subseteq \wp(K)^{\uparrow}$, and $PropFun \subseteq \{\varphi \mid \varphi : U^{\omega} \longrightarrow Prop\}$. Furthermore, we have the following: (c0) Prop closed w.r.t. $\cap, \cup, \rightarrow, \circ, \neg$

An MG frame is a tuple $\langle K, N, R, *, Prop, U, PropFun \rangle$, where $\langle K, N, R, * \rangle$ is an **R**-frame complete with defined \leq and $\wp(K)^{\uparrow}$, U is a non-empty set of individuals, $N \in Prop \subseteq \wp(K)^{\uparrow}$, and $PropFun \subseteq \{\varphi \mid \varphi : U^{\omega} \longrightarrow Prop\}$. Furthermore, we have the following:

(c0) *Prop* closed w.r.t. $\cap, \cup, \rightarrow, \circ, \neg$

(c1.0) There is a $\varphi_N \in PropFun$ s.t. for any $f \in D^{\omega}$, $\varphi_N f = N$.

(c1.1) Given $\varphi \in PropFun$, there is a $\neg \varphi \in PropFun$ s.t. $(\neg \varphi)f = \neg(\varphi f)$

(c1.2) For $\varphi, \psi \in PropFun$, there is a $\varphi \otimes \psi \in PropFun$ s.t. $(\varphi \otimes \psi)f = \varphi f \otimes \psi f$ for $\otimes \in \{\cap, \cup, \rightarrow, \circ\}$

An MG frame is a tuple $\langle K, N, R, *, Prop, U, PropFun \rangle$, where $\langle K, N, R, * \rangle$ is an **R**-frame complete with defined \leq and $\wp(K)^{\uparrow}$, U is a non-empty set of individuals, $N \in Prop \subseteq \wp(K)^{\uparrow}$, and $PropFun \subseteq \{\varphi \mid \varphi : U^{\omega} \longrightarrow Prop\}$. Furthermore, we have the following:

(c0) Prop closed w.r.t.
$$\cap, \cup, \rightarrow, \circ, \neg$$

(c1.0) There is a
$$\varphi_N \in PropFun$$
 s.t. for any $f \in D^\omega$, $\varphi_N f = N$

- (c1.1) Given $\varphi \in PropFun$, there is a $\neg \varphi \in PropFun$ s.t. $(\neg \varphi)f = \neg(\varphi f)$
- (c1.2) For $\varphi, \psi \in PropFun$, there is a $\varphi \otimes \psi \in PropFun$ s.t. $(\varphi \otimes \psi)f = \varphi f \otimes \psi f$ for $\otimes \in \{\cap, \cup, \rightarrow, \circ\}$

(c1.3) For any $\varphi \in PropFun$ and $n \in \omega$, there is a $\forall_n \varphi \in PropFun$ s.t.

$$(\forall_n \varphi) f = \prod_{f' \sim_{x_n} f} \varphi f' = \bigcup \{ X \in Prop \mid X \subseteq \bigcap_{f \sim_{x_n} f} \varphi f' \}$$

An MG frame is a tuple $\langle K, N, R, *, Prop, U, PropFun \rangle$, where $\langle K, N, R, * \rangle$ is an **R**-frame complete with defined \leq and $\wp(K)^{\uparrow}$, U is a non-empty set of individuals, $N \in Prop \subseteq \wp(K)^{\uparrow}$, and $PropFun \subseteq \{\varphi \mid \varphi : U^{\omega} \longrightarrow Prop\}$. Furthermore, we have the following:

(c0) Prop closed w.r.t.
$$\cap, \cup, \rightarrow, \circ, \neg$$

(c1.0) There is a
$$\varphi_N \in PropFun$$
 s.t. for any $f \in D^\omega$, $\varphi_N f = N$

- (c1.1) Given $\varphi \in PropFun$, there is a $\neg \varphi \in PropFun$ s.t. $(\neg \varphi)f = \neg(\varphi f)$
- (c1.2) For $\varphi, \psi \in PropFun$, there is a $\varphi \otimes \psi \in PropFun$ s.t. $(\varphi \otimes \psi)f = \varphi f \otimes \psi f$ for $\otimes \in \{\cap, \cup, \rightarrow, \circ\}$

(c1.3) For any $\varphi \in PropFun$ and $n \in \omega$, there is a $\forall_n \varphi \in PropFun$ s.t.

$$(\forall_n \varphi)f = \prod_{f' \sim_{x_n} f} \varphi f' = \bigcup \{ X \in Prop \mid X \subseteq \bigcap_{f \sim_{x_n} f} \varphi f' \}$$

(c1.4) For any $\varphi \in PropFun$ and $n \in \omega$, there is a $\exists_n \varphi \in PropFun$ s.t.

$$(\exists_n \varphi)f = \bigsqcup_{f' \sim_{x_n} f} \varphi f' = \bigcap \{ X \in Prop \mid \bigcup_{f' \sim_{x_n} f} \varphi f' \subseteq X \}$$

A model on an MG frame F is a multi-type function M that assigns:

- ▶ an individual $M(c) \in U$ to each constant symbol c;
- ▶ a function $M(P^n): U^n \longrightarrow Prop$ to each *n*-ary predicate symbol P^n ;
- $M_f(x_n) = fn; M_f(c) = M(c).$

A model on an MG frame F is a multi-type function M that assigns:

- ▶ an individual $M(c) \in U$ to each constant symbol c;
- ▶ a function $M(P^n): U^n \longrightarrow Prop$ to each *n*-ary predicate symbol P^n ;

•
$$M_f(x_n) = fn; M_f(c) = M(c).$$

Extend this to a valuation $|| \cdot ||^M : \mathcal{L} \longrightarrow PropFun$ as follows:

$$\begin{split} &||P(\tau_1, \dots, \tau_n)||_f^M = M(P)(M_f(\tau_1), \dots, M_f(\tau_n)) & ||\mathbf{t}||_f^M = \varphi_N f = N \\ &||\neg \mathcal{A}||_f^M = \neg (||\mathcal{A}||_f^M) \\ &||\mathcal{A} \wedge \mathcal{B}||_f^M = ||\mathcal{A}||_f^M \cap ||\mathcal{B}||_f^M & ||\mathcal{A} \vee \mathcal{B}||_f^M = ||\mathcal{A}||_f^M \cup ||\mathcal{B}||_f^M \\ &||\mathcal{A} \rightarrow \mathcal{B}||_f^M = ||\mathcal{A}||_f^M \rightarrow ||\mathcal{B}||_f^M & ||\mathcal{A} \circ \mathcal{B}||_f^M = ||\mathcal{A}||_f^M \circ ||\mathcal{B}||_f^M \\ &||\mathcal{A} \circ \mathcal{B}||_f^M = (|\mathcal{A}||_f^M \circ ||\mathcal{B}||_f^M & ||\mathcal{B} \otimes \mathcal{B}||_f^M = ||\mathcal{A}||_f^M \circ ||\mathcal{B}||_f^M \\ &||\mathcal{A} \circ \mathcal{B}||_f^M = (|\mathcal{A}||\mathcal{A}||^M)f & ||\mathcal{B} \otimes \mathcal{B}||_f^M = (|\mathcal{A}||\mathcal{A}||^M)f \\ \end{split}$$

 \mathcal{A} is satisfied on M just in case for every $f \in D^{\omega}$, $N \subseteq ||\mathcal{A}||_{f}^{M}$. \mathcal{A} is satisfied on F just if its satisfied on every M on F. \mathcal{A} is valid on a set \mathbf{F} of frames just in case it's satisfied on every $F \in \mathbf{F}$.

Constant domains and Tarskian Interpretations!?

Can we Regain the Tarskian Truth Condition?

- ► For "weaker" relevant logics, this should be no problem
 - As Fine notes, the problem appears to be with (B) and (B').
 - Completeness for the standard constant (universal) domain should work.

But can we obtain completeness for RQ using only general frames (and retain the Tarskian truth condition)?

Let's look at a similar case in quantified modal classical logic.

Analogous Results in Quantified Modal Classical Logic

Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

▶ Quantified S4.2B is incomplete w.r.t. the standard constant domain first-order semantics

Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

- ▶ Quantified **S4.2B** is incomplete w.r.t. the standard constant domain first-order semantics
- ▶ Quantified **S4.2B** is complete w.r.t. the Mares-Goldblatt interpretation of the quantifers

Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

- ▶ Quantified **S4.2B** is incomplete w.r.t. the standard constant domain first-order semantics
- ▶ Quantified **S4.2B** is complete w.r.t. the Mares-Goldblatt interpretation of the quantifers
 - ▶ Underlying general canonical frame is an S4.2 frame, truth condition is non-Tarskian

Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

- ▶ Quantified S4.2B is incomplete w.r.t. the standard constant domain first-order semantics
- ▶ Quantified **S4.2B** is complete w.r.t. the Mares-Goldblatt interpretation of the quantifers
 - Underlying general canonical frame is an S4.2 frame, truth condition is non-Tarskian
- One may regain the Tarskian truth condition, but at the "cost" of the canonical non-general frame no longer being an S4.2-frame, while the underlying general frame is an S4.2-frame

Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

- ▶ Quantified **S4.2B** is incomplete w.r.t. the standard constant domain first-order semantics
- ▶ Quantified **S4.2B** is complete w.r.t. the Mares-Goldblatt interpretation of the quantifers
 - Underlying general canonical frame is an S4.2 frame, truth condition is non-Tarskian
- One may regain the Tarskian truth condition, but at the "cost" of the canonical non-general frame no longer being an S4.2-frame, while the underlying general frame is an S4.2-frame
- In particular, the convergence property no longer holds:
 - ▶ *Rab* and *Rac* implies **there is** a *d* such that *Rbd* and *Rcd*.
 - Note the existential in the consequent

Completeness and Incompleteness of Quantified S4.2B

Goldblatt and Mares:

- ▶ Quantified **S4.2B** is incomplete w.r.t. the standard constant domain first-order semantics
- ▶ Quantified **S4.2B** is complete w.r.t. the Mares-Goldblatt interpretation of the quantifers
 - Underlying general canonical frame is an S4.2 frame, truth condition is non-Tarskian
- One may regain the Tarskian truth condition, but at the "cost" of the canonical non-general frame no longer being an S4.2-frame, while the underlying general frame is an S4.2-frame
- In particular, the convergence property no longer holds:
 - ▶ *Rab* and *Rac* implies **there is** a *d* such that *Rbd* and *Rcd*.
 - Note the existential in the consequent
- Similar results hold for **QS4M** + CQ and related systems for variable domain models.

Regain the Tarskian Truth Condition?

► Note that the problematic axioms, (B) and (B'), also have existential consequents in their corresponding semantic condition(s).

$$Rabx \& Rxcd \Rightarrow \exists y (Racy \& Rybd)$$

► Question: Can we give a general frame, Tarskian constant domain semantics for **RQ**, where the underlying frame is no longer an **R**-frame?

Regain the Tarskian Truth Condition?

Idea:

- Build a canonical model
 - Use only ω -complete theories
 - For a closed \mathcal{A} , $||\mathcal{A}|| = \{ \alpha \in \mathcal{K} : \mathcal{A} \in \alpha \}$
 - $Prop = \{X \subseteq K : X = ||\mathcal{A}|| \text{ for a closed } \mathcal{A}\}$
- ► Show: $A \to B \in \alpha$ iff $R \alpha \beta \gamma$ & $A \in \beta \Rightarrow B \in \gamma$
- Show: Truth Lemma
- Soundness: All theorems of RQ are in each regular theory, closure of *Prop* under the right operations ⇒ truth sets of theorems always include N.
- Completeness: The usual route with the truth lemma.

Regain the Tarskian Truth Condition?

Idea:

- Build a canonical model
 - Use only ω -complete theories
 - For a closed \mathcal{A} , $||\mathcal{A}|| = \{\alpha \in K : \mathcal{A} \in \alpha\}$
 - $Prop = \{X \subseteq K : X = ||\mathcal{A}|| \text{ for a closed } \mathcal{A}\}$
- ► Show: $\mathcal{A} \to \mathcal{B} \in \alpha$ iff $R\alpha\beta\gamma$ & $\mathcal{A} \in \beta \Rightarrow \mathcal{B} \in \gamma$
- Show: Truth Lemma
- ► Soundness: All theorems of **RQ** are in each regular theory, closure of *Prop* under the right operations ⇒ truth sets of theorems always include *N*.
- Completeness: The usual route with the truth lemma.

So What Would Such a Model Look Like?

Toy Example

- 1. $K = \{a, b, c, d, 0\};$ 2. $N = \{a, b\};$ 3. $R = \{(d, a, d), (b, y, z), (y, b, z) | x \le y\}$ $\cup \{(d, x, y) | x \le y \lor (x = a \& y = 0)\}$ $\cup \{(x, a, a), (x, x, x) | x \in \{a, b, c, d\}\};$ 4. $a^* = d, b^* = c, c^* = b, d^* = a;$
- 5. *Prop* is the set of upsets on $\{a, b, c, d\}$
- 6. U is some set; *PropFun* is full
- ||·|| assigns every formula such that [d) is in the truth set of no formula(-variable assignment pair).

Thanks!

Alan R. Anderson and Nuel D. Belnap. "Tautological Entailments". *Philosophical Studies* 13:9–24 (1962).

Alan R. Anderson, Nuel D. Belnap, and J. Michael

Entailment, The Logic of Relevance and Necessity, Volume II.

Princeton University Press (1992).

Nuel D. Belnap

"How a Computer Should Think".

In *Contemporary aspects of philosophy* G. Ryle (ed.), Oriel Press pp. 30–35 (1977).

Nuel D. Belnap

"A Useful Four-Valued Logic".

In Modern Uses of Multiple-Valued Logics, J. M. Dunn and G. Epstein (eds.), D. Reidel Publishing Co, pp. 8–37 (1977).

Katalin Bimbó and J. Michael Dunn.

Generalized Galois Logics: Relational Semantics for Non-Classical Logical Calculi. CSLI Publications (2008).

Patrick Blackburn, Maarten de Rijke, and Yde Venema. *Modal Logic.* Cambridge University Press (2001).

Brian Chellas.

"Basic Conditional Logic". Journal of Philosophical Logic 4(2):133–153 (1975).

Brian Chellas.

Modal Logic: An Introduction. Cambridge University Press (1980).

Ē

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld

Kooi.

Dynamic Epistemic Logic. Springer (2008).

J. Michael Dunn.

"Intuitive Semantics for First-Degree Entailments and 'Coupled Trees''.

Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition 29:149–168 (1976).

Nicholas Ferenz.

Quantified Modal Relevant Logics. Ph.D. Dissertation, University of Alberta, (2019).

Nicholas Ferenz.

"Quantified Modal Relevant Logics". Review of Symbolic Logic (Forthcoming).

Kit Fine.

"Semantics for Quantified Relevance Logic". Journal of Philosophical Logic 17:27–59 (1988).

Kit Fine.

"Incompleteness for Quantified Relevance Logics".

in Directions in Relevant Logic Norman and Sylvan (ed.), pp.205–225, Kluwer (1989),

Lou Goble.

"Neighborhoods for Entailment". Journal of Philosophical Logic 32:483-529 (2003).

Robert Goldblatt

Quantifiers. Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics.

Cambridge University Press (2011).

Allen P. Hazen and Francis Jeffry Pelleier.

"K3, I3, LP, RM3, A3, FDE, M: How to Make Many-Valued Logics Work for You".

In New Essays on Belnap-Dunn Logic, Omori H., Wansing H. (eds), Springer, pp. 155-190 (2020).

Geoff Sutcliffe, Francis Jeffry Pelleier, and Allen P. Hazen.

"Making Belnap's "useful four-valued logic" useful". In Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, FLAIRS, K. Brawner, and V. Rus (Eds.), AAAI Press, pp. 116-12 (2018).

Llovd Humberstone.

The Connectives MIT Press (2011).

Peter Lavers

Generating Intensional Logics. M.A. Thesis, University of Adelaide, (1985).

David	Le

wis

Counterfactuals Harvard University Press (1973).

Minghui Ma and Chun-Ting Wong. "A Paraconsistent Conditional Logic". Journal of Philosophical Logic 49:883-903 (2020).

Edwin D. Mares and Robert Goldblatt. "An Alternative Semantics for Quantified Relevant Logic".

Journal of Symbolic Logic 71(1):163–187 (2006).

Hitoshi Omori and Heinrich Wangsing.

"40 years of FDE: An Introductory Overview". Studio Logica, Special Issue: 40 Years of FDE 105:1021-1049 (2017).

Graham Priest

An Introduction to Non-Classical Logic Cambridge University Press (2008).

Greg Restall.

An Introduction to Substructural Logics.

Routledge (2000).

1

Richard Routley.

"The American Plan Completened: Alternative classical-style semantics, without stars, for relevant and paraconsistent logics".

Studia Logica 43(1):199-243 (1984).

Richard Routley and Robert K. Mever.

"The Semantics of Entailment II". Journal of Philosophical Logic 1:53-73 (1972).

Richard Routley and Robert K. Meyer.

"The Semantics of Entailment".

Truth. Syntax. and Modality e. Hugues Leblanc. pp. 199-243. North-Holland (1973).

Richard Routley and Robert K. Mever.

"Towards a General Semantical Theory of Implication and Conditionals. I. Systems with Normal Conjunctions and Disjunctions and Aberrant and Normal Negations". Reports on Mathematical Logic 4:67-89 (1975).

Richard Routley and Robert K. Mever.

"Towards a General Semantical Theory of Implication and Conditions. II. Improved Negation Theory and Propositional Identity".

Reports on Mathematical Logic 9:47-62 (1976).

Richard Routley, Robert K. Meyer, Val Plumwood, and Ross T. Brady. Relevant Logics and Their Rivals, Volume 1. Ridgeview Publishing (1982).

Krister Segerberg.

An Essav in Classical Modal Logic. Ph.D. Dissertation. Stanford (1971).

Takahiro Seki.

"A Sahlqvist Theorem for Relevant Modal Logics". Studia Logica. 73: 383-411 (2003).

Takahiro Seki.

"General Frames for Relevant Modal Logics". Notre Dame Journal of Formal Logic, 44(2): 93–109 (2003).

Yaroslav Shramko

"First-Degree Entailment and Structural Reasoning", In New Essays on Belnap-Dunn Logic, Hitoshi Omori and Heinrich Wansong (eds.), pp. 311-324. Springer (2019).

Shawn Standefer

"Tracking Reasons with Extensions of Relevant Logics" Logic Journal of the IGPL, 27(4):543-569 (2019).

Andrew Tedder.

"Information Flow in Logics in the Vicinity of BB".

Australasian Journal of Logic. 18(1):1–24 (2021).

Andrew Tedder and Nicholas Ferenz.

"Neighbourhood Semantics for Quantified Relevant Logics".

Journal of Philosophical Logic. (Forthcoming).

Heinrich Wansing.

"Connexive modal logic".

In Advances in Modal Logic, Volume 5, R. Schmidt et al. (eds.), pp. 367383. London: Kings College Publications (2005).