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Omniscience and Epistemic clutter

Epistemic logic: □φ read as “The agent knows / believes / has information that φ”.

Classical epistemic logic: extends classical logic, assumes certain problematic principles:
Logical omniscience Epistemic clutter

(□E)
φ↔ ψ

□φ↔ □ψ
(□W) □φ→ □(ψ → ψ)

(□M)
φ→ ψ

□φ→ □ψ
(□CON1) □(φ ∧ ¬φ) → □ψ

(□N)
φ

□φ
(□CON2) □φ ∧□¬φ→ □ψ

(□C) □φ ∧□ψ → □(φ ∧ ψ)
(□K) □(φ→ ψ) → (□φ→ □ψ)

Relevant epistemic logic: avoids epistemic clutter by restricting the underlying
propositional logic, so that e.g. φ ∧ ¬φ→ ψ is invalid.

However, invalid principles of relevant logic are fine when seen as being about truth in a
world (vs information received by an agent)
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Our contribution

In (SV22) we introduce a family of epistemic logics (CL) such that:
CL extends classical propositional logic

agents’ attitudes are closed under a given relevant logic L
(Slogan: Relevant reasoners situated in a classical world.)

For each relevant logic L:

⊢L φ1 ∧ . . . ∧ φn → ψ

⊢CL □φ1 ∧ . . . ∧□φn → □ψ
(RR)

(Slogan: Formulas in the scope of □ behave relevantly in CL)

Epistemic clutter is avoided
Logical omniscience is almost completely avoided:

(□C) ⊢CL □φ ∧□ψ → □(φ ∧ ψ) ⊢L φ→ ψ

⊢CL □φ→ □ψ
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Outline

1 From L to CL

2 Relevant modal logics

3 Classical epistemic logics for relevant reasoners

4 The axiomatization result

5 Conclusion

6 Bonus
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1. From L to CL



The basic relevant system

Drawing from (Fuh90), we define the axiom system BM.C:

(a1) φ→ φ (a7) ψ → (φ ∨ ψ)
(a2) ¬(φ ∧ ψ) → (¬φ ∨ ¬ψ) (a8) ((φ→ ψ) ∧ (φ→ χ)) → (φ→ (ψ ∧ χ))
(a3) (¬φ ∧ ¬ψ) → ¬(φ ∨ ψ) (a9) ((φ→ χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ)

(a4) (φ ∧ ψ) → φ (a10) (φ ∧ (ψ ∨ χ)) → ((φ ∧ ψ) ∨ (φ ∧ χ)
(a5) (φ ∧ ψ) → ψ (□C) □(φ ∧ ψ) → (□φ ∧□ψ)

(a6) φ→ (φ ∨ ψ) (□LC) □L(φ ∧ ψ) → (□Lφ ∧□Lψ)

φ φ→ ψ
(MP)

ψ

φ ψ
(Adj)

φ ∧ ψ
φ′ → φ ψ → ψ′

(Aff)
(φ→ ψ) → (φ′ → ψ′)

φ→ ψ
(Con)

¬ψ → ¬φ
φ→ ψ

(□-M)
□φ→ □ψ

φ→ ψ
(□L-M)

□Lφ→ □Lψ
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Propositional extensions

Let L be BM.C + a subset of the following axioms and rules.

!

Modal Propositional

(□M)
φ→ ψ

□φ→ □ψ
(DN) φ↔ ¬¬φ

(□N)
φ

□φ
(Cp) (φ→ ψ) → (¬ψ → ¬φ)

(□C) □φ ∧□ψ → □(φ ∧ ψ) (WB) ((φ→ ψ) ∧ (ψ → χ)) → (φ→ χ)
(□K) □(φ→ ψ) → (□φ→ □ψ) (X) φ ∨ ¬φ
(□T) □φ→ φ (Rd) (φ→ ¬φ) → ¬φ
(□D) □¬φ→ ¬□φ (B) (φ→ ψ) → ((χ→ φ) → (χ→ ψ))
(□4) □φ→ □□φ (CB) (φ→ ψ) → ((ψ → χ) → (φ→ χ))
(□5) ¬□φ→ □¬□φ (W) (φ→ (φ→ ψ)) → (φ→ ψ)

(C) (φ→ (ψ → χ)) → (ψ → (φ→ χ))
(M) φ→ (φ→ φ)

(ER)
φ

(φ→ ψ) → ψ
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From L to CL

For any L, define CL as the following set of axioms and rules:

1 Axiomatisation of CPC;

2 for each axiom φ of L, an axiom □Lφ;

3 for each rule
φ1 . . . φn

ψ
of L, a rule

□Lφ1 . . .□Lφn

□Lψ
;

4
□L(φ→ ψ)

φ→ ψ
(BR).

Lemma 1 (L-CL)

⊢L φ iff ⊢CL □Lφ.
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CL

The relevant reasoning meta-rule is “admissible”.

⊢L φ1 ∧ . . . ∧ φn → ψ

⊢CL □φ1 ∧ . . . ∧□φn → □ψ
(RR)

⊢L φ1 ∧ . . . ∧ φn → ψ

⊢L □φ1 ∧ . . . ∧□φn → □ψ □M and □C in L

⊢CL □L

(
□φ1 ∧ . . . ∧□φn → □ψ

)
Lemma 1

⊢CL □φ1 ∧ . . . ∧□φn → □ψ (BR)
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2. Relevant modal logics



Relevant modal logics

Definition (Model)
F = (S,≤, R, ∗, Q,QL, V ) where

(S,≤) is a poset

R ∈ S(↓↓↑)
∗ ∈ S(↑, S(↓))
Q,QL ∈ S(↓↑)
V : At→ S(↑)

Definition (L-Model)
M = (M,L) such that L ∈ S(↑) and

∀s∃x(x ∈ L & Rxss) (1)
s ∈ L & Rstu =⇒ t ≤ u (2)
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Relevant modal logics
Valuation extended to the full language as follows:

...

¬JφKM = {s | s∗ /∈ JφKM}
JφKM → JφKM = {s | ∀t, u : Rstu & t ∈ JφKM =⇒ u ∈ JψKM}

□JφKM = {s | ∀t : Qst =⇒ t ∈ JφKM}
□LJφKM = {s | ∀t : QLst =⇒ t ∈ JφKM}

M |= φ iff L ⊆ JφKM for all M .

Lemma 2 (Heredity)
For all φ, JφKM ∈ S(↑).

Lemma 3 (Verification)
For all φ,ψ |= φ→ ψ iff JφKM ⊆ JψKM .
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3. Classical epistemic logics for
relevant reasoners



W-model
To simulate classical logic in a relevant setting we need three ingredients:

A Bounded model (Sek03): a model with two special 0, 1 ∈ S

A set of possible worlds in a bounded model M is W ⊆ S such that w ∈W iff

w∗ = w (3)
Rwww (4)

Rwst =⇒ (s = 0 or w ≤ t) (5)
Rwst =⇒ (t = 1 or s ≤ w∗) (6)

(Note: the ”01-free” versions of the last two conditions are not canonical.)

QL(W ) simulates the behaviour of L in L-models, i.e.

∀s∃u(u ∈ QL(W ) & Russ)

u ∈ QL(W ) & Rust =⇒ s ≤ t
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Putting things together

Definition
A W -model is M = (M,W ) where M is a bounded model and W is a set of possible worlds
in F such that

∀s∃u(u ∈ QL(W ) & Russ)

u ∈ QL(W ) & Rust =⇒ s ≤ t

|= φ in M iff W ⊆ JφKM .

Lemma 4

For all φ,ψ: |= □L(φ→ ψ) iff JφKM ⊆ JψKM

I. Sedlár and P. Vigiani (CAS and SNS) Relevant Reasoners AiML 2022 11 / 20



Putting things together

Definition
A W -model is M = (M,W ) where M is a bounded model and W is a set of possible worlds
in F such that

∀s∃u(u ∈ QL(W ) & Russ)

u ∈ QL(W ) & Rust =⇒ s ≤ t

|= φ in M iff W ⊆ JφKM .

Lemma 4

For all φ,ψ: |= □L(φ→ ψ) iff JφKM ⊆ JψKM

I. Sedlár and P. Vigiani (CAS and SNS) Relevant Reasoners AiML 2022 11 / 20



Facts about W-models

Proposition 1
M , 1 |= φ for all φ;
M , 0 ̸|= φ for all φ.

Proposition 2
If w is a possible world in a bounded model M , then:

M , w |= ¬φ iff M , w ̸|= φ;
M , w |= φ→ ψ iff M , w ̸|= φ or M , w |= ψ.

φ ∈ CL iff φ ∈ CPC for φ propositional
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Invalidities in W-frames

(□E)
φ↔ ψ

□φ↔ □ψ
X

(□M)
φ→ ψ

□φ→ □ψ
X

(□N)
φ

□φ
X

(□C) □φ ∧□ψ → □(φ ∧ ψ) ✓
(□K) □(φ→ ψ) → (□φ→ □ψ) X
(□W) □φ→ □(ψ → ψ) X

(□CON1) □(φ ∧ ¬φ) → □ψ X
(□CON2) □φ ∧□¬φ→ □ψ X

S

W

•

◦

Q

Similar idea in (Lev84)
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4. The axiomatization result



The fundamental bridge lemma

Recall the axiomatisation of CL:
1 Axiomatisation of CPC;
2 for each axiom φ of L, an axiom □Lφ;

3 for each rule
φ1 . . . φn

ψ
of L, a rule

□Lφ1 . . .□Lφn

□Lψ
;

4
□L(φ→ ψ)

φ→ ψ
(BR).

Lemma 1 (L-CL)
⊢L φ iff ⊢CL □Lφ.

Proof. One direction by easy induction on the length of proofs, the other by a model
transformation (see the paper (SV22)), and soundness (see next slide).
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Soundness and completeness

Theorem 1
For all φ and L: ⊢CL φ iff φ ∈ CL.

Proof. Soundness by induction using W-frames conditions and W ⊆ J□L(φ→ ψ)KM iff
JφKM ⊆ JψKM . Completeness by canonical model construction.

MCL is defined as follows:
SCL is the set of all prime L-theories ordered by set inclusion
WCL is the set of all non-empty proper prime CL-theories
RCLstu iff φ→ ψ ∈ s and φ ∈ t imply ψ ∈ u

s∗
CL

= {φ | ¬φ /∈ s}
QCL

(L)st iff □(L)φ ∈ s implies φ ∈ t

V CL(p) = {s | p ∈ s}
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The canonical model

Lemma 5
For all L, MCL is a model for CL.

Proof. ... The fact that QCL
L (WCL) “behaves like L” uses Lemma 1 (⊢L φ ⇐⇒ ⊢CL □Lφ).

Note: Canonicity of frame conditions for logics stronger than L is standard, e.g. as in (RPMB82).

Lemma 6
φ ∈ s iff (MCL, s) |= φ.

Proof. Standard.
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5. Conclusion



Conclusion and future work

Relevant and classical modal logic can “live together”

We provide a framework for moderately idealised agents that avoids logical omniscience
and epistemic clutter
We obtain a general completeness theorem
Some topics of ongoing or future work:

Neighbourhood semantics (we’re on it)
First-order versions studied by Nick Ferenz
Distributed and common knowledge (...build on relevant PDL (TB22))
Epistemic dynamics (...build on relevant public update logic (ST21))
Algebraic formulation
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6. Bonus



Bonus: Neighborhood version

⊢CL □φ ∧□ψ → □(φ ∧ ψ) and
⊢L φ→ ψ

⊢CL □φ→ □ψ
since (□C) and (□M) are in L

Use neighborhood semantics to model a non-normal modality □! We define BM.E:

(a1) φ→ φ (a7) ψ → (φ ∨ ψ)
(a2) ¬(φ ∧ ψ) → (¬φ ∨ ¬ψ) (a8) ((φ→ ψ) ∧ (φ→ χ)) → (φ→ (ψ ∧ χ))
(a3) (¬φ ∧ ¬ψ) → ¬(φ ∨ ψ) (a9) ((φ→ χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ)

(a4) (φ ∧ ψ) → φ (a10) (φ ∧ (ψ ∨ χ)) → ((φ ∧ ψ) ∨ (φ ∧ χ)
(a5) (φ ∧ ψ) → ψ (□LC) □L(φ ∧ ψ) → (□Lφ ∧□Lψ)

(a6) φ→ (φ ∨ ψ)

φ φ→ ψ
(MP)

ψ

φ ψ
(Adj)

φ ∧ ψ
φ′ → φ ψ → ψ′

(Aff)
(φ→ ψ) → (φ′ → ψ′)

φ→ ψ
(Con)

¬ψ → ¬φ
φ↔ ψ

(□-E)
□φ↔ □ψ

φ→ ψ
(□L-M)

□Lφ→ □Lψ
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Axiomatisation of CN

Take an extension of BM.E with a subset of modal and propositional axioms/rules as
above;
For any such N:

1 Axiomatisation of CPC;
2 for each axiom φ of N, an axiom □Lφ;

3 for each rule
φ1 . . . φn

ψ
of N, a rule

□Lφ1 . . .□Lφn

□Lψ
;

4
□L(φ→ ψ)

φ→ ψ
(BR).

Note: We still have
⊢L φ↔ ψ

⊢CL □φ↔ □ψ
since φ↔ ψ

□φ↔ □ψ
is a rule of L
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Bonus: Neighborhood version

Definition (W-model)
M = (S,W,Prop, L,≤, R, ∗, N,QL, V ) where:

(S,≤),W,R, ∗, QL as in relational W-models

L as in L-models, such that QL(W ) = L (instead of simulating it)
Prop set of admissible propositions, closed under ∧,∨,→, ∗,□,□L

Note: General frames not only useful for a uniform completeness proof, but essential for the canonicity of the
conditions on 0,1.

N : S → P (P (S)) neighborhood function
V : At→ Prop
□JφKM = {s | NsJφKM}

Theorem 2
For all φ and N: ⊢CN φ iff φ ∈ CN.
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