Many-valued coalgebraic modal logic with a semi-primal algebra of truth-degrees

Wolfgang Poiger

University of Luxembourg

Joint work (in progress) with Alexander Kurz and Bruno Teheux

LATD / MOSAIC 2022

Krip: Kripke frames with bounded morphisms MA: Modal algebras with homomorphisms

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

In general:

Krip: Kripke frames with bounded morphisms = $Coalg(\mathcal{P})$ MA: Modal algebras with homomorphisms = $Alg(\mathcal{O})$

In general:

Krip: Kripke frames with bounded morphisms = Coalg(P)MA: Modal algebras with homomorphisms = Alg(O)

In general:

Going many-valued:

Replace the two-element Boolean algebra $\mathbf{2}$ by another finite algebra \mathbf{L} .

T' \mathcal{X} $\mathcal{V}L$ \mathcal{M}'

T' \mathcal{V} \mathcal{V} \mathcal{V} \mathcal{V} M'

• It should be based on a bounded lattice.

T' \mathcal{X} $\mathcal{V}L$ \mathcal{M}'

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- Correlation between Set-endofunctors and \mathcal{X} -endofunctors.

- It should be based on a bounded lattice.
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let ${\boldsymbol{\mathsf{L}}}$ be a semi-primal bounded-lattice expansion.

- It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}L$.
- There should be a nice description of \mathcal{X} .
- Correlation between Set-endofunctors and \mathcal{X} -endofunctors.

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2.
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}L$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

The variety generated by a primal algebra is categorically equivalent to BA.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

The variety generated by a primal algebra is categorically equivalent to BA.

Definition (Foster, Pixley 1964)

A finite algebra **L** is *semi-primal* if every $f: L^k \to L$ which preserves subalgebras [i.e. $f(S^k) \subseteq S$ for all $\mathbf{S} \in \mathbb{S}(\mathbf{L})$] is term-definable in **L**.

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

The variety generated by a primal algebra is categorically equivalent to BA.

Definition (Foster, Pixley 1964)

A finite algebra **L** is *semi-primal* if every $f: L^k \to L$ which preserves subalgebras [i.e. $f(S^k) \subseteq S$ for all $\mathbf{S} \in \mathbb{S}(\mathbf{L})$] is term-definable in **L**.

• Semi-primal algebras are like 'primal algebras which allow subalgebras'

Definition (Foster 1953)

A finite algebra **P** is *primal* if every $f: P^k \to P$ is term-definable in **P**.

Theorem (Hu 1969)

The variety generated by a primal algebra is categorically equivalent to BA.

Definition (Foster, Pixley 1964)

A finite algebra **L** is *semi-primal* if every $f: L^k \to L$ which preserves subalgebras [i.e. $f(S^k) \subseteq S$ for all $\mathbf{S} \in \mathbb{S}(\mathbf{L})$] is term-definable in **L**.

- Semi-primal algebras are like 'primal algebras which allow subalgebras'
- They are special instances of finite discriminator algebras (also called quasi-primal algebras)

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}L$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic.
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Examples (1)

Proposition

Let **L** be a finite bounded-lattice expansion. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

Examples (1)

Proposition

Let **L** be a finite bounded-lattice expansion. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

• Therefore, there exists a semi-primal algebra based on *any* bounded lattice.

Examples (1)

Proposition

Let **L** be a finite bounded-lattice expansion. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = egin{cases} 1 & ext{if } x = a \ 0 & ext{if } x
eq a. \end{cases}$$

- Therefore, there exists a semi-primal algebra based on *any* bounded lattice.
- Adding the terms T_a is not the same as adding constants a.

Proposition

Let **L** be a finite bounded-lattice expansion. Then **L** is semi-primal if and only if for every $a \in L$ the following $T_a : L \to L$ is term-definable in **L**:

$$T_a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{if } x \neq a. \end{cases}$$

- Therefore, there exists a semi-primal algebra based on *any* bounded lattice.
- Adding the terms T_a is not the same as adding constants a.
- Given a finite bounded distributive lattice **D**, there is an axiomatization of modal logic over $(\mathbf{D}, \rightarrow, (T_d)_{d \in D})$ with Heyting implication interpreted on (crisp) Kripke frames. (Maruyama 2009)

Examples (2)

Proposition (Niederkorn 2001)

Every finite Łukasiewicz chain $\mathbf{t}_n = (\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, 0, 1, \oplus, \odot, \neg)$ where $\neg x = 1 - x$, $x \oplus y = min(x + y, 1)$ and $x \odot y = max(x + y - 1, 0)$ is semi-primal.

Examples (2)

Proposition (Niederkorn 2001)

Every finite Łukasiewicz chain $\mathbf{t}_n = (\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, 0, 1, \oplus, \odot, \neg)$ where $\neg x = 1 - x$, $x \oplus y = min(x + y, 1)$ and $x \odot y = max(x + y - 1, 0)$ is semi-primal.

Proposition

Let **L** be a finite bounded-lattice expansion. Then **L** is semi-primal if and only if T_0 and, for every $a \in L$, the following $\tau_a : L \to L$ is term-definable in **L**:

$$au_{a}(x) = egin{cases} 1 & ext{if } x \geq a \ 0 & ext{if } x
eq a. \end{cases}$$

Examples (2)

Proposition (Niederkorn 2001)

Every finite Łukasiewicz chain $\mathbf{t}_n = (\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, 0, 1, \oplus, \odot, \neg)$ where $\neg x = 1 - x$, $x \oplus y = min(x + y, 1)$ and $x \odot y = max(x + y - 1, 0)$ is semi-primal.

Proposition

Let **L** be a finite bounded-lattice expansion. Then **L** is semi-primal if and only if T_0 and, for every $a \in L$, the following $\tau_a : L \to L$ is term-definable in **L**:

$$au_{a}(x) = egin{cases} 1 & ext{if } x \geq a \ 0 & ext{if } x
eq a. \end{cases}$$

Therefore:

Every finite Moisil chain $\mathbf{LM}_n = (\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \wedge, \vee, 0, 1, \neg, (\tau_{\frac{i}{n}})_{i=1}^n)$ is semi-primal.

A *FL_{ew}-algebra* is an algebra $\mathbf{R} = (R, \land, \lor, 0, 1, \odot, \rightarrow)$ such that $(R, \odot, 1)$ is a commutative monoid and which satisfies the residuation condition:

 $x \odot y \leq z \Leftrightarrow x \leq y \to z.$

A FL_{ew} -algebra is an algebra $\mathbf{R} = (R, \land, \lor, 0, 1, \odot, \rightarrow)$ such that $(R, \odot, 1)$ is a commutative monoid and which satisfies the residuation condition:

 $x \odot y \le z \Leftrightarrow x \le y \to z.$

• Finite non-idempotent *FL_{ew}*-algebras are quasi-primal, and many of them seem to be semi-primal.

A FL_{ew} -algebra is an algebra $\mathbf{R} = (R, \land, \lor, 0, 1, \odot, \rightarrow)$ such that $(R, \odot, 1)$ is a commutative monoid and which satisfies the residuation condition:

 $x \odot y \le z \Leftrightarrow x \le y \to z.$

- Finite non-idempotent *FL_{ew}*-algebras are quasi-primal, and many of them seem to be semi-primal.
- There are also examples of idempotent semi-primal *FL_{ew}*-algebras.

A FL_{ew} -algebra is an algebra $\mathbf{R} = (R, \land, \lor, 0, 1, \odot, \rightarrow)$ such that $(R, \odot, 1)$ is a commutative monoid and which satisfies the residuation condition:

 $x \odot y \le z \Leftrightarrow x \le y \to z.$

- Finite non-idempotent *FL_{ew}*-algebras are quasi-primal, and many of them seem to be semi-primal.
- There are also examples of idempotent semi-primal *FL_{ew}*-algebras.
- There are also examples of semi-primal commutative bounded residuated lattices (i.e. where the monoid has neutral element $e \neq 1$).

Examples (4)

Call an algebra $\mathbf{L} = (L, \wedge, \vee, 0, 1, ')$ pseudo-logic if 0' = 1 and 1' = 0.

Examples of semi-primal pseudo-logics: (Davey, Schumann, Werner 1991)

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}L$.
- There should be a nice description of \mathcal{X} .
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Definition

We define a category $\mathsf{Stone}_{\mathsf{L}}$ as follows:

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms $(X,\mathbf{r})
ightarrow (X',\mathbf{r}')$ are continuous maps $f \colon X
ightarrow X'$ with

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms $(X,\mathbf{r})
ightarrow (X',\mathbf{r}')$ are continuous maps $f \colon X
ightarrow X'$ with

 $\mathbf{r}'(f(x)) \leq \mathbf{r}(x)$ for all $x \in X$.

Theorem (Keimel, Werner 1974 & Clark, Davey 1998)

For semi-primal algebras without trivial subalgebras there is a dual equivalence (with schizophrenic object L)

Stone_L
$$\rightarrow \mathcal{V}$$
L

Wolfgang Poiger (uni.lu)

9/21

To obtain our coalgebraic base category \mathcal{X} , we forget topology:

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r} \colon X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms $(X, \mathbf{r})
ightarrow (X', \mathbf{r}')$ are continuous maps $f \colon X
ightarrow X'$ with

To obtain our coalgebraic base category \mathcal{X} , we forget topology:

Definition

We define a category Stone_L as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space.
- $\mathbf{r}: X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms $(X, \mathbf{r}) \rightarrow (X', \mathbf{r}')$ are continuous maps $f \colon X \rightarrow X'$ with

To obtain our coalgebraic base category \mathcal{X} , we forget topology:

Definition

We define a category Set_{L} as follows: Objects are of the form (X, \mathbf{r}) where

- X is a Stone space set.
- $\mathbf{r}: X \to \mathbb{S}(\mathbf{L})$ is a map such that $\mathbf{r}^{-1}(\mathbf{S}\downarrow)$ is closed for every subalgebra $\mathbf{S} \leq \mathbf{L}$.

Morphisms $(X, \mathbf{r}) \to (X', \mathbf{r}')$ are continuous maps $f \colon X \to X'$ with

Pro- and Ind- completions

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$. \checkmark
- There should be a nice description of $\mathcal{X}.$ \checkmark
- \bullet Correlation between Set-endofunctors and $\mathcal X\text{-endofunctors}.$

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

- \bullet It should be based on a bounded lattice. \checkmark
- It should behave 'similarly' to 2. \checkmark
- It should generalize previous instances of many-valued modal logic. \checkmark
- There should be a Stone-like duality for $\mathcal{V}\mathbf{L}$. \checkmark
- \bullet There should be a nice description of $\mathcal{X}.$ \checkmark
- Correlation between Set-endofunctors and \mathcal{X} -endofunctors.

Main Assumption

Let L be a semi-primal bounded-lattice expansion.

Lifting functors (1)

Proposition

To every Set-endofunctor T there is natural way to associate a Set_{L} -endofunctor T' with T'U = T (here U is the forgetful functor).

$$\mathsf{T} \stackrel{\frown}{\subset} \mathsf{Set} \xleftarrow{\mathsf{U}} \mathsf{Set}_{\mathsf{L}} \stackrel{\frown}{\to} \mathsf{T}'$$

Lifting functors (1)

Proposition

To every Set-endofunctor T there is natural way to associate a Set_{L} -endofunctor T' with T'U = T (here U is the forgetful functor).

$$\mathsf{T} \bigcirc \mathsf{Set} \longleftarrow \mathsf{U} \longrightarrow \mathsf{Set}_{\mathsf{L}} \bigcirc \mathsf{T}'$$

Example 1: T = P, the (covariant) powerset functor. Then Coalg(P') corresponds to the following:

Definition

A crisp **L**-frame is a triple (W, R, \mathbf{r}) such that

• (W, R) is a Kripke-frame.

•
$$(W, \mathbf{r}) \in \mathsf{Set}_{\mathsf{L}}$$
 (i.e. $\mathbf{r} : W \to \mathbb{S}(\mathsf{L})$).

• Compatibility: $wRw' \Rightarrow \mathbf{r}(w') \subseteq \mathbf{r}(w)$.

Lifting functors (2)

Proposition

To every Set-endofunctor T there is natural way to associate a Set_{L} -endofunctor T' with T'U = T (here U is the forgetful functor).

$$\mathsf{T} \bigcirc \mathsf{Set} \longleftarrow \mathsf{U} \longrightarrow \mathsf{Set}_{\mathsf{L}} \mathrel{\check{\supset}} \mathsf{T}'$$

Example 2: $T = \mathcal{L}$, given on objects by $\mathcal{L}(X) = L^X$. Then $\text{Coalg}(\mathcal{L}')$ corresponds to the following:

Definition

A **L**-frame is a triple (W, R, \mathbf{r}) such that

• (W, R) is a **L**-labeled Kripke-frame, i.e. $R: W \times W \rightarrow L$.

•
$$(W, \mathbf{r}) \in \mathsf{Set}_{\mathsf{L}}$$
 (i.e. $\mathbf{r} : W \to \mathbb{S}(\mathsf{L})$).

• Compatibility: $R(w, w') \neq 0 \Rightarrow \mathbf{r}(w') \subseteq \mathbf{r}(w)$.

Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

From coalgebras to algebras:

$$W \xrightarrow{\xi} T'W$$

Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

From coalgebras to algebras:

$$W \xrightarrow{\xi} T'W$$
$$\Pi T'W \xrightarrow{\Pi\xi} \Pi W$$

Ingredients:

- A (representation of the) functor M' for the 'syntax'.
- A natural transformation $\delta \colon M'\Pi \Rightarrow \Pi T'$ for the 'semantics'.

From coalgebras to algebras:

$$W \xrightarrow{\xi} T'W$$

$$\mathsf{M}' \sqcap W \xrightarrow{\delta_W} \sqcap \mathsf{T}' W \xrightarrow{\Pi_{\xi}} \sqcap W$$

Example

Definition

A crisp **L**-frame is (W, R, \mathbf{r}) such that

- (W, R) is a Kripke-frame.
- $(W, \mathbf{r}) \in \mathsf{Set}_{\mathsf{L}}$ (i.e. $\mathbf{r} : W \to \mathbb{S}(\mathsf{L})$).
- Compatibility: $wRw' \Rightarrow \mathbf{r}(w') \subseteq \mathbf{r}(w)$.

A crisp L-model is (W, R, \mathbf{r}, Val) such that, in addition

 $Val: W \times \mathsf{Prop} \to L$

always satisfies $Val(w, p) \in \mathbf{r}(w)$. We extend Val to all modal formulas using the rule

$$Val(w, \Box \varphi) = \bigwedge \{ Val(w', \varphi) \mid wRw' \}$$

Example

 M' takes an algebra A ∈ VL to the free algebra generated by {□a | a ∈ A} quotiented by the equations

$$\Box 1pprox 1, \quad \Box (a\wedge b)pprox \Box a\wedge \Box b, \quad \Box au_\ell(a)pprox au_\ell(\Box a)$$

 M' takes an algebra A ∈ VL to the free algebra generated by {□a | a ∈ A} quotiented by the equations

$$\Box 1 pprox 1, \quad \Box (a \wedge b) pprox \Box a \wedge \Box b, \quad \Box au_\ell(a) pprox au_\ell(\Box a)$$

• $\delta_X : \mathsf{M}' \Pi X \to \Pi \mathcal{P}' X$ is determined by

$$\Box f\mapsto (Y\mapsto igwedge_{y\in Y}f(y))$$

 M' takes an algebra A ∈ VL to the free algebra generated by {□a | a ∈ A} quotiented by the equations

$$\Box 1 pprox 1, \quad \Box (a \wedge b) pprox \Box a \wedge \Box b, \quad \Box au_\ell(a) pprox au_\ell(\Box a)$$

• $\delta_X : \mathsf{M}' \Pi X \to \Pi \mathcal{P}' X$ is determined by

$$\Box f\mapsto (Y\mapsto igwedge_{y\in Y}f(y))$$

• Completeness amounts to injectivity of δ .

Wolfgang Poiger (uni.lu)

Usually in MV-modal logic, people seem more interested in the correspondence

Usually in MV-modal logic, people seem more interested in the correspondence

Usually in MV-modal logic, people seem more interested in the correspondence

 $\mathsf{V}^\top\dashv\mathsf{U}$

Usually in MV-modal logic, people seem more interested in the correspondence

$$V^{\top} \dashv U$$

 $V^{\top}(X) = (X, \mathbf{r}^{\top})$ assigns $\mathbf{r}^{\top}(x) = \mathbf{L}$ for all $x \in X$.

Theorem

Let F be an elementary class of crisp **L**-frames. Then F is modally definable if and only if F is closed under disjoint unions, generated sub-**L**-frames and bounded morphic images, and it reflects canonical extensions.

Theorem

Let F be an elementary class of crisp L-frames. Then F is modally definable if and only if F is closed under disjoint unions, generated sub-L-frames and bounded morphic images, and it reflects canonical extensions.

Corollary

Let F be a class of Kripke-frames closed under ultrapowers. Then F is L-definable if and only if F is closed under disjoint unions, generated subalgebras and bounded morphic images, and it reflects ultrafilter extensions.

Let U be the forgetful functor. Its dual ${\mathfrak B}$ is given by the following.

Definition (Maruyama 2011)

Given any $\mathbf{A} \in \mathcal{V}\mathbf{L}$ we define $\mathfrak{B}(A) = \{a \in A \mid T_1(a) = a\}$. The Boolean skeleton of \mathbf{A} is the Boolean algebra

$$\mathfrak{B}(\boldsymbol{A}) = (\mathfrak{B}(\boldsymbol{A}), \wedge, \vee, T_0, 0, 1).$$

Canonical extensions

Theorem

An algebra **A** is in CAVL iff its lattice-reduct is complete and $\mathfrak{B}(\mathbf{A})$ is in CABA.

Thanks for your attention!