Free algebras in all subvarieties of the variety

 generated by the MG t-normP. Díaz Varela - N. Lubomirsky
UNLP - INMABB - CONICET

Definition

A t-norm is a binary operation $*:[0,1]^{2} \rightarrow[0,1]$ which satisfies the following conditions:
(1) * is commutative and associative.
(0) * is non decreasing in both arguments, i.e., for every $x, y, z \in[0,1]$

$$
x \leq y \text { implies } x * z \leq y * z \text { and } z * x \leq z * y
$$

(1) $1 * x=x$ and $0 * x=0$ for every $x \in[0,1]$.

A continuous \mathbf{t}-norm is a t-norm which is continuous as a map from $[0,1]^{2}$ into $[0,1]$. For every continuous t-norm a residuum can be defined by:

$$
x * z \leq y \text { if and only if } x \leq z \rightarrow y .
$$

Definition

A t-norm is a binary operation $*:[0,1]^{2} \rightarrow[0,1]$ which satisfies the following conditions:
(1) $*$ is commutative and associative.
(0) * is non decreasing in both arguments, i.e., for every $x, y, z \in[0,1]$

$$
x \leq y \text { implies } x * z \leq y * z \text { and } z * x \leq z * y
$$

(1) $1 * x=x$ and $0 * x=0$ for every $x \in[0,1]$.

A continuous \mathbf{t}-norm is a t-norm which is continuous as a map from $[0,1]^{2}$ into $[0,1]$. For every continuous t-norm a residuum can be defined by:

$$
x * z \leq y \text { if and only if } x \leq z \rightarrow y .
$$

The algebra $([0,1], *, \rightarrow, \max , \min , 0,1)$ is the standard algebra associated with the continuous t -norm $*$.

ExAmples

(1) Łukasiewicz t-norm: $x *_{L} y=\max (0, x+y-1)$

Łukasiewicz implication: $x \rightarrow\llcorner y=\min (1,1-x+y)$,
(2) Gödel t-norm: $x *_{G} y=\min (x, y)$,

Gödel implication:

$$
x \rightarrow G y=\left\{\begin{array}{lll}
y & \text { if } & x>y ; \\
1 & \text { if } & x \leq y .
\end{array}\right.
$$

(1) Product t-norm: x *p $y=x \cdot y$,

Goguen implication:

$$
x \rightarrow p y=\left\{\begin{array}{lll}
y / x & \text { if } & x>y \\
1 & \text { if } & x \leq y .
\end{array}\right.
$$

ExAmples

(1) Łukasiewicz t-norm: $x *_{L} y=\max (0, x+y-1)$

Łukasiewicz implication: $x \rightarrow\llcorner y=\min (1,1-x+y)$,
(2) Gödel t-norm: $x *_{G} y=\min (x, y)$,

Gödel implication:

$$
x \rightarrow_{G} y=\left\{\begin{array}{lll}
y & \text { if } x>y ; \\
1 & \text { if } x \leq y .
\end{array}\right.
$$

(1) Product t-norm: x *p $y=x \cdot y$,

Goguen implication:

$$
x \rightarrow p y=\left\{\begin{array}{lll}
y / x & \text { if } & x>y \\
1 & \text { if } & x \leq y
\end{array}\right.
$$

The algebras $\left([0,1], *_{L}, \rightarrow_{L}, \vee, \wedge, 0,1\right),\left([0,1], *_{G}, \rightarrow_{G}, \vee, \wedge, 0,1\right)$ and $\left([0,1], *_{P}, \rightarrow_{p}, \vee, \wedge, 0,1\right)$ are the Łukasiewicz, Gödel and Product standard algebras, respectively.

If $\left(a_{i}, b_{i}\right)_{i \in I}$ is a family of disjoint intervals, with $0 \leq a_{i}<b_{i} \leq 1$ such that $*^{i}$ is a continuous t-norm on (a_{i}, b_{i}), we define for every $x, y \in[0,1]$ a continuous t-norm called ordinal sum of \mathbf{t}-norms by:

$$
x * y=\left\{\begin{array}{lc}
x *_{\left[a_{i}, b_{i}\right]}^{i} y & \text { if } x, y \in\left(a_{i}, b_{i}\right) \\
\min \{x, y\} & \text { otherwise }
\end{array}\right.
$$

If $\left(a_{i}, b_{i}\right)_{i \in I}$ is a family of disjoint intervals, with $0 \leq a_{i}<b_{i} \leq 1$ such that $*^{i}$ is a continuous t-norm on (a_{i}, b_{i}), we define for every $x, y \in[0,1]$ a continuous t-norm called ordinal sum of \mathbf{t}-norms by:

$$
x * y=\left\{\begin{array}{lc}
x *_{\left[a_{i}, b_{i}\right]}^{i} y & \text { if } x, y \in\left(a_{i}, b_{i}\right) \\
\min \{x, y\} & \text { otherwise }
\end{array}\right.
$$

If $\left(a_{i}, b_{i}\right)_{i \in I}$ is a family of disjoint intervals, with $0 \leq a_{i}<b_{i} \leq 1$ such that $*^{i}$ is a continuous t-norm on (a_{i}, b_{i}), we define for every $x, y \in[0,1]$ a continuous t-norm called ordinal sum of \mathbf{t}-norms by:

$$
x * y=\left\{\begin{array}{lc}
x *_{\left[a_{i}, b_{i}\right]}^{i} y & \text { if } x, y \in\left(a_{i}, b_{i}\right) \\
\min \{x, y\} & \text { otherwise }
\end{array}\right.
$$

If $\left(a_{i}, b_{i}\right)_{i \in I}$ is a family of disjoint intervals, with $0 \leq a_{i}<b_{i} \leq 1$ such that $*^{i}$ is a continuous t-norm on (a_{i}, b_{i}), we define for every $x, y \in[0,1]$ a continuous t-norm called ordinal sum of \mathbf{t}-norms by:

$$
x * y=\left\{\begin{array}{lc}
x *_{\left[a_{i}, b_{i}\right]}^{i} y & \text { if } x, y \in\left(a_{i}, b_{i}\right) \\
\min \{x, y\} & \text { otherwise }
\end{array}\right.
$$

Theorem (Mostert-Schields)

Every continuous t-norm is the ordinal sum of a family of Łukasiewicz, Gödel and product t-norms.

Hoops and BL-algebras

Definitions

A hoop is an algebra $\mathbf{A}=(A, *, \rightarrow, \top)$ of type $(2,2,0)$, where $(A, *, \top)$ is a commutative monoid such that for every $x, y, z \in A$:
(1) $x \rightarrow x=\top$,
(2) $x *(x \rightarrow y)=y *(y \rightarrow x)$,
(3) $x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z$.

Hoops and BL-ALgebras

Definitions

A hoop is an algebra $\mathbf{A}=(A, *, \rightarrow, \top)$ of type $(2,2,0)$, where $(A, *, \top)$ is a commutative monoid such that for every $x, y, z \in A$:
(1) $x \rightarrow x=\top$,
(2) $x *(x \rightarrow y)=y *(y \rightarrow x)$,
(3) $x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z$.

A basic hoop es is a hoop which satisfies the equation

$$
(((x \rightarrow y) \rightarrow z) *((y \rightarrow x) \rightarrow z)) \rightarrow z)=\top
$$

Hoops and BL-ALgebras

Definitions

A hoop is an algebra $\mathbf{A}=(A, *, \rightarrow, \top)$ of type $(2,2,0)$, where $(A, *, \top)$ is a commutative monoid such that for every $x, y, z \in A$:
(1) $x \rightarrow x=\top$,
(2) $x *(x \rightarrow y)=y *(y \rightarrow x)$,
(3) $x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z$.

A basic hoop es is a hoop which satisfies the equation

$$
(((x \rightarrow y) \rightarrow z) *((y \rightarrow x) \rightarrow z)) \rightarrow z)=\top
$$

A BL-algebra is a bounded basic hoop, i.e., an algebra $\mathbf{A}=(A, *, \rightarrow, \perp, \top)$ of type $(2,2,0,0)$ such that $(A, *, \rightarrow, \top)$ is a basic hoop and \perp is the minimum of A.

In every basic hoop \mathbf{A} we can define the operations

$$
\begin{gathered}
x \wedge y:=x \cdot(x \rightarrow y)=y \cdot(y \rightarrow x), \\
x \vee y:=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x)
\end{gathered}
$$

and then (A, \wedge, \vee, T) is a distributive lattice.

In every basic hoop \mathbf{A} we can define the operations

$$
\begin{gathered}
x \wedge y:=x \cdot(x \rightarrow y)=y \cdot(y \rightarrow x), \\
x \vee y:=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x)
\end{gathered}
$$

and then (A, \wedge, \vee, \top) is a distributive lattice.
Theorem (Cignoli, Esteva, Godo, Torrens)
The class of BL-algebras is the variety generated for all the algebras given by continuous t-norms.

In every basic hoop \mathbf{A} we can define the operations

$$
\begin{gathered}
x \wedge y:=x \cdot(x \rightarrow y)=y \cdot(y \rightarrow x), \\
x \vee y:=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x)
\end{gathered}
$$

and then (A, \wedge, \vee, \top) is a distributive lattice.
Theorem (Cignoli, Esteva, Godo, Torrens)
The class of BL-algebras is the variety generated for all the algebras given by continuous t-norms.

Ordinal sums

DEFinition

Let $\mathbf{A}=\left\langle A, \cdot{ }_{A}, \rightarrow_{A}, \top\right\rangle$ and $\mathbf{B}=\left\langle B, \cdot{ }_{B}, \rightarrow_{B}, \top\right\rangle$ be two hoops such that $A \cap B=\{\top\}$. We can define the ordinal sum of \mathbf{A} and \mathbf{B} as the hoop $\mathbf{A} \oplus \mathbf{B}=\langle A \cup B, \cdot, \rightarrow, \top$,$\rangle , where the operations \cdot$ and \rightarrow are given by:

$$
\begin{gathered}
x \cdot y=\left\{\begin{array}{llc}
x \cdot A y & \text { if } & x, y \in A ; \\
x \cdot B y & \text { if } & x, y \in B ; \\
x & \text { if } & x \in A \backslash\{T\}, y \in B ; \\
y & \text { if } & y \in B \backslash\{T\}, x \in A .
\end{array}\right. \\
x \rightarrow y=\left\{\begin{array}{llc}
x \rightarrow_{A} y & \text { if } & x, y \in A ; \\
x \rightarrow_{B} y & \text { if } & x, y \in B ; \\
\top & \text { if } & x \in A \backslash\{T\}, y \in B ; \\
y & \text { if } & y \in A, x \in B .
\end{array}\right.
\end{gathered}
$$

The subvariety $\mathcal{M G}$

Gödel hoops are the \perp-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0,1]_{\mathbf{G}}$.

The subvariety $\mathcal{M G}$

Gödel hoops are the \perp-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0,1]_{\mathbf{G}}$.

$$
\mathcal{M G}=\mathcal{V}\left([0,1]_{\mathrm{Mv}} \oplus[0,1]_{\mathbf{G}}\right)
$$

The subvariety $\mathcal{M G}$

Gödel hoops are the \perp-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0,1]_{\mathbf{G}}$.

$$
\mathcal{M G}=\mathcal{V}\left([0,1]_{\mathrm{Mv}} \oplus[0,1]_{\mathbf{G}}\right)
$$

This variety is generated by the t -norm which we called MG t-norm $t_{M G}:[0,1]^{2} \rightarrow[0,1]$ defined by

$$
t_{M G}(x, y)=\left\{\begin{array}{lc}
\max \left(0, x+y-\frac{1}{2}\right) & \text { if } x, y \in\left[0, \frac{1}{2}\right) \\
\min (x, y) & \text { otherwise }
\end{array}\right.
$$

The subvariety $\mathcal{M G}$

Gödel hoops are the \perp-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0,1]_{\mathbf{G}}$.

$$
\mathcal{M G}=\mathcal{V}\left([0,1]_{\mathrm{Mv}} \oplus[0,1]_{\mathbf{G}}\right)
$$

This variety is generated by the t -norm which we called MG t-norm $t_{M G}:[0,1]^{2} \rightarrow[0,1]$ defined by

$$
t_{M G}(x, y)=\left\{\begin{array}{lc}
\max \left(0, x+y-\frac{1}{2}\right) & \text { if } x, y \in\left[0, \frac{1}{2}\right) \\
\min (x, y) & \text { otherwise. }
\end{array}\right.
$$

Moreover, it is the subvariety of $\mathcal{B L}$ given by the identity

$$
(\neg \neg x \rightarrow x)^{2} \approx \neg \neg x \rightarrow x
$$

The subvariety $\mathcal{M G}$

Gödel hoops are the \perp-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0,1]_{\mathbf{G}}$.

$$
\mathcal{M G}=\mathcal{V}\left([0,1]_{\mathrm{Mv}} \oplus[0,1]_{\mathbf{G}}\right)
$$

This variety is generated by the t -norm which we called MG t-norm $t_{M G}:[0,1]^{2} \rightarrow[0,1]$ defined by

$$
t_{M G}(x, y)=\left\{\begin{array}{lc}
\max \left(0, x+y-\frac{1}{2}\right) & \text { if } x, y \in\left[0, \frac{1}{2}\right) \\
\min (x, y) & \text { otherwise. }
\end{array}\right.
$$

Moreover, it is the subvariety of $\mathcal{B L}$ given by the identity

$$
(\neg \neg x \rightarrow x)^{2} \approx \neg \neg x \rightarrow x
$$

The lattice of subvarieties $\boldsymbol{\Lambda}(\mathcal{M V})$

For $n, k \geq 1$ we define

$$
\begin{gathered}
\mathbf{t}_{n}=\Gamma(\mathbb{Z}, n), \\
\mathbf{t}_{n}^{\infty}=\Gamma(\mathbb{Z} \times \mathbb{Z},(n, 0)),
\end{gathered}
$$

where \mathbb{Z} has the natural order and $\mathbb{Z} \circ \mathbb{Z}$ is the product of two copies of \mathbb{Z} ordered lexicographically.

The lattice of subvarieties $\boldsymbol{\Lambda}(\mathcal{M V})$

For $n, k \geq 1$ we define

$$
\begin{gathered}
\mathbf{t}_{n}=\Gamma(\mathbb{Z}, n), \\
\mathbf{t}_{n}^{\infty}=\Gamma(\mathbb{Z} \times \mathbb{Z},(n, 0)),
\end{gathered}
$$

where \mathbb{Z} has the natural order and $\mathbb{Z} \circ \mathbb{Z}$ is the product of two copies of \mathbb{Z} ordered lexicographically.

The lattice of subvarieties $\boldsymbol{\Lambda}(\mathcal{G})$

Hetch and Katriñak proved that the subvarieties of the variety of Gödel algebras form a chain, but since the Gödel hoops are the subreducts of these algebras, the results can be naturally extended for our case.

The lattice of subvarieties $\boldsymbol{\Lambda}(\mathcal{G})$

Hetch and Katriñak proved that the subvarieties of the variety of Gödel algebras form a chain, but since the Gödel hoops are the subreducts of these algebras, the results can be naturally extended for our case.

Theorem

If \mathcal{A} is a join-irreducible element in the lattice of subvarieties of $\mathcal{M G}$ then \mathcal{A} is the variety generated by $\mathbf{A} \oplus \mathbf{B}$ with \mathbf{A} is a chain in $\mathcal{M V}$ and \mathbf{B} is a chain in \mathcal{G} such that

$$
\begin{gathered}
\mathbf{A} \in\left\{\mathbf{t}_{n}: n \in \mathbb{N}\right\} \cup\left\{\mathbf{t}_{n}^{\infty}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathrm{MV}}\right\} \\
\mathbf{B} \in\left\{\mathbf{G}_{n}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathbf{G}}\right\} .
\end{gathered}
$$

Theorem

If \mathcal{A} is a join-irreducible element in the lattice of subvarieties of $\mathcal{M G}$ then \mathcal{A} is the variety generated by $\mathbf{A} \oplus \mathbf{B}$ with \mathbf{A} is a chain in $\mathcal{M V}$ and \mathbf{B} is a chain in \mathcal{G} such that

$$
\begin{gathered}
\mathbf{A} \in\left\{\mathbf{t}_{n}: n \in \mathbb{N}\right\} \cup\left\{\mathbf{t}_{n}^{\infty}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathbf{M V}}\right\} \\
\mathbf{B} \in\left\{\mathbf{G}_{n}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathbf{G}}\right\}
\end{gathered}
$$

Corollary

The join-irreducible elements in the lattice of subvarieties of $\mathcal{M \mathcal { G }}$ form an ordered lattice.

$$
(2 \times D(\mathbb{N})) \times(\omega+1)
$$

Theorem

Any subvariety \mathcal{U} of $\mathcal{M G}$ is generated by a finite number of chains $\mathbf{A} \oplus \mathbf{B}$ with $\mathbf{A} \in\left\{\mathbf{t}_{n}: n \in \mathbb{N}\right\} \cup\left\{\mathbf{t}_{n}^{\infty}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathrm{Mv}}\right\}$ and $\mathbf{B} \in\left\{\mathbf{G}_{n}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathbf{G}}\right\}$.

Theorem

Any subvariety \mathcal{U} of $\mathcal{M G}$ is generated by a finite number of chains $\mathbf{A} \oplus \mathbf{B}$ with $\mathbf{A} \in\left\{\mathbf{t}_{n}: n \in \mathbb{N}\right\} \cup\left\{\mathbf{t}_{n}^{\infty}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathrm{Mv}}\right\}$ and $\mathbf{B} \in\left\{\mathbf{G}_{n}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathbf{G}}\right\}$.

Idea of the proof:

$$
\mathcal{K}_{n}=\mathcal{V}\left([0,1]_{\mathrm{MV}} \oplus \mathbf{G}_{n}\right)
$$

Corollary

Any variety in $\wedge(\mathcal{M G})$ is a join of finitely many varieties generated by a single chain $\mathbf{A} \oplus \mathbf{B}$ where $\mathbf{A} \in\left\{\mathbf{t}_{n}: n \in \mathbb{N}\right\} \cup\left\{\mathbf{t}_{n}^{\infty}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\text {Mv }}\right\}$ and $\mathbf{B} \in\left\{\mathbf{G}_{n}: n \in \mathbb{N}\right\} \cup\{[0,1] \mathbf{G}\}$.

Equational bases

Lemma (Di Nola - Lettieri)
For $n \geq 2$, the subvariety $\mathcal{V}\left(\mathbf{t}_{n}^{\infty}\right)$ of $\mathcal{M V}$ is characterized by the identity:

$$
\left(\left((n+1) x^{n}\right)^{2} \leftrightarrow 2 x^{n+1}\right) \wedge\left(\left(p . x^{p-1}\right)^{n+1} \leftrightarrow(n+1) x^{p}\right) \approx 1\left(\alpha_{\infty}^{n}\right)
$$

for every positive integer $1<p<n$ such that p is not a divisor of n.

EqUATIONAL BASES

Lemma (Di Nola - Lettieri)
For $n \geq 2$, the subvariety $\mathcal{V}\left(\mathbf{t}_{n}^{\infty}\right)$ of $\mathcal{M V}$ is characterized by the identity:

$$
\left(\left((n+1) x^{n}\right)^{2} \leftrightarrow 2 x^{n+1}\right) \wedge\left(\left(p . x^{p-1}\right)^{n+1} \leftrightarrow(n+1) x^{p}\right) \approx 1\left(\alpha_{\infty}^{n}\right)
$$

for every positive integer $1<p<n$ such that p is not a divisor of n.

Lemma (Di Nola - Lettieri)

For $n \geq 2$, the subvariety $\mathcal{V}\left(\mathbf{t}_{n}\right)$ of $\mathcal{M V}$ is characterized by the identity:

$$
\left(\left((n+1) x^{n}\right)^{2} \leftrightarrow 2 x^{n+1}\right) \wedge\left(\left(p \cdot x^{p-1}\right)^{n+1} \leftrightarrow(n+1) x^{p}\right) \wedge\left((n+1) x^{q} \leftrightarrow(n+2) x^{q}\right) \approx 1
$$

for every positive integer $1<p<n$ such that p is not a divisor of n and every integer q such that $1<q<n$ and q divides n.

Equational bases

Lemma (Hecht - Katriñak)
For $n \geq 2$, the subvariety $\mathcal{V}\left(G_{n}\right)$ of \mathcal{G} is characterized by the following identity:

$$
\bigvee_{i=1}^{n+1}\left(x_{i} \leftrightarrow x_{i+1}\right) \approx 1\left(\beta_{n}\right)
$$

Equational bases

Theorem

If \mathbf{A} is a subvariety of $\mathcal{M V}$ characterized by the identity $\alpha \approx 1$ and \mathbf{B} is a subvariety of \mathcal{G} characterized by the identity $\beta \approx 1$, then $\mathbf{A} \oplus \mathbf{B}$ is a subvariety of $\mathcal{M G}$ characterized by the identity

$$
\alpha^{\prime} \cdot \beta^{\prime} \approx 1
$$

where α^{\prime} is the term given by substituying $\neg \neg x$ for every variable x in α and β^{\prime} is the term given by substituying $\neg \neg y \rightarrow y$ for every variable y in β.

Equational bases

Theorem

If \mathcal{A} is a subvariety in the lattice of subvarieties of $\mathcal{M G}$ given by $\mathcal{A}=\bigvee_{i=1}^{n} \mathcal{A}_{i}$ for n subvarieties $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$, where every variety \mathcal{A}_{i} is generated by a chain $\mathbf{A}_{i} \oplus \mathbf{B}_{i}$ where $\mathbf{A} \in\left\{\mathbf{t}_{n}: n \in \mathbb{N}\right\} \cup\left\{\mathbf{t}_{n}^{\infty}: n \in \mathbb{N}\right\} \cup\left\{[0,1]_{\mathrm{Mv}}\right\}$, and there are identities $\gamma_{i}\left(x_{1}^{i}, \ldots, x_{k_{i}}^{i}\right) \approx 1$ associated with each variety \mathcal{A}_{i}, then, the variety \mathcal{A} as a subvariety of $\mathcal{M G}$ is given by the identity

$$
\gamma_{\mathcal{A}}\left(x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{n}^{1}, \ldots, x_{k_{n}}^{n}\right) \approx 1
$$

where

$$
\gamma_{\mathcal{A}}\left(x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right) \approx \bigvee_{i=1}^{n} \gamma_{i}\left(x_{1}^{i}, \ldots, x_{k_{i}}^{i}\right)
$$

Example

Suppose that we have the variety $\mathcal{A}=\mathcal{V}\left(\mathbf{t}_{2}^{\infty} \oplus \mathbf{G}_{1}, \mathbf{t}_{2} \oplus \mathbf{G}_{3}\right)$.

Example

Suppose that we have the variety $\mathcal{A}=\mathcal{V}\left(\mathbf{Ł}_{2}^{\infty} \oplus \mathbf{G}_{1}, \mathbf{t}_{2} \oplus \mathbf{G}_{3}\right)$.

$$
\begin{gathered}
\underbrace{\left(3\left(\neg \neg x^{1}\right)^{2}\right)^{2} \leftrightarrow 2\left(\neg \neg x^{1}\right)^{3}}_{\alpha_{2}^{\infty}\left(x^{1}\right)} \approx 1 \\
\underbrace{\left.\left.\left(3\left(\neg \neg x^{2} \rightarrow x^{2}\right)^{2} \leftrightarrow\left(\neg \neg x^{2}\right)^{3}\right) \wedge\left(\left(\neg \neg x^{2}\right)^{2}\right)^{3} \leftrightarrow 3\left(\neg \neg x^{2}\right)\right)\right)}_{\alpha_{2}\left(x^{2}\right)} \approx 1 \\
\underbrace{\bigvee_{i=1}^{2}\left(\neg \neg x_{i}^{3} \rightarrow x_{i}^{3}\right) \leftrightarrow\left(\neg \neg x_{i+1}^{3} \rightarrow x_{i+1}^{3}\right)}_{\beta_{1}\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right)} \approx 1 \\
\underbrace{\bigvee_{i=1}^{4}\left(\neg \neg x_{i}^{4} \rightarrow x_{i}^{4}\right) \leftrightarrow\left(\neg \neg x_{i+1}^{4} \rightarrow x_{i+1}^{4}\right.}_{\beta_{4}\left(x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{4}^{4}, x_{5}^{4}\right)}) \approx 1
\end{gathered}
$$

Example

Suppose that we have the variety $\mathcal{A}=\mathcal{V}\left(\mathbf{t}_{2}^{\infty} \oplus \mathbf{G}_{1}, \mathbf{t}_{2} \oplus \mathbf{G}_{3}\right)$.

$$
\begin{gathered}
\underbrace{\left(3\left(\neg \neg x^{1}\right)^{2}\right)^{2} \leftrightarrow 2\left(\neg \neg x^{1}\right)^{3}}_{\alpha_{2}^{\infty}\left(x^{1}\right)} \approx 1 \\
\underbrace{\left.\left.\left(3\left(\neg \neg x^{2} \rightarrow x^{2}\right)^{2} \leftrightarrow\left(\neg \neg x^{2}\right)^{3}\right) \wedge\left(\left(\neg \neg x^{2}\right)^{2}\right)^{3} \leftrightarrow 3\left(\neg \neg x^{2}\right)\right)\right)}_{\alpha_{2}\left(x^{2}\right)} \approx 1 \\
\underbrace{\bigvee_{i=1}^{2}\left(\neg \neg x_{i}^{3} \rightarrow x_{i}^{3}\right) \leftrightarrow\left(\neg \neg x_{i+1}^{3} \rightarrow x_{i+1}^{3}\right)}_{\beta_{1}\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right)} \approx 1 \\
\underbrace{\bigvee_{i=1}^{4}\left(\neg \neg x_{i}^{4} \rightarrow x_{i}^{4}\right) \leftrightarrow\left(\neg \neg x_{i+1}^{4} \rightarrow x_{i+1}^{4}\right.}_{\beta_{4}\left(x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{4}^{4}, x_{5}^{4}\right)}) \approx 1
\end{gathered}
$$

Hence, \mathcal{A} is characterized as a subvariety of $\mathcal{M G}$ by the identity

$$
\underbrace{\left(\alpha_{2}^{\infty}\left(x^{1}\right) \cdot \beta_{1}\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right) \vee\left(\alpha_{2}\left(x^{2}\right) \cdot \beta_{4}\left(x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{4}^{4}, x_{5}^{4}\right)\right)\right.}_{\gamma\left(x^{1}, x^{2}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{4}^{4}, x_{5}^{4}\right)} \approx 1 .
$$

Free algebras: the case of MV-algebras

Theorem (McNaughton)

The free n-generated $M V$-algebra is the subalgebra of \mathcal{M}_{n} of all continuous piecewise linear functions $f:[0,1]^{n} \rightarrow[0,1]$ where each one of the finitely many linear pieces has integer coefficients.

Free algebras: the case of MV-algebras

Theorem (McNaughton)

The free n-generated $M V$-algebra is the subalgebra of \mathcal{M}_{n} of all continuous piecewise linear functions $f:[0,1]^{n} \rightarrow[0,1]$ where each one of the finitely many linear pieces has integer coefficients.

Let \bar{v} be a point in $[0,1]^{n}$, we denote by
$\operatorname{Free}_{\mathcal{M V}}(n) \upharpoonright \bar{v}:=\left\{[f]: g \in[f]\right.$ if $f(\bar{v})=g(\bar{v})$, for $f, g \in$ Free $\left._{\mathcal{M V}}(n)\right\}$
$\operatorname{Free}_{\mathcal{M V}}(n) \upharpoonright(\bar{v}):=\{[(f, U)]:(g, V) \in[(f, U)]$ if $f(\bar{x})=g(\bar{x})$ for every $\bar{x} \in U \cap V$ where $f, g \in \operatorname{Free}_{\mathcal{M} \mathcal{V}}(n)$ and U, V are open sets such that $\left.\bar{v} \in U \cap V\right\}$.

Let \bar{v} be a point in $[0,1]^{n}$, we denote by

$$
\begin{gathered}
\operatorname{Free}_{\mathcal{M V}}(n) \upharpoonright \bar{v}:=\left\{[f]: g \in[f] \text { if } f(\bar{v})=g(\bar{v}) \text {, for } f, g \in \operatorname{Free}_{\mathcal{M V}}(n)\right\} \\
\text { Free }_{\mathcal{M V}}(n) \upharpoonright(\bar{v}):=\{[(f, U)]:(g, V) \in[(f, U)] \text { if } f(\bar{x})=g(\bar{x}) \text { for every } \bar{x} \in U \cap V \\
\text { where } \left.f, g \in \operatorname{Free}_{\mathcal{M V}}(n) \text { and } U, V \text { are open sets such that } \bar{v} \in U \cap V\right\} .
\end{gathered}
$$

Theorem (Panti)

Fix $n>0$ be a natural number and let

$$
\mathcal{V}=\mathcal{V}\left(\left\{\mathbf{t}_{i_{1}}, \ldots \mathbf{t}_{i_{k}}\right\} \cup\left\{\mathbf{t}_{j_{1}}^{\infty}, \ldots, \mathbf{t}_{j_{1}}^{\infty}\right\}\right)
$$

be a proper subvariety of $\mathcal{M V}$. Let X be the set of rational points of the n-cube whose denominator divides at least one $i \in\left\{i_{1}, \ldots, i_{k}\right\}$, and let Y be the set ot rational points of the n-cube whose denominator divides at least one $j \in\left\{j_{1}, \ldots, j_{l}\right\}$. Then the free algebra over n generators in \mathcal{V} is isomorphic to the finite product

$$
\operatorname{Free}_{\mathcal{V}}(n) \cong \prod_{u \in X \backslash Y} \operatorname{Free}_{\mathcal{M V}}(n) \upharpoonright u \times \prod_{v \in Y} \operatorname{Free}_{\mathcal{M V}}(n) \upharpoonright(v) .
$$

Free algebras: the case of Gödel hoops

We define the Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ if X^{1}, \ldots, X^{r} are subsets of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $X^{i} \cap X^{j}=\emptyset$ if $i \neq j$ and $X^{i} \neq \emptyset, \forall i=1, \ldots, r$.

Free algebras: the case of Gödel hoops

We define the Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ if X^{1}, \ldots, X^{r} are subsets of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $X^{i} \cap X^{j}=\emptyset$ if $i \neq j$ and $X^{i} \neq \emptyset, \forall i=1, \ldots, r$.

$$
R_{\mathbf{X}}=\left\{\begin{array}{lll}
x_{i}=x_{j} & \text { if } & x_{i}, x_{j} \in X^{\sigma(k)}, \text { for some } k \in\{1, \ldots, r\} \\
\bar{x} \in[0,1]^{n}: & x_{i}<x_{j} & \text { if } \\
x_{i} \in X^{\sigma(k)}, x_{j} \in X^{\sigma(l)} \text { for } k<1 \\
x_{i}<x_{j} & \text { if } \quad x_{i} \in X^{\sigma(r)}, x_{j} \notin \bigcup_{k=1}^{r} X^{\sigma(k)}
\end{array}\right\}
$$

Free algebras: the case of Gödel hoops

We define the Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ if X^{1}, \ldots, X^{r} are subsets of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $X^{i} \cap X^{j}=\emptyset$ if $i \neq j$ and $X^{i} \neq \emptyset, \forall i=1, \ldots, r$.

$$
R_{\mathbf{X}}=\left\{\begin{array}{lll}
x_{i}=x_{j} & \text { if } & x_{i}, x_{j} \in X^{\sigma(k)}, \text { for some } k \in\{1, \ldots, r\} \\
x_{i} \in[0,1]^{n}: & x_{j} & \text { if } \\
x_{i} \in X^{\sigma(k)}, x_{j} \in X^{\sigma(l)} \text { for } k<1 \\
x_{i}<x_{j} & \text { if } & x_{i} \in X^{\sigma(r)}, x_{j} \notin \bigcup_{k=1}^{r} X^{\sigma(k)}
\end{array}\right\}
$$

Given two Gödel chains $\mathbf{X}_{1}=\left\langle X_{1}^{1}, \ldots, X_{1}^{r}\right\rangle$ and $\mathbf{X}_{2}=\left\langle X_{2}^{1}, \ldots, X_{2}^{q}\right\rangle$, we say that \mathbf{X}_{1} is a subchain of \mathbf{X}_{2} if $r \leq q$ and $X_{1}^{i}=X_{2}^{i}$ for $1 \leq i \leq r$.

Free algebras: the case of Gödel hoops

We define the Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ if X^{1}, \ldots, X^{r} are subsets of $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $X^{i} \cap X^{j}=\emptyset$ if $i \neq j$ and $X^{i} \neq \emptyset, \forall i=1, \ldots, r$.

$$
R_{\mathbf{X}}=\left\{\begin{array}{lll}
x_{i}=x_{j} & \text { if } & x_{i}, x_{j} \in X^{\sigma(k)}, \text { for some } k \in\{1, \ldots, r\} \\
\bar{x} \in[0,1]^{n}: & x_{i}<x_{j} & \text { if } \\
x_{i} \in X^{\sigma(k)}, x_{j} \in X^{\sigma(l)} \text { for } k<1 \\
x_{i}<x_{j} & \text { if } & x_{i} \in X^{\sigma(r)}, x_{j} \notin \bigcup_{k=1}^{r} X^{\sigma(k)}
\end{array}\right\}
$$

Given two Gödel chains $\mathbf{X}_{1}=\left\langle X_{1}^{1}, \ldots, X_{1}^{r}\right\rangle$ and $\mathbf{X}_{2}=\left\langle X_{2}^{1}, \ldots, X_{2}^{q}\right\rangle$, we say that \mathbf{X}_{1} is a subchain of \mathbf{X}_{2} if $r \leq q$ and $X_{1}^{i}=X_{2}^{i}$ for $1 \leq i \leq r$.
We say that a set of Gödel chains defines a Gödel forest if no chain in the set is subchain of other chain.

Free algebras: the case of Gödel hoops

To each Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ we can associate a function $f_{\mathbf{X}}$:

$$
f_{\mathbf{X}}= \begin{cases}x_{j} & \text { if } \bar{x} \in R_{\mathbf{x}}, \text { and } x_{j} \in X^{r} \\ 1 & \text { otherwise. }\end{cases}
$$

Free algebras: the case of Gödel hoops

To each Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ we can associate a function $f_{\mathbf{X}}$:

$$
f_{\mathbf{X}}= \begin{cases}x_{j} & \text { if } \bar{x} \in R_{\mathbf{x}}, \text { and } x_{j} \in X^{r} \\ 1 & \text { otherwise. }\end{cases}
$$

Free algebras: the case of Gödel hoops

To each Gödel chain $\mathbf{X}=\left\langle X^{1}, \ldots, X^{r}\right\rangle$ we can associate a function $f_{\mathbf{X}}$:

$$
f_{\mathbf{X}}= \begin{cases}x_{j} & \text { if } \bar{x} \in R_{\mathbf{x}}, \text { and } x_{j} \in X^{r} \\ 1 & \text { otherwise. }\end{cases}
$$

Theorem (Aguzzoli, Bova, Gerla)
A function $f:[0,1]_{\mathbf{G}}^{n} \rightarrow[0,1]_{\mathbf{G}}$ is in $\operatorname{Free}_{\mathcal{G}}(n)$ if and only if there is a Gödel forest $\overline{\mathbf{X}}$ containing the Gödel chains $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ such that

$$
f=\bigwedge_{j=1}^{m} f_{\mathbf{x}_{j}} .
$$

Free $_{\mathcal{G}_{\boldsymbol{\prime}}}(n)$

Theorem (Aguzzoli, Bova, Gerla)
A function $f:[0,1]_{\mathbf{G}_{J}}^{n} \rightarrow[0,1]_{\mathbf{G}_{/}}$is in Free $\mathcal{G}_{\mathcal{G}_{l}}(n)$ if and only if there is a Gödel forest $\overline{\mathbf{X}}$ containing the chains $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ where no chain has height greater than I such that

$$
f=\bigwedge_{j=1}^{m} f_{\mathrm{X}_{j}} .
$$

Free $_{\mathcal{G}_{\boldsymbol{l}}}(n)$

Theorem (Aguzzoli, Bova, Gerla)
A function $f:[0,1]_{\mathbf{G}_{J}}^{n} \rightarrow[0,1]_{\mathbf{G}_{/}}$is in Free $\mathcal{G}_{\mathcal{G}_{l}}(n)$ if and only if there is a Gödel forest $\overline{\mathbf{X}}$ containing the chains $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ where no chain has height greater than I such that

$$
f=\bigwedge_{j=1}^{m} f_{\mathbf{x}_{j}} .
$$

Theorem

The algebra Free $_{\mathcal{G}_{\mathcal{I}}}(n)$ is isomorphic to the quotient of the algebra Free $_{\mathcal{G}}(n)$ over the principal filter generated by the forest where every maximal chain has height $I+1$.
$\operatorname{Free}_{\mathcal{M G}}(1)$

Free $_{\mathcal{M G}}(1)$

$\operatorname{Free}_{\mathcal{M G}}(1)$

Free $_{\mathcal{M G}}(2)$

Free $_{\mathcal{M G}}(2)$

$\operatorname{Free}_{\mathcal{M G}}(n)$
$\partial[0,1]_{\mathrm{MV}}^{n}:=\left\{\bar{x} \in[0,1]_{\mathrm{MV}}^{n}: x_{i}=1\right.$ for some $\left.1 \leq i \leq n\right\}$.

$\operatorname{Free}_{\mathcal{M G}}(n)$

$$
\partial[0,1]_{\mathrm{MV}}^{n}:=\left\{\bar{x} \in[0,1]_{\mathrm{MV}}^{n}: x_{i}=1 \text { for some } 1 \leq i \leq n\right\} .
$$

For every $\bar{z}=\left(z_{1}, \ldots, z_{n}\right) \in\left([0,1]_{\text {Mv }} \oplus[0,1]_{\mathbf{G}}\right)^{n}$ we define the projections:

$$
\pi_{\mathbf{G}}(\bar{z}):=\left(z_{j_{1}}, \ldots, z_{j_{m}}\right) \in[0,1]_{\mathbf{G}}^{m}
$$

and

$$
\pi_{\mathrm{MV}}(\bar{z}):=\left(z_{k_{1}}, \ldots, z_{k_{n-m}}\right) \in[0,1]_{\mathrm{MV}}^{m} .
$$

$\operatorname{Free}_{\mathcal{M G}}(n)$

$$
\check{\partial}[0,1]_{\mathrm{MV}}^{n}:=\left\{\bar{x} \in[0,1]_{\mathrm{MV}}^{n}: x_{i}=1 \text { for some } 1 \leq i \leq n\right\} .
$$

For every $\bar{z}=\left(z_{1}, \ldots, z_{n}\right) \in\left([0,1]_{\mathbf{M v}} \oplus[0,1]_{\mathbf{G}}\right)^{n}$ we define the projections:

$$
\pi_{\mathbf{G}}(\bar{z}):=\left(z_{j_{1}}, \ldots, z_{j_{m}}\right) \in[0,1]_{\mathbf{G}}^{m}
$$

and

$$
\pi_{\mathrm{Mv}}(\bar{z}):=\left(z_{k_{1}}, \ldots, z_{k_{n-m}}\right) \in[0,1]_{\mathrm{Mv}}^{m} .
$$

If $\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \in[0,1]_{\mathrm{M} V}^{n}$ we define:

$$
\begin{gathered}
1_{\bar{x}}:=\left\{i \in\{1, \ldots, n\}: x_{i}=1\right\} \\
\tilde{x}:=\left\{\bar{z} \in \mathfrak{A}^{n} \backslash[0,1]_{\mathrm{MV}}^{n}: \pi_{\mathrm{Mv}}(\bar{z})=\pi_{\mathrm{MV}}(\bar{x})\right\}
\end{gathered}
$$

and we say that \tilde{x} is the cyllindrification of \bar{x}.

$\operatorname{Free}_{\mathcal{M G}}(n)$

Theorem

A function $\mathscr{F}:\left([0,1]_{\mathrm{Mv}} \oplus[0,1]_{\mathbf{G}}\right)^{n} \rightarrow \mathbf{A}$ is in Free $_{\mathcal{M G}}(n)$ if and only if the following conditions hold:

- For every $\bar{x} \in\left([0,1]_{\mathrm{Mv}}\right)^{n}, \mathscr{F}(\bar{x})=f(\bar{x})$ for some $f \in \operatorname{Free}_{\mathcal{M V}}(n)$.
- For every $\bar{x} \in ð[0,1]_{M v}^{n}$ such that $\mathscr{F}(\bar{x})<1, \mathscr{F}(\bar{y})=\mathscr{F}(\bar{x})$, for every $\bar{y} \in \tilde{x}$.
- There is a unimodular triangulation Δ of the rational polyhedra $U=\left\{\bar{x} \in \breve{\partial}[0,1]_{\text {Mv }}^{n}: \mathscr{F}(\bar{x})=1\right\}$ such that for every $S \in \Delta$:
- $1_{\bar{y}}=1_{\bar{z}}$ for every $\bar{y}, \bar{z} \in S \in \Delta$.
- there is a function $g \in \operatorname{Free}\left(\left|1_{\bar{y}}\right|\right)$ (for any $\bar{y} \in S$) such that

$$
\mathscr{F}(\bar{x})=g\left(\pi_{[0,1]_{\mathrm{G}}}(\bar{x})\right)
$$

for every $\bar{x} \in \tilde{y} \in S^{\circ}$, where

$$
S^{\circ}:=\left\{\bar{z} \in S: \pi_{\mathrm{Mv}}(\bar{z}) \text { is in the interior of } \pi_{\mathrm{Mv}}(S)\right\} .
$$

An implicative filter (simply filter from now on) in a BL-algebra (or basic hoop) A is a subset $F \subseteq A$ satisfying that $1 \in F$ and if $x \in F$ and $x \rightarrow y \in F$ then $y \in F$.

An implicative filter (simply filter from now on) in a BL-algebra (or basic hoop) A is a subset $F \subseteq A$ satisfying that $1 \in F$ and if $x \in F$ and $x \rightarrow y \in F$ then $y \in F$.

For every $\bar{x} \in[0,1]_{\mathcal{M V}}^{n}$, let $F_{\bar{x}}$ be the filter in $\operatorname{Free}_{\mathcal{M G}}(n)$ generated by a function $\mathfrak{F}_{\bar{x}} \in \operatorname{Free}_{\mathcal{M G}}(n)$ such that:

- $\mathfrak{F}_{\bar{x}}(\bar{x})=1$,
- $\mathfrak{F}_{\bar{x}}(\bar{y})=1$ for every $\bar{y} \in \tilde{x}$,
- $\mathfrak{F}_{\bar{x}}(\bar{y})<1$ for every $\bar{y} \in[0,1]_{\text {MV }}^{n} \backslash\{\bar{x}\}$.

An implicative filter (simply filter from now on) in a BL-algebra (or basic hoop) A is a subset $F \subseteq A$ satisfying that $1 \in F$ and if $x \in F$ and $x \rightarrow y \in F$ then $y \in F$.

For every $\bar{x} \in[0,1]_{\mathcal{M V}}^{n}$, let $F_{\bar{x}}$ be the filter in $\operatorname{Free}_{\mathcal{M G}}(n)$ generated by a function $\mathfrak{F}_{\bar{x}} \in \operatorname{Free}_{\mathcal{M G}}(n)$ such that:

- $\mathfrak{F}_{\bar{x}}(\bar{x})=1$,
- $\mathfrak{F}_{\bar{x}}(\bar{y})=1$ for every $\bar{y} \in \tilde{x}$,
- $\mathfrak{F}_{\bar{x}}(\bar{y})<1$ for every $\bar{y} \in[0,1]_{\text {MV }}^{n} \backslash\{\bar{x}\}$.

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\mathrm{MV}}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and $F_{\bar{x}}$ is the filter in $\operatorname{Free}_{\mathcal{M G}}(n)$ generated by a function $\mathfrak{F}_{\overline{\bar{x}}} \in \operatorname{Free}_{\mathcal{M G}}(n)$, then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{\bar{x}}$ is isomorphic to $\mathbf{t}_{m} \oplus \operatorname{Free}_{\mathcal{G}}(d)$.

Example

Let $F_{(1,1)} \subseteq \operatorname{Free}_{\mathcal{M G}}(2)$ be the filter localized in $(1,1)$. We know that a function $\mathfrak{F} \in \operatorname{Free}_{\mathcal{M G}}(2)$ is contained in $F_{(1,1)}$ if and only if $\mathfrak{F}(1,1)=1$ and for every $(x, y) \in[0,1]_{\mathbf{G}}^{2}$ such that $x<y$, then either $\mathfrak{F}(x, y)=y$ or $\mathfrak{F}(x, y)=1$. If we consider the classes in $\operatorname{Free}_{\mathcal{M G}}(2) / F_{(1,1)}$, we have that it is isomorphic to $\mathbf{t}_{2} \oplus \operatorname{Free}_{\mathcal{G}}(2)$, since two functions $\mathfrak{F}_{1}, \mathfrak{F}_{2} \in \operatorname{Free}_{\mathcal{M G}}(2)$.

For every $\bar{x} \in[0,1]_{M V}^{n}$ and $\bar{y} \in\left([0,1]_{\text {MV }}\right)^{n} \backslash \check{\partial}\left([0,1]_{\text {MV }}\right)^{n}$ let $F_{[\bar{x}, \bar{y})}$ be the principal filter in $\operatorname{Free}_{\mathcal{M G}}(n)$ generated by a function $\mathfrak{F}_{[\bar{x}, \bar{y})} \in \operatorname{Free} \mathcal{M G}(n)$ such that:

- $\mathfrak{F}_{[\bar{x}, \bar{y})}(\bar{z})=1$ for every $\bar{z}=\bar{x}+\epsilon \bar{y}$, for some $\epsilon \in[0,1)$,
- $\mathfrak{F}_{[\bar{x}, \bar{y})}(\bar{z})<1$ for every $\bar{z} \neq \bar{x}+\epsilon \bar{y}$, for some $\epsilon \in[0,1)$,

For every $\bar{x} \in[0,1]_{\text {MV }}^{n}$ and $\bar{y} \in\left([0,1]_{\text {MV }}\right)^{n} \backslash \partial\left([0,1]_{\text {MV }}\right)^{n}$ let $F_{[\bar{x}, \bar{y})}$ be the principal filter in $\operatorname{Free}_{\mathcal{M G}}(n)$ generated by a function $\mathfrak{F}_{[\bar{x}, \bar{y})} \in \operatorname{Free}_{\mathcal{M G}}(n)$ such that:

- $\mathfrak{F}_{[\bar{x}, \bar{y})}(\bar{z})=1$ for every $\bar{z}=\bar{x}+\epsilon \bar{y}$, for some $\epsilon \in[0,1)$,
- $\mathfrak{F}_{[\bar{x}, \bar{y})}(\bar{z})<1$ for every $\bar{z} \neq \bar{x}+\epsilon \bar{y}$, for some $\epsilon \in[0,1)$,

Definition

Given an MV algebra A, the radical of A, written $\operatorname{Rad}(A)$ is the intersection of all maximal filters of A.
A subalgebra S of \mathbf{t}_{m}^{∞} is full if it has infinite elements and $S / \operatorname{Rad}(S) \cong \mathbf{t}_{m}$.

For every $\bar{x} \in[0,1]_{\text {MV }}^{n}$ and $\bar{y} \in\left([0,1]_{\text {MV }}\right)^{n} \backslash \partial\left([0,1]_{\text {Mv }}\right)^{n}$ let $F_{[\bar{x}, \bar{y})}$ be the principal filter in $\operatorname{Free}_{\mathcal{M G}}(n)$ generated by a function $\mathfrak{F}_{[\bar{x}, \bar{y})} \in \operatorname{Free}_{\mathcal{M G}}(n)$ such that:

- $\mathfrak{F}_{[\bar{x}, \bar{y})}(\bar{z})=1$ for every $\bar{z}=\bar{x}+\epsilon \bar{y}$, for some $\epsilon \in[0,1)$,
- $\mathfrak{F}_{[\bar{x}, \bar{y})}(\bar{z})<1$ for every $\bar{z} \neq \bar{x}+\epsilon \bar{y}$, for some $\epsilon \in[0,1)$,

Definition

Given an MV algebra A, the radical of A, written $\operatorname{Rad}(A)$ is the intersection of all maximal filters of A.
A subalgebra S of \mathbf{t}_{m}^{∞} is full if it has infinite elements and $S / \operatorname{Rad}(S) \cong \mathbf{t}_{m}$.

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\mathrm{MV}}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and \bar{y} is a rational point contained in $\left([0,1]_{\mathrm{Mv}}\right)^{n} \backslash \partial\left([0,1]_{\mathrm{MV}}\right)^{n}$ then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{[\bar{x}, \bar{y})}$ is isomorphic to $\mathbf{A}_{i} \oplus \operatorname{Free}_{\mathcal{G}}(d)$, where \mathbf{A}_{i} is a full subalgebra of \mathbf{t}_{m}^{∞}, for some $i \in\{0, \ldots, m-1\}$.

ExAMPLE

Let $F_{1} \subseteq \operatorname{Free}_{\mathcal{M G}}(2)$ be the prime filter localized in $\left(\frac{1}{2}, 1\right)$ and associated with the index $\mathbf{u}=\{(0,-1)\}$. We know that a function $\mathfrak{F} \in \operatorname{Free}_{\mathcal{M G}}(2)$ is contained in F_{1} if and only if $\mathfrak{F}\left(\frac{1}{2}, 1-a\right)=1$ for every $a \in[0, \epsilon)$.
We are now in the case when $F_{1 M V} \neq M V_{\left(\frac{1}{2}, 1\right)}$.
If we consider the classes in $\operatorname{Free}_{\mathcal{M} \mathcal{G}}(2) / F_{1}$, we have that it is isomorphic to a full subalgebra of $\mathbf{Ł}_{2}^{\infty}$, since two functions $\mathfrak{F}_{1}, \mathfrak{F}_{2} \in \operatorname{Free}_{\mathcal{M G}}(2)$ are in the same class in the quotient whenever for some $\epsilon>0, \mathfrak{F}_{1}\left(\frac{1}{2}, 1-a\right)=\mathfrak{F}_{2}\left(\frac{1}{2}, 1-a\right)$ for every $a \in[0, \epsilon)$.

Generalizations

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\mathrm{MV}}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and I is a natural number, with $I \leq n$, then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{\bar{x}, I}$ is isomorphic to $\mathbf{t}_{m} \oplus \operatorname{Free}_{\mathcal{G}_{\boldsymbol{I}}}(d)$.

GENERALIZATIONS

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\text {MV }}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and I is a natural number, with $I \leq n$, then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{\bar{x}, I}$ is isomorphic to $\mathbf{t}_{m} \oplus \operatorname{Free}_{\mathcal{G}_{\boldsymbol{I}}}(d)$.

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\mathrm{MV}}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and \bar{y} is a rational point contained in $\left([0,1]_{\mathrm{Mv}}\right)^{n} \backslash \partial\left([0,1]_{\mathrm{MV}}\right)^{n}$ then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{[\bar{x}, \bar{y}), \text {, }}$ is isomorphic to $\mathbf{A}_{i} \oplus \operatorname{Free}_{\mathcal{G}_{\boldsymbol{l}}}(d)$, where \mathbf{A}_{i} is a full subalgebra of \mathbf{L}_{m}^{∞}, for some $i \in\{0, \ldots, m-1\}$.

GENERALIZATIONS

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\mathrm{MV}}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and I is a natural number, with $I \leq n$, then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{\bar{x}, I}$ is isomorphic to $\mathbf{t}_{m} \oplus \operatorname{Free}_{\mathcal{G}_{\boldsymbol{I}}}(d)$.

Theorem

If \bar{x} is a rational point contained in $[0,1]_{\mathrm{MV}}^{n}$ such that $\operatorname{den}(\bar{x})=m$ and $|\bar{x}|=d$, and \bar{y} is a rational point contained in $\left([0,1]_{\mathrm{Mv}}\right)^{n} \backslash \partial\left([0,1]_{\mathrm{MV}}\right)^{n}$ then the algebra $\operatorname{Free}_{\mathcal{M G}}(n) / F_{[\bar{x}, \bar{y}), \text {, }}$ is isomorphic to $\mathbf{A}_{i} \oplus \operatorname{Free}_{\mathcal{G}_{\boldsymbol{l}}}(d)$, where \mathbf{A}_{i} is a full subalgebra of \mathbf{t}_{m}^{∞}, for some $i \in\{0, \ldots, m-1\}$.

Let $\operatorname{Free}_{\mathcal{M G}}(n) \Gamma_{(\bar{x})}$ be the algebra of equivalence classes of pairs (\mathfrak{F}, U), with $\mathfrak{F} \in \operatorname{Free}_{\mathcal{M G}}(n)$ and U an open set in $[0,1]_{M V}^{n}$ which contains \bar{x}. Two such pairs $\left(\mathfrak{F}_{1}, U_{1}\right)$ and $\left(\mathfrak{F}_{2}, U_{2}\right)$ are equivalent if $\mathfrak{F}_{1}=\mathfrak{F}_{2}$ on $U_{1} \cap U_{2}$, and the operations are inherited from Free $_{\mathcal{M G}}(n)$.
$\operatorname{Free}_{\mathcal{V}}(n)$

Theorem

Fix $n \in \mathbb{N}$ and let $\mathcal{V}=\mathcal{V}\left(\mathbf{t}_{m_{1}} \oplus \mathbf{G}_{i_{1}}, \ldots, \mathbf{t}_{m_{r}} \oplus \mathbf{G}_{i_{r}}, \mathbf{t}_{t_{1}}^{\infty} \oplus \mathbf{G}_{j_{1}}, \ldots, \mathbf{t}_{t_{s}}^{\infty} \oplus \mathbf{G}_{j_{s}}\right)$ be a proper subvariety of $\mathcal{M G}$. Let X be the set of rational points of the cube $[0,1]_{\mathrm{MV}}^{n}$ whose denominator divides at least one of m_{1}, \ldots, m_{r} and let Y be the set of rational points of the cube $[0,1]_{\mathrm{MV}}^{n}$ whose denominator divides at least one of t_{1}, \ldots, t_{s}. If A is the algebra in $\mathcal{M G}$ defined by the finite product

$$
A=\prod_{\bar{x} \in X} \operatorname{Free}_{\mathcal{M G}}(n) \upharpoonright_{\bar{x}, l_{x}} \times \prod_{\bar{y} \in Y} \operatorname{Free}_{\mathcal{M G}}(n) \upharpoonright_{(\bar{y}), l_{y}}
$$

where $I_{x}=\min \left\{n, \mathcal{O}_{\mathcal{G}}(\bar{x})\right\}, I_{y}=\min \left\{n, \mathcal{O}_{\mathcal{G}}(\bar{y})\right\}$ and $\pi_{i}(\bar{x})$ is the image in A of the i-th projection $\bar{x}_{i} \in \operatorname{Free}_{\mathcal{M G}}(n)$, then the subalgebra $\operatorname{Free}_{\mathcal{V}}(n)$ of A generated by $\left\{\pi_{i}(\bar{x}): i<n\right\}$ is the free algebra over n generators in \mathcal{V}, where the elements $\pi_{i}(\bar{x})$ are the free generators and

$$
\mathcal{O}_{\mathcal{G}}(\bar{x}):=\max \left\{i_{j}: \mathbf{t}_{m} \oplus \mathbf{G}_{i_{j}} \in \mathcal{V} \text { and den }(\bar{x}) \text { divides } m\right\} .
$$

Aglianò, P., Ferreirim, I. M. A., Montagna, F., Basic Hoops: an Algebraic Study of Continuous t-norms Studia Logica, 2007 vol. 87, N. 1, pag. 73-98.

Aglianò, P., Montagna, F., Varieties of BL-algebras I: general properties Journal of Pure and Applied Algebra, 2003, vol. 181, N. 2-3, Pag. 105-129.

Aglianò, P., Montagna, F., Varieties of BL-Algebras I/ Studia Logica, 2018, vol. 106, N. 4, pag. 721-737.

Aglianò, P., Varieties of BL-Algebras III Studia Logica, 2018.
Burris, S., Sankappanavar, H.P., A Course in Universal Algebra Springer, New York (1981).
Busaniche, M., Castiglioni, J.L., Lubomirsky, N., Functional representation of finitely generated free algebras in subvarieties of BL-algebras Annals of Pure and Applied Logic, 2020, vol. 171, N.2.

Di Nola, A., Lettieri, A., Equational Characterization of All Varieties of MV-Algebras Journal of Algebra, 1999, vol. 221, N. 2, pag. 463-474.

Esteva, F., Godo, L., Montagna,F., Equational characterization of the subverieties of BL generated by t-norm algebras Studia Logica, 2004, vol. 76, N. 2, Pag. 161-200.

Hecht, T., Kartiñak, T., Equational classes of relative Stone algebras Notre Dame J. Formal Logic 13 (1972), NO. 2, 248-254.

Komori, Y., Super-Łukasiewicz propositional logic, Nagoya Math. J. 84 (1981)
Lubomirsky, N., Técnicas geométricas y combinatorias en el estudio de subvariedades de BL-álgebras Tesis Doctoral, Universidad Nacional de La Plata, 2017.

Thank you for your attention!

