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T-NORMS

DEFINITION

A t-norm is a binary operation * : [0,1]*> — [0, 1] which satisfies the following
conditions:

@ = is commutative and associative.

@  is non decreasing in both arguments, i.e., for every x,y,z € [0,1]
x<yimpliesxxz<yxzandzxx<zxy,

@ lxx=xand0xx=0 for every x € [0,1].

A continuous t-norm is a t-norm which is continuous as a map from [0,1]? into
[0,1]. For every continuous t-norm a residuum can be defined by:

xxz<y ifandonly if x<z—y.
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IINARIES [ESSNOIIVE]

DEFINITION

A t-norm is a binary operation * : [0,1]*> — [0, 1] which satisfies the following
conditions:

@ = is commutative and associative.

@  is non decreasing in both arguments, i.e., for every x,y,z € [0,1]
x<yimpliesxxz<yxzandzxx<zxy,

@ lxx=xand0xx=0 for every x € [0,1].

A continuous t-norm is a t-norm which is continuous as a map from [0,1]? into
[0,1]. For every continuous t-norm a residuum can be defined by:

xxz<y ifandonly if x<z—y.

The algebra ([0, 1], ¥, —, max, min, 0,1) is the standard algebra associated with
the continuous t-norm x.
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PRELIMINARIES [EENOISYE

EXAMPLES

Q tukasiewicz t-norm: x x; y = max(0,x +y — 1)
tukasiewicz implication: x — y = min(1,1 — x + y),
Q Gddel t-norm: x xg y = min(x,y),
Godel implication:

oy if x>y
X_>Gy_{ 1 if x<y.

@ Product t-norm: xxpy =x-y,
Goguen implication:

fy/x if x>y
Xépy‘{l if x<y.
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PRELIMINARIES [EENOISYE

EXAMPLES

Q tukasiewicz t-norm: x x; y = max(0,x +y — 1)
tukasiewicz implication: x — y = min(1,1 — x + y),
Q Gddel t-norm: x xg y = min(x,y),
Godel implication:

oy if x>y
X_>Gy_{ 1 if x<y.

@ Product t-norm: xxpy =x-y,
Goguen implication:

fy/x if x>y
Xé”‘{l if x<y.

The algebras ([0, 1], *, —, V, A, 0,1), ([0, 1], *¢, —¢, V, A,0,1) and
([0,1], *p, —p, V, A, 0,1) are the tukasiewicz, Godel and Product standard
algebras, respectively.
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IINARIES [ESSNOIIVE]

If (a;, bi)ie/ is a family of disjoint intervals, with 0 < a; < b; < 1 such that * is a
continuous t-norm on (a;, b;), we define for every x, y € [0,1] a continuous t-norm
called ordinal sum of t-norms by:

X*xy = X*{ahbf]y if x,y € (aj, bi);
d min{x, y} otherwise.
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PRELIMINARIES [EENOISYE

If (a;, bi)ie/ is a family of disjoint intervals, with 0 < a; < b; < 1 such that * is a
continuous t-norm on (a;, b;), we define for every x, y € [0,1] a continuous t-norm

called ordinal sum of t-norms by:

Xkxy = X*{aubf]y if x,y € (aj, bi);
d min{x, y} otherwise.

Yy X
' }
a, b =a, b,=a, T b =a, b,=a
Xky
Yy X
' }
a bl—'l_ T bz:‘l. h‘=214 b4=a
Xy

THEOREM (MOSTERT-SCHIELDS)

Every continuous t-norm is the ordinal sum of a family of tukasiewicz, Godel and

product t-norms.
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Hooprs AND BL-ALGEBRAS

Hooprs AND BL-ALGEBRAS

DEFINITIONS
A hoop is an algebra A = (A, x,—, T) of type (2,2,0), where (A,*,T) is a
commutative monoid such that for every x,y,z € A:

Q x—>x=T,

Q xx(x—=y)=yx*x(y — x),

Q@ x—(y—z)=(xx*xy)—>z
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commutative monoid such that for every x,y,z € A:

Q x—>x=T,
Q xx(x—=y)=yx*x(y — x),
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A basic hoop es is a hoop which satisfies the equation

(x=y)=2)x((y =2 x) = 2) = 2)=T

N. LuBoMirsky (UNLP - CONICET)

SEPT. 2022

5/35



Hooprs AND BL-ALGEBRAS

Hooprs AND BL-ALGEBRAS

DEFINITIONS
A hoop is an algebra A = (A, x,—, T) of type (2,2,0), where (A,*,T) is a
commutative monoid such that for every x,y,z € A:

Q x—>x=T,

Q xx(x—=y)=yx*x(y — x),

Q@ x—(y—z)=(xx*xy)—>z

A basic hoop es is a hoop which satisfies the equation
(x=y)=22)x((y 2 x)=2)) =2)=T

A BlL-algebra is a bounded basic hoop, i.e., an algebra A = (A, x,—, L, T) of
type (2,2,0,0) such that (A, x,—,T) is a basic hoop and L is the minimum of A.
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Hooprs AND BL-ALGEBRAS

In every basic hoop A we can define the operations
XNy =x-(x=y)=y-(y = x),
xVy:=((x=y)=y)A((y = x) = x)
and then (A, A, V, T) is a distributive lattice.
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Hooprs AND BL-ALGEBRAS

In every basic hoop A we can define the operations
xANy=x-(x=y)=y-(y = x),
xVy:=((x=y)=y) Ay = x) = x)
and then (A, A, V, T) is a distributive lattice.
THEOREM (CiGNoOLI, ESTEVA, GODO, TORRENS)

The class of BL-algebras is the variety generated for all the algebras given by
continuous t-norms.
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In every basic hoop A we can define the operations
xANy=x-(x=y)=y-(y = x),
xVy:=((x=y)=y) Ay = x) = x)
and then (A, A, V, T) is a distributive lattice.
THEOREM (CiGNoOLI, ESTEVA, GODO, TORRENS)

The class of BL-algebras is the variety generated for all the algebras given by
continuous t-norms.

Varicty of
BL-algebras

BL
Varicety of Varicty of Variety of
MV-algebras  Godel algebras Product algebras
MY gA P

N. LuBoMirsky (UNLP - CONICET)

SEPT. 2022 6/35



Hooprs AND BL-ALGEBRAS

ORDINAL SUMS

DEFINITION

Let A= (A,-a,—a, T) and B = (B,-g,—pg, T) be two hoops such that
AN B = {T}. We can define the ordinal sum of A and B as the hoop
A®B=(AUB,:,—,T,), where the operations - and — are given by:

X-ay |if X,y € A;
) xmBy |if x,y € B;
YT x if xeA\{T}, yeB;
y if yeB\{T}, xe€A
X —=ay if X,y € A
_ x =gy |if x,y € B;
XTYEN T if xe A\{T}, yeB,
y if y€eA xeB.
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SUBVARIETY MG

THE SUBVARIETY MG

Godel hoops are the 1 -free subreducts of Godel algebras. The standard Godel
hoop will be denoted by [0, 1]g.
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SUBVARIETY MG

THE SUBVARIETY MG

Godel hoops are the 1 -free subreducts of Godel algebras. The standard Godel
hoop will be denoted by [0, 1]g.

MG =V([0,1]mv @ [0,1]c)
This variety is generated by the t-norm which we called MG t-norm
tme : [0,1]% — [0, 1] defined by

_f max(0,x+y—3) ifx,y€[0,1);
tme(x,y) = { min(x, y) otherwise.
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THE SUBVARIETY MG

Godel hoops are the 1 -free subreducts of Godel algebras. The standard Godel
hoop will be denoted by [0, 1]g.

MG =V([0, 1mv @ [0, 1]g)
This variety is generated by the t-norm which we called MG t-norm
tme : [0,1]% — [0, 1] defined by
_f max(0,x+y—3) ifx,y€[0,1);
e (x,y) = { min(x, y) otherwise.

Moreover, it is the subvariety of BL given by the identity

(-=x = x)? = ~—x = x.

BL
MG

LG
T
MY GgA P

N. LuBoMirsky (UNLP - CONICET)

SEPT. 2022 8/35



THE LATTICE OF SUBVARIETIES A(MYV)
For n, k > 1 we define

t,=r(Z,n),
t°=T(Z x Z,(n,0)),

where Z has the natural order and Z o Z is the product of two copies of Z ordered
lexicographically.
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THE LATTICE OF SUBVARIETIES A(MYV)
For n, k > 1 we define

t,=r(Z,n),
L =T(Z % Z,(n,0)),

where Z has the natural order and Z o Z is the product of two copies of Z ordered
lexicographically.

V(LD)

\
V(Ly) YU%)

V(L) V(I.3) V(Ls

V(i)
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A(MG)
THE LATTICE OF SUBVARIETIES A(G)

Hetch and Katrifak proved that the subvarieties of the variety of Godel algebras

form a chain, but since the Godel hoops are the subreducts of these algebras, the
results can be naturally extended for our case.
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A(MG)

THE LATTICE OF SUBVARIETIES A(G)

Hetch and Katrifak proved that the subvarieties of the variety of Godel algebras
form a chain, but since the Godel hoops are the subreducts of these algebras, the
results can be naturally extended for our case.

V(Ge)
V(Ga)
V(:G5)
V(:G4)
V(F:&)
V(Gs)
V((l?'l)
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THEOREM

If A is a join-irreducible element in the lattice of subvarieties of MG then A is the

variety generated by A ® B with A is a chain in MY and B is a chain in G such
that

Ac{t,:neNyU{L>:neN}U{0,1]mv}
Bc{G,:necN}uU{[0,1]c}.
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THEOREM

If A is a join-irreducible element in the lattice of subvarieties of MG then A is the
variety generated by A ® B with A is a chain in MY and B is a chain in G such
that

Ac{t,:neNyU{L>:neN}U{0,1]mv}
Bc{G,:necN}uU{[0,1]c}.

COROLLARY

The join-irreducible elements in the lattice of subvarieties of MG form an ordered
lattice.

(2 x D(N)) x (w+1)
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THEOREM

Any subvariety U of MG is generated by a finite number of chains A & B with
Ac{t,:neNyU{Lty :neN}U{[0,1]mv} and B € {G,: ne N} U{|[0,1]g}.
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THEOREM
Any subvariety U of MG is generated by a finite number of chains A & B with
Ac{t,:neN}U{Ly :neN}U{[0,1]mv} and B € {G, : n € N} U{[0,1]g}.

Idea of the proof:

Kn=V([0,1]mv & G,)
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COROLLARY

Any variety in N(MG) is a join of finitely many varieties generated by a single
chain A® B where Ac {t,:ne N} U{L" :ne N}U{[0,1]mv} and

B € {G,: ne N}U{[0,1]g}.
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EQUATIONAL BASES

EQUATIONAL BASES

LEMMA (D1 NOLA - LETTIERI)
For n > 2, the subvariety V(L") of MV is characterized by the identity:
(((n+1)x")2 < 2™ A ((pxP™1)" 45 (n+ 1)xP) & 1 (al,)

for every positive integer 1 < p < n such that p is not a divisor of n.
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LEMMA (D1 NOLA - LETTIERI)
For n > 2, the subvariety V(L") of MV is characterized by the identity:

(((n+1)x")2 < 2™ A ((pxP™1)" 45 (n+ 1)xP) & 1 (al,)

for every positive integer 1 < p < n such that p is not a divisor of n.

LeEmMA (D1 NOLA - LETTIERI)
For n > 2, the subvariety V(t,,) of MV is characterized by the identity:

(((n+1)x”)2 o 2Xn+1)/\((p_xp_1)n+1 <(_> ()n+1)xp)A((n+1)xq PR (n—|—2)x‘7) ~1

for every positive integer 1 < p < n such that p is not a divisor of n and every
integer q such that 1 < g < n and q divides n.
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EQUATIONAL BASES

EQUATIONAL BASES

LEMMA (HECHT - KATRINAK)
For n > 2, the subvariety V(G,) of G is characterized by the following identity:

n+1

\/(Xi < xip1) ~ 1 (Bn)

i=1
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EQUATIONAL BASES

EQUATIONAL BASES

THEOREM

If A is a subvariety of MYV characterized by the identity « =~ 1 and B is a
subvariety of G characterized by the identity $ =~ 1, then A & B is a subvariety of

MG characterized by the identity
a/ ) /8/ ~ 17

where o is the term given by substituying ——x for every variable x in « and B is
the term given by substituying ——y — y for every variable y in 3.

v
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EQUATIONAL BASES

EQUATIONAL BASES

THEOREM

If A is a subvariety in the lattice of subvarieties of MG given by A = \/ A; for n

i=1
subvarieties Ay, ..., A, where every variety A; is generated by a chain A; ® B,
where A € {t,: n e N} U{Lt" : ne N} U{[0,1]mv}, and there are identities
Yi(x{, .., ;) ~ 1 associated with each variety A;, then, the variety A as a
subvariety of MG is given by the identity

1 1 1 ny ~
VAKX oo Xy ooy Xy e e X ) R 1
where
n
1 1 n ny ~ i i
’Y.A(Xlﬂ"'7Xn17'~‘7X17'~'1Xk,,)N \/’W(Xl?'“axk,-)'
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EQUATIONAL BASES

EXAMPLE

Suppose that we have the variety A = V(£3° @ G1,t2 @ G3).
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EQUATIONAL

EXAMPLE
Suppose that we have the variety A = V(£3° @ G1,t2 @ G3).

(3(—‘—\X1)2)2 <~ 2(—\—\X1)3 ~1

as® (x1)

2
\/(—mx,-3 — x,3) <~ (ﬂ—\xl-3+1 — X,-3+1) ~1
i=1

B1(3 53 x3)

4
\/(ﬁﬁxf‘ = x7) (ﬁﬁxﬁrl - Xﬁﬂ) ~1
i=1

Balcd o xf )
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EQUATIONAL B/

EXAMPLE
Suppose that we have the variety A = V(£3° @ G1,t2 @ G3).

(3(—‘—\X1)2)2 <~ 2(—\—\X1)3 ~1

as® (x1)

2
\/(—mx,-3 — x,3) <~ (ﬂ—\x,-3+1 — X,-3+1) ~1
i=1

,31(><i°',><§',>(33)

4
\/(ﬁﬁxf‘ = x7) (ﬁﬁxﬁrl - Xﬁﬂ) ~1
i=1

Ba(xd x5 ,x3 x4 <)
Hence, A is characterized as a subvariety of MG by the identity

(O‘SO(XI) . BI(X137X237X3§)) 4 (a2(X2) . ﬁ4(Xf,X§,X§,X§,X§)) ~ 1.

12 3 0 o )
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FREE ALEBRAS

FREE ALGEBRAS: THE CASE OF MV-ALGEBRAS

THEOREM (MCNAUGHTON)

The free n-generated MV-algebra is the subalgebra of M, of all continuous
piecewise linear functions f : [0,1]" — [0, 1] where each one of the finitely many
linear pieces has integer coefficients.
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FREE ALGEBRAS: THE CASE OF MV-ALGEBRAS

THEOREM (MCNAUGHTON)
The free n-generated MV-algebra is the subalgebra of M, of all continuous

piecewise linear functions f : [0,1]" — [0, 1] where each one of the finitely many

linear pieces has integer coefficients.
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Let v be a point in [0, 1]", we denote by
Freepy(n) [ v :={[f] : g € [f] if f(V) = g(V),for f,g € Freepmy(n)}

Freepmy(n) [ (V) .= {[(f,U)] : (g, V) € [(f, V)] if f(X) = g(x) for every x € UNV
where f, g € Freepqy(n) and U, V are open sets such that v € UN V}.
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FREE ALEBRAS

Let v be a point in [0, 1]", we denote by

Freexy(n) [ v

THEOREM (PANTTI)

={[f]: g € [f]if f(V)

Freepww(n) T (V) :={I[(f, V)] : (g, V) € [(f, V)] if f(x) = g
where f, g € Freepqy(n) and U, V are open sets such that v € UN V}.

Fix n > 0 be a natural number and let

V=V({t;,...

LU’ .. 10

be a proper subvariety of MV . Let X be the set of rational points of the n-cube
whose denominator divides at least one i € {i,...,

rational points of the n-cube whose denominator divides at least one

J€{1,---,Ji}- Then the free algebra over n generators inV is isomorphic to the

finite product

Freey(n) = H Freepqy(n) | u x H Freeapy(n) | (v).

ueX\Y

vey

= g(v),for f, g € Freepy(n)}

i}, and let Y be the set ot

(x) for every X € UNV

N. LuBoMirsky (UNLP - CONICET)
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FREE ALEBRAS

FREE ALGEBRAS: THE CASE OF GODEL HOOPS

We define the Godel chain X = (X!, ... X"} if X1, ... X" are subsets of
{x1,...,xn} such that X' N X/ =0 ifi#jand X' #£0, Vi=1,...,r.
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FREE ALGEBRAS: THE CASE OF GODEL HOOPS

We define the Godel chain X = (X!, ... X"} if X1, ... X" are subsets of
{x1,...,xn} such that X' N X/ =0 ifi#jand X' #£0, Vi=1,...,r.

x; =x; if x;,x € XK, for some k € {1,...,r}
xi < x; if x € XK x5 e XU for k < |

Rx =< x€0,1]":

xi <xj if x € X"(’),Xj ¢ U Xk
k=1

N. LuBoMirsky (UNLP - CONICET) SEPT. 2022 21/35



FREE ALEBRAS

FREE ALGEBRAS: THE CASE OF GODEL HOOPS

We define the Godel chain X = (X!, ... X"} if X1, ... X" are subsets of
{x1,...,xn} such that X' N X/ =0 ifi#jand X' #£0, Vi=1,...,r.

x; =x; if x;,x € XK, for some k € {1,...,r}

xi < x; if x € XK x5 e XU for k < |
Rx = x€[0,1]":

xi <xj if x € X"(’),Xj ¢ U Xk
k=1

Given two Godel chains X; = (X1,..., X{) and Xo = (X2, ..., XJ), we say that
X; is a subchain of Xy if r < gand X{ = Xj for 1 <i<r.
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FREE ALEBRAS

FREE ALGEBRAS: THE CASE OF GODEL HOOPS

We define the Godel chain X = (X!, ... X"} if X1, ... X" are subsets of
{x1,...,xn} such that X' N X/ =0 ifi#jand X' #£0, Vi=1,...,r.

x; =x; if x;,x € XK, for some k € {1,...,r}

xi < x; if x € XK x5 e XU for k < |
Rx = x€[0,1]":

xi <xj if x € X"(’),Xj ¢ U Xk
k=1

Given two Godel chains X; = (X1,..., X{) and Xo = (X2, ..., XJ), we say that
X; is a subchain of Xy if r < gand X{ = Xj for 1 <i<r.

We say that a set of Godel chains defines a Godel forest if no chain in the set is
subchain of other chain.
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FREE ALEBRAS

FREE ALGEBRAS: THE CASE OF GODEL HOOPS

To each Godel chain X = (X!,..., X") we can associate a function fx:

(1% if X € Rx, and x; € X"
X~ 1 otherwise.
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FREE ALEBRAS

FREE ALGEBRAS: THE CASE OF GODEL HOOPS

To each Godel chain X = (X!,..., X") we can associate a function fx:

(1% if X € Rx, and x; € X"
X~ 1 otherwise.

THEOREM (AGUZZOLI, BOvA, GERLA)

A function f : [0,1]¢ — [0, 1]g is in Freeg(n) if and only if there is a Godel forest
X containing the Godel chains X1, ..., X, such that

m

f=/\f-

Jj=1
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FREE ALEBRAS

Freeg,(n)

THEOREM (AGUZZOLI, BOVA, GERLA)

A function f : [0,1]g, — [0, 1]g, is in Freeg,(n) if and only if there is a Godel forest
X containing the chains X1, ..., X, where no chain has height greater than | such

that
m
f=/\f:
j=1
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FREE ALEBRAS

Freeg,(n)

THEOREM (AGUZZOLI, BOVA, GERLA)

A function f : [0,1]g, — [0, 1]g, is in Freeg,(n) if and only if there is a Godel forest
X containing the chains X1, ..., X, where no chain has height greater than | such

that
m
f=/\f:
j=1

THEOREM

The algebra Freeg,(n) is isomorphic to the quotient of the algebra Freeg(n) over
the principal filter generated by the forest where every maximal chain has height
I+ 1.
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Freepg(1)

0.1,

[0, l]MV

0
0 (01, o1, 1
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FreeMg(l)

1
101,
[0, l]MV
0
0 [01], [0.1], 1
1 :
(.11,
[0,1,,
0 H
0 [01],, [0,1]G 1
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FREE ALEBRAS

FreeMg(l)

1
101,
[O'l]MV
0
0 [04], 01, 1
1 1 :
[0.1], [0.1],
(0.1, i 01, ’
0 : 0
0 [0, 01, 1 0 [01], o1, 1
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Freepg(2)

0.1,

[0’1]MV

0 :
0o [o4], o1, 1
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Freepg(2)

[O,I]G [O,l]G f-y-G-McNaughton

: Godel

0,1 0,1
[ ]MV [ ]Mv McNaughton  :f-x-G-McNaughton

0 0
0o [o4], o1, 1 0 [0, 01, 1
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FREE ALEBRAS

Freepg(n)

0[0, 1]y :={x € [0,1]py : xi = 1 for some 1 < i < n}.
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FREE ALEBRAS

Freepg(n)

0[0, 1]y :={x € [0,1]py : xi = 1 for some 1 < i < n}.

For every z = (z1,...,2,) € ([0, 1]mv @ [0, 1]g)"” we define the projections:

7TG(E) = (ij' - 7ij) € [Ov llgl

and

™v(Z) = (25 - - -5 Zk,_) € [0, 1y
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FREE ALEBRAS

Freepg(n)

0[0, 1]y :={x € [0,1]py : xi = 1 for some 1 < i < n}.
For every z = (z1,...,2,) € ([0, 1]mv @ [0, 1]g)"” we define the projections:
76(2) = (2 2,) € 0,12
and
amv(Z) == (ziy, - -, 2k, ) € [0, L]y
If X = (x1,...,xn) € [0,1]f4y we define:
Iy ={ie{l,....,n} 1 x; =1}

£ :={zeA"\ [0, 1y : ™mv(Z) = mmv(X)}

and we say that X is the cyllindrification of x.
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FREE ALEBRAS

Freepg(n)

THEOREM

A function .Z : ([0, 1]mv @ [0,1]g)” — A is in Freexpqg(n) if and only if the
following conditions hold:

e For every x € ([0,1]mv)", Z(X) = f(X) for some f € Freepqy(n).
o For every x € 9]0, 1§,y such that #(x) < 1, #(y) = F(X), for every y € X.
o There is a unimodular triangulation A of the rational polyhedra
U= {x€0[0,1]}yy : -Z(X) =1} such that for every S € A:
o 1y =1; foreveryy,z€ S € A.
o there is a function g € Freeg(|1y|) (for any y € S) such that

ZF(X) = g(mp,16(X))

for every X € § € S°, where

S°:={z € S : mmv(Z) is in the interior of Tmv(S)}.
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FILTERS

An implicative filter (simply filter from now on) in a BL-algebra (or basic hoop)
A is a subset F C A satisfying that 1 € F and if x € F and x — y € F then
y € F.
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FILTERS

An implicative filter (simply filter from now on) in a BL-algebra (or basic hoop)
A is a subset F C A satisfying that 1 € F and if x € F and x — y € F then
y € F.

For every X € [0, 1|5y, let Fx be the filter in Freepqg(n) generated by a function
Fx € Freenpg(n) such that:

o S)—(()_() = 1,
o Fx(y) =1 for every y € X,
e Fx(y) <1 forevery y € [0,1]fy \ {X}.
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FILTERS

An implicative filter (simply filter from now on) in a BL-algebra (or basic hoop)
A is a subset F C A satisfying that 1 € F and if x € F and x — y € F then
y € F.

For every X € [0, 1|5y, let Fx be the filter in Freepqg(n) generated by a function
Fx € Freenpg(n) such that:

o S)—(()_() = 1,
o Fx(y) =1 for every y € X,
e Fx(y) <1 forevery y € [0,1]fy \ {X}.

THEOREM

If X is a rational point contained in [0, 1]f, such that den(X) = m and |X| = d,
and Fy is the filter in Freenqg(n) generated by a function §x € Freeag(n), then
the algebra Freepig(n)/Fx is isomorphic to t,, & Freeg(d).
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EXAMPLE

Let F(1,1) € Freeapg(2) be the filter localized in (1,1). We know that a function
§ € Freepg(2) is contained in F(y 1y if and only if §(1,1) =1 and for every
(x,y) € [0,1]2 such that x < y, then either §(x,y) =y or F(x,y) = 1.

If we consider the classes in Freexqg(2)/F(1,1), we have that it is isomorphic to
L, @ Freeg(2), since two functions F1, §2 € Freeamg(2).

[011]6

1,1)

N3
Qs
&

01wy [01]g 01wy 01 O 01wy [01]g

[0,1]mv
<,
%
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FILTERS

For every x € [0, 1]ty and y € ([0, 1]mv)" \ 9([0, 1]mv)" let Fiz 5y be the principal
filter in Freepqg(n) generated by a function §z 5) € Freeaig(n) such that:

® Jix5)(2) =1 for every Z = X 4 €y, for some € € [0, 1),
o Jz,7)(2) <1 forevery Z # X + €y, for some € € [0,1),
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FILTERS

For every x € [0, 1]ty and y € ([0, 1]mv)" \ 9([0, 1]mv)" let Fiz 5y be the principal
filter in Freepqg(n) generated by a function §z 5) € Freeaig(n) such that:

® Jix5)(2) =1 for every Z = X 4 €y, for some € € [0, 1),
o Jz,7)(2) <1 forevery Z # X + €y, for some € € [0,1),

DEFINITION

Given an MV algebra A, the radical of A, written Rad(A) is the intersection of all
maximal filters of A.
A subalgebra S of £ is full if it has infinite elements and S/Rad(S) = t,,.
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FILTERS

For every x € [0, 1]ty and y € ([0, 1]mv)" \ 9([0, 1]mv)" let Fiz 5y be the principal
filter in Freepqg(n) generated by a function §z 5) € Freeaig(n) such that:

® Jix5)(2) =1 for every Z = X 4 €y, for some € € [0, 1),
o Jz,7)(2) <1 forevery Z # X + €y, for some € € [0,1),

DEFINITION

Given an MV algebra A, the radical of A, written Rad(A) is the intersection of all
maximal filters of A.
A subalgebra S of £ is full if it has infinite elements and S/Rad(S) = t,,.

THEOREM

If X is a rational point contained in [0, 15, such that den(X) = m and |X| = d,
and y is a rational point contained in ([0, 1]mv)" \ 9([0, 1]mv)" then the algebra
Freepig(n)/Fiz,y) is isomorphic to A; & Freeg(d), where A; is a full subalgebra of
L., forsome i€ {0,...,m—1}.

v
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EXAMPLE

Let Fy C Freepqg(2) be the prime filter localized in (1,1) and associated with the
index u = {(0, —1)}. We know that a function § € Freep(g(2) is contained in f;
if and only if F(3,1—a) =1 for every a € [0, ).

We are now in the case when Fipyy # MV(%’I).

If we consider the classes in Freex(g(2)/F1, we have that it is isomorphic to a full
subalgebra of £5°, since two functions §1,82 € Freearg(2) are in the same class in
the quotient whenever for some € > 0, F1(3,1 — a) = F2(3,1 — a) for every
a€|0,e).

=

5 @) [

= 58 - »

L \Y) = \Q\

= < ’ x\@“\ Q>\“S
[01lmv  [0,1]g 01y [0l 01wy [01]g N
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FILTERS

GENERALIZATIONS

THEOREM

If X is a rational point contained in [0, 1]f,, such that den(X) = m and |x| = d,
and | is a natural number, with | < n, then the algebra Freepg(n)/Fx is
isomorphic to t,, @ Freeg,(d).
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GENERALIZATIONS

THEOREM

If X is a rational point contained in [0, 1]f,, such that den(X) = m and |x| = d,
and | is a natural number, with | < n, then the algebra Freepg(n)/Fx is
isomorphic to t,, @ Freeg,(d).

THEOREM

If X is a rational point contained in [0, 1], such that den(X) = m and |x| = d,

and y is a rational point contained in ([0, 1]mv)" \ 8([0, 1]mv)" then the algebra
Freexg(n)/ Fiz,5),1 is isomorphic to A; © Freeg,(d), where A; is a full subalgebra
oft;;, for some i€ {0,...,m—1}.
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GENERALIZATIONS

THEOREM

If X is a rational point contained in [0, 1]f,, such that den(X) = m and |x| = d,
and | is a natural number, with | < n, then the algebra Freepg(n)/Fx is
isomorphic to t,, @ Freeg,(d).

THEOREM

If X is a rational point contained in [0, 1], such that den(X) = m and |x| = d,

and y is a rational point contained in ([0, 1]mv)" \ 8([0, 1]mv)" then the algebra
Freexg(n)/ Fiz,5),1 is isomorphic to A; © Freeg,(d), where A; is a full subalgebra
oft;;, for some i€ {0,...,m—1}.

Let Freeprig(n) [(z) be the algebra of equivalence classes of pairs (§, U), with

§ € Freepqg(n) and U an open set in [0, 1], which contains X. Two such pairs
(F1, U1) and (B2, U>) are equivalent if §1 = §2 on U; N Us, and the operations are
inherited from Freepg(n).
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Freey, (n)

Freey(n)

THEOREM

FixneNandletV=V(tm ®Gj,....tm ®G; Lty ®G),...,.t7 ®G}) be a
proper subvariety of MG. Let X be the set of rational points of the cube [0, 1]ty
whose denominator divides at least one of my,...,m, and let Y be the set of
rational points of the cube [0, 1]{y, whose denominator divides at least one of
ty,...,ts. If A'is the algebra in MG defined by the finite product

A= H Freepg(n) Iz, X H Freexg(n) ().,
X yey

where |, = min{n, Og(X)}, |, = min{n, Og(y)} and mi(X) is the image in A of the
i-th projection X; € Freepg(n), then the subalgebra Freey(n) of A generated by
{mi(X) : i < n} is the free algebra over n generators in V, where the elements
7;(X) are the free generators and

Og(x) := max{ij : £, ® G; € V and den(X) divides m}.

T = = = =y
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