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Preliminaries t-norms

Definition

A t-norm is a binary operation � : [0; 1]2 ! [0; 1] which satis�es the following
conditions:

1 � is commutative and associative.

2 � is non decreasing in both arguments, i.e., for every x ; y ; z 2 [0; 1]

x � y implies x � z � y � z and z � x � z � y,

3 1 � x = x and 0 � x = 0 for every x 2 [0; 1].

A continuous t-norm is a t-norm which is continuous as a map from [0; 1]2 into
[0; 1]. For every continuous t-norm a residuum can be de�ned by:

x � z � y if and only if x � z ! y :

The algebra ([0; 1]; �;!;max ;min; 0; 1) is the standard algebra associated with
the continuous t-norm �.
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Preliminaries t-norms

Examples

1  Lukasiewicz t-norm: x �L y = max(0; x + y � 1)
 Lukasiewicz implication: x !L y = min(1; 1� x + y),

2 G�odel t-norm: x �G y = min(x ; y),
G�odel implication:

x !G y =

�
y if x > y ;
1 if x � y :

3 Product t-norm: x �P y = x � y,
Goguen implication:

x !P y =

�
y=x if x > y ;
1 if x � y :

The algebras ([0; 1]; �L;!L;_;^; 0; 1), ([0; 1]; �G ;!G ;_;^; 0; 1) and
([0; 1]; �P ;!P ;_;^; 0; 1) are the  Lukasiewicz, Gödel and Product standard
algebras, respectively.
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Preliminaries t-norms

If (ai ; bi )i2I is a family of disjoint intervals, with 0 � ai < bi � 1 such that �i is a
continuous t-norm on (ai ; bi ), we define for every x ; y 2 [0; 1] a continuous t-norm
called ordinal sum of t-norms by:

x � y =

�
x �i

[ai ;bi ]
y if x ; y 2 (ai ; bi );

minfx ; yg otherwise:

Theorem (Mostert-Schields)

Every continuous t-norm is the ordinal sum of a family of  Lukasiewicz, G�odel and
product t-norms.
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Hoops and BL-algebras

Hoops and BL-algebras

Definitions

A hoop is an algebra A = (A; �;!;>) of type (2; 2; 0), where (A; �;>) is a
commutative monoid such that for every x ; y ; z 2 A:

1 x ! x = >,

2 x � (x ! y) = y � (y ! x),

3 x ! (y ! z) = (x � y)! z.

A basic hoop es is a hoop which satis�es the equation

(((x ! y)! z) � ((y ! x)! z))! z) = >

A BL-algebra is a bounded basic hoop, i.e., an algebra A = (A; �;!;?;>) of
type (2; 2; 0; 0) such that (A; �;!;>) is a basic hoop and ? is the minimum of A.
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Hoops and BL-algebras

In every basic hoop A we can define the operations

x ^ y := x � (x ! y) = y � (y ! x);

x _ y := ((x ! y)! y) ^ ((y ! x)! x)

and then (A;^;_;>) is a distributive lattice.

Theorem (Cignoli, Esteva, Godo, Torrens)

The class of BL-algebras is the variety generated for all the algebras given by
continuous t-norms.
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Hoops and BL-algebras

Ordinal sums

Definition

Let A = hA; �A;!A;>i and B = hB; �B ;!B ;>i be two hoops such that
A \ B = f>g. We can de�ne the ordinal sum of A and B as the hoop
A� B = hA [ B; �;!;>; i, where the operations � and ! are given by:

x � y =

8>><>>:
x �A y if x ; y 2 A;
x �B y if x ; y 2 B;
x if x 2 A n f>g; y 2 B;
y if y 2 B n f>g; x 2 A:

x ! y =

8>><>>:
x !A y if x ; y 2 A;
x !B y if x ; y 2 B;
> if x 2 A n f>g; y 2 B;
y if y 2 A; x 2 B:
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SubvarietyMG

The subvariety MG
Gödel hoops are the ?-free subreducts of Gödel algebras. The standard Gödel
hoop will be denoted by [0; 1]G.

MG = V([0; 1]MV � [0; 1]G)

This variety is generated by the t-norm which we called MG t-norm
tMG : [0; 1]2 ! [0; 1] defined by

tMG (x ; y) =

�
max(0; x + y � 1

2 ) if x ; y 2 [0; 12 );
min(x ; y) otherwise:

Moreover, it is the subvariety of BL given by the identity

(::x ! x)2 � ::x ! x :
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�(MG)

The lattice of subvarieties �(MV)

For n; k � 1 we define

 Ln = Γ(Z; n),
 L1n = Γ(Z� Z; (n; 0)),

where Z has the natural order and Z � Z is the product of two copies of Z ordered
lexicographically.
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�(MG)

The lattice of subvarieties �(G)

Hetch and Katriñak proved that the subvarieties of the variety of Gödel algebras
form a chain, but since the Gödel hoops are the subreducts of these algebras, the
results can be naturally extended for our case.
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�(MG)

Theorem

If A is a join-irreducible element in the lattice of subvarieties of MG then A is the
variety generated by A� B with A is a chain in MV and B is a chain in G such
that

A 2 f Ln : n 2 Ng [ f L1n : n 2 Ng [ f[0; 1]MVg

B 2 fGn : n 2 Ng [ f[0; 1]Gg.

Corollary

The join-irreducible elements in the lattice of subvarieties of MG form an ordered
lattice.

(2� D(N))� (! + 1)
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�(MG)

Theorem

Any subvariety U of MG is generated by a �nite number of chains A� B with
A 2 f Ln : n 2 Ng [ f L1n : n 2 Ng [ f[0; 1]MVg and B 2 fGn : n 2 Ng [ f[0; 1]Gg.

Idea of the proof:
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�(MG)

Corollary

Any variety in Λ(MG) is a join of �nitely many varieties generated by a single
chain A� B where A 2 f Ln : n 2 Ng [ f L1n : n 2 Ng [ f[0; 1]MVg and
B 2 fGn : n 2 Ng [ f[0; 1]Gg.
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Equational bases

Equational bases

Lemma (Di Nola - Lettieri)

For n � 2, the subvariety V( L1n ) of MV is characterized by the identity:

(((n + 1)xn)2 $ 2xn+1) ^ ((p:xp�1)n+1 $ (n + 1)xp) � 1 (�n
1)

for every positive integer 1 < p < n such that p is not a divisor of n.

Lemma (Di Nola - Lettieri)

For n � 2, the subvariety V( Ln) of MV is characterized by the identity:

(((n+1)xn)2 $ 2xn+1)^((p:xp�1)n+1 $ (n+1)xp)^((n+1)xq $ (n+2)xq) � 1
(�n)

for every positive integer 1 < p < n such that p is not a divisor of n and every
integer q such that 1 < q < n and q divides n.
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Equational bases

Equational bases

Lemma (Hecht - Katriñak)

For n � 2, the subvariety V(Gn) of G is characterized by the following identity:

n+1_
i=1

(xi $ xi+1) � 1 (�n)
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Equational bases

Equational bases

Theorem

If A is a subvariety of MV characterized by the identity � � 1 and B is a
subvariety of G characterized by the identity � � 1, then A� B is a subvariety of
MG characterized by the identity

�
0
� �
0
� 1;

where �
0

is the term given by substituying ::x for every variable x in � and �
0

is
the term given by substituying ::y ! y for every variable y in �.
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Equational bases

Equational bases

Theorem

If A is a subvariety in the lattice of subvarieties of MG given by A =
n_

i=1

Ai for n

subvarieties A1; : : : ;An, where every variety Ai is generated by a chain Ai � Bi

where A 2 f Ln : n 2 Ng [ f L1n : n 2 Ng [ f[0; 1]MVg, and there are identities

i (x

i
1; : : : ; x

i
ki

) � 1 associated with each variety Ai , then, the variety A as a
subvariety of MG is given by the identity


A(x1
1 ; : : : ; x

1
n1
; : : : ; x1

n ; : : : ; x
n
kn

) � 1

where


A(x1
1 ; : : : ; x

1
n1
; : : : ; xn

1 ; : : : ; x
n
kn

) �
n_

i=1


i (x
i
1; : : : ; x

i
ki

):
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Equational bases

Example

Suppose that we have the variety A = V( L12 � G1;  L2 � G3).

(3(::x1)2)2 $ 2(::x1)3| {z }
�12 (x1)

� 1

(3(::x2 ! x2)2 $ (::x2)3) ^ ((::x2)2)3 $ 3(::x2)))| {z }
�2(x2)

� 1

2_
i=1

(::x3
i ! x3

i )$ (::x3
i+1 ! x3

i+1)| {z }
�1(x

3
1 ;x

3
2 ;x

3
3 )

� 1

4_
i=1

(::x4
i ! x4

i )$ (::x4
i+1 ! x4

i+1)| {z }
�4(x

4
1 ;x

4
2 ;x

4
3 ;x

4
4 ;x

4
5 )

� 1

Hence, A is characterized as a subvariety ofMG by the identity

(�12 (x1) � �1(x3
1 ; x

3
2 ; x

3
3 )) _ (�2(x

2) � �4(x4
1 ; x

4
2 ; x

4
3 ; x

4
4 ; x

4
5 ))| {z }


(x1;x2;x31 ;x
3
2 ;x

3
3 ;x

4
1 ;x

4
2 ;x

4
3 ;x

4
4 ;x

4
5 )

� 1:

N. Lubomirsky (UNLP - CONICET) Sept. 2022 18 / 35



Equational bases

Example

Suppose that we have the variety A = V( L12 � G1;  L2 � G3).

(3(::x1)2)2 $ 2(::x1)3| {z }
�12 (x1)

� 1

(3(::x2 ! x2)2 $ (::x2)3) ^ ((::x2)2)3 $ 3(::x2)))| {z }
�2(x2)

� 1

2_
i=1

(::x3
i ! x3

i )$ (::x3
i+1 ! x3

i+1)| {z }
�1(x

3
1 ;x

3
2 ;x

3
3 )

� 1

4_
i=1

(::x4
i ! x4

i )$ (::x4
i+1 ! x4

i+1)| {z }
�4(x

4
1 ;x

4
2 ;x

4
3 ;x

4
4 ;x

4
5 )

� 1

Hence, A is characterized as a subvariety ofMG by the identity

(�12 (x1) � �1(x3
1 ; x

3
2 ; x

3
3 )) _ (�2(x

2) � �4(x4
1 ; x

4
2 ; x

4
3 ; x

4
4 ; x

4
5 ))| {z }


(x1;x2;x31 ;x
3
2 ;x

3
3 ;x

4
1 ;x

4
2 ;x

4
3 ;x

4
4 ;x

4
5 )

� 1:

N. Lubomirsky (UNLP - CONICET) Sept. 2022 18 / 35



Equational bases

Example

Suppose that we have the variety A = V( L12 � G1;  L2 � G3).

(3(::x1)2)2 $ 2(::x1)3| {z }
�12 (x1)

� 1

(3(::x2 ! x2)2 $ (::x2)3) ^ ((::x2)2)3 $ 3(::x2)))| {z }
�2(x2)

� 1

2_
i=1

(::x3
i ! x3

i )$ (::x3
i+1 ! x3

i+1)| {z }
�1(x

3
1 ;x

3
2 ;x

3
3 )

� 1

4_
i=1

(::x4
i ! x4

i )$ (::x4
i+1 ! x4

i+1)| {z }
�4(x

4
1 ;x

4
2 ;x

4
3 ;x

4
4 ;x

4
5 )

� 1

Hence, A is characterized as a subvariety ofMG by the identity

(�12 (x1) � �1(x3
1 ; x

3
2 ; x

3
3 )) _ (�2(x

2) � �4(x4
1 ; x

4
2 ; x

4
3 ; x

4
4 ; x

4
5 ))| {z }


(x1;x2;x31 ;x
3
2 ;x

3
3 ;x

4
1 ;x

4
2 ;x

4
3 ;x

4
4 ;x

4
5 )

� 1:

N. Lubomirsky (UNLP - CONICET) Sept. 2022 18 / 35



Free alebras

Free algebras: the case of MV-algebras

Theorem (McNaughton)

The free n-generated MV-algebra is the subalgebra of Mn of all continuous
piecewise linear functions f : [0; 1]n ! [0; 1] where each one of the �nitely many
linear pieces has integer coe�cients.
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Free alebras

Let v̄ be a point in [0; 1]n, we denote by

FreeMV(n) � v̄ := f[f ] : g 2 [f ] if f (v̄) = g(v̄); for f ; g 2 FreeMV(n)g

FreeMV(n) � (v̄) := f[(f ;U)] : (g ;V ) 2 [(f ;U)] if f (x̄) = g(x̄) for every x̄ 2 U\V

where f ; g 2 FreeMV(n) and U;V are open sets such that v̄ 2 U \ V g:

Theorem (Panti)

Fix n > 0 be a natural number and let

V = V(f Li1 ; : : :  Likg [ f L
1
j1 ; : : : ;  L

1
jl g)

be a proper subvariety of MV. Let X be the set of rational points of the n-cube
whose denominator divides at least one i 2 fi1; : : : ; ikg, and let Y be the set ot
rational points of the n-cube whose denominator divides at least one
j 2 fj1; : : : ; jlg. Then the free algebra over n generators in V is isomorphic to the
�nite product

FreeV(n) �=
Y

u2XnY

FreeMV(n) � u �
Y
v2Y

FreeMV(n) � (v):
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Free alebras

Free algebras: the case of G •odel hoops

We de�ne theG•odel chain X = hX 1; : : : ; X r i if X 1; : : : ; X r are subsets of
f x1; : : : ; xng such thatX i \ X j = ; if i 6= j and X i 6= ; , 8i = 1 ; : : : ; r .

RX =

8
>>><

>>>:

�x 2 [0; 1]n :

xi = xj if xi ; xj 2 X � (k) ; for somek 2 f 1; : : : ; rg
xi < xj if xi 2 X � (k) ; xj 2 X � ( l ) for k < l

xi < xj if xi 2 X � (r ) ; xj =2
r[

k=1

X � (k)

9
>>>=

>>>;

Given two G•odel chainsX1 = hX 1
1 ; : : : ; X r

1 i and X2 = hX 1
2 ; : : : ; X q

2 i , we say that
X1 is a subchain ofX2 if r � q and X i

1 = X i
2 for 1 � i � r .

We say that a set of G•odel chains de�nes a G•odel forest if no chain in the set is
subchain of other chain.
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Free alebras

Free algebras: the case of Gödel hoops

We define the G�odel chain X = hX 1; : : : ;X r i if X 1; : : : ;X r are subsets of
fx1; : : : ; xng such that X i \ X j = ; if i 6= j and X i 6= ;, 8i = 1; : : : ; r .

RX =

8>>><>>>:x̄ 2 [0; 1]n :

xi = xj if xi ; xj 2 X�(k); for some k 2 f1; : : : ; rg
xi < xj if xi 2 X�(k); xj 2 X�(l) for k < l

xi < xj if xi 2 X�(r); xj =2
r[

k=1

X�(k)

9>>>=>>>;
Given two Gödel chains X1 = hX 1

1 ; : : : ;X
r
1 i and X2 = hX 1

2 ; : : : ;X
q
2 i, we say that

X1 is a subchain of X2 if r � q and X i
1 = X i

2 for 1 � i � r .
We say that a set of Gödel chains defines a Gödel forest if no chain in the set is
subchain of other chain.
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Free alebras

Free algebras: the case of Gödel hoops

To each Gödel chain X = hX 1; : : : ;X r i we can associate a function fX:

fX =

�
xj if x̄ 2 RX; and xj 2 X r

1 otherwise.

Theorem (Aguzzoli, Bova, Gerla)

A function f : [0; 1]nG ! [0; 1]G is in FreeG(n) if and only if there is a G�odel forest
X̄ containing the G�odel chains X1; : : : ;Xm such that

f =
m̂

j=1

fXj :
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Free alebras

FreeGl
(n)

Theorem (Aguzzoli, Bova, Gerla)

A function f : [0; 1]nGl
! [0; 1]Gl

is in FreeGl
(n) if and only if there is a G�odel forest

X̄ containing the chains X1; : : : ;Xm where no chain has height greater than l such
that

f =
m̂

j=1

fXj :

Theorem

The algebra FreeGl
(n) is isomorphic to the quotient of the algebra FreeG(n) over

the principal �lter generated by the forest where every maximal chain has height
l + 1.
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Free alebras

FreeMG(1)
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Free alebras

FreeMG (2)
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Free alebras

FreeMG (2)
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Free alebras

FreeMG(n)

g[0; 1]nMV := fx̄ 2 [0; 1]nMV : xi = 1 for some 1 � i � ng:

For every z̄ = (z1; : : : ; zn) 2 ([0; 1]MV � [0; 1]G)n we define the projections:

�G(z̄) := (zj1 ; : : : ; zjm ) 2 [0; 1]mG

and

�MV(z̄) := (zk1 ; : : : ; zkn�m ) 2 [0; 1]mMV.

If x̄ = (x1; : : : ; xn) 2 [0; 1]nMV we define:

1x̄ := fi 2 f1; : : : ; ng : xi = 1g

x̃ := fz̄ 2 An n [0; 1]nMV : �MV(z̄) = �MV(x̄)g

and we say that x̃ is the cyllindrification of x̄ .
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Free alebras

FreeMG (n)

Theorem

A function F : ([0; 1]MV � [0; 1]G)n ! A is in FreeMG (n) if and only if the
following conditions hold:

For every�x 2 ([0; 1]MV )n, F (�x) = f (�x) for somef 2 FreeMV (n).

For every�x 2 g[0; 1]nMV such thatF (�x) < 1, F (�y) = F (�x), for every�y 2 ~x.
There is a unimodular triangulation� of the rational polyhedra
U = f �x 2 g[0; 1]nMV : F (�x) = 1 g such that for everyS 2 � :

1�y = 1 �z for every �y; �z 2 S 2 � .
there is a functiong 2 FreeG(j1�y j) (for any �y 2 S) such that

F (�x) = g(� [0;1]G(�x))

for every �x 2 ~y 2 S� , where

S� := f �z 2 S : � MV (�z) is in the interior of � MV (S)g:
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Filters

An implicative �lter (simply �lter from now on) in a BL-algebra (or basic hoop)
A is a subsetF � A satisfying that 12 F and if x 2 F and x ! y 2 F then
y 2 F.

For every �x 2 [0; 1]nMV , let F�x be the �lter in FreeMG (n) generated by a function
F�x 2 FreeMG (n) such that:

F�x (�x) = 1,

F�x (�y) = 1 for every �y 2 ~x,

F�x (�y) < 1 for every �y 2 [0; 1]nMV n f �xg.

Theorem

If �x is a rational point contained in[0; 1]nMV such thatden(�x) = m and j �xj = d,
and F�x is the �lter in FreeMG (n) generated by a functionF�x 2 FreeMG (n), then
the algebraFreeMG (n)=F�x is isomorphic to Lm � FreeG(d).
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Filters

Example

Let F(1;1) � FreeMG(2) be the filter localized in (1; 1). We know that a function
F 2 FreeMG(2) is contained in F(1;1) if and only if F(1; 1) = 1 and for every
(x ; y) 2 [0; 1]2G such that x < y , then either F(x ; y) = y or F(x ; y) = 1.
If we consider the classes in FreeMG(2)=F(1;1), we have that it is isomorphic to
 L2 � FreeG(2), since two functions F1;F2 2 FreeMG(2).
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Filters

For every x̄ 2 [0; 1]nMV and ȳ 2 ([0; 1]MV)n n g([0; 1]MV)n let F[x̄;ȳ) be the principal
filter in FreeMG(n) generated by a function F[x̄;ȳ) 2 FreeMG(n) such that:

F[x̄;ȳ)(z̄) = 1 for every z̄ = x̄ + �ȳ , for some � 2 [0; 1),

F[x̄;ȳ)(z̄) < 1 for every z̄ 6= x̄ + �ȳ , for some � 2 [0; 1),

Definition

Given an MV algebra A, the radical of A, written Rad(A) is the intersection of all
maximal filters of A.
A subalgebra S of  L1m is full if it has infinite elements and S=Rad(S) �=  Lm.

Theorem

If x̄ is a rational point contained in [0; 1]nMV such that den(x̄) = m and jx̄ j = d,
and ȳ is a rational point contained in ([0; 1]MV)n n g([0; 1]MV)n then the algebra
FreeMG(n)=F[x̄;ȳ) is isomorphic to Ai � FreeG(d), where Ai is a full subalgebra of
 L1m , for some i 2 f0; : : : ;m � 1g.
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filter in FreeMG(n) generated by a function F[x̄;ȳ) 2 FreeMG(n) such that:
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Filters

Example

Let F1 � FreeMG(2) be the prime filter localized in ( 1
2 ; 1) and associated with the

index u = f(0;�1)g. We know that a function F 2 FreeMG(2) is contained in F1

if and only if F( 1
2 ; 1� a) = 1 for every a 2 [0; �).

We are now in the case when F1MV 6= MV( 1
2 ;1)

.

If we consider the classes in FreeMG(2)=F1, we have that it is isomorphic to a full
subalgebra of  L12 , since two functions F1;F2 2 FreeMG(2) are in the same class in
the quotient whenever for some � > 0, F1( 1

2 ; 1� a) = F2( 1
2 ; 1� a) for every

a 2 [0; �).
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Filters

Generalizations

Theorem

If x̄ is a rational point contained in [0; 1]nMV such that den(x̄) = m and jx̄ j = d,
and l is a natural number, with l � n, then the algebra FreeMG(n)=Fx̄;l is
isomorphic to  Lm � FreeGl

(d).

Theorem

If x̄ is a rational point contained in [0; 1]nMV such that den(x̄) = m and jx̄ j = d,
and ȳ is a rational point contained in ([0; 1]MV)n n g([0; 1]MV)n then the algebra
FreeMG(n)=F[x̄;ȳ);l is isomorphic to Ai � FreeGl

(d), where Ai is a full subalgebra
of  L1m , for some i 2 f0; : : : ;m � 1g.

Let FreeMG(n) �(x̄) be the algebra of equivalence classes of pairs (F;U), with
F 2 FreeMG(n) and U an open set in [0; 1]nMV which contains x̄ . Two such pairs
(F1;U1) and (F2;U2) are equivalent if F1 = F2 on U1 \U2, and the operations are
inherited from FreeMG(n).
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inherited from FreeMG(n).
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Filters

Generalizations

Theorem

If x̄ is a rational point contained in [0; 1]nMV such that den(x̄) = m and jx̄ j = d,
and l is a natural number, with l � n, then the algebra FreeMG(n)=Fx̄;l is
isomorphic to  Lm � FreeGl

(d).

Theorem

If x̄ is a rational point contained in [0; 1]nMV such that den(x̄) = m and jx̄ j = d,
and ȳ is a rational point contained in ([0; 1]MV)n n g([0; 1]MV)n then the algebra
FreeMG(n)=F[x̄;ȳ);l is isomorphic to Ai � FreeGl

(d), where Ai is a full subalgebra
of  L1m , for some i 2 f0; : : : ;m � 1g.

Let FreeMG(n) �(x̄) be the algebra of equivalence classes of pairs (F;U), with
F 2 FreeMG(n) and U an open set in [0; 1]nMV which contains x̄ . Two such pairs
(F1;U1) and (F2;U2) are equivalent if F1 = F2 on U1 \U2, and the operations are
inherited from FreeMG(n).
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FreeV (n)

FreeV(n)

Theorem

Fix n 2 N and let V = V( Lm1 � Gi1 ; : : : ;  Lmr � Gir ;  L
1
t1 � Gj1 ; : : : ;  L

1
ts
� Gjs ) be a

proper subvariety of MG. Let X be the set of rational points of the cube [0; 1]nMV

whose denominator divides at least one of m1; : : : ;mr and let Y be the set of
rational points of the cube [0; 1]nMV whose denominator divides at least one of
t1; : : : ; ts . If A is the algebra in MG de�ned by the �nite product

A =
Y
x̄2X

FreeMG(n) �x̄;lx �
Y
ȳ2Y

FreeMG(n) �(ȳ);ly

where lx = minfn;OG(x̄)g, ly = minfn;OG(ȳ)g and �i (x̄) is the image in A of the
i-th projection x̄i 2 FreeMG(n), then the subalgebra FreeV(n) of A generated by
f�i (x̄) : i < ng is the free algebra over n generators in V, where the elements
�i (x̄) are the free generators and

OG(x̄) := maxfij :  Lm � Gij 2 V and den(x̄) divides mg:

.
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