LATD 2022 and MOSAIC KICK OFF MEETING September 2022

Free algebras in all subvarieties of the variety generated by the MG t-norm

P. Díaz Varela - N. Lubomirsky

UNLP - INMABB - CONICET

(I) < ((i) <

Sept. 2022

1/35

N. LUBOMIRSKY (UNLP - CONICET)

DEFINITION

A **t-norm** is a binary operation $: [0;1]^2 / [0;1]$ which satis es the following conditions:

- is commutative and associative.
- is non decreasing in both arguments, i.e., for every $x; y; z \ge [0; 1]$

x y implies x z y z and z x z y,

(a) 1 x = x and 0 x = 0 for every $x \ge [0; 1]$.

A continuous t-norm is a t-norm which is continuous as a map from $[0;1]^2$ into [0;1]. For every continuous t-norm a residuum can be de ned by:

x z y if and only if x z ! y:

イロト イヨト イヨト イヨト

Sept. 2022

2/35

DEFINITION

A **t-norm** is a binary operation $: [0;1]^2 / [0;1]$ which satis es the following conditions:

- is commutative and associative.
- is non decreasing in both arguments, i.e., for every $x; y; z \ge [0; 1]$

x y implies x z y z and z x z y,

(a) 1 x = x and 0 x = 0 for every $x \ge [0; 1]$.

A continuous t-norm is a t-norm which is continuous as a map from $[0;1]^2$ into [0;1]. For every continuous t-norm a residuum can be de ned by:

x z y if and only if x z ! y:

The algebra ([0;1]; ;! ; max; min; 0; 1) is the standard algebra associated with the continuous t-norm .

Sept. 2022 2 / 35

(日) (部) (注) (注) (三)

T-NORMS

EXAMPLES

- Lukasiewicz t-norm: x L y = max(0; x + y 1) Lukasiewicz implication: x ! L y = min(1; 1 x + y),
- Godel t-norm: x G y = min(x;y), Godel implication:

$$x \mid_G y = \begin{array}{c} y & \text{if } x > y; \\ 1 & \text{if } x & y: \end{array}$$

• Product t-norm: x P y = x y, Goguen implication:

$$x \mid P y = \begin{cases} y=x & if \ x > y; \\ 1 & if \ x & y: \end{cases}$$

T-NORMS

EXAMPLES

- Lukasiewicz t-norm: x L y = max(0; x + y 1) Lukasiewicz implication: x ! L y = min(1; 1 x + y),
- Godel t-norm: x _G y = min(x; y), Godel implication:

$$x \mid_G y = \begin{array}{cc} y & \text{if } x > y;\\ 1 & \text{if } x & y: \end{array}$$

9 Product t-norm:
$$x P y = x y$$
,
Goguen implication:

$$x \mid P y = y = x \text{ if } x > y;$$

1 if $x y$:

The algebras $([0;1]; L; !, L; _; ^; 0;1)$, $([0;1]; G; !, G; _; ^; 0;1)$ and $([0;1]; P; !, P; _; ^; 0;0;1)$ are the Łukasiewicz, Gödel and Product standard algebras, respectively.

イロン イヨン イヨン ・

If $(a_i; b_i)_{i \ge l}$ is a family of disjoint intervals, with $0 \quad a_i < b_i \quad 1$ such that ^{*i*} is a continuous t-norm on $(a_i; b_i)$, we define for every $x; y \ge [0, 1]$ a continuous t-norm called **ordinal sum of t-norms** by:

$$x \quad y = \frac{x \quad \substack{i \\ [a_i;b_i]} y}{\min f_{X_i} y_g} \quad \text{if } x_i y \ 2 \ (a_i; b_i);$$

イロン 不同 とくほど 不同 とう

PRELIMINARIES T-NO

T-NORMS

If $(a_i; b_i)_{i \ge l}$ is a family of disjoint intervals, with $0 \quad a_i < b_i \quad 1$ such that ^{*i*} is a continuous t-norm on $(a_i; b_i)$, we define for every $x; y \ge [0, 1]$ a continuous t-norm called **ordinal sum of t-norms** by:

$$x \quad y = \begin{array}{c} x \quad \begin{bmatrix} i \\ [a_i;b_i] \end{bmatrix} y \quad \text{if } x; y \ 2 \ (a_i;b_i); \\ \text{minf} x; yg \quad \text{otherwise}: \end{array}$$

イロン イヨン イヨン ・

T-NORMS

If $(a_i; b_i)_{i \ge l}$ is a family of disjoint intervals, with $0 \quad a_i < b_i \quad 1$ such that ^{*i*} is a continuous t-norm on $(a_i; b_i)$, we define for every $x; y \ge [0, 1]$ a continuous t-norm called **ordinal sum of t-norms** by:

(I) < ((i) <

T-NORMS

If $(a_i; b_i)_{i \ge l}$ is a family of disjoint intervals, with $0 = a_i < b_i = 1$ such that i is a continuous t-norm on $(a_i; b_i)$, we define for every $x; y \ge [0, 1]$ a continuous t-norm called **ordinal sum of t-norms** by:

THEOREM (MOSTERT-SCHIELDS)

Every continuous t-norm is the ordinal sum of a family of Lukasiewicz, Godel and product t-norms.

N. LUBOMIRSKY (UNLP - CONICET)

Sept. 2022

イロト イヨト イヨト イヨト

4/35

HOOPS AND BL-ALGEBRAS

DEFINITIONS

A hoop is an algebra $\mathbf{A} = (A; ; !; >)$ of type (2;2;0), where (A; ; >) is a commutative monoid such that for every $x; y; z \ge A$:

()
$$x ! x = >$$
,

$$x (x ! y) = y (y ! x),$$

3
$$x / (y / z) = (x y) / z.$$

HOOPS AND BL-ALGEBRAS

DEFINITIONS

A hoop is an algebra $\mathbf{A} = (A; ; !; >)$ of type (2;2;0), where (A; ; >) is a commutative monoid such that for every $x; y; z \ge A$:

•
$$x ! x = >,$$

$$x (x ! y) = y (y ! x),$$

•
$$x / (y / z) = (x y) / z$$
.

A basic hoop es is a hoop which satis es the equation

$$(((x / y) / z) ((y / x) / z)) / z) = >$$

・ロト ・回ト ・ヨト ・ヨト

HOOPS AND BL-ALGEBRAS

DEFINITIONS

A hoop is an algebra $\mathbf{A} = (A; ; !; >)$ of type (2;2;0), where (A; ; >) is a commutative monoid such that for every $x; y; z \ge A$:

$$x ! x = >,$$

$$x (x ! y) = y (y ! x),$$

$$x ! (y ! z) = (x y) ! z.$$

A basic hoop es is a hoop which satis es the equation

$$(((x \mid y) \mid z) ((y \mid x) \mid z)) \mid z) = >$$

A **BL-algebra** is a bounded basic hoop, i.e., an algebra $\mathbf{A} = (A; ; ! ; ?; >)$ of type (2;2;0;0) such that (A; ; ! ; >) is a basic hoop and ? is the minimum of A.

・ロト ・回ト ・ヨト ・ヨト

In every basic hoop A we can define the operations

$$x \wedge y := x (x / y) = y (y / x);$$

 $x _ y := ((x / y) / y) \wedge ((y / x) / x)$

and then $(A; \land; _; >)$ is a distributive lattice.

In every basic hoop A we can define the operations

$$x \wedge y := x (x ! y) = y (y ! x);$$

$$x _ y := ((x ! y) ! y) \wedge ((y ! x) ! x);$$

and then (A_i, A_j, A_j) is a distributive lattice.

THEOREM (CIGNOLI, ESTEVA, GODO, TORRENS)

The class of BL-algebras is the variety generated for all the algebras given by continuous t-norms.

In every basic hoop A we can define the operations

$$x \wedge y := x (x ! y) = y (y ! x);$$

 $x _ y := ((x ! y) ! y) \wedge ((y ! x) ! x);$

and then $(A; \land; _; >)$ is a distributive lattice.

THEOREM (CIGNOLI, ESTEVA, GODO, TORRENS)

The class of BL-algebras is the variety generated for all the algebras given by continuous t-norms.

ORDINAL SUMS

DEFINITION

Let $\mathbf{A} = hA_{i A_{i}}$, $|A_{i}| > i$ and $\mathbf{B} = hB_{i B_{i}}$, $|B_{i}| > i$ be two hoops such that $A \setminus B = f > g$. We can de ne the **ordinal sum** of \mathbf{A} and \mathbf{B} as the hoop $\mathbf{A} = \mathbf{B} = hA [B_{i i}, P_{i i}] > i$, where the operations and $P_{i i}$ are given by:

$$x \ y = \begin{cases} & x \ A \ y & if \\ & x \ B \ y & if \\ & x \ B \ y & if \\ & x \ B \ y & if \\ & x \ y \ 2B; \\ & y & if \ x \ 2Anf > g; \ y \ 2B; \\ & y & if \ y \ 2Bnf > g; \ x \ 2A; \\ & x \ y \ B \ y \ 2Bnf \ x; \ y \ 2A; \\ & x \ y \ B \ y \ if \ x; \ y \ 2B; \\ & x \ y \ B \ y \ if \ x; \ y \ 2B; \\ & x \ y \ B \ y \ if \ x; \ y \ 2B; \\ & y \ if \ x \ 2Anf \ y \ 2B; \\ & y \ if \ x \ 2Anf \ x; \ y \ 2B; \\ & y \ if \ x \ 2Anf \ y \ 2B; \\ & y \ if \ x \ y \ 2B; \\ & y \ if \ x \ 2Anf \ y \ 2B; \\ & y \ if \ y \ 2A; \ x \ 2B; \\ & y \ if \ y \ 2A; \ x \ 2B; \end{cases}$$

7/35

Gödel hoops are the 7-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0;1]_{G}.$

Gödel hoops are the 7-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0/1]_{G}.$

 $\mathcal{M}G = \mathcal{V}([0;1]_{\mathsf{MV}} \quad [0;1]_{\mathsf{G}})$

Gödel hoops are the 7-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0/1]_{G}.$

 $\mathcal{M}G = \mathcal{V}([0;1]_{\mathsf{MV}} \quad [0;1]_{\mathsf{G}})$

This variety is generated by the t-norm which we called MG t-norm t_{MG} : $[0,1]^2$ / [0,1] defined by

$$t_{MG}(x;y) = \begin{array}{c} max(0;x+y \quad \frac{1}{2}) & \text{if } x;y \neq 2[0;\frac{1}{2}];\\ min(x;y) & \text{otherwise}: \end{array}$$

Gödel hoops are the 7-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0/1]_{G}.$

$$\mathcal{M}G = \mathcal{V}([0;1]_{\mathsf{MV}} \quad [0;1]_{\mathsf{G}})$$

This variety is generated by the t-norm which we called MG t-norm t_{MG} : $[0,1]^2$ / [0,1] defined by

$$t_{MG}(x;y) = \begin{array}{c} max(0;x+y \quad \frac{1}{2}) & \text{if } x;y \neq 2[0;\frac{1}{2}];\\ min(x;y) & \text{otherwise}; \end{array}$$

Moreover, it is the subvariety of BL given by the identity

$$(:: x / x)^2 :: x / x:$$

Gödel hoops are the 7-free subreducts of Gödel algebras. The standard Gödel hoop will be denoted by $[0/1]_{G}.$

$$\mathcal{M}G = \mathcal{V}([0;1]_{\mathsf{MV}} \quad [0;1]_{\mathsf{G}})$$

This variety is generated by the t-norm which we called MG t-norm t_{MG} : $[0,1]^2$ / [0,1] defined by

$$t_{MG}(x;y) = \begin{array}{c} max(0;x+y \quad \frac{1}{2}) & \text{if } x;y \neq 2[0;\frac{1}{2}];\\ min(x;y) & \text{otherwise}; \end{array}$$

Moreover, it is the subvariety of BL given by the identity

 $(:: x / x)^2$:: x / x:

The lattice of subvarieties (\mathcal{MV})

For n; k = 1 we define

$$\mathbf{L}_{n} = \Gamma(\mathbb{Z}; n),$$

$$\mathbf{L}_{n}^{1} = \Gamma(\mathbb{Z} \quad \mathbb{Z}; (n; 0)),$$

where Z has the natural order and Z $\,$ Z is the product of two copies of Z ordered lexicographically.

The lattice of subvarieties (\mathcal{MV})

For n; k = 1 we define

$$\mathbf{L}_{n} = \Gamma(\mathbb{Z}; n),$$

$$\mathbf{L}_{n}^{1} = \Gamma(\mathbb{Z} \quad \mathbb{Z}; (n; 0)),$$

where Z has the natural order and Z $\,$ Z is the product of two copies of Z ordered lexicographically.

The lattice of subvarieties (G)

Hetch and Katriñak proved that the subvarieties of the variety of Gödel algebras form a chain, but since the Gödel hoops are the subreducts of these algebras, the results can be naturally extended for our case.

The lattice of subvarieties (G)

Hetch and Katriñak proved that the subvarieties of the variety of Gödel algebras form a chain, but since the Gödel hoops are the subreducts of these algebras, the results can be naturally extended for our case.

Theorem

If A is a join-irreducible element in the lattice of subvarieties of MG then A is the variety generated by **A B** with **A** is a chain in MV and **B** is a chain in G such that

$$\mathbf{A} \geq f\mathbf{L}_n : n \geq Ng \left[f\mathbf{L}_n^{\dagger} : n \geq Ng \left[f[\mathbf{0}; \mathbf{1}]_{\mathsf{MV}} g \right] \right]$$

 $\mathbf{B} \ge f\mathbf{G}_n : n \ge Ng [f[0;1]_{\mathbf{G}}g.$

Theorem

If A is a join-irreducible element in the lattice of subvarieties of MG then A is the variety generated by **A B** with **A** is a chain in MV and **B** is a chain in G such that

A 2
$$f$$
L_n : $n \ge Ng [f$ **L**_n¹ : $n \ge Ng [f$ [0;1]_{MV} g
B 2 f **G**_n : $n \ge Ng [f$ [0;1]_G g .

COROLLARY

The join-irreducible elements in the lattice of subvarieties of MG form an ordered lattice.

(2 D(N)) (! + 1)

Sept. 2022 11/35

THEOREM

Any subvariety U of MG is generated by a nite number of chains **A B** with **A** 2 fL_n : $n 2 \text{Ng} [fL_n^{\uparrow} : n 2 \text{Ng} [f[0;1]_{MV}g \text{ and } \mathbf{B} 2 fG_n : n 2 \text{Ng} [f[0;1]_{G}g.$

Theorem

Any subvariety U of MG is generated by a nite number of chains **A B** with **A** 2 f**L**_n : n 2 Ng [f**L**_n¹ : n 2 Ng [f[0;1]_{MV}g and **B** 2 f**G**_n : n 2 Ng [f[0;1]_Gg.

Idea of the proof:

COROLLARY

Any variety in $\Lambda(\mathcal{M}G)$ is a join of nitely many varieties generated by a single chain **A B** where **A** 2 fL_n : n 2 Ng [fL_n¹ : n 2 Ng [f[0;1]_{MV}g and **B** 2 fG_n : n 2 Ng [f[0;1]_Gg.

イロト イポト イヨト イヨト

Sept. 2022

13/35

Lemma (Di Nola - Lettieri)

イロト イポト イヨト イヨト

Sept. 2022

14/35

for every positive integer 1 such that p is not a divisor of n.

Lemma (Di Nola - Lettieri)

For n 2, the subvariety $V(\mathbf{L}_n^{\gamma})$ of $\mathcal{M}V$ is characterized by the identity: $(((n+1)x^n)^2 \ \ 2x^{n+1}) \ \ ((p:x^{p-1})^{n+1} \ \ (n+1)x^p) \ \ 1 \ (\ \frac{n}{\gamma})$

for every positive integer 1 such that p is not a divisor of n.

Lemma (DI Nola - Lettieri)

For n 2, the subvariety $V(L_n)$ of MV is characterized by the identity:

 $(((n+1)x^{n})^{2} \ \ 5 \ \ 2x^{n+1}) \ \ \land ((p:x^{p-1})^{n+1} \ \ 5 \ \ (n+1)x^{p}) \ \ \land ((n+1)x^{q} \ \ 5 \ \ (n+2)x^{q}) \ \ \ 1 \\ (\ \ n)$

イロン イヨン イヨン ・

Sept. 2022

14/35

for every positive integer 1 such that p is not a divisor of n and every integer q such that <math>1 < q < n and q divides n.

LEMMA (HECHT - KATRIÑAK)

For n 2, the subvariety $V(G_n)$ of G is characterized by the following identity:

$$\frac{n+1}{i=1}(x_i \ \ x_{i+1}) \ \ 1 \ (n)$$

・ロト ・回ト ・ヨト ・ヨト

THEOREM

If **A** is a subvariety of \mathcal{MV} characterized by the identity 1 and **B** is a subvariety of *G* characterized by the identity 1, then **A B** is a subvariety of \mathcal{MG} characterized by the identity

° ° 1;

where $\ '$ is the term given by substituying : : x for every variable x in and $\ '$ is the term given by substituying : : y ! y for every variable y in .

イロト イヨト イヨト イヨト

Sept. 2022

16/35

Theorem

If A is a subvariety in the lattice of subvarieties of MG given by $A = A_i$ for n subvarieties $A_1; \ldots; A_n$, where every variety A_i is generated by a chain $\mathbf{A}_i = \mathbf{B}_i$ where $\mathbf{A} \ge f\mathbf{L}_n : n \ge \log [f\mathbf{L}_n^{\uparrow} : n \ge \log [f[0;1]_{MV}g]$, and there are identities $_i(x_1^i; \ldots; x_{k_i}^i) = 1$ associated with each variety A_i , then, the variety A as a subvariety of MG is given by the identity

$$\mathcal{A}\left(X_{1}^{1},\ldots,X_{n_{1}}^{1},\ldots,X_{n}^{1},\ldots,X_{k_{n}}^{n}\right) \quad \exists$$

where

$$A(X_1^1,\ldots,X_{n_1}^1,\ldots,X_1^n,\ldots,X_{k_n}^n) \stackrel{\underline{n}}{=} i(X_1^j,\ldots,X_{k_i}^j):$$

EXAMPLE

Suppose that we have the variety $A = V(L_2^7 - G_1; L_2 - G_3)$.

æ

ヘロン ヘロン ヘビン ヘビン
EXAMPLE

Suppose that we have the variety $A = V(L_2^7 - G_1; L_2 - G_3)$.

$$\frac{\left\{\frac{3(::x^{1})^{2}\right\}^{2}_{2}\left\{\frac{\mathcal{D}}{2}\left(::x^{1}\right)^{3}\right\}}{\left[\frac{7}{2}\left(x^{1}\right)\right\}} = 1 \\ \left\{\frac{3(::x^{2} \mid -x^{2})^{2} \quad \mathcal{D}\left(::x^{2}\right)^{3}_{1}\left\{\frac{1}{2}\left(::x^{2}\right)^{2}\right\}^{3} \quad \mathcal{D}\left(::x^{2}\right)^{2}\right\}}{2^{\left(x^{2}\right)}} = 1 \\ \frac{\frac{2}{2}\left(::x^{3}_{l} \mid -x^{3}_{l}\right) \quad \mathcal{D}\left(::x^{3}_{l+1} \mid -x^{3}_{l+1}\right)}{2^{\left(x^{2}\right)}} = 1 \\ \frac{\frac{1}{2}}{\left[\frac{1}{2}\left(::x^{4}_{l} \mid -x^{4}_{l}\right) \quad \mathcal{D}\left(::x^{4}_{l+1} \mid -x^{4}_{l+1}\right)\right]}{4^{\left(x^{4}_{l} \mid x^{4}_{l} \mid x^{4}_{l} \mid x^{4}_{l} \mid x^{4}_{l}\right)} = 1 \\ \frac{\frac{1}{2}}{4^{\left(x^{4}_{l} \mid x^{4}_{l} \mid x^{4}_{l}$$

æ

ヘロン ヘロン ヘビン ヘビン

EXAMPLE

Suppose that we have the variety $A = V(L_2^7 - G_1; L_2 - G_3)$.

$$\frac{\left\{\frac{3(::x^{1})^{2}\right\}^{2}_{2} \notin 2(::x^{1})^{3}}{\frac{1}{2}(x^{1})} = 1 \\ \left\{\frac{3(::x^{2} \mid x^{2})^{2} \# (::x^{2})^{3}_{1}}{2(x^{2})} + \frac{1}{2(x^{2})^{2}} \# (::x^{2})^{2}_{2} \# (::x^{2})^{3}_{1} \# (::x^{2})^{2}_{1} \# (::x^{2})^{2}_{1} \# (:x^{2})^{2}_{1} \# (::x^{2})^{2}_{1} \# (:x^{2})^{2}_{1} \# (::x^{2})^{2}_{1} \# (:x^{2})^{2}_{1} \# (:x^{2})^{2$$

Hence, ${\cal A}$ is characterized as a subvariety of ${\cal M}{\cal G}$ by the identity

$$\underbrace{\left(\frac{\binom{7}{2}(x^{1}) - 1(x_{1}^{3}; x_{2}^{3}; x_{3}^{3})\right) - \left(\binom{2(x^{2}) - 4(x_{1}^{4}; x_{2}^{4}; x_{3}^{4}; x_{4}^{4}; x_{5}^{4})}{(x^{1}; x^{2}; x_{1}^{3}; x_{2}^{3}; x_{3}^{3}; x_{1}^{4}; x_{2}^{4}; x_{3}^{4}; x_{4}^{4}; x_{5}^{4})}\right)}_{(x^{1}; x^{2}; x_{1}^{3}; x_{2}^{3}; x_{3}^{3}; x_{1}^{4}; x_{2}^{4}; x_{3}^{4}; x_{4}^{4}; x_{5}^{4})}$$

N. LUBOMIRSKY (UNLP - CONICET)

Sept. 2022

FREE ALGEBRAS: THE CASE OF MV-ALGEBRAS

THEOREM (MCNAUGHTON)

The free n-generated MV-algebra is the subalgebra of M_n of all continuous piecewise linear functions $f : [0,1]^n / [0,1]$ where each one of the nitely many linear pieces has integer coe cients.

・ロト ・回ト ・ヨト ・ヨト

FREE ALGEBRAS: THE CASE OF MV-ALGEBRAS

THEOREM (MCNAUGHTON)

The free n-generated MV-algebra is the subalgebra of M_n of all continuous piecewise linear functions $f : [0,1]^n / [0,1]$ where each one of the nitely many linear pieces has integer coe cients.

・ロト ・回ト ・ヨト ・ヨト

FREE ALEBRAS

Let \overline{V} be a point in $[0, 1]^n$, we denote by

 $Free_{\mathcal{MV}}(n) \quad \overline{v} := f[f] : g \ 2 \ [f] \text{ if } f(\overline{v}) = g(\overline{v}); \text{ for } f; g \ 2 \ Free_{\mathcal{MV}}(n)g$

 $Free_{\mathcal{MV}}(n) \quad (\bar{v}) := f[(f;U)] : (g;V) \ 2 [(f;U)] \text{ if } f(\bar{x}) = g(\bar{x}) \text{ for every } \bar{x} \ 2 \ U \setminus V$

where $f : g \ge Free_{MV}(n)$ and U : V are open sets such that $\overline{v} \ge U \setminus Vg$:

イロト イヨト イヨト イヨト

Let \overline{v} be a point in $[0, 1]^n$, we denote by

 $Free_{\mathcal{MV}}(n) \quad \overline{v} := f[f] : g \ 2 \ [f] \text{ if } f(\overline{v}) = g(\overline{v}); \text{ for } f; g \ 2 \ Free_{\mathcal{MV}}(n)g$

Free_{MV}(n) $(\bar{v}) := f[(f; U)] : (g; V) 2[(f; U)]$ if $f(\bar{x}) = g(\bar{x})$ for every $\bar{x} 2 U \setminus V$ where f; g 2 Free_{MV}(n) and U; V are open sets such that $\bar{v} 2 U \setminus Vg$:

THEOREM (PANTI)

Fix n > 0 be a natural number and let

$$V = V(f\mathbf{L}_{i_1}; \ldots; \mathbf{L}_{i_k}g [f\mathbf{L}_{j_1}^{\dagger}; \ldots; \mathbf{L}_{j_l}^{\dagger}g)$$

be a proper subvariety of N V. Let X be the set of rational points of the n-cube whose denominator divides at least one $i \ 2 \ fi_1; \ldots; i_k g$, and let Y be the set ot rational points of the n-cube whose denominator divides at least one $j \ 2 \ fj_1; \ldots; j_l g$. Then the free algebra over n generators in V is isomorphic to the nite product

$$Free_{V}(n) = \bigvee_{u \ge X nY}^{Y} Free_{MV}(n) \quad u \quad \bigvee_{v \ge Y}^{Y} Free_{MV}(n) \quad (v):$$

Free algebras: the case of G • odel hoops

We de ne the Godel chain $X = hX^1; \ldots; X^r i$ if $X^1; \ldots; X^r$ are subsets of $fx_1; \ldots; x_n g$ such that $X^i \setminus X^j = ;$ if i e j and $X^i e ;$, $8i = 1; \ldots; r$.

イロト イヨト イヨト イヨト

Free algebras: the case of G • odel hoops

We de ne the Godel chain $X = hX^1; \ldots; X^r i$ if $X^1; \ldots; X^r$ are subsets of $fx_1; \ldots; x_n g$ such that $X^i \setminus X^j = ;$ if $i \in j$ and $X^i \in ;$, $8i = 1; \ldots; r$.

$$R_{X} = \bigotimes_{i=1}^{8} x \; 2 \; [0; 1]^{n} : \qquad \begin{aligned} x_{i} &= x_{j} & \text{if } x_{i}; x_{j} \; 2 \; X^{(k)}; \text{ for somek 2 f } 1; \dots; rg \\ x_{i} &< x_{j} & \text{if } x_{i} \; 2 \; X^{(k)}; x_{j} \; 2 \; X^{(l)} \text{ for } k < I \\ x_{i} &< x_{j} & \text{if } x_{i} \; 2 \; X^{(r)}; x_{j} \; 2 \\ \end{aligned}$$

イロト イヨト イヨト イヨト

Free algebras: the case of G • odel hoops

We de ne the Godel chain $X = hX^1; \ldots; X^r i$ if $X^1; \ldots; X^r$ are subsets of $fx_1; \ldots; x_n g$ such that $X^i \setminus X^j = ;$ if i \in j and $X^i \in ;$, $8i = 1; \ldots; r$.

$$R_{X} = \bigotimes_{i=1}^{8} x \; 2 \; [0;1]^{n} : \qquad \begin{aligned} x_{i} &= x_{j} & \text{if } x_{i}; x_{j} \; 2 \; X^{(k)}; \text{ for somek } 2 \; f \; 1; \dots; r \; g \\ x_{i} &< x_{j} & \text{if } x_{i} \; 2 \; X^{(k)}; x_{j} \; 2 \; X^{(l)} \; \text{for } k < 1 \\ x_{i} &< x_{j} & \text{if } x_{i} \; 2 \; X^{(r)}; x_{j} \; 2 \; \sum_{k=1}^{(r)} x^{(k)} \\ \end{aligned}$$

Given two Godel chains $X_1 = hX_1^1; \ldots; X_1^r$ i and $X_2 = hX_2^1; \ldots; X_2^q$ i, we say that X_1 is a subchain of X_2 if r = q and $X_1^i = X_2^i$ for 1 = r.

イロト イヨト イヨト イヨト

Sept. 2022

We define the **Godel chain** $\mathbf{X} = hX^1$; ...; X^r if X^1 ; ...; X^r are subsets of fx_1 ; ...; x_ng such that $X^i \setminus X^j =$; if $i \notin j$ and $X^i \notin$; , 8i = 1; ...; r.

$$R_{\mathbf{X}} = \bigotimes_{i=1}^{8} \bar{x} \ 2 \ [0,1]^{n} : \left\{ \begin{array}{c} x_{i} = x_{j} & \text{if } x_{i}; x_{j} \ 2 \ X \ (k); \text{ for some } k \ 2 \ f1; \dots; rg \\ x_{i} < x_{j} & \text{if } x_{i} \ 2 \ X \ (k); x_{j} \ 2 \ X \ (l) \text{ for } k < l \\ x_{i} < x_{j} & \text{if } x_{i} \ 2 \ X \ (r); x_{j} \ 2 \ K \ (k) \\ k=1 \end{array} \right\}$$

Given two Gödel chains $\mathbf{X}_1 = hX_1^1 ; \ldots ; X_1^r i$ and $\mathbf{X}_2 = hX_2^1 ; \ldots ; X_2^q i$, we say that \mathbf{X}_1 is a subchain of \mathbf{X}_2 if r = q and $X_1^i = X_2^i$ for 1 = i = r. We say that a set of Gödel chains defines a Gödel forest if no chain in the set is subchain of other chain.

イロト イヨト イヨト イヨト

Sept. 2022

To each Gödel chain $\mathbf{X} = hX^1$;:::; X^r / we can associate a function $f_{\mathbf{X}}$:

$$f_{\mathbf{X}} = \begin{array}{cc} x_j & \text{if } \overline{x} \ 2 \ R_{\mathbf{X}} \\ 1 & \text{otherwise.} \end{array}$$

・ロト ・日ト ・ヨト ・ヨト

To each Gödel chain $\mathbf{X} = hX^1$;:::; X^r / we can associate a function $f_{\mathbf{X}}$:

$$f_{\mathbf{X}} = \begin{array}{cc} x_j & \text{if } \overline{x} \ 2 \ R_{\mathbf{X}} \\ 1 & \text{otherwise.} \end{array}$$

・ロト ・日ト ・ヨト ・ヨト

To each Gödel chain $\mathbf{X} = hX^1$; ...; X^r we can associate a function $f_{\mathbf{X}}$:

$$f_{\mathbf{X}} = \begin{array}{cc} x_j & \text{if } \overline{x} \ 2 \ R_{\mathbf{X}} \\ 1 & \text{otherwise.} \end{array}$$

THEOREM (AGUZZOLI, BOVA, GERLA)

A function $f : [0;1]_G^n / [0;1]_G$ is in $Free_G(n)$ if and only if there is a Godel forest $\bar{\mathbf{X}}$ containing the Godel chains \mathbf{X}_1 ;:::; \mathbf{X}_m such that

$$f = \int_{j=1}^{m} f_{\mathbf{X}_j}.$$

イロト イヨト イヨト イヨト

SEPT 2022

N. Lubomirsky	(UNLP -	CONICET)	
---------------	---------	----------	--

$Free_{G_l}(n)$

THEOREM (AGUZZOLI, BOVA, GERLA)

A function $f : [0;1]_{G_l}^n / [0;1]_{G_l}$ is in $Free_{G_l}(n)$ if and only if there is a Godel forest $\bar{\mathbf{X}}$ containing the chains \mathbf{X}_1 ; ...; \mathbf{X}_m where no chain has height greater than I such that

$$f = \int_{j=1}^{N} f_{\mathbf{X}_j}$$

イロト イヨト イヨト イヨト

$Free_{G_l}(n)$

THEOREM (AGUZZOLI, BOVA, GERLA)

A function $f : [0;1]_{G_l}^n / [0;1]_{G_l}$ is in $Free_{G_l}(n)$ if and only if there is a Godel forest $\bar{\mathbf{X}}$ containing the chains \mathbf{X}_1 ; ...; \mathbf{X}_m where no chain has height greater than I such that

$$f = \int_{j=1}^{M} f_{\mathbf{X}_j}$$

Theorem

The algebra $Free_{G_l}(n)$ is isomorphic to the quotient of the algebra $Free_G(n)$ over the principal Iter generated by the forest where every maximal chain has height l + 1.

・ロト ・回ト ・ヨト ・ヨト

$Free_{MG}(1)$

Free_{MG} (1)

Free_{MG} (1)

Free_{MG} (2)

N. Lubomirsky (UNLP - CONICET)

Sept. 2022 25/35

Free_{MG} (2)

N. Lubomirsky (UNLP - CONICET)

Sept. 2022 25/35

$Free_{MG}(n)$

$g[0;1]_{\mathsf{MV}}^n := f\overline{x} \ \mathcal{2}[0;1]_{\mathsf{MV}}^n : x_i = 1 \text{ for some } 1 \quad i \quad ng:$

< □ > < □ > < □ > < □ > < □ > < □ > = □

$Free_{MG}(n)$

$$\begin{split} g[0;1]_{\mathsf{MV}}^n &:= f\overline{x} \ \mathcal{2} \ [0;1]_{\mathsf{MV}}^n : x_i = 1 \text{ for some } 1 \quad i \quad ng: \end{split}$$
For every $\overline{z} = (z_1; \ldots; z_n) \ \mathcal{2} \ ([0;1]_{\mathsf{MV}} \quad [0;1]_{\mathsf{G}})^n \text{ we define the projections:} \\ \mathbf{G}(\overline{z}) &:= (z_{j_1}; \ldots; z_{j_m}) \ \mathcal{2} \ [0;1]_{\mathsf{G}}^m \end{split}$

and

$$_{\mathsf{MV}}(\overline{z}) := (z_{k_1}; \ldots; z_{k_n}) \ 2 \ [0, 1]_{\mathsf{MV}}^m.$$

(日) (部) (注) (注) (三)

$Free_{MG}(n)$

 $g[0;1]_{\mathsf{MV}}^{n} := f\overline{\mathbf{X}} \ \mathcal{2} \ [0;1]_{\mathsf{MV}}^{n} : \mathbf{x}_{i} = 1 \text{ for some } 1 \quad i \quad ng:$ For every $\overline{\mathbf{Z}} = (\mathbf{z}_{1}; \ldots; \mathbf{z}_{n}) \ \mathcal{2} \ ([0;1]_{\mathsf{MV}} \quad [0;1]_{\mathsf{G}})^{n}$ we define the projections: $\mathbf{G}(\overline{\mathbf{Z}}) := (\mathbf{z}_{j_{1}}; \ldots; \mathbf{z}_{j_{m}}) \ \mathcal{2} \ [0;1]_{\mathsf{G}}^{m}$

and

$$_{\mathsf{MV}}(\overline{z}) := (Z_{k_1}; \ldots; Z_{k_n}) \ \mathcal{2} \ [0, 1]_{\mathsf{MV}}^m.$$

If $\overline{x} = (x_1; \ldots; x_n) \ge [0; 1]_{MV}^n$ we define:

$$1_{\bar{\mathbf{x}}} := fi \ 2 \ f1; \ldots; ng : \mathbf{x}_i = 1g$$

 $\tilde{\mathbf{X}} := f \overline{\mathbf{Z}} \ 2 \ \mathbf{A}^n \ n \left[\mathbf{0} ; \mathbf{1} \right]_{\mathbf{MV}}^n : \quad _{\mathbf{MV}} (\overline{\mathbf{Z}}) = \quad _{\mathbf{MV}} (\overline{\mathbf{X}}) g$

and we say that \tilde{X} is the cyllindrification of \bar{X} .

Free_{MG} (n)

A function F : $([0; 1]_{MV} [0; 1]_G)^n$! A is in Freq_{MG} (n) if and only if the following conditions hold:

For every 2 ([0; 1]_{MV})ⁿ, F (x) = f (x) for some 2 Freq_{MV} (n).

For every 2 g[0; 1]ⁿ_{MV} such that F (x) < 1, F (y) = F (x), for every 2 x.

There is a unimodular triangulation of the rational polyhedra

U = f x 2 g[0; 1]ⁿ_{MV} : F (x) = 1 g such that for everyS 2

 $1_y = 1_z$ for everyy; z 2 S 2

there is a functiong 2 $Free_G(j1_yj)$ (for any y 2 S) such that

$$F(x) = g(_{[0;1]_G}(x))$$

for every x 2 y 2 S , where

S := f z 2 S: _{MV}(z) is in the interior of _{MV}(S)g:

イロト イヨト イヨト イヨト

Sept. 2022

Filters

An implicative lter (simply lter from now on) in a BL-algebra (or basic hoop) A is a subset F A satisfying that 12 F and if x 2 F and x ! y 2 F then y 2 F.

크

イロン イヨン イヨン ・

Filters

An implicative lter (simply lter from now on) in a BL-algebra (or basic hoop) A is a subset F A satisfying that 12 F and if x 2 F and x ! y 2 F then y 2 F.

For everyx 2 $[0; 1]_{MV}^n$, let F_x be the lter in Freq_{MG} (n) generated by a function F_x 2 Freq_{MG} (n) such that:

イロト イヨト イヨト イヨト

Sept. 2022

$$\begin{split} F_x(x) &= 1, \\ F_x(y) &= 1 \text{ for every y } 2 \text{ } \textbf{\textit{x}}, \\ F_x(y) &< 1 \text{ for everyy } 2 \text{ } [0;1]^n_{MV} \text{ nfxg}. \end{split}$$

Filters

An implicative lter (simply lter from now on) in a BL-algebra (or basic hoop) A is a subset F A satisfying that 12 F and if x 2 F and x ! y 2 F then y 2 F.

For everyx 2 $[0;1]_{MV}^n$, let F_x be the lter in Freq_{MG} (n) generated by a function F_x 2 Freq_{MG} (n) such that:

$$\begin{split} F_x(x) &= 1, \\ F_x(y) &= 1 \text{ for every y } 2 \text{ } \texttt{k}, \\ F_x(y) &< 1 \text{ for everyy } 2 \text{ } [0;1]_{\text{MV}}^n \text{ n f xg} \end{split}$$

If x is a rational point contained into $[0; 1]_{MV}^n$ such that den(x) = m and jxj = d, and F_x is the lter in Freq_{MG} (n) generated by a function F_x 2 Freq_{MG} (n), then the algebra Freq_{MG} (n)= F_x is isomorphic to L_m Freq_G(d).

イロン イヨン イヨン ・

FILTER

EXAMPLE

Let $F_{(1;1)}$ Free_{MG}(2) be the filter localized in (1/1). We know that a function F 2 Free_{MG}(2) is contained in $F_{(1;1)}$ if and only if F(1/1) = 1 and for every $(x;y) \ge [0,1]_G^2$ such that x < y, then either F(x;y) = y or F(x;y) = 1. If we consider the classes in $Free_{MG}(2)=F_{(1;1)}$, we have that it is isomorphic to L_2 Free_G(2), since two functions $F_{1/2} \ge Free_{MG}(2)$.

ヘロト 人間 とくほど 人間 とう

FILTERS

For every $\bar{x} \ge [0;1]_{MV}^n$ and $\bar{y} \ge ([0;1]_{MV})^n n g([0;1]_{MV})^n$ let $F_{[\bar{x};\bar{y})}$ be the principal filter in $Free_{\mathcal{MG}}(n)$ generated by a function $F_{[\bar{x};\bar{y})} \ge Free_{\mathcal{MG}}(n)$ such that:

- $F_{[\bar{x};\bar{y})}(\bar{z}) = 1$ for every $\bar{z} = \bar{x} + \bar{y}$, for some 2[0, 1),
- $F_{[\bar{x},\bar{y})}(\bar{z}) < 1$ for every $\bar{z} \notin \bar{x} + \bar{y}$, for some 2[0,1),

イロト イヨト イヨト イヨト

FILTERS

For every $\bar{x} \ge [0;1]_{MV}^n$ and $\bar{y} \ge ([0;1]_{MV})^n n g([0;1]_{MV})^n$ let $F_{[\bar{x};\bar{y})}$ be the principal filter in $Free_{\mathcal{MG}}(n)$ generated by a function $F_{[\bar{x};\bar{y})} \ge Free_{\mathcal{MG}}(n)$ such that:

- $F_{[\bar{x};\bar{y})}(\bar{z}) = 1$ for every $\bar{z} = \bar{x} + \bar{y}$, for some 2[0, 1),
- $F_{[\bar{X};\bar{y})}(\bar{Z}) < 1$ for every $\bar{Z} \Leftrightarrow \bar{X} + \bar{y}$, for some 2[0,1),

DEFINITION

Given an MV algebra A, the radical of A, written Rad(A) is the intersection of all maximal filters of A. A subalgebra S of L_m^{γ} is full if it has infinite elements and $S=Rad(S) = L_m$.

イロン イヨン イヨン ・

Sept. 2022

FILTERS

For every $\bar{x} \ge [0;1]_{MV}^n$ and $\bar{y} \ge ([0;1]_{MV})^n n g([0;1]_{MV})^n$ let $F_{[\bar{x};\bar{y})}$ be the principal filter in $Free_{\mathcal{MG}}(n)$ generated by a function $F_{[\bar{x};\bar{y})} \ge Free_{\mathcal{MG}}(n)$ such that:

- $F_{[\bar{x};\bar{y})}(\bar{z}) = 1$ for every $\bar{z} = \bar{x} + \bar{y}$, for some 2[0,1),
- $F_{[\bar{X};\bar{y})}(\bar{Z}) < 1$ for every $\bar{Z} \Leftrightarrow \bar{X} + \bar{y}$, for some 2[0,1),

DEFINITION

Given an MV algebra A, the radical of A, written Rad(A) is the intersection of all maximal filters of A. A subalgebra S of L_m^{γ} is full if it has infinite elements and $S=Rad(S) = L_m$.

Theorem

If \bar{x} is a rational point contained in $[0;1]_{MV}^n$ such that $den(\bar{x}) = m$ and $j\bar{x}j = d$, and \bar{y} is a rational point contained in $([0;1]_{MV})^n ng([0;1]_{MV})^n$ then the algebra $Free_{MG}(n) = F_{[\bar{x};\bar{y})}$ is isomorphic to \mathbf{A}_i Free_G(d), where \mathbf{A}_i is a full subalgebra of \mathbf{L}_m^{\uparrow} , for some $i \ge f_0; \ldots; m = 1g$.

(日) (部) (注) (注) (三)

Sept. 2022

FILTER

EXAMPLE

Let $F_1 = Free_{\mathcal{MG}}(2)$ be the prime filter localized in $(\frac{1}{2}, 1)$ and associated with the index $\mathbf{u} = f(0, -1)g$. We know that a function F 2 Free_{\mathcal{MG}}(2) is contained in F_1 if and only if $F(\frac{1}{2}, 1 - a) = 1$ for every $a \ge [0, \cdot]$. We are now in the case when $F_{1MV} \notin MV_{(\frac{1}{2}, 1)}$. If we consider the classes in $Free_{\mathcal{MG}}(2)=F_1$, we have that it is isomorphic to a full subalgebra of \mathbf{L}_2^{\uparrow} , since two functions $F_1, F_2 \ge Free_{\mathcal{MG}}(2)$ are in the same class in the quotient whenever for some > 0, $F_1(\frac{1}{2}, 1 - a) = F_2(\frac{1}{2}, 1 - a)$ for every $a \ge [0, \cdot]$.

Sept. 2022

GENERALIZATIONS

THEOREM

If \bar{x} is a rational point contained in $[0; 1]_{MV}^n$ such that $den(\bar{x}) = m$ and $j\bar{x}j = d$, and I is a natural number, with I n, then the algebra $Free_{MG}(n)=F_{\bar{x};I}$ is isomorphic to L_m $Free_{G_I}(d)$.

イロト イヨト イヨト イヨト

GENERALIZATIONS

THEOREM

If \bar{x} is a rational point contained in $[0; 1]_{MV}^n$ such that $den(\bar{x}) = m$ and $j\bar{x}j = d$, and I is a natural number, with I n, then the algebra $Free_{MG}(n)=F_{\bar{x};I}$ is isomorphic to L_m $Free_{G_I}(d)$.

THEOREM

If $\bar{\mathbf{x}}$ is a rational point contained in $[0;1]_{\mathsf{MV}}^n$ such that $den(\bar{\mathbf{x}}) = m$ and $j\bar{\mathbf{x}}j = d$, and $\bar{\mathbf{y}}$ is a rational point contained in $([0;1]_{\mathsf{MV}})^n \cap g([0;1]_{\mathsf{MV}})^n$ then the algebra $Free_{\mathcal{MG}}(n) = F_{[\bar{\mathbf{x}};\bar{\mathbf{y}});l}$ is isomorphic to \mathbf{A}_i Free_{Gl}(d), where \mathbf{A}_i is a full subalgebra of \mathbf{L}_m^+ , for some $i \ge f_0; \ldots; m = 1g$.

・ロト ・回ト ・ヨト ・ヨト

GENERALIZATIONS

THEOREM

If \bar{x} is a rational point contained in $[0; 1]_{MV}^n$ such that $den(\bar{x}) = m$ and $j\bar{x}j = d$, and I is a natural number, with I n, then the algebra $Free_{MG}(n)=F_{\bar{x};l}$ is isomorphic to L_m $Free_{G_l}(d)$.

THEOREM

If $\bar{\mathbf{x}}$ is a rational point contained in $[0;1]_{\mathsf{MV}}^n$ such that $den(\bar{\mathbf{x}}) = m$ and $j\bar{\mathbf{x}}j = d$, and $\bar{\mathbf{y}}$ is a rational point contained in $([0;1]_{\mathsf{MV}})^n \cap g([0;1]_{\mathsf{MV}})^n$ then the algebra $Free_{\mathcal{MG}}(n) = F_{[\bar{\mathbf{x}};\bar{\mathbf{y}});l}$ is isomorphic to \mathbf{A}_i Free_{Gl}(d), where \mathbf{A}_i is a full subalgebra of \mathbf{L}_m^+ , for some $i \ge f0; \ldots; m = 1g$.

Let $Free_{MG}(n)_{(\bar{X})}$ be the algebra of equivalence classes of pairs (F; U), with F 2 $Free_{MG}(n)$ and U an open set in $[0, 1]^n_{MV}$ which contains \bar{X} . Two such pairs (F₁; U₁) and (F₂; U₂) are equivalent if F₁ = F₂ on U₁ \ U₂, and the operations are inherited from $Free_{MG}(n)$.

$Free_V(n)$

$Free_V(n)$

Theorem

Fix $n \ge N$ and let $V = V(\mathbf{L}_{m_1} \quad \mathbf{G}_{i_1}; \dots; \mathbf{L}_{m_r} \quad \mathbf{G}_{i_r}; \mathbf{L}_{t_1}^{\dagger} \quad \mathbf{G}_{j_1}; \dots; \mathbf{L}_{t_s}^{\dagger} \quad \mathbf{G}_{j_s})$ be a proper subvariety of $\mathcal{M}G$. Let X be the set of rational points of the cube $[0;1]_{\mathsf{MV}}^n$ whose denominator divides at least one of $m_1; \dots; m_r$ and let Y be the set of rational points of the cube $[0;1]_{\mathsf{MV}}^n$ whose denominator divides at least one of $t_1; \dots; m_r$ and let Y be the set of $t_1; \dots; t_s$. If A is the algebra in $\mathcal{M}G$ de ned by the nite product

$$A = \bigvee_{\bar{x} \ge X} Free_{\mathcal{M}G}(n) \quad \bigvee_{\bar{x}; I_x} \qquad \bigvee_{\bar{y} \ge Y} Free_{\mathcal{M}G}(n) \quad (\bar{y}); I_y$$

where $I_x = \min fn; O_G(\bar{x})g, I_y = \min fn; O_G(\bar{y})g$ and $_i(\bar{x})$ is the image in A of the *i*-th projection $\bar{x}_i \ge Free_{MG}(n)$, then the subalgebra $Free_V(n)$ of A generated by $f_i(\bar{x}) : i < ng$ is the free algebra over n generators in V, where the elements $_i(\bar{x})$ are the free generators and

 $O_G(\bar{x}) := max fi_j : L_m \quad G_{i_j} \ge V \text{ and } den(\bar{x}) \text{ divides } mg:$
AGLIANÒ, P., FERREIRIM, I. M. A., MONTAGNA, F., *Basic Hoops: an Algebraic Study of Continuous t-norms* STUDIA LOGICA, 2007 VOL. 87, N. 1, PAG. 73-98.

AGLIANÒ, P., MONTAGNA, F., Varieties of BL-algebras I: general properties JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, VOL. 181, N. 2-3, PAG. 105-129.

AGLIANÒ, P., MONTAGNA, F., Varieties of BL-Algebras II STUDIA LOGICA, 2018, VOL. 106, N. 4, PAG. 721–737.

AGLIANÒ, P., Varieties of BL-Algebras III STUDIA LOGICA, 2018.

BURRIS, S., SANKAPPANAVAR, H.P., A Course in Universal Algebra Springer, New York (1981).

BUSANICHE, M., CASTIGLIONI, J.L., LUBOMIRSKY, N., Functional representation of nitely generated free algebras in subvarieties of BL-algebras ANNALS OF PURE AND APPLIED LOGIC, 2020, VOL. 171, N.2.

DI NOLA, A., LETTIERI, A., *Equational Characterization of All Varieties of MV-Algebras* Journal of Algebra, 1999, vol. 221, N. 2, pag. 463 - 474.

ESTEVA, F., GODO, L., MONTAGNA, F., Equational characterization of the subverieties of BL generated by *t*-norm algebras STUDIA LOGICA, 2004, VOL. 76, N. 2, PAG. 161-200.

HECHT, T., KARTIÑAK, T., *Equational classes of relative Stone algebras* Notre Dame J. Formal Logic 13 (1972), No. 2, 248–254.

KOMORI, Y., Super-Lukasiewicz propositional logic, NAGOYA MATH. J. 84 (1981)

LUBOMIRSKY, N., *Tecnicas geometricas y combinatorias en el estudio de subvariedades de BL-algebras* TESIS DOCTORAL, UNIVERSIDAD NACIONAL DE LA PLATA, 2017.

3

イロト イヨト イヨト イヨト

Thank you for your attention!

・ロト ・日ト ・ヨト ・ヨト

Sept. 2022

35/35