A proof-theoretic approach to ignorance

Marianna Girlando 1 Ekaterina Kubyshkina 2 Mattia Petrolo 3

¹University of Amsterdam

²University of Milan

³Federal University of ABC

9 August 2022

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- Labelled calculus labWUDI
- 4 Conclusions

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- Labelled calculus labWUDI
- Conclusions

Standard View - SV

Ignorance is a lack of knowledge.

Standard View - SV

Ignorance is a lack of knowledge.

• knowing $\phi \hookrightarrow K\phi$;

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K\phi$;
- being ignorant of $\phi \hookrightarrow \neg K\phi$.

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K\phi$;
- being ignorant of $\phi \hookrightarrow \neg K\phi$.

TROUBLE

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K\phi$;
- being ignorant of $\phi \hookrightarrow \neg K\phi$.

TROUBLE

Let (D) $K\phi \rightarrow \neg K\neg \phi$.

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K\phi$;
- being ignorant of $\phi \hookrightarrow \neg K\phi$.

TROUBLE

Let (D) $K\phi \rightarrow \neg K \neg \phi$.

p := Paestum is in Italy.

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K\phi$;
- being ignorant of $\phi \hookrightarrow \neg K\phi$.

TROUBLE

Let (D) $K\phi \rightarrow \neg K \neg \phi$.

p :=Paestum is in Italy.

Kp := I know that Paestum is in Italy.

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K\phi$;
- being ignorant of $\phi \hookrightarrow \neg K\phi$.

TROUBLE

Let (D) $K\phi \rightarrow \neg K \neg \phi$.

p := Paestum is in Italy.

Kp := I know that Paestum is in Italy.

 $\neg K \neg p := I$ am ignorant that Paestum is not in

Italy.

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- 3 Labelled calculus labWUDI
- Conclusions

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- 3 Labelled calculus labWUDI
- 4 Conclusions

• W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", *Electronic Notes in Theoretical Computer Science*, 85, No, 2 (2004).

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", *Electronic Notes in Theoretical Computer Science*, 85, No. 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ , nor $\neg \phi$ "

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", *Electronic Notes in Theoretical Computer Science*, 85, No. 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ , nor $\neg \phi$ "
- being ignorant of $\phi \hookrightarrow I^w \phi$

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", *Electronic Notes in Theoretical Computer Science*, 85, No, 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ , nor $\neg \phi$ "
- being ignorant of $\phi \hookrightarrow I^w \phi$
- $I^{w}\phi$ is $\nabla \phi$ defined by $\neg K\phi \wedge \neg K\neg \phi$.

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", *Electronic Notes in Theoretical Computer Science*, 85, No, 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ , nor $\neg \phi$ "
- being ignorant of $\phi \hookrightarrow I^w \phi$
- $I^{w}\phi$ is $\nabla \phi$ defined by $\neg K\phi \wedge \neg K\neg \phi$.
- $\mathcal{M}, w \models I^w \phi$ iff there exists w' such that Rww' and $\mathcal{M}, w' \models \phi$ and there exists w'' such that Rww'' and $\mathcal{M}, w'' \models \neg \phi$.

System for ignorance whether

$$I^{\mathbf{w}}\phi = \nabla \phi$$
$$\triangle \phi = \neg \nabla \phi$$

System for ignorance whether

$$I^{w}\phi = \nabla\phi$$
$$\triangle\phi = \neg\nabla\phi$$

Definition (Fan & van Ditmarsch (2015))

- all instances of tautologies

- **5** From ϕ and $\phi \rightarrow \psi$ infer ψ
- **o** From ϕ infer $\triangle \phi$
- **o** From $\phi \leftrightarrow \psi$ infer $\triangle \phi \leftrightarrow \triangle \psi$

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- Labelled calculus labWUDI
- 4 Conclusions

• C. Steinsvold, "A note on logics of ignorance and borders", *Notre Dame Journal of Formal Logic*, 49(4), p. 385-392, (2008)

- C. Steinsvold, "A note on logics of ignorance and borders", *Notre Dame Journal of Formal Logic*, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"

- C. Steinsvold, "A note on logics of ignorance and borders", *Notre Dame Journal of Formal Logic*, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"
- being ignorant of $\phi \hookrightarrow I^u \phi$

- C. Steinsvold, "A note on logics of ignorance and borders", *Notre Dame Journal of Formal Logic*, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"
- being ignorant of $\phi \hookrightarrow I^u \phi$
- $I^u \phi$ is • ϕ defined by $\phi \wedge \neg K \phi$.

- C. Steinsvold, "A note on logics of ignorance and borders", *Notre Dame Journal of Formal Logic*, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"
- being ignorant of $\phi \hookrightarrow I^u \phi$
- $I^u \phi$ is • ϕ defined by $\phi \wedge \neg K \phi$.
- $\mathcal{M}, w \models I^u \phi$ iff $\mathcal{M}, w \models \phi$ and there exists w' such that Rww' and $\mathcal{M}, w' \models \neg \phi$

System for ignorance of unknown truths

$$I^u \phi = \bullet \phi$$
$$\circ \phi = \neg \bullet \phi$$

System for ignorance of unknown truths

$$I^{u}\phi = \bullet\phi$$
$$\circ\phi = \neg \bullet \phi$$

Definition (Steinsvold (2008))

- all propositional tautologies, substitution of equivalences, MP
- $\bigcirc \circ \top \leftrightarrow \top$

- **5** from $\phi \to \psi$ infer $(\circ \phi \land \phi) \to (\circ \psi \land \psi)$

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- 3 Labelled calculus labWUDI
- 4 Conclusions

• E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", *Synthese*, 198: 5917-5928, (2021)

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", *Synthese*, 198: 5917-5928, (2021)
- being disbelievingly ignorant of ϕ is " ϕ is true, but considered as false"

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", *Synthese*, 198: 5917-5928, (2021)
- being disbelievingly ignorant of ϕ is " ϕ is true, but considered as false"
- being disbelievingly ignorant of $\phi \hookrightarrow I^d \phi$

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", *Synthese*, 198: 5917-5928, (2021)
- being disbelievingly ignorant of ϕ is " ϕ is true, but considered as false"
- ullet being disbelievingly ignorant of $\phi \hookrightarrow I^d \phi$
- $\mathcal{M}, w \models I^d \phi$ iff for all $w' \neq w$ if Rww' then $\mathcal{M}, w' \models \neg \phi$ and $\mathcal{M}, w \models \phi$.

System for disbelieving ignorance

Definition

- Axioms:
 - (Taut) All instances of propositional tautologies
 - (11) $I^d p \rightarrow p$
 - $(12) (I^d p \wedge I^d q) \rightarrow I^d (p \vee q)$
- Rules: modus ponens (MP), uniform substitution (US), and (IR) From $\vdash \varphi \rightarrow \psi$, infer $\vdash \varphi \rightarrow (I^d \psi \rightarrow I^d \varphi)$

System for disbelieving ignorance

Definition

- Axioms:
 - (Taut) All instances of propositional tautologies
 - (11) $I^d p \rightarrow p$
 - $(I2)(I^dp\wedge I^dq)\to I^d(p\vee q)$
- Rules: modus ponens (MP), uniform substitution (US), and (IR) From $\vdash \varphi \rightarrow \psi$, infer $\vdash \varphi \rightarrow (I^d \psi \rightarrow I^d \varphi)$

The operators I^d and \square are not inter-definable in standard frames, such as K, T, S4, S5 etc.

Examples

Figure: Model \mathcal{M}_1

$$\mathcal{M}_1, w_0 \models I^d p, \ \mathcal{M}_1, w_0 \not\models I^d q, \ \mathcal{M}_1, w_0 \not\models I^d r$$

Examples

Figure: Model \mathcal{M}_2

$$\mathcal{M}_2, w_0 \models I^d \top$$

Two-worlds property

An accessibility relation R satisfies the two-worlds property iff for all $w \in W$, there is a $w' \in W$ such that wRw' and $w \neq w'$.

Two-worlds property

An accessibility relation R satisfies the two-worlds property iff for all $w \in W$, there is a $w' \in W$ such that wRw' and $w \neq w'$.

Definition

- Axioms:
 - (Taut) All instances of propositional tautologies
 - (11) $I^d p \rightarrow p$
 - $(12)(I^dp \wedge I^dq) \rightarrow I^d(p \vee q)$
 - $(13) \neg 1^d \top$
 - Rules: modus ponens (MP), uniform substitution (US), and (IR) From $\vdash \varphi \rightarrow \psi$, infer $\vdash \varphi \rightarrow (I^d \psi \rightarrow I^d \varphi)$

• I^w , I^u , and I^d represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.

- I^w, I^u, and I^d represent different aspects of the polysemic notion of ignorance.
 From this perspective, these three types of ignorance should coexist in the same formal setting.
 - J. Fan. Bimodal logics with contingency and accident. *Journal of Philosophical Logic*, 48: 425 445, (2019).

- I^w , I^u , and I^d represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.
 - J. Fan. Bimodal logics with contingency and accident. *Journal of Philosophical Logic*, 48: 425 445, (2019).

Our main objective is to provide a unified framework expressing the three types of ignorance, in order to analyse their behaviour and interactions.

- I^w, I^u, and I^d represent different aspects of the polysemic notion of ignorance.
 From this perspective, these three types of ignorance should coexist in the same formal setting.
 - J. Fan. Bimodal logics with contingency and accident. *Journal of Philosophical Logic*, 48: 425 445, (2019).

Our main objective is to provide a unified framework expressing the three types of ignorance, in order to analyse their behaviour and interactions.

• All logics for ignorance representation are formulated as Hilbert-style systems. To the best of our knowledge, no sequent calculus is provided for these logics.

- I^w, I^u, and I^d represent different aspects of the polysemic notion of ignorance.
 From this perspective, these three types of ignorance should coexist in the same formal setting.
 - J. Fan. Bimodal logics with contingency and accident. *Journal of Philosophical Logic*, 48: 425 445, (2019).

Our main objective is to provide a unified framework expressing the three types of ignorance, in order to analyse their behaviour and interactions.

• All logics for ignorance representation are formulated as Hilbert-style systems. To the best of our knowledge, no sequent calculus is provided for these logics.

We provide a labelled sequent calculus, and prove its soundness and completeness.

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- 3 Labelled calculus labWUDI
- 4 Conclusions

Our proposal

$$\phi ::= p \mid \bot \mid \phi \to \phi \mid \Box \phi \mid I^{\mathbf{w}} \phi \mid I^{\mathbf{u}} \phi \mid I^{\mathbf{d}} \phi$$

Our proposal

$$\phi ::= p \mid \bot \mid \phi \to \phi \mid \Box \phi \mid I^{w} \phi \mid I^{u} \phi \mid I^{d} \phi$$

Ignorance models

 $\mathcal{M} = \langle W, R, v \rangle$:

- $W \neq \emptyset$ set of possible worlds
- $R \subseteq W \times W$
- $v: Atm \rightarrow \mathcal{P}(W)$

Our proposal

$$\phi ::= p \mid \bot \mid \phi \to \phi \mid \Box \phi \mid I^{w} \phi \mid I^{u} \phi \mid I^{d} \phi$$

Ignorance models

$$\mathcal{M} = \langle W, R, v \rangle$$
:

- $W \neq \emptyset$ set of possible worlds
- $R \subseteq W \times W$
- $v: Atm \rightarrow \mathcal{P}(W)$

R satisfies the two-worlds property:

for all $x \in W$, there is a $y \in W$ such that xRy and $x \neq y$.

$$\frac{\Gamma \Rightarrow \Delta, x : \rho}{x : \rho, \Gamma \Rightarrow \Delta} \xrightarrow{\perp} \overline{x : \bot, \Gamma \Rightarrow \Delta}$$

$$\xrightarrow{\Gamma} \frac{\Gamma \Rightarrow \Delta, x : \phi \quad x : \psi, \Gamma \Rightarrow \Delta}{x : \phi \Rightarrow \psi, \Gamma \Rightarrow \Delta} \xrightarrow{\rightarrow_{R}} \frac{x : \phi, \Gamma \Rightarrow \Delta, x : \psi}{\Gamma \Rightarrow \Delta, x : \phi \Rightarrow \psi}$$

$$\xrightarrow{\Gamma} \frac{xRy, x : \Box \phi, y : \phi, \Gamma \Rightarrow \Delta}{xRy, x : \Box \phi, \Gamma \Rightarrow \Delta} \xrightarrow{\Gamma} \frac{xRy, \Gamma \Rightarrow \Delta, y : \phi}{\Gamma \Rightarrow \Delta, x : \Box \phi} *$$

$$\frac{\Gamma \Rightarrow \Delta, x : \rho}{x : \rho, \Gamma \Rightarrow \Delta} \xrightarrow{\perp} x : \bot, \Gamma \Rightarrow \Delta$$

$$\xrightarrow{\Gamma} \frac{\Delta, x : \phi \quad x : \psi, \Gamma \Rightarrow \Delta}{x : \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \xrightarrow{\rightarrow_{R}} \frac{x : \phi, \Gamma \Rightarrow \Delta, x : \psi}{\Gamma \Rightarrow \Delta, x : \phi \rightarrow \psi}$$

$$\xrightarrow{\Gamma} \frac{xRy, x : \Box \phi, y : \phi, \Gamma \Rightarrow \Delta}{xRy, x : \Box \phi, \Gamma \Rightarrow \Delta} \xrightarrow{\Gamma_{R}} \frac{xRy, \Gamma \Rightarrow \Delta, y : \phi}{\Gamma \Rightarrow \Delta, x : \Box \phi} *$$

$$\frac{xRy, xRz, y : \phi, \Gamma \Rightarrow \Delta, z : \phi}{x : I^{w}\phi, \Gamma \Rightarrow \Delta} * I_{R}^{w} \xrightarrow{x : \Box \neg \phi, \Gamma \Rightarrow \Delta} x : \Box \phi, \Gamma \Rightarrow \Delta$$

$$\Gamma \Rightarrow \Delta, x : I^{w}\phi$$

$$\Gamma \Rightarrow \Delta, x : I^{w}\phi$$

$$\frac{\Gamma}{x:\rho,\Gamma\Rightarrow\Delta,x:\rho} \xrightarrow{\perp} x:\bot,\Gamma\Rightarrow\Delta$$

$$\xrightarrow{\Gamma} \Delta,x:\phi \xrightarrow{\chi:\psi,\Gamma\Rightarrow\Delta} \xrightarrow{\to_{R}} x:\phi,\Gamma\Rightarrow\Delta,x:\psi$$

$$\xrightarrow{\Gamma} \Delta,x:\phi\to\psi,\Gamma\Rightarrow\Delta$$

$$\xrightarrow{\Gamma} \Delta,x:\phi\to\psi,\Gamma\Rightarrow\Delta$$

$$\xrightarrow{\Gamma} XRy,x:\Box\phi,\gamma:\phi,\Gamma\Rightarrow\Delta$$

$$\xrightarrow{\Gamma} XRy,x:\Box\phi,\Gamma\Rightarrow\Delta$$

$$\xrightarrow{\Gamma} XRy,x:\Box\phi,\Gamma\Rightarrow\Delta$$

$$\xrightarrow{\Gamma} XRy,x=\varphi,\Gamma\Rightarrow\Delta,x:\Box\phi$$

$$\xrightarrow{\Gamma} XRy,x=\varphi,\Gamma\Rightarrow\Delta,x:\varphi$$

$$\xrightarrow{\Gamma} XRy,x=\varphi,\Gamma\Rightarrow\Delta,x:\varphi$$

$$\xrightarrow{\Gamma} XRy,x=\varphi,\Gamma\Rightarrow\Delta,x:\varphi$$

$$\xrightarrow{\Gamma} XRy,x=\varphi,\Gamma\Rightarrow\Delta$$

$$\begin{array}{c} \operatorname{init} \overline{x:p,\Gamma\Rightarrow\Delta,x:p} & \stackrel{\perp}{x:\perp,\Gamma\Rightarrow\Delta} \\ \\ \rightarrow_{\mathsf{L}} \frac{\Gamma\Rightarrow\Delta,x:\phi \quad x:\psi,\Gamma\Rightarrow\Delta}{x:\phi\rightarrow\psi,\Gamma\Rightarrow\Delta} & \rightarrow_{\mathsf{R}} \frac{x:\phi,\Gamma\Rightarrow\Delta,x:\psi}{\Gamma\Rightarrow\Delta,x:\phi\rightarrow\psi} \\ \\ = \frac{xRy,x:\Box\phi,y:\phi,\Gamma\Rightarrow\Delta}{xRy,x:\Box\phi,\Gamma\Rightarrow\Delta} & \xrightarrow{\Box_{\mathsf{R}}} \frac{xRy,\Gamma\Rightarrow\Delta,y:\phi}{\Gamma\Rightarrow\Delta,x:\Box\phi} * \\ \\ I^{\mathsf{W}}_{\mathsf{L}} \frac{xRy,xRz,y:\phi,\Gamma\Rightarrow\Delta,z:\phi}{x:I^{\mathsf{W}}\phi,\Gamma\Rightarrow\Delta} * & I^{\mathsf{W}}_{\mathsf{R}} \frac{x:\Box\neg\phi,\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,x:I^{\mathsf{W}}\phi} \\ \\ I^{\mathsf{U}}_{\mathsf{L}} \frac{xRy,x:\phi,\Gamma\Rightarrow\Delta,y:\phi}{x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta} * & I^{\mathsf{U}}_{\mathsf{R}} \frac{\Gamma\Rightarrow\Delta,x:\phi}{\Gamma\Rightarrow\Delta,x:I^{\mathsf{U}}\phi} \\ \\ I^{\mathsf{U}}_{\mathsf{L}} \frac{x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta}{x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta} * & I^{\mathsf{U}}_{\mathsf{R}} \frac{\Gamma\Rightarrow\Delta,x:\phi}{r\Rightarrow\Delta,x:I^{\mathsf{U}}\phi} \\ \\ I^{\mathsf{U}}_{\mathsf{L}} \frac{x:I^{\mathsf{U}}\phi,x:\phi,\Gamma\Rightarrow\Delta}{x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta} * & I^{\mathsf{U}}_{\mathsf{R}} \frac{xRy,x\neq y,x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta}{xRy,x\neq y,x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta} \\ \\ I^{\mathsf{U}}_{\mathsf{L}} \frac{x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta}{x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta} * & I^{\mathsf{U}}_{\mathsf{L}} \frac{xRy,x\neq y,x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta,y:\phi}{xRy,x\neq y,x:I^{\mathsf{U}}\phi,\Gamma\Rightarrow\Delta} * \\ I^{\mathsf{U}}_{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}} \frac{x}{x} \xrightarrow{\mathsf{L}} \xrightarrow{\mathsf{L}$$

*: y, z are fresh, i.e., they do not occur in $\Gamma \cup \Delta$.

init
$$\frac{1}{x:p,\Gamma\Rightarrow\Delta,x:p}$$
 $\frac{1}{x:\perp,\Gamma\Rightarrow\Delta}$ $\frac{1}{x:\perp,\Gamma}$ $\frac{1}{x:\perp,\Gamma}$ $\frac{1}{x:$

*: y, z are fresh, i.e., they do not occur in $\Gamma \cup \Delta$.

Derivation example

```
 \frac{\int \limits_{\mathbb{R}^{1}} \frac{x : I^{w}p, x : I^{d}p, x : p \Rightarrow x : p}{I^{u}_{\mathbb{R}}} \frac{\int \limits_{\mathbb{R}^{1}} \frac{x Ry, xRz, y : p, x : \square p, z : p, x : I^{w}p, x : I^{d}p \Rightarrow z : p}{x x Ry, xRz, y : p, x : \square p, x : I^{w}p, x : I^{d}p \Rightarrow z : p} \frac{\int \limits_{\mathbb{R}^{u}} \frac{x Ry, xRz, y : p, x : \square p, x : I^{w}p, x : I^{d}p \Rightarrow z : p}{x : \square p, x : I^{w}p, x : I^{d}p \Rightarrow z : p}}{x : I^{w}p, x : I^{d}p \Rightarrow x : I^{u}p} \frac{x : I^{w}p, x : I^{d}p \Rightarrow x : I^{u}p}{\Rightarrow x : I^{w}p \wedge I^{d}p \Rightarrow x : I^{u}p}
```

Theorem (Soundness)

If there is a derivation of \Rightarrow *x* : ϕ , ϕ *is valid.*

Theorem (Soundness)

If there is a derivation of \Rightarrow *x* : ϕ , ϕ *is valid.*

• We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

Theorem (Soundness)

If there is a derivation of \Rightarrow *x* : ϕ , ϕ *is valid.*

• We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$_{2w} \frac{xRy, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *$$

Theorem (Soundness)

If there is a derivation of \Rightarrow *x* : ϕ , ϕ *is valid.*

• We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$${}_{2w}\frac{\textit{xRy}, \textit{x} \neq \textit{y}, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *$$

Do not apply 2w to $\Gamma \Rightarrow \Delta$ if for any x in $\Gamma \Rightarrow \Delta$ either:

- (a) xRy and $x \neq y$ are in Γ for some y; or
- (b) zRx and $z \neq x$ are in Γ , for some z such that For(z) = For(x).

Theorem (Soundness)

If there is a derivation of \Rightarrow *x* : ϕ , ϕ *is valid.*

• We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$_{2w} \frac{xRy, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *$$

Do not apply 2w to $\Gamma \Rightarrow \Delta$ if for any x in $\Gamma \Rightarrow \Delta$ either:

- (a) xRy and $x \neq y$ are in Γ for some y; or
- (b) zRx and $z \neq x$ are in Γ , for some z such that For(z) = For(x).

Theorem (Soundness)

If there is a derivation of \Rightarrow *x* : ϕ , ϕ *is valid.*

• We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$_{2w} \frac{xRy, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *$$

Do not apply 2w to $\Gamma \Rightarrow \Delta$ if for any x in $\Gamma \Rightarrow \Delta$ either:

- (a) xRy and $x \neq y$ are in Γ for some y; or
- (b) zRx and $z \neq x$ are in Γ , for some z such that For(z) = For(x).

Theorem (Termination)

Root-first proof search for a sequent $\Rightarrow x : \phi$ comes to an end in a finite number of steps.

Theorem (Completeness)

If ϕ is valid, there is a derivation of \Rightarrow x: ϕ .

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x : \phi$.

Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}} = \langle \mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}} \rangle$ from a branch of a failed proof search tree:

- $\bullet \ \mathcal{W}^{\mathcal{B}} = \{x \mid x \in \Gamma \cup \Delta\};$
- $\mathcal{R}^{\mathcal{B}} = \{(x,y) \mid xRy \in \Gamma\};$
- $\mathcal{V}^{\mathcal{B}}(p) = \{x \in \mathcal{W}^{\mathcal{B}} \mid x : p \in \downarrow \Gamma\}.$

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x : \phi$.

Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}} = \langle \mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}} \rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}} = \{x \mid x \in \Gamma \cup \Delta\};$
- $\mathcal{R}^{\mathcal{B}} = \{(x, y) \mid xRy \in \Gamma\};$
- $V^{\mathcal{B}}(p) = \{x \in \mathcal{W}^{\mathcal{B}} \mid x : p \in \downarrow \Gamma\}.$

 $\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x : \phi$.

Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}} = \langle \mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}} \rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}} = \{x \mid x \in \Gamma \cup \Delta\};$
- $\mathcal{R}^{\mathcal{B}} = \{(x, y) \mid xRy \in \Gamma\};$
- $V^{\mathcal{B}}(p) = \{x \in W^{\mathcal{B}} \mid x : p \in \downarrow \Gamma\}.$

 $\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

$$For(z) = For(x)$$

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x : \phi$.

Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}} = \langle \mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}} \rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}} = \{x \mid x \in \Gamma \cup \Delta\};$
- $\mathcal{R}^{\mathcal{B}} = \{(x, y) \mid xRy \in \Gamma\};$
- $V^{\mathcal{B}}(p) = \{x \in \mathcal{W}^{\mathcal{B}} \mid x : p \in \downarrow \Gamma\}.$

 $\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

$$For(z) = For(x)$$

• Whenever x does not meet the two-worlds condition, and for some z we have zRx and $z \neq x$ in Γ and For(z) = For(x), add $(x, z) \in \mathcal{R}^{\mathcal{B}}$

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x : \phi$.

Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}} = \langle \mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}} \rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}} = \{x \mid x \in \Gamma \cup \Delta\};$
- $\mathcal{R}^{\mathcal{B}} = \{(x, y) \mid xRy \in \Gamma\};$
- $V^{\mathcal{B}}(p) = \{x \in \mathcal{W}^{\mathcal{B}} \mid x : p \in \downarrow \Gamma\}.$

 $\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

$$For(z) = For(x)$$

• Whenever x does not meet the two-worlds condition, and for some z we have zRx and $z \neq x$ in Γ and For(z) = For(x), add $(x, z) \in \mathcal{R}^{\mathcal{B}}$.

Example

$$W = \{x, y, z, k\}; R = \{(x, y), (y, z), (z, k), (k, z)\}; v(p) = \{x\}.$$

Outline

- Introduction
- Representing ignorance
 - Ignorance whether
 - Ignorance of unknown truths
 - Disbelieving ignorance
- Labelled calculus labWUDI
- Conclusions

• This work: a labelled sequent calculus to reason about valid formulas in ignorance models.

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
 - Consider a knowledge operator K instead of \square .

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
 - Consider a knowledge operator K instead of \square .
 - Study the structural properties of the calculus.

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
 - Consider a knowledge operator K instead of \square .
 - Study the structural properties of the calculus.
 - Define an axiomatization for the logic of ignorance models.

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
 - Consider a knowledge operator K instead of \square .
 - Study the structural properties of the calculus.
 - Define an axiomatization for the logic of ignorance models.
 - Define non-labelled calculi for the logic.

Thank you!

Thank you!

Questions?