A proof-theoretic approach to ignorance

Marianna Girlando ${ }^{1}$ Ekaterina Kubyshkina ${ }^{2}$ Mattia Petrolo ${ }^{3}$

${ }^{1}$ University of Amsterdam
${ }^{2}$ University of Milan
${ }^{3}$ Federal University of ABC

9 August 2022

Outline

(1) Introduction
(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance
(3) Labelled calculus labWUDI
(4) Conclusions

Outline

（1）Introduction

（2）Representing ignorance
－Ignorance whether
－Ignorance of unknown truths
－Disbelieving ignorance
（3）Labelled calculus labWUDI
（4）Conclusions

What is ignorance?

Standard View - SV
Ignorance is a lack of knowledge.

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;
- being ignorant of $\phi \hookrightarrow \neg K \phi$.

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;
- being ignorant of $\phi \hookrightarrow \neg K \phi$.

TROUBLE

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;
- being ignorant of $\phi \hookrightarrow \neg K \phi$.

$$
\begin{aligned}
& \text { TROUBLE } \\
& \text { Let (D) } K \phi \rightarrow \neg K \neg \phi \text {. }
\end{aligned}
$$

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;
- being ignorant of $\phi \hookrightarrow \neg K \phi$.

> TROUBLE
> Let (D) $K \phi \rightarrow \neg K \neg \phi$.
> $p:=$ Paestum is in Italy.

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;
- being ignorant of $\phi \hookrightarrow \neg K \phi$.

> TROUBLE
> Let (D) $K \phi \rightarrow \neg K \neg \phi$.
> $p:=$ Paestum is in Italy.
> $K p:=I$ know that Paestum is in Italy.

What is ignorance?

Standard View - SV

Ignorance is a lack of knowledge.

- knowing $\phi \hookrightarrow K \phi$;
- being ignorant of $\phi \hookrightarrow \neg K \phi$.

TROUBLE

Let (D) $K \phi \rightarrow \neg K \neg \phi$.
$p:=$ Paestum is in Italy.
$K p:=I$ know that Paestum is in Italy.
$\neg K \neg p:=\mathrm{I}$ am ignorant that Paestum is not in Italy.

Outline

(1) Introduction

(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance

Outline

(1) Introduction
(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance
(3) Labelled calculus labWUDI

4 Conclusions

Ignorance and contingency operator

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", Electronic Notes in Theoretical Computer Science, 85, No, 2 (2004).

Ignorance and contingency operator

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", Electronic Notes in Theoretical Computer Science, 85, No, 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ, nor $\neg \phi$ "

Ignorance and contingency operator

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", Electronic Notes in Theoretical Computer Science, 85, No, 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ, nor $\neg \phi$ "
- being ignorant of $\phi \hookrightarrow I^{w} \phi$

Ignorance and contingency operator

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", Electronic Notes in Theoretical Computer Science, 85, No, 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ, nor $\neg \phi$ "
- being ignorant of $\phi \hookrightarrow I^{w} \phi$
- $I^{w} \phi$ is $\nabla \phi$ defined by $\neg K \phi \wedge \neg K \neg \phi$.

Ignorance and contingency operator

- W. van der Hoek, A. Lomuscio, "A Logic For Ignorance", Electronic Notes in Theoretical Computer Science, 85, No, 2 (2004).
- being ignorant of ϕ is "not knowing neither ϕ, nor $\neg \phi$ "
- being ignorant of $\phi \hookrightarrow I^{w} \phi$
- $I^{w} \phi$ is $\nabla \phi$ defined by $\neg K \phi \wedge \neg K \neg \phi$.
- $\mathcal{M}, w \models I^{w} \phi$ iff there exists w^{\prime} such that $R w w^{\prime}$ and $\mathcal{M}, w^{\prime} \models \phi$ and there exists $w^{\prime \prime}$ such that $R w w^{\prime \prime}$ and $\mathcal{M}, w^{\prime \prime} \models \neg \phi$.

System for ignorance whether

$$
\begin{gathered}
I^{w} \phi=\nabla \phi \\
\triangle \phi=\neg \nabla \phi
\end{gathered}
$$

System for ignorance whether

$$
\begin{gathered}
I^{W} \phi=\nabla \phi \\
\triangle \phi=\neg \nabla \phi
\end{gathered}
$$

Definition (Fan \& van Ditmarsch (2015))

- all instances of tautologies
(2) $(\triangle(\chi \rightarrow \phi) \wedge \triangle(\neg \chi \rightarrow \phi)) \rightarrow \triangle \phi$
- $\triangle \phi \rightarrow(\triangle(\phi \rightarrow \psi) \vee \triangle(\neg \phi \rightarrow \chi))$
- $\triangle \phi \leftrightarrow \triangle \neg \phi$
(0) From ϕ and $\phi \rightarrow \psi$ infer ψ
((From ϕ infer $\triangle \phi$
(From $\phi \leftrightarrow \psi$ infer $\triangle \phi \leftrightarrow \Delta \psi$

Outline

(1) Introduction
(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance
(3) Labelled calculus labWUDI
(4) Conclusions

Ignorance and non-consistency operator

- C. Steinsvold, "A note on logics of ignorance and borders", Notre Dame Journal of Formal Logic, 49(4), p. 385-392, (2008)

Ignorance and non-consistency operator

- C. Steinsvold, "A note on logics of ignorance and borders", Notre Dame Journal of Formal Logic, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"

Ignorance and non-consistency operator

- C. Steinsvold, "A note on logics of ignorance and borders", Notre Dame Journal of Formal Logic, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"
- being ignorant of $\phi \hookrightarrow I^{u} \phi$

Ignorance and non-consistency operator

- C. Steinsvold, "A note on logics of ignorance and borders", Notre Dame Journal of Formal Logic, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"
- being ignorant of $\phi \hookrightarrow I^{u} \phi$
- $I^{u} \phi$ is $\bullet \phi$ defined by $\phi \wedge \neg K \phi$.

Ignorance and non-consistency operator

- C. Steinsvold, "A note on logics of ignorance and borders", Notre Dame Journal of Formal Logic, 49(4), p. 385-392, (2008)
- being ignorant of ϕ is " ϕ is true, but not known"
- being ignorant of $\phi \hookrightarrow I^{u} \phi$
- $I^{u} \phi$ is $\bullet \phi$ defined by $\phi \wedge \neg K \phi$.
- $\mathcal{M}, w \models I^{u} \phi$ iff $\mathcal{M}, w \models \phi$ and there exists w^{\prime} such that $R w w^{\prime}$ and $\mathcal{M}, w^{\prime} \models \neg \phi$

System for ignorance of unknown truths

$$
\begin{gathered}
I^{u} \phi=\bullet \phi \\
\circ \phi=\neg \bullet \phi
\end{gathered}
$$

System for ignorance of unknown truths

$$
\begin{gathered}
I^{u} \phi=\bullet \phi \\
\circ \phi=\neg \bullet \phi
\end{gathered}
$$

Definition (Steinsvold (2008))

(1) all propositional tautologies, substitution of equivalences, MP
(2) \circ T T

- $\bullet \phi \rightarrow \phi$
- $(\circ \phi \wedge \circ \psi) \rightarrow \circ(\phi \wedge \psi)$
(0) from $\phi \rightarrow \psi \operatorname{infer}(\circ \phi \wedge \phi) \rightarrow(\circ \psi \wedge \psi)$

Outline

(1) Introduction
(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance
(3) Labelled calculus labWUDI

4 Conclusions

Disbelieving ignorance

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", Synthese, 198: 5917-5928, (2021)

Disbelieving ignorance

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", Synthese, 198: 5917-5928, (2021)
- being disbelievingly ignorant of ϕ is " ϕ is true, but considered as false"

Disbelieving ignorance

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", Synthese, 198: 5917-5928, (2021)
- being disbelievingly ignorant of ϕ is " ϕ is true, but considered as false"
- being disbelievingly ignorant of $\phi \hookrightarrow I^{d} \phi$

Disbelieving ignorance

- E. Kubyshkina, M. Petrolo, "A logic for factive ignorance", Synthese, 198: 5917-5928, (2021)
- being disbelievingly ignorant of ϕ is " ϕ is true, but considered as false"
- being disbelievingly ignorant of $\phi \hookrightarrow I^{d} \phi$
- $\mathcal{M}, w \models I^{d} \phi$ iff for all $w^{\prime} \neq w$ if $R w w^{\prime}$ then $\mathcal{M}, w^{\prime} \models \neg \phi$ and $\mathcal{M}, w \models \phi$.

System for disbelieving ignorance

Definition

- Axioms:
(Taut) All instances of propositional tautologies
(I1) Id $p \rightarrow p$
(I2) $\left(I^{d} p \wedge I^{d} q\right) \rightarrow I^{d}(p \vee q)$
- Rules: modus ponens (MP), uniform substitution (US), and (IR) From $\vdash \varphi \rightarrow \psi$, infer $\vdash \varphi \rightarrow\left(I^{d} \psi \rightarrow I^{d} \varphi\right)$

System for disbelieving ignorance

Definition

- Axioms:
(Taut) All instances of propositional tautologies
(I1) Id $p \rightarrow p$
(I2) $\left(I^{d} p \wedge I^{d} q\right) \rightarrow I^{d}(p \vee q)$
- Rules: modus ponens (MP), uniform substitution (US), and (IR) From $\vdash \varphi \rightarrow \psi$, infer $\vdash \varphi \rightarrow\left(I^{d} \psi \rightarrow I^{d} \varphi\right)$

The operators I^{d} and \square are not inter-definable in standard frames, such as $K, T, S 4$, $S 5$ etc.

Examples

Figure: $\operatorname{Model} \mathcal{M}_{1}$
$\mathcal{M}_{1}, w_{0} \models I^{d} p, \mathcal{M}_{1}, w_{0} \not \models I^{d} q, \mathcal{M}_{1}, w_{0} \not \vDash I^{d} r$

Examples

Figure: Model \mathcal{M}_{2}

$$
\mathcal{M}_{2}, w_{0} \models I^{d} T
$$

Two-worlds property

An accessibility relation R satisfies the two-worlds property iff for all $w \in W$, there is a $w^{\prime} \in W$ such that $w R w^{\prime}$ and $w \neq w^{\prime}$.

Two-worlds property

An accessibility relation R satisfies the two-worlds property iff for all $w \in W$, there is a $w^{\prime} \in W$ such that $w R w^{\prime}$ and $w \neq w^{\prime}$.

Definition

- Axioms:
(Taut) All instances of propositional tautologies
(I1) I ${ }^{d} p \rightarrow p$
(I2) $\left(I^{d} p \wedge I^{d} q\right) \rightarrow I^{d}(p \vee q)$ (I3) $\neg I^{d} \top$
- Rules: modus ponens (MP), uniform substitution (US), and (IR) From $\vdash \varphi \rightarrow \psi$, infer $\vdash \varphi \rightarrow\left(I^{d} \psi \rightarrow I^{d} \varphi\right)$

Three operators for ignorance

- I^{w}, I^{u}, and I^{d} represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.

Three operators for ignorance

- I^{w}, I^{u}, and I^{d} represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.
J. Fan. Bimodal logics with contingency and accident. Journal of Philosophical Logic, 48: 425-445, (2019).

Three operators for ignorance

- I^{w}, I^{u}, and I^{d} represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.
J. Fan. Bimodal logics with contingency and accident. Journal of Philosophical Logic, 48: 425-445, (2019).

Our main objective is to provide a unified framework expressing the three types of ignorance, in order to analyse their behaviour and interactions.

Three operators for ignorance

- I^{w}, I^{u}, and I^{d} represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.
J. Fan. Bimodal logics with contingency and accident. Journal of Philosophical Logic, 48: 425-445, (2019).

Our main objective is to provide a unified framework expressing the three types of ignorance, in order to analyse their behaviour and interactions.

- All logics for ignorance representation are formulated as Hilbert-style systems. To the best of our knowledge, no sequent calculus is provided for these logics.

Three operators for ignorance

- I^{w}, I^{u}, and I^{d} represent different aspects of the polysemic notion of ignorance. From this perspective, these three types of ignorance should coexist in the same formal setting.
J. Fan. Bimodal logics with contingency and accident. Journal of Philosophical Logic, 48: 425-445, (2019).

Our main objective is to provide a unified framework expressing the three types of ignorance, in order to analyse their behaviour and interactions.

- All logics for ignorance representation are formulated as Hilbert-style systems. To the best of our knowledge, no sequent calculus is provided for these logics.

We provide a labelled sequent calculus, and prove its soundness and completeness.

Outline

(1) Introduction

(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance
(3) Labelled calculus labWUDI
(4) Conclusions

Our proposal

$$
\phi::=p|\perp| \phi \rightarrow \phi|\square \phi| I^{w} \phi\left|I^{u} \phi\right| I^{d} \phi
$$

Our proposal

$$
\phi::=p|\perp| \phi \rightarrow \phi|\square \phi| I^{w} \phi\left|I^{u} \phi\right| I^{d} \phi
$$

Ignorance models
$\mathcal{M}=\langle W, R, v\rangle:$

- $W \neq \emptyset$ set of possible worlds
- $R \subseteq W \times W$
- $v: A t m \rightarrow \mathcal{P}(W)$

Our proposal

$$
\phi::=p|\perp| \phi \rightarrow \phi|\square \phi| I^{w} \phi\left|I^{u} \phi\right| I^{d} \phi
$$

Ignorance models

$\mathcal{M}=\langle W, R, v\rangle$:

- $W \neq \emptyset$ set of possible worlds
- $R \subseteq W \times W$
- $v: A t m \rightarrow \mathcal{P}(W)$
R satisfies the two-worlds property:
for all $x \in W$, there is a $y \in W$ such that $x R y$ and $x \neq y$.

Labelled calculus labWUDI for ignorance models

Labelled calculus labWUDI for ignorance models

$$
\begin{aligned}
& \begin{array}{l}
x: p, \Gamma \Rightarrow \Delta, x: p
\end{array} \perp \overline{x: \perp, \Gamma \Rightarrow \Delta} \\
& \quad \rightarrow_{\llcorner } \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \psi, \Gamma \Rightarrow \Delta}{x: \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \quad \rightarrow_{\mathrm{R}} \frac{x: \phi, \Gamma \Rightarrow \Delta, x: \psi}{\Gamma \Rightarrow \Delta, x: \phi \rightarrow \psi}
\end{aligned}
$$

Labelled calculus labWUDI for ignorance models

$$
\begin{aligned}
& \text { init } \begin{array}{l}
x: p, \Gamma \Rightarrow \Delta, x: p
\end{array} \quad \perp \overline{x: \perp, \Gamma \Rightarrow \Delta} \\
& \rightarrow_{\mathrm{L}} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \psi, \Gamma \Rightarrow \Delta}{x: \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \quad \rightarrow_{\mathrm{R}} \frac{x: \phi, \Gamma \Rightarrow \Delta, x: \psi}{\Gamma \Rightarrow \Delta, x: \phi \rightarrow \psi} \\
& \square_{\mathrm{L}} \frac{x R y, x: \square \phi, y: \phi, \Gamma \Rightarrow \Delta}{x R y, x: \square \phi, \Gamma \Rightarrow \Delta} \quad \square_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow \Delta, y: \phi}{\Gamma \Rightarrow \Delta, x: \square \phi} *
\end{aligned}
$$

Labelled calculus labWUDI for ignorance models

$$
\begin{aligned}
& \text { init } \overline{x: p, \Gamma \Rightarrow \Delta, x: p} \quad \perp \overline{x: \perp, \Gamma \Rightarrow \Delta} \\
& \rightarrow \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \psi, \Gamma \Rightarrow \Delta}{x: \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \quad \rightarrow_{\mathrm{R}} \frac{x: \phi, \Gamma \Rightarrow \Delta, x: \psi}{\Gamma \Rightarrow \Delta, x: \phi \rightarrow \psi} \\
& \square_{\mathrm{L}} \frac{x R y, x: \square \phi, y: \phi, \Gamma \Rightarrow \Delta}{x R y, x: \square \phi, \Gamma \Rightarrow \Delta} \quad \square_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow \Delta, y: \phi}{\Gamma \Rightarrow \Delta, x: \square \phi} * \\
& I_{\mathrm{L}}^{\mathrm{L}} \frac{x R y, x R z, y: \phi, \Gamma \Rightarrow \Delta, z: \phi}{x: I^{w} \phi, \Gamma \Rightarrow \Delta} * \quad I_{\mathrm{R}}^{\mathrm{L}} \frac{x: \square \neg \phi, \Gamma \Rightarrow \Delta \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{w} \phi}
\end{aligned}
$$

Labelled calculus labWUDI for ignorance models

$$
\begin{gathered}
\text { init } \frac{x: p, \Gamma \Rightarrow \Delta, x: p}{\perp} \overline{x: \perp, \Gamma \Rightarrow \Delta} \\
\rightarrow \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \psi, \Gamma \Rightarrow \Delta}{x: \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \quad \rightarrow_{\mathrm{R}} \frac{x: \phi, \Gamma \Rightarrow \Delta, x: \psi}{\Gamma \Rightarrow \Delta, x: \phi \rightarrow \psi} \\
\square_{\mathrm{L}} \frac{x R y, x: \square \phi, y: \phi, \Gamma \Rightarrow \Delta}{x R y, x: \square \phi, \Gamma \Rightarrow \Delta} \quad \square_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow \Delta, y: \phi}{\Gamma \Rightarrow \Delta, x: \square \phi} * \\
I_{\mathrm{L}}^{\prime \prime} \frac{x R y, x R z, y: \phi, \Gamma \Rightarrow \Delta, z: \phi}{x: I^{w} \phi, \Gamma \Rightarrow \Delta} * \quad I_{\mathrm{R}}^{\text {u }} \frac{x: \square \neg \phi, \Gamma \Rightarrow \Delta \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{w} \phi} \\
I_{\mathrm{L}}^{u} \frac{x R y, x: \phi, \Gamma \Rightarrow \Delta, y: \phi}{x: I^{u} \phi, \Gamma \Rightarrow \Delta} * \quad I_{\mathrm{R}}^{u} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{u} \phi}
\end{gathered}
$$

Labelled calculus labWUDI for ignorance models

$$
\begin{aligned}
& \text { init } \overline{x: p, \Gamma \Rightarrow \Delta, x: p} \quad \perp \overline{x: \perp, \Gamma \Rightarrow \Delta} \\
& \rightarrow_{\mathrm{L}} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \psi, \Gamma \Rightarrow \Delta}{x: \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \quad \rightarrow_{\mathrm{R}} \frac{x: \phi, \Gamma \Rightarrow \Delta, x: \psi}{\Gamma \Rightarrow \Delta, x: \phi \rightarrow \psi} \\
& \square_{\mathrm{L}} \frac{x R y, x: \square \phi, y: \phi, \Gamma \Rightarrow \Delta}{x R y, x: \square \phi, \Gamma \Rightarrow \Delta} \quad \square_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow \Delta, y: \phi}{\Gamma \Rightarrow \Delta, x: \square \phi} * \\
& I_{\mathrm{L}}^{\mathrm{L}} \frac{x R y, x R z, y: \phi, \Gamma \Rightarrow \Delta, z: \phi}{x: I^{w} \phi, \Gamma \Rightarrow \Delta} * \quad I_{R}^{w} \frac{x: \square \neg \phi, \Gamma \Rightarrow \Delta \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{w} \phi} \\
& I_{L}^{u} \frac{x R y, x: \phi, \Gamma \Rightarrow \Delta, y: \phi}{x: I^{u} \phi, \Gamma \Rightarrow \Delta} * \quad I_{R}^{u} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{u} \phi} \\
& I_{L 1}^{d} \frac{x: I^{d} \phi, x: \phi, \Gamma \Rightarrow \Delta}{x: I^{d} \phi, \Gamma \Rightarrow \Delta} \quad I_{L 2}^{d} \frac{x R y, x \neq y, x: I^{d} \phi, \Gamma \Rightarrow \Delta, y: \phi}{x R y, x \neq y, x: I^{d} \phi, \Gamma \Rightarrow \Delta} \\
& I_{R}^{d} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x R y, x \neq y, y: \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{d} \phi} *
\end{aligned}
$$

$*: y, z$ are fresh, i.e., they do not occur in $\Gamma \cup \Delta$.

Labelled calculus labWUDI for ignorance models

$$
\begin{aligned}
& \text { init } \overline{x: p, \Gamma \Rightarrow \Delta, x: p} \quad \perp \frac{}{x: \perp, \Gamma \Rightarrow \Delta} \quad 2 \mathrm{w} \frac{x R y, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} * \\
& \rightarrow_{\mathrm{L}} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \psi, \Gamma \Rightarrow \Delta}{x: \phi \rightarrow \psi, \Gamma \Rightarrow \Delta} \quad \rightarrow_{\mathrm{R}} \frac{x: \phi, \Gamma \Rightarrow \Delta, x: \psi}{\Gamma \Rightarrow \Delta, x: \phi \rightarrow \psi} \\
& \square_{\mathrm{L}} \frac{x R y, x: \square \phi, y: \phi, \Gamma \Rightarrow \Delta}{x R y, x: \square \phi, \Gamma \Rightarrow \Delta} \quad \square_{\mathrm{R}} \frac{x R y, \Gamma \Rightarrow \Delta, y: \phi}{\Gamma \Rightarrow \Delta, x: \square \phi} * \\
& I_{\mathrm{L}}^{\mathrm{L}} \frac{x R y, x R z, y: \phi, \Gamma \Rightarrow \Delta, z: \phi}{x: I^{w} \phi, \Gamma \Rightarrow \Delta} * \quad I_{R}^{w} \frac{x: \square \neg \phi, \Gamma \Rightarrow \Delta \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{w} \phi} \\
& I_{L}^{u} \frac{x R y, x: \phi, \Gamma \Rightarrow \Delta, y: \phi}{x: I^{u} \phi, \Gamma \Rightarrow \Delta} * \quad I_{R}^{u} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x: \square \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{u} \phi} \\
& I_{L 1}^{d} \frac{x: I^{d} \phi, x: \phi, \Gamma \Rightarrow \Delta}{x: I^{d} \phi, \Gamma \Rightarrow \Delta} \quad I_{L 2}^{d} \frac{x R y, x \neq y, x: I^{d} \phi, \Gamma \Rightarrow \Delta, y: \phi}{x R y, x \neq y, x: I^{d} \phi, \Gamma \Rightarrow \Delta} \\
& I_{R}^{d} \frac{\Gamma \Rightarrow \Delta, x: \phi \quad x R y, x \neq y, y: \phi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, x: I^{d} \phi} *
\end{aligned}
$$

$*: y, z$ are fresh, i.e., they do not occur in $\Gamma \cup \Delta$.

Derivation example

Main results, I

Theorem (Soundness)
If there is a derivation of $\Rightarrow x: \phi, \phi$ is valid.

Main results, I

Theorem (Soundness)

If there is a derivation of $\Rightarrow x: \phi, \phi$ is valid.

- We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

Main results, I

Theorem (Soundness)

If there is a derivation of $\Rightarrow x: \phi, \phi$ is valid.

- We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$
2 \mathrm{w} \frac{x R y, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *
$$

Main results, I

Theorem (Soundness)

If there is a derivation of $\Rightarrow x: \phi, \phi$ is valid.

- We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$
2 \mathrm{w} \frac{x R y, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *
$$

Do not apply 2 w to $\Gamma \Rightarrow \Delta$ if for any x in $\Gamma \Rightarrow \Delta$ either:
(a) $x R y$ and $x \neq y$ are in Γ for some y; or
(b) $z R x$ and $z \neq x$ are in Γ, for some z such that $\operatorname{For}(z)=\operatorname{For}(x)$.

Main results, I

Theorem (Soundness)

If there is a derivation of $\Rightarrow x: \phi, \phi$ is valid.

- We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$
2 \mathrm{w} \frac{x R y, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *
$$

Do not apply 2 w to $\Gamma \Rightarrow \Delta$ if for any x in $\Gamma \Rightarrow \Delta$ either:
(a) $x R y$ and $x \neq y$ are in Γ for some y; or
(b) $z R x$ and $z \neq x$ are in Γ, for some z such that $\operatorname{For}(z)=\operatorname{For}(x)$.

Main results, I

Theorem (Soundness)

If there is a derivation of $\Rightarrow x: \phi, \phi$ is valid.

- We prove completeness via countermodel construction from a failed proof search (see Negri (2005)). Thus, we prove termination of proof search.

$$
2 \mathrm{w} \frac{x R y, x \neq y, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} *
$$

Do not apply 2 w to $\Gamma \Rightarrow \Delta$ if for any x in $\Gamma \Rightarrow \Delta$ either:
(a) $x R y$ and $x \neq y$ are in Γ for some y; or
(b) $z R x$ and $z \neq x$ are in Γ, for some z such that $\operatorname{For}(z)=\operatorname{For}(x)$.

Theorem (Termination)

Root-first proof search for a sequent $\Rightarrow x: \phi$ comes to an end in a finite number of steps.

Main results, II

Theorem (Completeness)
If ϕ is valid, there is a derivation of $\Rightarrow x: \phi$.

Main results, II

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x: \phi$.
Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}}=\left\langle\mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}}\right\rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}}=\{x \mid x \in \Gamma \cup \Delta\} ;$
- $\mathcal{R}^{\mathcal{B}}=\{(x, y) \mid x R y \in \Gamma\}$;
- $\mathcal{V}^{\mathcal{B}}(p)=\left\{x \in \mathcal{W}^{\mathcal{B}} \mid x: p \in \downarrow \Gamma\right\}$.

Main results, II

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x: \phi$.
Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}}=\left\langle\mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}}\right\rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}}=\{x \mid x \in \Gamma \cup \Delta\} ;$
- $\mathcal{R}^{\mathcal{B}}=\{(x, y) \mid x R y \in \Gamma\} ;$
- $\mathcal{V}^{\mathcal{B}}(p)=\left\{x \in \mathcal{W}^{\mathcal{B}} \mid x: p \in \downarrow \Gamma\right\}$.
$\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

Main results, II

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x: \phi$.
Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}}=\left\langle\mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}}\right\rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}}=\{x \mid x \in \Gamma \cup \Delta\} ;$
- $\mathcal{R}^{\mathcal{B}}=\{(x, y) \mid x R y \in \Gamma\} ;$
- $\mathcal{V}^{\mathcal{B}}(p)=\left\{x \in \mathcal{W}^{\mathcal{B}} \mid x: p \in \downarrow \Gamma\right\}$.
$\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

$$
\operatorname{For}(z)=\operatorname{For}(x)
$$

Main results, II

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x: \phi$.
Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}}=\left\langle\mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}}\right\rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}}=\{x \mid x \in \Gamma \cup \Delta\}$;
- $\mathcal{R}^{\mathcal{B}}=\{(x, y) \mid x R y \in \Gamma\} ;$
- $\mathcal{V}^{\mathcal{B}}(p)=\left\{x \in \mathcal{W}^{\mathcal{B}} \mid x: p \in \downarrow \Gamma\right\}$.
$\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

$$
\operatorname{For}(z)=\operatorname{For}(x)
$$

- Whenever x does not meet the two-worlds condition, and for some z we have $z R x$ and $z \neq x$ in Γ and $\operatorname{For}(z)=\operatorname{For}(x)$, add $(x, z) \in \mathcal{R}^{\mathcal{B}}$.

Main results, II

Theorem (Completeness)

If ϕ is valid, there is a derivation of $\Rightarrow x: \phi$.
Proof. We construct a countermodel $\mathcal{M}^{\mathcal{B}}=\left\langle\mathcal{W}^{\mathcal{B}}, \mathcal{R}^{\mathcal{B}}, \mathcal{V}^{\mathcal{B}}\right\rangle$ from a branch of a failed proof search tree:

- $\mathcal{W}^{\mathcal{B}}=\{x \mid x \in \Gamma \cup \Delta\}$;
- $\mathcal{R}^{\mathcal{B}}=\{(x, y) \mid x R y \in \Gamma\} ;$
- $\mathcal{V}^{\mathcal{B}}(p)=\left\{x \in \mathcal{W}^{\mathcal{B}} \mid x: p \in \downarrow \Gamma\right\}$.
$\mathcal{M}^{\mathcal{B}}$ might not satisfy the two-worlds condition!

$$
\operatorname{For}(z)=\operatorname{For}(x)
$$

- Whenever x does not meet the two-worlds condition, and for some z we have $z R x$ and $z \neq x$ in Γ and $\operatorname{For}(z)=\operatorname{For}(x)$, add $(x, z) \in \mathcal{R}^{\mathcal{B}}$.

Example

$$
\begin{gathered}
\text { 2wail } \frac{x R y, x \neq y, y R z, y \neq z, z R k, z \neq k, x: p, x: I^{d} p \Rightarrow x: \perp, y: p}{x R y, x \neq y, y R z, y \neq z, x: p, x: I^{d} p \Rightarrow x: \perp, y: p} \\
\rightarrow \frac{x R y, x \neq y, x: p, x: I^{d} p \Rightarrow x: \perp, y: p}{x R y, x \neq y, x: p, x: I^{d} p \Rightarrow x: \perp} \\
2 \mathrm{w} \frac{x, y: p, x: I^{d} p \Rightarrow x: \perp}{x: I^{d} p \Rightarrow x: \perp} \\
\rightarrow \mathrm{R} \frac{I_{\mathrm{L} 1}^{d}}{\Rightarrow x: I^{d} p \rightarrow \perp}
\end{gathered}
$$

$$
W=\{x, y, z, k\} ; R=\{(x, y),(y, z),(z, k),(k, z)\} ; v(p)=\{x\}
$$

Outline

(1) Introduction

(2) Representing ignorance

- Ignorance whether
- Ignorance of unknown truths
- Disbelieving ignorance
(3) Labelled calculus labWUDI
(4) Conclusions

Conclusions and further work

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.

Conclusions and further work

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:

Conclusions and further work

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
- Consider a knowledge operator K instead of \square.

Conclusions and further work

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
- Consider a knowledge operator K instead of \square.
- Study the structural properties of the calculus.

Conclusions and further work

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
- Consider a knowledge operator K instead of \square.
- Study the structural properties of the calculus.
- Define an axiomatization for the logic of ignorance models.

Conclusions and further work

- This work: a labelled sequent calculus to reason about valid formulas in ignorance models.
- Future work:
- Consider a knowledge operator K instead of \square.
- Study the structural properties of the calculus.
- Define an axiomatization for the logic of ignorance models.
- Define non-labelled calculi for the logic.

Thank you!

Thank you!

Questions?

