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Two-layered classical modal logics of probability

The original idea: interpret modality ‘□𝜑’ as ‘𝜑 is probable’, and define:

□𝜑 is true iff 𝑃(𝜑) ≥ 𝛼

Two-layered syntax consisting of:
classical inner formulas describing the events
atomic outer formulas of the form □𝜑, for each inner 𝜑
outer formulas built from atomic ones using connectives of classical logic
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Two-layered fuzzy modal logics of probability

A fuzzy-logic idea: interpret modality ‘□𝜑’ as ‘𝜑 is probable’, and define:

truth value of □𝜑 is equal to 𝑃(𝜑)

Two-layered syntax consisting of:
classical inner formulas describing the events
atomic outer formulas of the form □𝜑, for each inner 𝜑
outer formulas built from atomic ones using connectives of Łukasiewicz

logic
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Probability Kripke frames and Kripke models

A probability Kripke frame is a system F = ⟨𝑊, 𝜇⟩ where
𝑊 is a set (of possible worlds)
𝜇 is a finitely additive probability measure defined on a sublattice of P(𝑊)

A Kripke model M over a frame F = ⟨𝑊, 𝜇⟩ is a tuple M = ⟨F, ⟨𝑒𝑤⟩𝑤∈𝑊⟩ where:
𝑒𝑤 is a classical evaluation of inner formulas
for each inner formula 𝜑, the domain of 𝜇 contains the set

𝜑M = {𝑤 | 𝑒𝑤 (𝜑) = 1}
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Truth definition

The truth values of inner formulas in a world 𝑤 are given by 𝑒𝑤

The truth values of atomic outer formulas are defined uniformly:

| |□𝜑 | |M = 𝜇({𝑤 | 𝑒𝑤 (𝜑) = 1}) = 𝜇(𝜑M)

The truth values of other outer formulas are computed as :

| |¬�𝜑 | |M =1 − ||𝜑| |M
| |𝜑 →� 𝜓 | |M =min{1, 1 − ||𝜑| |M + ||𝜓 | |M}
| |𝜑 ⊕ 𝜓 | |M =min{1, | |𝜑| |M + ||𝜓 | |M}
| |𝜑 ⊖ 𝜓 | |M =max{0, | |𝜑 | |M − ||𝜓 | |M}
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Axiomatization (Godo, Esteva, Hájek)

Let 𝑇 ∪ {𝐴} be a finite set of outer formulas. TFAE:

| |𝐴| |M = 1 for each Kripke model M where | |𝐵| |M = 1 for each 𝐵 ∈ 𝑇

there is a proof of 𝐴 from premises 𝑇 in the axiomatic system consisting of:
▶ the axioms and rules of classical logic for inner formulas
▶ axioms and rules of finitary Łukasiewicz logic for outer formulas
▶ modal axioms

¬�□(0)
□(𝜑 → 𝜓) →� (□𝜑 →� □𝜓)

¬�□(𝜑) →� □(¬𝜑)
□(𝜑 ∨ 𝜓) →� (□𝜓 ⊕ (□𝜑 ⊖ □(𝜑 ∧ 𝜓)))

▶ a unary modal rule:
𝜑 � □𝜑
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Changing the measure

A necessity Kripke frame is a system F = ⟨𝑊, 𝜇⟩ where
𝑊 is a set (of possible worlds)
𝜇 is a necessity measure on a subset of P(𝑊)

In the axiomatization we just replace the modal axioms by:

¬�□(0)
□(𝜑 → 𝜓) →� (□𝜑 →� □𝜓)

(□𝜑 ∧� □𝜓) →� □(𝜑 ∧ 𝜓)
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More variations

Variations considered in the literature:

changing the measure

changing the ‘outer’ logic: replacing the Łukasiewicz logic by any other logic

changing the ‘inner’ logic: e.g. replacing classical logic
▶ by Łukasiewicz logic to speak about probability of ‘fuzzy’ events or
▶ by Dunn–Belnap logic to speak about inconsistent events

adding more modalities, also non-unary ones

any combination of the above four options
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The goal of this contribution

Advance the study of a general theory of two-layered logics

In particular, we have
identified the common aspects of existing completeness proofs

obtained general/abstract completeness theorems

instantiated them to recover (known) particular results

The first step: Cintula, Noguera. Modal Logics of Uncertainty with Two-Layer
Syntax: A General Completeness Theorem. In Proceedings of WOLLIC 2014
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Languages, variables, and formulas

Propositional case Two-layered case

language L language 𝔗 = ⟨Li, {□},Lo⟩ is a triple of prop. languages

variables Var inner variables 𝑉
(denumerable) (countable)

formulas FmVar
L formulas Fm𝑉

𝔗
= Fm𝑉

Li
∪ Fm𝛼(𝔗,𝑉 )

Lo
where,

• inner formulas Fm𝑉
Li

• atomic outer formulas 𝛼(𝔗,𝑉) of the form □𝜑
for 𝜑 ∈ Fm𝑉

Li

• outer formulas Fm𝛼(𝔗,𝑉 )
Lo
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Propositional/two-layered logics

A (finitary) logic on a set of formulas Fm is a relation ⊢ between sets of
Fm-formulas and Fm-formulas st.:

𝐴 ⊢ 𝐴

If 𝑇 ⊢ 𝐴, then 𝑇 ∪ 𝑆 ⊢ 𝐴

If 𝑇 ⊢ 𝐵 for each 𝐵 ∈ 𝑆 and 𝑆 ⊢ 𝐴, then 𝑇 ⊢ 𝐴

(If 𝑇 ⊢ 𝐴, then there is a finite 𝑇 ′ ⊆ 𝑇 such that 𝑇 ′ ⊢ 𝐴)

Propositional logic in L: a logic on FmL such that
If 𝑇 ⊢ 𝐴, then 𝜎[𝑇] ⊢ 𝜎(𝐴) for each propositional substitution 𝜎

Two-layered logic in 𝔗: a logic on Fm
𝔗

such that
If 𝑇 ⊢ 𝐴, then 𝜎[𝑇] ⊢ 𝜎(𝐴) for each two-layered substitution 𝜎
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Algebra-based semantics of propositional logics
FmVar

L : the domain of the absolutely free L-algebra 𝑭𝒎Var
L with generators Var

𝑨-evaluation: a homomorphism 𝑒 : 𝑭𝒎Var
L → 𝑨

One algebra may give rise to many propositional logics; e.g.

Γ ⊨1
�
𝜑 iff 𝑒[Γ] ⊆ {1} implies 𝑒(𝜑) = 1 for each [0, 1]�-eval. 𝑒

Γ ⊨1, 𝑓
�

𝜑 iff Γ′ ⊨1
�
𝜑 for some finite Γ′ ⊆ Γ

Γ ⊨+
�
𝜑 iff 0 ∉ 𝑒[Γ] implies 𝑒(𝜑) > 0 for each [0, 1]�-eval. 𝑒

Γ ⊨≤
�
𝜑 iff inf (𝑒[Γ]) ≤ 𝑒(𝜑) for each [0, 1]�-eval. 𝑒

Cintula (ICS CAS) and Noguera (Uni. Siena) AAL for modal logic with two-layered syntax 12 / 23



Algebra-based semantics of propositional logics
FmVar

L : the domain of the absolutely free L-algebra 𝑭𝒎Var
L with generators Var

𝑨-evaluation: a homomorphism 𝑒 : 𝑭𝒎Var
L → 𝑨

One algebra may give rise to many propositional logics; e.g.

Γ ⊨1
�
𝜑 iff 𝑒[Γ] ⊆ {1} implies 𝑒(𝜑) = 1 for each [0, 1]�-eval. 𝑒

Γ ⊨1, 𝑓
�

𝜑 iff Γ′ ⊨1
�
𝜑 for some finite Γ′ ⊆ Γ

Γ ⊨+
�
𝜑 iff 0 ∉ 𝑒[Γ] implies 𝑒(𝜑) > 0 for each [0, 1]�-eval. 𝑒

Γ ⊨≤
�
𝜑 iff inf (𝑒[Γ]) ≤ 𝑒(𝜑) for each [0, 1]�-eval. 𝑒

Cintula (ICS CAS) and Noguera (Uni. Siena) AAL for modal logic with two-layered syntax 12 / 23



Algebra-based semantics of propositional logics
FmVar

L : the domain of the absolutely free L-algebra 𝑭𝒎Var
L with generators Var

𝑨-evaluation: a homomorphism 𝑒 : 𝑭𝒎Var
L → 𝑨

One algebra may give rise to many propositional logics; e.g.

Γ ⊨1
�
𝜑 iff 𝑒[Γ] ⊆ {1} implies 𝑒(𝜑) = 1 for each [0, 1]�-eval. 𝑒

Γ ⊨1, 𝑓
�

𝜑 iff Γ′ ⊨1
�
𝜑 for some finite Γ′ ⊆ Γ

Γ ⊨+
�
𝜑 iff 0 ∉ 𝑒[Γ] implies 𝑒(𝜑) > 0 for each [0, 1]�-eval. 𝑒

Γ ⊨≤
�
𝜑 iff inf (𝑒[Γ]) ≤ 𝑒(𝜑) for each [0, 1]�-eval. 𝑒

For an L-matrix A = ⟨𝑨, 𝐹⟩ (where 𝑨 is an L-algebra and 𝐹 ⊆ 𝐴), we set:

Γ ⊨A 𝜑 iff 𝑒[Γ] ⊆ 𝐹 implies 𝑒(𝜑) ∈ 𝐹 for each 𝑨-eval. 𝑒
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For a class K of L-matrices, we set:

⊨K =
⋂
A∈ K
⊨A
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From probability Kripke frame to 𝔗-frames
A probability Kripke frame is a system F = ⟨𝑊, 𝜇□⟩

𝑊 is a set (of possible worlds)

𝜇□ is a partial mapping 𝜇□ : P(𝑊) → [0, 1]Ł with some additional properties

Note: in general we need to allow different matrices in different worlds
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From probability Kripke frame to 𝔗-frames
A probability Kripke frame is a system F = ⟨𝑊, 𝜇□⟩

𝑊 is a set (of possible worlds)
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A probability Kripke model M over F is a tuple M = ⟨F, ⟨𝑒𝑤⟩𝑤∈𝑊⟩ where:
𝑒𝑤 is a classical evaluation of inner formulas
for every inner formula 𝜑, the set

𝜑M = {𝑤 ∈ 𝑊 | 𝑒𝑤 (𝜑) = 1}

= ⟨𝑒𝑤 (𝜑)⟩𝑤∈𝑊

is in the domain of 𝜇□.

Note: in general we need to allow different matrices in different worlds
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From probability Kripke frame to 𝔗-frames
An (I-based O-measured) 𝔗-frame is a system F = ⟨𝑊, I,O,𝜇□⟩

𝑊 is a set (of possible worlds)
I is an Li-matrix and O is an Lo-matrix
𝜇□ is a partial mapping 𝜇□ : 𝐼

𝑊 → 𝑂
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From probability Kripke frame to 𝔗-frames
An (I-based O-measured) 𝔗-frame is a system F = ⟨𝑊, I,O,𝜇□⟩

𝑊 is a set (of possible worlds)
I is an Li-matrix and O is an Lo-matrix
𝜇□ is a partial mapping 𝜇□ : 𝐼

𝑊 → 𝑂

An 𝔗-model M over an 𝔗-frame F is a tuple M = ⟨F, ⟨𝑒𝑤⟩𝑤∈𝑊⟩ where:
𝑒𝑤 is an 𝑰-evaluation of inner formulas
for every inner formula 𝜑, the element

𝜑M = ⟨𝑒𝑤 (𝜑)⟩𝑤∈𝑊

is in the domain of 𝜇□ (elements of the domain are called measurable)

Note: in general we need to allow different matrices in different worlds
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Truth definition

Given an 𝔗-model M = ⟨⟨𝑊, I,O, 𝜇□⟩, ⟨𝑒𝑤⟩𝑤∈𝑊⟩, we define the truth value of
inner formulas in a given world 𝑤 using the 𝑰-evaluation 𝑒𝑤

atomic outer formulas uniformly in M as:

| |□𝜑 | |M = 𝜇□(𝜑M)

non-atomic outer formulas using the operations from 𝑶

We say that M is a model a formula 𝐴, M |= 𝐴 in symbols, if:
𝑒𝑤 (𝐴) ∈ 𝐹I for each 𝑤 ∈ 𝑊 (for inner formulas 𝐴)
| |𝐴| |M ∈ 𝐹O (for outer formulas 𝐴)
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Semantical consequence

For an 𝔗-frame F, we set:

𝑇 ⊨F 𝐴 iff for each 𝔗-model M over F: M |= 𝑇 implies M |= 𝐴

Given a class of 𝔗-frames K, we set:

⊨K =
⋂
F∈K
⊨F

⊨K is a two-layered logic in 𝔗
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Modal rules
A modal rule (axiom): a tuple Γ � Ψ, where Ψ is an outer formula and

Γ contains inner formulas only (is empty)

Given a set R of modal rules/axioms, we set

R(I,O) = {F | F is an I-based O-measured 𝔗-frame and Γ ⊨F Ψ

for each Γ � Ψ ∈ R}

E.g. FP(2, [0, 1]�) is the class of probability Kripke frames; for FP consisting of

� ¬�□0 � □(𝜑 → 𝜓) →� (□𝜑 →� □𝜓) � ¬�□𝜑 →� □(¬𝜑)

� □(𝜑 ∨ 𝜓) →� (□𝜓 ⊕ (□𝜑 ⊖ □(𝜑 ∧ 𝜓))) 𝜑 � □𝜑

Main question: Can we axiomatize ⊨R(I,O)?
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R(I,O) = {F | F is an I-based O-measured 𝔗-frame and Γ ⊨F Ψ

for each Γ � Ψ ∈ R}

E.g. FP(2, [0, 1]�) is the class of probability Kripke frames; for FP consisting of

� ¬�□0 � □(𝜑 → 𝜓) →� (□𝜑 →� □𝜓) � ¬�□𝜑 →� □(¬𝜑)

� □(𝜑 ∨ 𝜓) →� (□𝜓 ⊕ (□𝜑 ⊖ □(𝜑 ∧ 𝜓))) 𝜑 � □𝜑

Main question: Can we axiomatize ⊨R(I,O)?
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There is actually one more question . . .

Which classes of frames can be “axiomatized” as R(I,O)?

I.e., given a class K of frames, is there a set of rules R such that

K = R(I,O)?

Or at least such that
⊨K = ⊨R(I,O)?

Example: ∅(I,O) is the class of all I-based O-measured frames and for K being
the class of all total ones we have:

⊨K = ⊨∅ (I,O)?
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Answer to our main question: Yes, we can!

But we have to assume that ⊨I and ⊨O are “nice” . . .

Given an L-matrix A and a set Γ of formulas, we define the relation 𝜃A
Γ

:

⟨𝜑, 𝜓⟩ ∈ 𝜃AΓ iff 𝑒(𝜑) = 𝑒(𝜓) for each 𝑨-evaluation 𝑒 st. 𝑒[Γ] ⊆ 𝐹A

We say that ⊨A is equivalential if there is a set of binary (primitive or definable)
connectives 𝐸 (assume for simplicity that 𝐸 = {↔}) st. for each Γ:

⟨𝜑, 𝜓⟩ ∈ 𝜃AΓ iff Γ ⊨A 𝜑 ↔ 𝜓
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Axiomatizing ⊨R(I,O) — nice version

A strongly complete axiomatization of ⊨R(I,O)

Let ⊨I and ⊨O be equivalential logics. Then, for each a set of inner formulas Γ

and outer formulas 𝑇 ∪ {Φ},
Γ, 𝑇 ⊨R(I,O) Φ iff there is a tree-proof of Φ from the premises Γ ∪ 𝑇 in the
axiomatic system consisting of:

the axioms and rules of ⊨I for inner formulas
axioms and rules of ⊨O for outer formulas
all substitution instances of modal axioms/rules R
congruence rules CONG:

{𝜑 ↔i 𝜓 � □𝜑 ↔o □𝜓 | 𝜑, 𝜓 inner formulas}
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Nice, but have we recovered all the known results?

Not yet . . .

E.g. ⊨[0,1]� is not finitary so we do not recover Godo et al

E.g. if I is Dunn–Belnap, then ⊨I is not equivalential
so we do not recover Bı́lková et al

A preparation: we say that ⊨A is “weakly Fregean” if

⟨𝜑, 𝜓⟩ ∈ 𝜃A∅ iff 𝜑 ⊨A 𝜓 and 𝜓 ⊨A 𝜑

Note: Dunn–Belnap is weakly Fregean.
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Axiomatizing ⊨R(I,O)— finitary version

A complete finitary axiomatization of ⊨R(I,O) for finites sets of premises
Let ⊨I and ⊨O be equivalential logics st. ⊨I is locally finite and let 𝑉 and R be
finite. Then, for each finite sets of inner formulas Γ and outer formulas 𝑇 ∪ {Φ},
Γ, 𝑇 ⊨R(I,O) Φ iff there is a (finite sequence) proof of Φ from the premises Γ ∪ 𝑇

in the axiomatic system consisting of:
the axioms and rules of the finitary variant of ⊨I for inner formulas
axioms and rules of the finitary variant of ⊨O for outer formulas
all substitution instances of modal axioms/rules R
congruence rules CONG: :

{𝜑 ↔i 𝜓 � □𝜑 ↔o □𝜓 | 𝜑, 𝜓 inner formulas}
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Axiomatizing ⊨R(I,O) — “weakly Fregean” version

A complete axiomatization of ⊨R(I,O) of outer premises
Let ⊨I be a “weakly Fregean” logic, ⊨O be an equivalential logic, and R contains
axioms only. Then, for each set of outer formulas 𝑇 ∪ {Φ},
𝑇 ⊨R(I,O) Φ iff there is a tree-proof of Φ from the premises 𝑇 in the axiomatic
system consisting of:

the axioms and rules of ⊨I for inner formulas
axioms and rules of ⊨O for outer formulas
all substitution instances of modal axioms R
congruence axioms CONG:

{ � □𝜑 ↔o □𝜓 | 𝜑, 𝜓 inner formulas st. 𝜑 ⊨I 𝜓 and 𝜓 ⊨I 𝜑}
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Axiomatizing ⊨R(I,O) — the most abstract version (for now)

A strongly complete axiomatization of ⊨R(I,O)

Let ⊨O be an equivalential logic. Then, for each a set of inner formulas Γ and
outer formulas 𝑇 ∪ {Φ},
Γ, 𝑇 ⊨R(I,O) Φ iff there is a tree-proof of Φ from the premises Γ ∪ 𝑇 in the
axiomatic system consisting of:

the axioms and rules of ⊨I for inner formulas
axioms and rules of ⊨O for outer formulas
all substitution instances of modal axioms/rules R
congruence rules CONG:

{Δ� □𝜑 ↔o □𝜓 | Δ ∪ {𝜑, 𝜓} inner formulas and ⟨𝜑, 𝜓⟩ ∈ 𝜃IΔ}
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