Axiomatization of logics with two-layered modal syntax: the protoalgebraic case

Petr Cintula¹ Carles Noguera²

¹Institute of Computer Science Czech Academy of Sciences

²Department of Information Engineering and Mathematics University of Siena Two-layered classical modal logics of probability

The original idea: interpret modality ' $\Box \varphi$ ' as ' φ is probable', and define:

 $\Box \varphi \text{ is true} \quad \text{iff} \qquad P(\varphi) \geq \alpha$

Two-layered syntax consisting of:

- classical inner formulas describing the events
- atomic outer formulas of the form $\Box \varphi$, for each inner φ
- outer formulas built from atomic ones using connectives of classical logic

Two-layered fuzzy modal logics of probability

A fuzzy-logic idea: interpret modality ' $\Box \varphi$ ' as ' φ is probable', and define:

truth value of $\Box \varphi$ is equal to $P(\varphi)$

Two-layered syntax consisting of:

- classical inner formulas describing the events
- atomic outer formulas of the form $\Box \varphi$, for each inner φ
- outer formulas built from atomic ones using connectives of Łukasiewicz

logic

Probability Kripke frames and Kripke models

A probability Kripke frame is a system $\mathbf{F} = \langle W, \mu \rangle$ where

- W is a set (of possible worlds)
- μ is a finitely additive probability measure defined on a sublattice of $\mathcal{P}(W)$

A *Kripke model* M over a frame $\mathbf{F} = \langle W, \mu \rangle$ is a tuple $\mathbf{M} = \langle \mathbf{F}, \langle e_w \rangle_{w \in W} \rangle$ where:

- e_w is a classical evaluation of inner formulas
- for each inner formula φ , the domain of μ contains the set

 $\varphi^{\mathbf{M}} = \{ w \mid e_w(\varphi) = 1 \}$

The truth values of inner formulas in a world w are given by e_w

The truth values of inner formulas in a world w are given by e_w

The truth values of atomic outer formulas are defined uniformly:

$$||\Box\varphi||_{\mathbf{M}} = \mu(\{w \mid e_w(\varphi) = 1\}) = \mu(\varphi^{\mathbf{M}})$$

The truth values of inner formulas in a world w are given by e_w

The truth values of atomic outer formulas are defined uniformly:

$$||\Box\varphi||_{\mathbf{M}} = \mu(\{w \mid e_w(\varphi) = 1\}) = \mu(\varphi^{\mathbf{M}})$$

The truth values of other outer formulas are computed as :

$$\begin{aligned} ||\neg_{\mathbf{L}}\varphi||_{\mathbf{M}} &= 1 - ||\varphi||_{\mathbf{M}} \\ ||\varphi \rightarrow_{\mathbf{L}} \psi||_{\mathbf{M}} &= \min\{1, 1 - ||\varphi||_{\mathbf{M}} + ||\psi||_{\mathbf{M}}\} \\ ||\varphi \oplus \psi||_{\mathbf{M}} &= \min\{1, ||\varphi||_{\mathbf{M}} + ||\psi||_{\mathbf{M}}\} \\ ||\varphi \ominus \psi||_{\mathbf{M}} &= \max\{0, ||\varphi||_{\mathbf{M}} - ||\psi||_{\mathbf{M}}\} \end{aligned}$$

Axiomatization (Godo, Esteva, Hájek)

Let $T \cup \{A\}$ be a finite set of outer formulas. TFAE:

- $||A||_{\mathbf{M}} = 1$ for each Kripke model **M** where $||B||_{\mathbf{M}} = 1$ for each $B \in T$
- there is a proof of A from premises T in the axiomatic system consisting of:
 - the axioms and rules of classical logic for inner formulas
 - axioms and rules of finitary Łukasiewicz logic for outer formulas
 - modal axioms

$$\neg_{\mathbf{L}} \Box(\overline{0})$$
$$\Box(\varphi \to \psi) \to_{\mathbf{L}} (\Box \varphi \to_{\mathbf{L}} \Box \psi)$$
$$\gamma_{\mathbf{L}} \Box(\varphi) \to_{\mathbf{L}} \Box(\neg \varphi)$$
$$\Box(\varphi \lor \psi) \to_{\mathbf{L}} (\Box \psi \oplus (\Box \varphi \ominus \Box(\varphi \land \psi))$$

a unary modal rule:

 $\varphi \rhd \Box \varphi$

Changing the measure

A *necessity* Kripke frame is a system $\mathbf{F} = \langle W, \mu \rangle$ where

- W is a set (of possible worlds)
- μ is a necessity measure on a subset of $\mathcal{P}(W)$

In the axiomatization we just replace the modal axioms by:

$$\neg_{\mathbf{L}} \Box(\overline{0})$$
$$\Box(\varphi \to \psi) \to_{\mathbf{L}} (\Box \varphi \to_{\mathbf{L}} \Box \psi)$$
$$(\Box \varphi \wedge_{\mathbf{L}} \Box \psi) \to_{\mathbf{L}} \Box(\varphi \wedge \psi)$$

More variations

Variations considered in the literature:

- changing the measure
- changing the 'outer' logic: replacing the Łukasiewicz logic by any other logic
- changing the 'inner' logic: e.g. replacing classical logic
 - by Łukasiewicz logic to speak about probability of 'fuzzy' events or
 - by Dunn-Belnap logic to speak about inconsistent events
- adding more modalities, also non-unary ones
- any combination of the above four options

The goal of this contribution

Advance the study of a general theory of two-layered logics

The goal of this contribution

Advance the study of a general theory of two-layered logics

In particular, we have

- identified the common aspects of existing completeness proofs
- obtained general/abstract completeness theorems
- instantiated them to recover (known) particular results

The first step: Cintula, Noguera. Modal Logics of Uncertainty with Two-Layer Syntax: A General Completeness Theorem. In Proceedings of WOLLIC 2014

Languages, variables, and formulas

Propositional case	Two-layered case
language $\mathcal L$	language $\mathfrak{T}=\langle \mathcal{L}_i,\{\square\},\mathcal{L}_o\rangle$ is a triple of prop. languages
variables <i>Var</i> (denumerable)	inner variables <i>V</i> (countable)
formulas $\mathit{Fm}_{\mathcal{L}}^{\mathit{Var}}$	formulas $Fm_{\mathfrak{X}}^{V} = Fm_{\mathcal{L}_{i}}^{V} \cup Fm_{\mathcal{L}_{o}}^{\alpha(\mathfrak{T},V)}$ where,
	• inner formulas $Fm_{\mathcal{L}_{i}}^{V}$
	• <i>atomic</i> outer formulas $\alpha(\mathfrak{T}, V)$ of the form $\Box \varphi$
	for $arphi \in Fm_{\mathcal{L}_{\mathrm{i}}}^V$
	• outer formulas $Fm_{\mathcal{L}_{o}}^{\alpha(\mathfrak{I},V)}$

Propositional/two-layered logics

A (finitary) logic on a set of formulas Fm is a relation \vdash between sets of Fm-formulas and Fm-formulas st.:

- $\bullet \ A \vdash A$
- If $T \vdash A$, then $T \cup S \vdash A$
- If $T \vdash B$ for each $B \in S$ and $S \vdash A$, then $T \vdash A$
- (If $T \vdash A$, then there is a *finite* $T' \subseteq T$ such that $T' \vdash A$)

Propositional logic in \mathcal{L} : a logic on $Fm_{\mathcal{L}}$ such that

• If $T \vdash A$, then $\sigma[T] \vdash \sigma(A)$ for each propositional substitution σ

Two-layered logic in \mathfrak{T} : a logic on $\mathit{Fm}_{\mathfrak{T}}$ such that

• If $T \vdash A$, then $\sigma[T] \vdash \sigma(A)$ for each two-layered substitution σ

 $Fm_{\mathcal{L}}^{Var}$: the domain of the absolutely free \mathcal{L} -algebra $Fm_{\mathcal{L}}^{Var}$ with generators Var

A-evaluation: a homomorphism $e : Fm_{\mathcal{L}}^{Var} \to A$

 $Fm_{\mathcal{L}}^{Var}$: the domain of the absolutely free \mathcal{L} -algebra $Fm_{\mathcal{L}}^{Var}$ with generators Var

A-evaluation: a homomorphism $e : Fm_{\mathcal{L}}^{Var} \rightarrow A$

One algebra may give rise to many propositional logics; e.g.

$$\begin{split} &\Gamma \models_{\mathrm{L}}^{1} \varphi \quad \text{iff} \quad e[\Gamma] \subseteq \{1\} \text{ implies } e(\varphi) = 1 \qquad \text{for each } [0,1]_{\mathrm{L}}\text{-eval. } e \\ &\Gamma \models_{\mathrm{L}}^{1,f} \varphi \quad \text{iff} \quad \Gamma' \models_{\mathrm{L}}^{1} \varphi \qquad \qquad \text{for some finite } \Gamma' \subseteq \Gamma \\ &\Gamma \models_{\mathrm{L}}^{+} \varphi \quad \text{iff} \quad 0 \notin e[\Gamma] \text{ implies } e(\varphi) > 0 \qquad \qquad \text{for each } [0,1]_{\mathrm{L}}\text{-eval. } e \\ &\Gamma \models_{\mathrm{L}}^{\leq} \varphi \quad \text{iff} \quad \inf(e[\Gamma]) \leq e(\varphi) \qquad \qquad \text{for each } [0,1]_{\mathrm{L}}\text{-eval. } e \end{split}$$

 $Fm_{\mathcal{L}}^{Var}$: the domain of the absolutely free \mathcal{L} -algebra $Fm_{\mathcal{L}}^{Var}$ with generators Var

A-evaluation: a homomorphism $e : Fm_{\mathcal{L}}^{Var} \rightarrow A$

One algebra may give rise to many propositional logics; e.g.

$$\begin{split} &\Gamma \models_{\mathrm{L}}^{1} \varphi \quad \text{iff} \quad e[\Gamma] \subseteq \{1\} \text{ implies } e(\varphi) = 1 & \text{ for each } [0,1]_{\mathrm{L}}\text{-eval. } e \\ &\Gamma \models_{\mathrm{L}}^{1,f} \varphi \quad \text{iff} \quad \Gamma' \models_{\mathrm{L}}^{1} \varphi & \text{ for some finite } \Gamma' \subseteq \Gamma \\ &\Gamma \models_{\mathrm{L}}^{+} \varphi & \text{ iff} \quad 0 \notin e[\Gamma] \text{ implies } e(\varphi) > 0 & \text{ for each } [0,1]_{\mathrm{L}}\text{-eval. } e \\ &\Gamma \models_{\mathrm{L}}^{\leq} \varphi & \text{ iff} \quad \inf(e[\Gamma]) \leq e(\varphi) & \text{ for each } [0,1]_{\mathrm{L}}\text{-eval. } e \end{split}$$

For an \mathcal{L} -matrix $\mathbf{A} = \langle \mathbf{A}, F \rangle$ (where \mathbf{A} is an \mathcal{L} -algebra and $F \subseteq \mathbf{A}$), we set:

 $\Gamma \models_{\mathbf{A}} \varphi$ iff $e[\Gamma] \subseteq F$ implies $e(\varphi) \in F$ for each *A*-eval. *e*

 $Fm_{\mathcal{L}}^{Var}$: the domain of the absolutely free \mathcal{L} -algebra $Fm_{\mathcal{L}}^{Var}$ with generators Var

A-evaluation: a homomorphism $e : Fm_{\mathcal{L}}^{Var} \rightarrow A$

One algebra may give rise to many propositional logics; e.g.

$$\begin{split} &\Gamma \models_{\mathrm{L}}^{1} \varphi \quad \text{iff} \quad e[\Gamma] \subseteq \{1\} \text{ implies } e(\varphi) = 1 & \text{ for each } [0,1]_{\mathrm{L}}\text{-eval. } e \\ &\Gamma \models_{\mathrm{L}}^{1,f} \varphi \quad \text{iff} \quad \Gamma' \models_{\mathrm{L}}^{1} \varphi & \text{ for some finite } \Gamma' \subseteq \Gamma \\ &\Gamma \models_{\mathrm{L}}^{+} \varphi & \text{ iff} \quad 0 \notin e[\Gamma] \text{ implies } e(\varphi) > 0 & \text{ for each } [0,1]_{\mathrm{L}}\text{-eval. } e \\ &\Gamma \models_{\mathrm{L}}^{\leq} \varphi & \text{ iff} \quad \inf(e[\Gamma]) \leq e(\varphi) & \text{ for each } [0,1]_{\mathrm{L}}\text{-eval. } e \end{split}$$

For a class \mathbb{K} of \mathcal{L} -matrices, we set:

$$\models_{\mathbb{K}} = \bigcap_{\mathbf{A} \in \mathbb{K}} \models_{\mathbf{A}}$$

A probability Kripke frame is a system $\mathbf{F} = \langle W, \mu_{\Box} \rangle$

• W is a set (of possible worlds)

۲

• μ_{\Box} is a partial mapping $\mu_{\Box} : \mathcal{P}(W) \to [0,1]_{k}$ with some additional properties

A probability Kripke frame is a system $\mathbf{F} = \langle W, \mu_{\Box} \rangle$

- W is a set (of possible worlds)
- ۲
- μ_{\Box} is a partial mapping $\mu_{\Box} \colon \mathcal{P}(W) \to [0,1]_{\mathsf{t}}$ with some additional properties

A probability Kripke model M over F is a tuple $M = \langle F, \langle e_w \rangle_{w \in W} \rangle$ where:

- e_w is a classical evaluation of inner formulas
- for every inner formula φ , the set

$$\varphi^{\mathbf{M}} = \{ w \in W \mid e_w(\varphi) = 1 \}$$

is in the domain of μ_{\Box} .

An (I-based O-measured) \mathfrak{T} -frame is a system $\mathbf{F} = \langle W, \mathbf{I}, \mathbf{O}, \mu_{\Box} \rangle$

- W is a set (of possible worlds)
- $\bullet~\mathbf{I}$ is an $\mathcal{L}_i\text{-matrix}$ and $\mathbf{0}$ is an $\mathcal{L}_o\text{-matrix}$
- μ_{\Box} is a partial mapping $\mu_{\Box} \colon I^W \to O$

A probability Kripke model M over F is a tuple $M = \langle F, \langle e_w \rangle_{w \in W} \rangle$ where:

- e_w is a classical evaluation of inner formulas
- for every inner formula φ , the set

$$\varphi^{\mathbf{M}} = \{ w \in W \mid e_w(\varphi) = 1 \}$$

is in the domain of μ_{\Box} .

An (I-based O-measured) \mathfrak{T} -frame is a system $\mathbf{F} = \langle W, \mathbf{I}, \mathbf{O}, \mu_{\Box} \rangle$

- W is a set (of possible worlds)
- $\bullet~\mathbf{I}$ is an $\mathcal{L}_i\text{-matrix}$ and \mathbf{O} is an $\mathcal{L}_o\text{-matrix}$
- μ_{\Box} is a partial mapping $\mu_{\Box} \colon I^W \to O$

A probability Kripke model M over F is a tuple $M = \langle F, \langle e_w \rangle_{w \in W} \rangle$ where:

- e_w is a classical evaluation of inner formulas
- for every inner formula φ , the set

$$\varphi^{\mathbf{M}} = \{ w \in W \mid e_w(\varphi) = 1 \} = \langle e_w(\varphi) \rangle_{w \in W}$$

is in the domain of μ_{\Box} .

An (I-based O-measured) \mathfrak{T} -frame is a system $\mathbf{F} = \langle W, \mathbf{I}, \mathbf{O}, \mu_{\Box} \rangle$

- W is a set (of possible worlds)
- $\bullet~\mathbf{I}$ is an $\mathcal{L}_i\text{-matrix}$ and \mathbf{O} is an $\mathcal{L}_o\text{-matrix}$
- μ_{\Box} is a partial mapping $\mu_{\Box} \colon I^W \to O$

An \mathfrak{T} -model M over an \mathfrak{T} -frame F is a tuple M = $\langle F, \langle e_w \rangle_{w \in W} \rangle$ where:

- e_w is an *I*-evaluation of inner formulas
- for every inner formula φ , the element

$$\varphi^{\mathbf{M}} = \langle e_w(\varphi) \rangle_{w \in W}$$

is in the domain of μ_{\Box}

(elements of the domain are called *measurable*)

Note: in general we need to allow different matrices in different worlds

Given an \mathfrak{T} -model $\mathbf{M} = \langle \langle W, \mathbf{I}, \mathbf{0}, \mu_{\Box} \rangle, \langle e_w \rangle_{w \in W} \rangle$, we define the truth value of

- inner formulas in a given world w using the *I*-evaluation e_w
- atomic outer formulas uniformly in M as:

$$||\Box \varphi||_{\mathbf{M}} = \mu_{\Box}(\varphi^{\mathbf{M}})$$

• non-atomic outer formulas using the operations from O

Given an \mathfrak{T} -model $\mathbf{M} = \langle \langle W, \mathbf{I}, \mathbf{0}, \mu_{\Box} \rangle, \langle e_w \rangle_{w \in W} \rangle$, we define the truth value of

- inner formulas in a given world w using the *I*-evaluation e_w
- atomic outer formulas uniformly in M as:

$$||\Box \varphi||_{\mathbf{M}} = \mu_{\Box}(\varphi^{\mathbf{M}})$$

ullet non-atomic outer formulas using the operations from O

We say that **M** is a model a formula A, **M** \models A in symbols, if:

•
$$e_w(A) \in F_I$$
 for each $w \in W$

• $||A||_{\mathbf{M}} \in F_{\mathbf{O}}$

(for inner formulas A)

(for outer formulas A)

Semantical consequence

For an \mathfrak{T} -frame **F**, we set:

 $T \models_{\mathbf{F}} A$ iff for each \mathfrak{T} -model **M** over **F**: $\mathbf{M} \models T$ implies $\mathbf{M} \models A$

Semantical consequence

For an \mathfrak{T} -frame **F**, we set:

 $T \models_{\mathbf{F}} A$ iff for each \mathfrak{T} -model **M** over **F**: $\mathbf{M} \models T$ implies $\mathbf{M} \models A$

Given a class of \mathfrak{T} -frames K, we set:

$$\models_{\mathsf{K}} = \bigcap_{\mathbf{F} \in \mathsf{K}} \models_{\mathbf{F}}$$

Semantical consequence

For an \mathfrak{T} -frame **F**, we set:

 $T \models_{\mathbf{F}} A$ iff for each \mathfrak{T} -model **M** over **F**: $\mathbf{M} \models T$ implies $\mathbf{M} \models A$

Given a class of \mathfrak{T} -frames K, we set:

$$\models_{\mathsf{K}} = \bigcap_{\mathbf{F} \in \mathsf{K}} \models_{\mathbf{F}}$$

A modal rule (axiom): a tuple $\Gamma \triangleright \Psi$, where Ψ is an outer formula and Γ contains inner formulas only (is empty)

A modal rule (axiom): a tuple $\Gamma \triangleright \Psi$, where Ψ is an outer formula and Γ contains inner formulas only (is empty)

Given a set R of modal rules/axioms, we set

 $\mathsf{R}(\mathbf{I}, \mathbf{O}) = \{\mathbf{F} \mid \mathbf{F} \text{ is an } \mathbf{I}\text{-based } \mathbf{O}\text{-measured } \mathfrak{T}\text{-frame and } \Gamma \models_{\mathbf{F}} \Psi$

for each $\Gamma \triangleright \Psi \in \mathsf{R}$ }

A modal rule (axiom): a tuple $\Gamma \triangleright \Psi$, where Ψ is an outer formula and Γ contains inner formulas only (is empty)

Given a set R of modal rules/axioms, we set

 $\mathsf{R}(\mathbf{I},\mathbf{O}) = \{\mathbf{F} \mid \mathbf{F} \text{ is an } \mathbf{I}\text{-based } \mathbf{O}\text{-measured } \mathfrak{T}\text{-frame and } \Gamma \models_{\mathbf{F}} \Psi$

```
for each \Gamma \triangleright \Psi \in \mathsf{R}}
```

E.g. $FP(2, [0,1]_L)$ is the class of probability Kripke frames; for FP consisting of

$$\rhd \neg_{\mathbf{L}} \Box \overline{\mathbf{0}} \qquad \qquad \rhd \Box (\varphi \to \psi) \to_{\mathbf{L}} (\Box \varphi \to_{\mathbf{L}} \Box \psi) \qquad \qquad \rhd \neg_{\mathbf{L}} \Box \varphi \to_{\mathbf{L}} \Box (\neg \varphi)$$

$$\rhd \Box(\varphi \lor \psi) \to_{\mathrm{L}} (\Box \psi \oplus (\Box \varphi \ominus \Box(\varphi \land \psi))) \qquad \varphi \rhd \Box \varphi$$

A modal rule (axiom): a tuple $\Gamma \triangleright \Psi$, where Ψ is an outer formula and Γ contains inner formulas only (is empty)

Given a set R of modal rules/axioms, we set

 $\mathsf{R}(\mathbf{I},\mathbf{O}) = \{\mathbf{F} \mid \mathbf{F} \text{ is an } \mathbf{I}\text{-based } \mathbf{O}\text{-measured } \mathfrak{T}\text{-frame and } \Gamma \models_{\mathbf{F}} \Psi$

```
for each \Gamma \triangleright \Psi \in \mathsf{R}}
```

E.g. $FP(2, [0,1]_L)$ is the class of probability Kripke frames; for FP consisting of

$$\rhd \neg_{\mathbf{L}} \Box \overline{\mathbf{0}} \qquad \qquad \rhd \Box (\varphi \to \psi) \to_{\mathbf{L}} (\Box \varphi \to_{\mathbf{L}} \Box \psi) \qquad \qquad \rhd \neg_{\mathbf{L}} \Box \varphi \to_{\mathbf{L}} \Box (\neg \varphi)$$

$$\rhd \Box(\varphi \lor \psi) \to_{\mathrm{L}} (\Box \psi \oplus (\Box \varphi \ominus \Box(\varphi \land \psi))) \qquad \varphi \rhd \Box \varphi$$

Main question: Can we axiomatize $\models_{R(I,0)}$?

There is actually one more question ...

Which classes of frames can be "axiomatized" as $\mathsf{R}(\mathbf{I},\mathbf{O})?$

I.e., given a class K of frames, is there a set of rules R such that

 $\mathsf{K} = \mathsf{R}(\mathbf{I}, \mathbf{O})?$

There is actually one more question ...

Which classes of frames can be "axiomatized" as R(I, O)?

I.e., given a class K of frames, is there a set of rules R such that

K = R(I, O)?

Or at least such that

 $\models_{\mathsf{K}} = \models_{\mathsf{R}(\mathbf{I},\mathbf{0})}?$

There is actually one more question ...

Which classes of frames can be "axiomatized" as R(I, O)?

I.e., given a class K of frames, is there a set of rules R such that

K = R(I, O)?

Or at least such that

 $\models_{\mathsf{K}} = \models_{\mathsf{R}(\mathbf{I},\mathbf{0})}?$

Example: $\emptyset(I, O)$ is the class of all I-based O-measured frames and for K being the class of all total ones we have:

$$\models_{\mathsf{K}} = \models_{\emptyset(\mathbf{I},\mathbf{0})}?$$

Answer to our main question: Yes, we can!

But we have to assume that \models_I and \models_O are "nice" ...

Answer to our main question: Yes, we can!

But we have to assume that \models_I and \models_O are "nice" ...

Given an \mathcal{L} -matrix **A** and a set Γ of formulas, we define the relation $\theta_{\Gamma}^{\mathbf{A}}$:

 $\langle \varphi, \psi \rangle \in \theta_{\Gamma}^{\mathbf{A}}$ iff $e(\varphi) = e(\psi)$ for each *A*-evaluation *e* st. $e[\Gamma] \subseteq F_{\mathbf{A}}$

Answer to our main question: Yes, we can!

But we have to assume that \models_I and \models_O are "nice" ...

Given an \mathcal{L} -matrix **A** and a set Γ of formulas, we define the relation $\theta_{\Gamma}^{\mathbf{A}}$:

 $\langle \varphi, \psi \rangle \in \theta_{\Gamma}^{\mathbf{A}}$ iff $e(\varphi) = e(\psi)$ for each *A*-evaluation *e* st. $e[\Gamma] \subseteq F_{\mathbf{A}}$

We say that \models_A is equivalential if there is a set of binary (primitive or definable) connectives *E* (assume for simplicity that $E = \{\leftrightarrow\}$) st. for each Γ :

 $\langle \varphi, \psi \rangle \in \theta_{\Gamma}^{\mathbf{A}} \qquad \text{iff} \qquad \Gamma \models_{\mathbf{A}} \varphi \leftrightarrow \psi$

Axiomatizing $\models_{R(I,0)}$ – nice version

A strongly complete axiomatization of $\models_{R(I,0)}$

Let \models_I and \models_O be equivalential logics. Then, for each a set of inner formulas Γ and outer formulas $T \cup \{\Phi\}$,

 Γ , $T \models_{\mathsf{R}(\mathbf{I},\mathbf{0})} \Phi$ iff there is a tree-proof of Φ from the premises $\Gamma \cup T$ in the axiomatic system consisting of:

- the axioms and rules of \models_I for inner formulas
- axioms and rules of ⊧₀ for outer formulas
- all substitution instances of modal axioms/rules R
- ongruence rules CONG:

 $\{\varphi \leftrightarrow_{i} \psi \rhd \Box \varphi \leftrightarrow_{o} \Box \psi \mid \varphi, \psi \text{ inner formulas}\}$

Not yet ...

Not yet ...

E.g. $\models_{[0,1]_{L}}$ is not finitary

so we do not recover Godo et al

Not yet ...

E.g. $\models_{[0,1]_{\mathbb{L}}}$ is not finitary

so we do not recover Godo et al

E.g. if I is Dunn–Belnap, then \models_I is not equivalential so we do not recover Bílková et al

Not yet ...

E.g. $\models_{[0,1]_{L}}$ is not finitary

so we do not recover Godo et al

E.g. if I is Dunn–Belnap, then \models_I is not equivalential so we do not recover Bílková et al

A preparation: we say that Fregean" if

 $\langle \varphi, \psi \rangle \in \theta_{\emptyset}^{\mathbf{A}}$ iff $\varphi \models_{\mathbf{A}} \psi$ and $\psi \models_{\mathbf{A}} \varphi$

Note: Dunn-Belnap is weakly Fregean.

Axiomatizing $\models_{R(I,0)}$ - finitary version

A complete finitary axiomatization of $\models_{R(I,0)}$ for finites sets of premises

Let \models_I and \models_O be equivalential logics st. \models_I is locally finite and let *V* and R be finite. Then, for each finite sets of inner formulas Γ and outer formulas $T \cup \{\Phi\}$,

 Γ , $T \models_{\mathsf{R}(\mathbf{I},\mathbf{0})} \Phi$ iff there is a (finite sequence) proof of Φ from the premises $\Gamma \cup T$ in the axiomatic system consisting of:

- $\bullet\,$ the axioms and rules of the finitary variant of ${\mbox{\tiny FI}}$ for inner formulas
- axioms and rules of the finitary variant of \models_0 for outer formulas
- all substitution instances of modal axioms/rules R
- congruence rules CONG: :

 $\{\varphi \leftrightarrow_{i} \psi \rhd \Box \varphi \leftrightarrow_{o} \Box \psi \mid \varphi, \psi \text{ inner formulas}\}$

Axiomatizing $\models_{R(I,O)}$ – "weakly Fregean" version

A complete axiomatization of $\models_{R(I,0)}$ of outer premises

Let \models_I be a "weakly Fregean" logic, \models_0 be an equivalential logic, and R contains axioms only. Then, for each set of outer formulas $T \cup \{\Phi\}$,

 $T \models_{\mathsf{R}(\mathbf{I},\mathbf{0})} \Phi$ iff there is a tree-proof of Φ from the premises *T* in the axiomatic system consisting of:

- the axioms and rules of \models_I for inner formulas
- axioms and rules of \models_0 for outer formulas
- all substitution instances of modal axioms R
- congruence axioms CONG:

 $\{ \rhd \Box \varphi \leftrightarrow_{o} \Box \psi \mid \varphi, \psi \text{ inner formulas st. } \varphi \models_{\mathbf{I}} \psi \text{ and } \psi \models_{\mathbf{I}} \varphi \}$

Axiomatizing $\models_{R(I,O)}$ — the most abstract version (for now)

A strongly complete axiomatization of $\models_{R(I,0)}$

Let \models_0 be an equivalential logic. Then, for each a set of inner formulas Γ and outer formulas $T \cup \{\Phi\}$,

 Γ , $T \models_{\mathsf{R}(\mathbf{I},\mathbf{0})} \Phi$ iff there is a tree-proof of Φ from the premises $\Gamma \cup T$ in the axiomatic system consisting of:

- the axioms and rules of \models_I for inner formulas
- axioms and rules of ⊧₀ for outer formulas
- all substitution instances of modal axioms/rules R
- congruence rules CONG:

 $\{\Delta \rhd \Box \varphi \leftrightarrow_{o} \Box \psi \mid \Delta \cup \{\varphi, \psi\} \text{ inner formulas and } \langle \varphi, \psi \rangle \in \theta_{\Delta}^{I}\}$