Modal Information Logic: DECIDABILITY AND COMPLETENESS

Søren Brinck Knudstorp
Extract of MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili
September 7, 2022

Universiteit van Amsterdam

Plan for the talk

- Introducing the logics
- Stating the problems
- Outlining the strategy
- Solving the problems using the strategy

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
w \Vdash\langle\sup \rangle \varphi \psi \text { iff } \begin{array}{r}
\exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Definition (frames and logics)

(Pre) (W, \leq) is a preorder (refl., tr.);

(Pos) (W, \leq) is a poset (anti-sym. preorder); and

$$
(\text { Sem })(W W, \leq) \text { is a ioin-semilattice (poset w. all bin joins) }
$$

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi,
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\sup \rangle \varphi \psi
$$

and the semantics of '(sup)' is:

$$
\begin{array}{r}
w \Vdash\langle\sup \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w=\sup \{u, v\})
\end{array}
$$

Example

Definition (frames and logics)

Three classes of frames (W, \leq), namely those where

$$
\begin{aligned}
& \text { (Pre) }(W, \leq) \text { is a preorder (refl., tr.); } \\
& \text { (Pos) }(W, \leq) \text { is a poset (anti-sym. preorder); and } \\
& \text { (Sem) }(W, \leq) \text { is a join-semilattice (poset w. all bin. joins) }
\end{aligned}
$$

Resulting in the logics $M I L_{\text {pre }}, M I L_{\text {pos }}, M I L_{\text {sem }}$, respectively.

Motivation

Why MILs?

```
    with other logics (e.g., truthmaker logics).
    introduced to model a theorv of information (bv van Benthem (1996))
    - Modestly extend S4 [MILpre,MILpos].
```

What in particular?
Guided hy two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$ and
(D) nrovino (ıun)decidahility

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MIL pre , MIL pos].

What in particutar?

Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing M1L Pre and M11 pos; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MILpre, MILpos].

What in particular?

Guided hy timo central problems (posed in van Benthem (2017, 2019)), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\mathbf{S 4}$ [MIL ${ }_{\text {pre }}$, MIL $_{\text {Pos }}$].

What in particular?

Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing M1L pre and M11 pos; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\mathbf{S 4}$ [MIL ${ }_{\text {pre }}$, MIL $_{\text {Pos }}$].

What in particular?
Guided by two central problems (posed in van Benthem (2017, 2019)), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$; and
(D) proving (un)decidability.

Motivation

Why MILs?

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend $\mathbf{S 4}$ [MIL ${ }_{\text {pre }}$, MIL $_{\text {Pos }}$].

What in particular?
Guided by two central problems (posed in van Benthem $(2017,2019)$), namely
(A) axiomatizing $M I L_{\text {pre }}$ and $M I L_{\text {pos }}$; and
(D) proving (un)decidability.

Initial study (MIL Pre and MIL $_{\text {Pos }}$)

Proposition

MII s lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {pos }}$)
(2) Use the axiomatization to find another class of structures C for which $\log (\mathcal{C})=$ MILpre.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL ${ }_{\text {pre }}$ and MIL $_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize MIL pre $^{(\text {and deduce }}$ MIL pre $=$ MIL pos).
(2) Use the axiomatization to find another class of structures C for which $\log (\mathcal{C})=$ MILpre.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and MIL $_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
which $\log (\mathcal{C})=$ MIL $_{\text {pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=M / L_{\text {pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

Initial study (MIL Pre and $M I L_{\text {pos }}$)

Proposition

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

How we solve (A), and then (D) using (A):
(1) We axiomatize $M I L_{\text {pre }}$ (and deduce $M I L_{\text {pre }}=M I L_{\text {Pos }}$).
(2) Use the axiomatization to find another class of structures \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$.
(3) Prove that on \mathcal{C} we do have the FMP and deduce decidability.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness \checkmark

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We
construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in l_{n}(x)$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\mathrm{I}$
(Ind)
Sup pose (F_{n}, l_{n}) has been constructed.
-If $x \in \mathbb{F} n$ and $\neg(\sup) \psi \psi^{\prime} \in \ln (x)$ but $x=\operatorname{supp}_{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.

- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in \ln (x)$

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{I} n, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness
For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg(\sup) \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so
that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(DK.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$,
that $x \neq \sup _{n+1}\{y, z\}$

(1): axiomatizing MIL pre

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.

(1): axiomatizing MIL

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) \langle sup $\rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle\sup \rangle q r) \rightarrow\langle$ sup $\rangle p q$

Proof idea

Soundness

For completeness, let $\Gamma \supseteq \Gamma_{0}$ be an MCS extending some consistent Γ_{0}. We construct a satisfying model using the step-by-step method:
(Base) Singleton frame $\mathbb{F}_{0}:=\left(\left\{x_{0}\right\},\left\{\left(x_{0}, x_{0}\right)\right\}\right)$ and 'labeling' $l_{0}\left(x_{0}\right)=\Gamma$.
(Ind) Suppose $\left(\mathbb{F}_{n}, l_{n}\right)$ has been constructed.

- If $x \in \mathbb{F}_{n}$ and $\neg\langle\sup \rangle \psi \psi^{\prime} \in l_{n}(x)$ but $x=\sup _{n}\{y, z\}$ s.t.
$\psi \in l_{n}(y), \psi^{\prime} \in l_{n}(z)$, coherently extend to $\left(\mathbb{F}_{n+1}, l_{n+1}\right) \supseteq\left(\mathbb{F}_{n}, l_{n}\right)$ so that $x \neq \sup _{n+1}\{y, z\}$.
- Similarly, for $\langle\sup \rangle \chi \chi^{\prime} \in l_{n}(x)$.

Completeness of MIL $_{\text {Pre }}$ (cont.)

Example

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
& \text { (Re.) } p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
& \text { (4) } P P p \rightarrow P p \\
& \text { (Co.) }\langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
& \text { (Dk.) }(p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

About the proof

Soundness: routine.
Completeness: step-by-step method.

(1): axiomatizing MIL $_{\text {Pre }}$

Axiomatization (soundness and completeness)

MILpre is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
& \text { (Re.) } p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
& \text { (4) } P P p \rightarrow P p \\
& \text { (Co.) }\langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
& \text { (Dk.) }(p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

About the proof

Soundness: routine.
Completeness: step-by-step method.

Corollary

As a corollary we get that MILpre $=$ MILpos.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (wrt the class of definition) miaht not be verv telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {pre }}$:
(i) Nothing in the ax. of MIL pre $^{\text {necessitating ' }\langle\text { sup }\rangle \text { ' to be interpreted }}$ using a supremum relation.
(ii) Canon. re-interpretation
where $C \subseteq W^{3}$ is an arbitrary relation
(ii) Then $\operatorname{Tng}(C)=$ MII nem $^{\text {in }}$
(3) Decidability through FMP on C:
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidabilitv.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced'logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL ${ }_{\text {pre }}$ necessitating ' \langle sup \rangle ' to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\},
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(ii) And this implies decidability.

Thus, we have solved both (A) and (D)

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\},
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with 'semantically introduced' logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL pre necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\},
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).
Gen. takeaway: When dealing with 'semantically introduced' logics,

(2) and (3): 'decidability via completeness'

(2) Find another class \mathcal{C} for which $\log (\mathcal{C})=M I L_{\text {Pre }}$:
(i) Nothing in the ax. of MIL ${ }_{\text {Pre }}$ necessitating ' $\langle\text { sup }\rangle^{\prime}$ to be interpreted using a supremum relation.
(ii) Canon. re-interpretation:

$$
\mathcal{C}:=\{(W, C) \mid(W, C) \Vdash(R e .) \wedge(C o .) \wedge(4) \wedge(D k .)\}
$$

where $C \subseteq W^{3}$ is an arbitrary relation.
(iii) Then $\log (\mathcal{C})=$ MILPre.
(3) Decidability through FMP on \mathcal{C} :
(i) On \mathcal{C}, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).
Gen. takeaway: When dealing with 'semantically introduced' logics, not having the FMP (w.r.t. the class of definition) might not be very telling.

How about join-semilattices (i.e., MIL sem)?

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

'Indeterministic step-by-step' (MILsem)

Model constr.

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
M
'Indeterministic step-by-step' $\left(M I L_{\text {sem }}\right)$
Standard step-by-step (e.g., MILpre)

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
\mathbb{M}
-

Standard step-by-step (e.g., MIL ${ }_{\text {pre }}$)

'Indeterministic step-by-step' (MILsem)

Model constr.

Axioms:
π_{0}

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):
Henkin (e.g., K)

Standard step-by-step (e.g., MIL pre)

M

'Indeterministic step-by-step' (MIL ${ }_{\text {sem }}$)

Thank you!

References I

五
Van Benthem, J. (1996). "Modal Logic as a Theory of Information". In: Logic and Reality. Essays on the Legacy of Arthur Prior. Ed. by J. Copeland. Clarendon Press, Oxford, pp. 135-168 (cit. on pp. 6-11).

首 - (10/2017). "Constructive agents". In: Indagationes Mathematicae 29. DOI: 10.1016/j.indag.2017.10.004 (cit. on pp. 6-11).
(2019). "Implicit and Explicit Stances in Logic". In: Journal of Philosophical Logic 48.3, pp. 571-601. DOI: 10.1007/s10992-018-9485-y (cit. on pp. 6-11).

Can we generalize these techniques?

MILs with informational implication ' \backslash

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition
is given by adding ' V ' with

The problems now become
(Al) axiomatizing MIL ${ }_{1-p r e}$ and MIL 1 -posi and
(D
) proving (un)decidability
The same (1)-(2)-(3) structure is used as before, but now we
(1) axiomatize the logic Log (C),
(2') through representation show that Log $(C)=M L_{\mid-p r e}=M I L_{\mid-p o s ;}$ and
(3) get decidability through FMP on \mathcal{C}.

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S 4}$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{\text {l-pre }}, M I L_{1-P o s}$, respectively.

[^0]
MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S} 4$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M / L_{1-\text {-pre }}, M / L_{1 \text {-pos }}$, respectively.
The problems now become
(A
) axiomatizing $M I L_{1-\text {-pre }}$ and $M I L_{1-\text {-pos; }}$ and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1^{\prime}) axiomatize the $\operatorname{logic}^{\log }(\mathcal{C})$;
(2') through representation show that $\log (C)=$ MILIPre $=$ MIL $L_{\text {posi }}$ and
(3) get decidability through FMP on \mathcal{C}.

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S} 4$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-\text {-pre }}, M / L_{1 \text {-pos }}$, respectively.
The problems now become
(A
) axiomatizing $M I L_{1-\text {-pre }}$ and $M I L_{1-\text {-pos }}$ and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
$\left(1^{\prime}\right)$ axiomatize the logic $\log _{\backslash}(\mathcal{C})$;
(2') through representation show that $\log _{\backslash}(\mathcal{C})=$ MIL $_{1 \text {-pre }}=$ MIL $_{1 \text {-Pos }}$; and
(3) get decidability through FMP on \mathcal{C}.

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S} 4$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1-\text {-pre }}, M / L_{1 \text {-pos }}$, respectively.
The problems now become
(A
) axiomatizing $M I L_{1-\text {-pre }}$ and $M I L_{1-\text {-pos }}$ and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1^{\prime}) axiomatize the logic $\log _{\backslash}(\mathcal{C})$;
(2') through representation show that $\log _{\backslash}(\mathcal{C})=M / L_{1 \text {-pre }}=M I L_{1 \text {-pos }}$; and
(3) get decidability through FMP on \mathcal{C}.

MILs with informational implication ' $\$ '

(Natural) extensions of $M I L_{\text {pre }}$ and $M I L_{\text {Pos }}$ [and $\mathbf{S} 4$] are obtained by adding an informational implication ' \backslash '.

Definition

The language is given by adding ' \backslash ' with semantics:

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\}] \Rightarrow w \Vdash \psi)
$$

We denote the resulting logics as $M I L_{1 \text {-Pre }}, M / L_{1 \text {-Pos }}$, respectively.
The problems now become
(A
) axiomatizing $M I L_{1-\text {-pre }}$ and $M I L_{1-\text {-pos }}$ and
(D
) proving (un)decidability.
The same (1)-(2)-(3) structure is used as before, but now we
(1^{\prime}) axiomatize the logic $\log _{\backslash}(\mathcal{C})$;
(2') through representation show that $\log _{\backslash}(\mathcal{C})=M / L_{1 \text {-pre }}=M I L_{1 \text {-pos }}$ and
(3) get decidability through FMP on \mathcal{C}.

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{M i n}
$$

$$
M I L_{\text {l-Pre }}=M I L_{1-P o s}=M I L_{1-P r e}^{M i n}=M I L_{1-P o S}^{M i n}
$$

This concludes and summarizes our study of MILs on preorders and

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\text {Min }}
$$

This concludes and summarizes our study of MILs on preorders and

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\operatorname{Min}}
$$

This concludes and summarizes our study of MILs on preorders and

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\operatorname{Min}}
$$

and even

$$
M I L_{1-\text { Pre }}=M I L_{1-\text { Pos }}=M I L_{l-\text { Pre }}^{\operatorname{Min}}=M I L_{l-\text { Pos }}^{\operatorname{Min}}
$$

This concludes and summarizes our study of MILs on preorders and

MILs of minimal upper bounds

Question: What happens if we extend $\mathbf{S} 4$ with vocabulary for minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\text {Min }}=M I L_{\text {Pos }}^{\text {Min }}
$$

and even

$$
M I L_{1-\text { Pre }}=M I L_{\mid- \text {Pos }}=M I L_{\mid- \text {Pre }}^{\operatorname{Min}}=M I L_{\mid- \text {Pos }}^{\operatorname{Min}}
$$

This concludes and summarizes our study of MILs on preorders and posets.

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

'Indeterministic step-by-step' (MILsem)

Model constr.

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
M
'Indeterministic step-by-step' $\left(M I L_{\text {sem }}\right)$

Model constr.

Standard step-by-step (e.g., MILpre)

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):

Henkin (e.g., K)
\mathbb{M}
-

Standard step-by-step (e.g., MIL ${ }_{\text {pre }}$)

'Indeterministic step-by-step' (MILsem)

Model constr.

Axioms:
π_{0}

Axiomatizing MIL $_{\text {sem }}$

Three ways to completeness (some intuitions for our proof):
Henkin (e.g., K)

Standard step-by-step (e.g., MIL pre)

M

'Indeterministic step-by-step' (MIL $_{\text {sem }}$)

Conclusion and future work

What we have done:

> Thorougly surveyed the landscape of MILs on preorders and posets.

> Made crossings with the Lambek Calculus and truthmaker logics.

> Axiomatized $M I L_{\text {sem }}$.

What comes next:
Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problems of fin. ax. and the FMP w.r.t. $\mathcal{C}_{\text {Sem }}$.

Applying the techniques and heuristics of this thesis in other
settings-not least those going into axiomatizing $M I L_{\text {Sem }}$
Further exploring how MILs connect to other logics

[^1]
Conclusion and future work

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
Made crossings with the Lambek Calculus and truthmaker logics.
- Axiomatized MILsem.

What comes next:

Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problems of fin. ax. and the FMP w.r.t. $\mathcal{C}_{\text {sem }}$.
Applying the techniques and heuristics of this thesis in other
settings-not least those going into axiomatizing $M I L_{\text {sem }}$.
Further exploring how MILs connect to other logics.

[^2]
Conclusion and future work

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics. ${ }^{1}$
- Axiomatized MILsem.

What comes next:

nroving (un)decielability of MILsem and solving the ancillary problems of fin. ax. and the FMP w.r.t. Csem.

Applying the techniques and heuristics of this thesis in other settings-not least those going into axiomatizing $M I L_{\text {sem }}$.

- Further exploring how MILs connect to other logics.

[^3]
Conclusion and future work

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics. ${ }^{1}$
- Axiomatized MILsem.

What comes next:

Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problems of fin. ax. and the FMP w.r.t. $\mathcal{C}_{\text {sem }}$.

Applying the techniques and heuristics of this thesis in other settings-not least those going into axiomatizing $M I L_{\text {sem }}$.

- Further exnloring how MIIs connect to other logics.

[^4]
Conclusion and future work

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics. ${ }^{1}$
- Axiomatized MILsem.

What comes next:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problems of fin. ax. and the FMP w.r.t. $\mathcal{C}_{\text {Sem }}$.

> Applying the techniques and heuristics of this thesis in other settings-not least those going into axiomatizing $M I L_{\text {Sem }}$. - Further exploring how MILs connect to other logics.

[^5]
Conclusion and future work

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics. ${ }^{1}$
- Axiomatized MILsem.

What comes next:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problems of fin. ax. and the FMP w.r.t. $\mathcal{C}_{\text {Sem }}$.
- Applying the techniques and heuristics of this thesis in other settings-not least those going into axiomatizing MILsem.
- Further exploring how MILs connect to other logics.

[^6]
Conclusion and future work

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics. ${ }^{1}$
- Axiomatized MILsem.

What comes next:

- Proving (un)decidability of $M I L_{\text {sem }}$ and solving the ancillary problems of fin. ax. and the FMP w.r.t. $\mathcal{C}_{\text {Sem }}$.
- Applying the techniques and heuristics of this thesis in other settings-not least those going into axiomatizing MILsem.
- Further exploring how MILs connect to other logics.

[^7]
On ' ${ }^{\prime}$ ' and '(sup>'

Example

Note how '(sup)' and ' \backslash ' are 'inverses':

$$
\langle\sup \rangle p(p \backslash q) \rightarrow q
$$

and

$$
p \rightarrow q \backslash(\langle\sup \rangle p q)
$$

are valid.

[^0]: The problems now become
 (Al) axiomatizing MIL-pre and MIL 1 -pos; and
 (D
) proving (un)decidability
 The same (1)-(2)-(3) structure is used as before, but now we
 (1) axiomatize the logic Log (C);
 (2') through representation show that $\log _{\backslash}(C)=M I L_{\mid-p r e}=M I L_{\mid-p o s ;}$ and
 (3) get decidability through FMP on \mathcal{C}.

[^1]: proofs of decidability (and compactness) of a family

[^2]: proofs of decidability (and compactness) of a family

[^3]: ${ }^{1}$ See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^4]: ${ }^{1}$ See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^5]: ${ }^{1}$ See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^6]: ${ }^{1}$ See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

[^7]: ${ }^{1}$ See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

