MODAL INFORMATION LOGIC: DECIDABILITY AND COMPLETENESS

Søren Brinck Knudstorp Extract of MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili September 7, 2022

Universiteit van Amsterdam

- Introducing the logics
- Stating the problems
- Outlining the strategy
- Solving the problems using the strategy

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

 $\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \sup \rangle \varphi \psi,$

and the semantics of ' $\langle \sup \rangle$ ' is:

```
\begin{split} w \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists u, v(u \Vdash \varphi; \ v \Vdash \psi; \\ w = \sup\{u, v\}) \end{split}
```


Definition (frames and logics)

Three classes of frames (W, \leq) , namely those where $(Pre) \ (W, \leq)$ is a preorder (refl., tr.); $(Pos) \ (W, \leq)$ is a poset (anti-sym. preorder); and $(Sem) \ (W, \leq)$ is a join-semilattice (poset w. all bin. join

Defining (the basic) modal information logics (MILs)

Definition (frames and logics)

Three classes of frames (W, ≤), namely those where (Pre) (W, ≤) is a preorder (refl., tr.); (Pos) (W, ≤) is a poset (anti-sym. preorder); and (Sem) (W, ≤) is a join-semilattice (poset w. all bin. joins Resulting in the logics MIL_{Prev.} MIL_{Prev.} MIL_{sem}, respectively $v \Vdash q$

Defining (the basic) modal information logics (MILs)

Definition (language and semantics)

The language is given by

 $\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \sup \rangle \varphi \psi,$

and the semantics of ' $\langle \sup \rangle$ ' is:

```
w \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists u, v(u \Vdash \varphi; v \Vdash \psi; \\ w = \sup\{u, v\})
```


Definition (frames and logics)

Three classes of frames (W, ≤), namely those where (Pre) (W, ≤) is a preorder (refl., tr.); (Pos) (W, ≤) is a poset (anti-sym. preorder); and (Sem) (W, ≤) is a join-semilattice (poset w. all bin. joins) Resulting in the logics MIL_{Pre}, MIL_{Pos}, MIL_{sem}, respectively.

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend **S4** [MIL_{Pre}, MIL_{Pos}].

What in particular?

- (A) axiomatizing *MIL*_{Pre} and *MIL*_{Pos}; and
- (D) proving (un)decidability.

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend **S4** [MIL_{Pre}, MIL_{Pos}].

What in particular?

- (A) axiomatizing *MIL*_{Pre} and *MIL*_{Pos}; and
- (D) proving (un)decidability.

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend **S4** [MIL_{Pre}, MIL_{Pos}].

What in particular?

- (A) axiomatizing *MIL*_{Pre} and *MIL*_{Pos}; and
- (D) proving (un)decidability.

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend S4 [MIL_{Pre}, MIL_{Pos}].

What in particular?

- (A) axiomatizing *MIL*_{Pre} and *MIL*_{Pos}; and
- (D) proving (un)decidability.

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend **S4** [*MIL*_{Pre}, *MIL*_{Pos}].

What in particular?

- (A) axiomatizing *MIL*_{Pre} and *MIL*_{Pos}; and
- (D) proving (un)decidability.

- Connect with other logics (e.g., truthmaker logics).
- Introduced to model a theory of information (by van Benthem (1996)).
- Modestly extend **S4** [*MIL*_{Pre}, *MIL*_{Pos}].

What in particular?

- (A) axiomatizing MIL_{Pre} and MIL_{Pos}; and
- (D) proving (un)decidability.

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

- (1) We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
- (2) Use the axiomatization to find another class of structures C for which Log(C) = MIL_{Pre}.
- (3) Prove that on ${\cal C}$ we do have the FMP and deduce decidability.

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

- (1) We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
- (2) Use the axiomatization to find another class of structures C for which Log(C) = MIL_{Pre}.
- (3) Prove that on ${\cal C}$ we do have the FMP and deduce decidability.

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

- (1) We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
- (2) Use the axiomatization to find another class of structures C for which Log(C) = MIL_{Pre}.
- (3) Prove that on ${\mathcal C}$ we do have the FMP and deduce decidability.

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

- (1) We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
- (2) Use the axiomatization to find another class of structures C for which $Log(C) = MIL_{Pre}$.
- (3) Prove that on ${\mathcal C}$ we do have the FMP and deduce decidability.

MILs lack the finite model property (FMP) w.r.t. their classes of definition.

- (1) We axiomatize MIL_{Pre} (and deduce $MIL_{Pre} = MIL_{Pos}$).
- (2) Use the axiomatization to find another class of structures C for which $Log(C) = MIL_{Pre}$.
- (3) Prove that on ${\cal C}$ we do have the FMP and deduce decidability.

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$ (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$ (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness \checkmark For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method: (*Base*) Singleton frame $\mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\})$ and 'labeling' $l_0(x_0) = \Gamma$. (*Ind*) Suppose (\mathbb{F}_n, l_n) has been constructed. $- \inf x \in \mathbb{F}_n$ and $\neg \langle \sup \rangle \psi \psi' \in l_n(x)$ but $x = \sup_n \{y, z\}$ s.t. $\psi \in l_n(y), \psi' \in l_n(z)$, coherently extend to $(\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n)$ so that $x \neq \sup_{n+1} \{y, z\}$. $- \operatorname{Similarly}$, for $\langle \sup \rangle \chi \chi' \in l_n(x)$.

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.)
$$p \land q \to \langle \sup \rangle pq$$

(4)
$$PPp \rightarrow Pp$$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness 🗸

For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method:

```
(Base) Singleton frame \mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\}) and 'labeling' l_0(x_0) = \Gamma.

(Ind) Suppose (\mathbb{F}_n, l_n) has been constructed.

- \text{ If } x \in \mathbb{F}_n \text{ and } \neg \langle \sup \rangle \psi \psi' \in l_n(x) \text{ but } x = \sup_n \{y, z\} \text{ s.t.}

\psi \in l_n(y), \psi' \in l_n(z), \text{ coherently extend to } (\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n) \text{ so}

that x \neq \sup_{n+1} \{y, z\}.

- \text{ Similarly, for } \langle \sup \rangle \chi \chi' \in l_n(x).
```

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.)
$$p \land q \to \langle \sup \rangle pq$$

(4) $PPp \to Pp$

(Co.)
$$\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness \checkmark For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method:

(Base) Singleton frame $\mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\})$ and 'labeling' $l_0(x_0) = \Gamma$.

```
(Ind) Suppose (\mathbb{F}_n, l_n) has been constructed.

- \text{ If } x \in \mathbb{F}_n \text{ and } \neg \langle \sup \rangle \psi \psi' \in l_n(x) \text{ but } x = \sup_n \{y, z\} \text{ s.t.}

\psi \in l_n(y), \psi' \in l_n(z), \text{ coherently extend to } (\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n) \text{ so}

that x \neq \sup_{n+1} \{y, z\}.

- \text{ Similarly, for } \langle \sup \rangle \chi \chi' \in l_n(x).
```

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness \checkmark For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method:

(Base) Singleton frame $\mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\})$ and 'labeling' $l_0(x_0) = \Gamma$.

(Ind) Suppose (\mathbb{F}_n, l_n) has been constructed.

- If $x \in \mathbb{F}_n$ and $\neg \langle \sup \rangle \psi \psi' \in l_n(x)$ but $x = \sup_n \{y, z\}$ s.t. $\psi \in l_n(y), \psi' \in l_n(z)$, coherently extend to $(\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n)$ so that $x \neq \sup_{n+1} \{y, z\}$. - Similarly for $\langle \sup \rangle_{YY'} \in l_n(x)$

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness \checkmark For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method: (*Base*) Singleton frame $\mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\})$ and 'labeling' $l_0(x_0) = \Gamma$. (*Ind*) Suppose (\mathbb{F}_n, l_n) has been constructed. $- \text{ If } x \in \mathbb{F}_n \text{ and } \neg (\sup) \psi \psi' \in l_n(x) \text{ but } x = \sup_n \{y, z\} \text{ s.t.}$ $\psi \in l_n(y), \psi' \in l_n(z), \text{ coherently extend to } (\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n) \text{ so}$ that $x \neq \sup_{n+1} \{y, z\}$. $- \text{ Similarly, for } (\sup) \chi \chi' \in l_n(x).$

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness \checkmark For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method:

(Base) Singleton frame $\mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\})$ and 'labeling' $l_0(x_0) = \Gamma$.

(Ind) Suppose (\mathbb{F}_n, l_n) has been constructed. - If $x \in \mathbb{F}_n$ and $\neg \langle \sup \rangle \psi \psi' \in l_n(x)$ but $x = \sup_n \{y, z\}$ s.t. $\psi \in l_n(y), \psi' \in l_n(z)$, coherently extend to $(\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n)$ so that $x \neq \sup_{n+1} \{y, z\}$. - Similarly, for $\langle \sup \rangle \chi \chi' \in l_n(x)$.

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$

(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$

(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Proof idea

Soundness 🗸

For completeness, let $\Gamma \supseteq \Gamma_0$ be an MCS extending some consistent Γ_0 . We construct a satisfying model using the step-by-step method:

(Base) Singleton frame $\mathbb{F}_0 := (\{x_0\}, \{(x_0, x_0)\})$ and 'labeling' $l_0(x_0) = \Gamma$.

(Ind) Suppose (\mathbb{F}_n, l_n) has been constructed. - If $x \in \mathbb{F}_n$ and $\neg \langle \sup \rangle \psi \psi' \in l_n(x)$ but $x = \sup_n \{y, z\}$ s.t. $\psi \in l_n(y), \psi' \in l_n(z)$, coherently extend to $(\mathbb{F}_{n+1}, l_{n+1}) \supseteq (\mathbb{F}_n, l_n)$ so that $x \neq \sup_{n+1} \{y, z\}$. - Similarly, for $\langle \sup \rangle \chi \chi' \in l_n(x)$.

Completeness of *MIL*_{Pre} (cont.)

Example

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.)
$$p \land q \rightarrow \langle \sup \rangle pq$$

(4) $PPp \rightarrow Pp$
(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$
(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

About the proof

Soundness: routine. Completeness: step-by-step method.

Corollary

As a corollary we get that $MIL_{Pre} = MIL_{Pos}$.

Axiomatization (soundness and completeness)

MIL_{Pre} is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.)
$$p \land q \rightarrow \langle \sup \rangle pq$$

(4) $PPp \rightarrow Pp$
(Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$
(Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

About the proof

Soundness: routine. Completeness: step-by-step method.

Corollary

As a corollary we get that $MIL_{Pre} = MIL_{Pos}$.

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C}:=\{(W,C)\mid (W,C)\Vdash (Re.)\wedge (Co.)\wedge (4)\wedge (Dk.)\},$

where $C \subseteq W^3$ is an **arbitrary** relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

- (3) Decidability through FMP on C:
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C} := \{(W,C) \mid (W,C) \Vdash (Re.) \land (Co.) \land (4) \land (Dk.)\},\$

where $C \subseteq W^3$ is an **arbitrary** relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

- (3) Decidability through FMP on C:
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C} := \{ (W,C) \mid (W,C) \Vdash (Re.) \land (Co.) \land (4) \land (Dk.) \},$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

- (3) Decidability through FMP on C:
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C}:=\{(W,C)\mid (W,C)\Vdash (Re.)\wedge (Co.)\wedge (4)\wedge (Dk.)\},$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

- (3) Decidability through FMP on C:
 - (i) On C, we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C} := \{(W,C) \mid (W,C) \Vdash (Re.) \land (Co.) \land (4) \land (Dk.)\},\$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

(3) Decidability through FMP on C:

- (i) On C, we get the FMP through filtration.
- (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C}:=\{(W,C)\mid (W,C)\Vdash (Re.)\wedge (Co.)\wedge (4)\wedge (Dk.)\},$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(C) = MIL_{Pre}$.

- (3) Decidability through FMP on \mathcal{C} :
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C} := \{(W,C) \mid (W,C) \Vdash (Re.) \land (Co.) \land (4) \land (Dk.)\},\$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(C) = MIL_{Pre}$.

- (3) Decidability through FMP on \mathcal{C} :
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C} := \{(W,C) \mid (W,C) \Vdash (Re.) \land (Co.) \land (4) \land (Dk.)\},\$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

- (3) Decidability through FMP on C:
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

(2) Find another class ${\mathcal C}$ for which $\operatorname{Log}({\mathcal C})=\text{MIL}_{\text{Pre}}$:

- (i) Nothing in the ax. of *MIL_{Pre}* necessitating '(sup)' to be interpreted using a supremum relation.
- (ii) Canon. re-interpretation:

 $\mathcal{C}:=\{(W,C)\mid (W,C)\Vdash (Re.)\wedge (Co.)\wedge (4)\wedge (Dk.)\},$

where $C \subseteq W^3$ is an arbitrary relation.

(iii) Then $Log(\mathcal{C}) = MIL_{Pre}$.

- (3) Decidability through FMP on \mathcal{C} :
 - (i) On \mathcal{C} , we get the FMP through filtration.
 - (ii) And this implies decidability.

Thus, we have solved both (A) and (D).

How about join-semilattices (i.e., *MIL_{Sem}*)?

Thank you!

- Van Benthem, J. (1996). "Modal Logic as a Theory of Information". In: *Logic and Reality. Essays on the Legacy of Arthur Prior*. Ed. by J. Copeland. Clarendon Press, Oxford, pp. 135–168 (cit. on pp. 6–11).
- (10/2017). "Constructive agents". In: Indagationes Mathematicae 29. DOI: 10.1016/j.indag.2017.10.004 (cit. on pp. 6–11).
- (2019). "Implicit and Explicit Stances in Logic". In: Journal of Philosophical Logic 48.3, pp. 571–601. DOI: 10.1007/s10992-018-9485-y (cit. on pp. 6–11).

Can we generalize these techniques?

(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and **S4**] are obtained by adding an informational implication '\'.

Definition

The language is given by adding '\' with semantics:

 $v\Vdash\varphi\backslash\psi\qquad \text{ iff }\qquad \forall u,w([u\Vdash\varphi,w=\sup\{u,v\}]\Rightarrow w\Vdash\psi)$

We denote the resulting logics as *MIL*_{1-Pre}, *MIL*_{1-Pos}, respectively.

The problems now become

- (A\) axiomatizing *MIL*_{1-Pre} and *MIL*_{1-Pos}; and
- (D\) proving (un)decidability.

- (1') axiomatize the logic $\mathrm{Log}_{\setminus}(\mathcal{C})$;
- (2') through representation show that $\mathrm{Log}_{\backslash}(\mathcal{C})=\mathsf{MIL}_{
 m l-Pre}=\mathsf{MIL}_{
 m l-Pos}$; and
- (3) get decidability through FMP on C.

(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and **S4**] are obtained by adding an informational implication '\'.

Definition

The language is given by adding '\' with semantics:

 $v\Vdash\varphi\backslash\psi\qquad \text{ iff }\qquad \forall u,w([u\Vdash\varphi,w=\sup\{u,v\}]\Rightarrow w\Vdash\psi)$

We denote the resulting logics as MIL_{1-Pre}, MIL_{1-Pos}, respectively.

The problems now become

- (A\) axiomatizing *MIL*_{1-Pre} and *MIL*_{1-Pos}; and
- (D\) proving (un)decidability.

- (1') axiomatize the logic $\mathrm{Log}_{\setminus}(\mathcal{C})$;
- (2') through representation show that $\mathrm{Log}_{\backslash}(\mathcal{C})=\mathsf{MIL}_{
 m l-Pre}=\mathsf{MIL}_{
 m l-Pos}$; and
- (3) get decidability through FMP on C.

(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and **S4**] are obtained by adding an informational implication '\'.

Definition

The language is given by adding '\' with semantics:

 $v\Vdash \varphi \backslash \psi \qquad \text{ iff } \qquad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}] \Rightarrow w\Vdash \psi)$

We denote the resulting logics as MIL_{1-Pre}, MIL_{1-Pos}, respectively.

The problems now become

- (A) axiomatizing MIL_{1-Pre} and MIL_{1-Pos} ; and
- (D\) proving (un)decidability.

- (1') axiomatize the logic $\mathrm{Log}_{\backslash}(\mathcal{C})$;
- (2') through representation show that $\mathrm{Log}_{\backslash}(\mathcal{C})=\mathsf{MIL}_{
 m l-Pre}=\mathsf{MIL}_{
 m l-Pos}$; and
- (3) get decidability through FMP on C.

(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and **S4**] are obtained by adding an informational implication '\'.

Definition

The language is given by adding '\' with semantics:

 $v\Vdash \varphi \backslash \psi \qquad \text{ iff } \qquad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}] \Rightarrow w\Vdash \psi)$

We denote the resulting logics as MIL_{1-Pre}, MIL_{1-Pos}, respectively.

The problems now become

- (A\) axiomatizing *MIL*_{1-Pre} and *MIL*_{1-Pos}; and
- (D\) proving (un)decidability.

- (1') axiomatize the logic $\mathrm{Log}_{\backslash}(\mathcal{C});$
- (2') through representation show that $\mathrm{Log}_{\backslash}(\mathcal{C})=\mathit{MIL}_{
 ho_{\mathsf{Pre}}}=\mathit{MIL}_{
 ho_{\mathsf{Pros}}}$; and
- (3) get decidability through FMP on C.

(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and **S4**] are obtained by adding an informational implication '\'.

Definition

The language is given by adding '\' with semantics:

 $v\Vdash \varphi \backslash \psi \qquad \text{ iff } \qquad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}] \Rightarrow w\Vdash \psi)$

We denote the resulting logics as MIL_{1-Pre}, MIL_{1-Pos}, respectively.

The problems now become

- (A\) axiomatizing *MIL*_{1-Pre} and *MIL*_{1-Pos}; and
- (D\) proving (un)decidability.

- (1') axiomatize the logic $\mathrm{Log}_{\backslash}(\mathcal{C});$
- (2') through representation show that $Log_{\backslash}(\mathcal{C}) = MIL_{1-Pre} = MIL_{1-Pos}$; and
 - (3) get decidability through FMP on C.

(Natural) extensions of MIL_{Pre} and MIL_{Pos} [and **S4**] are obtained by adding an informational implication '\'.

Definition

The language is given by adding '\' with semantics:

 $v\Vdash \varphi \backslash \psi \qquad \text{ iff } \qquad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}] \Rightarrow w\Vdash \psi)$

We denote the resulting logics as MIL_{1-Pre}, MIL_{1-Pos}, respectively.

The problems now become

- (A\) axiomatizing *MIL*_{1-Pre} and *MIL*_{1-Pos}; and
- (D\) proving (un)decidability.

- (1') axiomatize the logic $\mathrm{Log}_{\backslash}(\mathcal{C});$
- (2') through representation show that $Log_{\backslash}(C) = MIL_{\backslash-Pre} = MIL_{\backslash-Pos}$; and
- (3) get decidability through FMP on \mathcal{C} .

Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

and even

$$MIL_{1-Pre} = MIL_{1-Pos} = MIL_{1-Pre}^{Min} = MIL_{1-Pos}^{Min}$$

Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

and even

$$MIL_{\-Pre} = MIL_{\-Pos} = MIL_{\-Pre}^{Min} = MIL_{\-Pos}^{Min}$$

Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

and even

$$MIL_{\-Pre} = MIL_{\-Pos} = MIL_{\-Pre}^{Min} = MIL_{\-Pos}^{Min}$$

Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

and even

$$MIL_{1-Pre} = MIL_{1-Pos} = MIL_{1-Pre}^{Min} = MIL_{1-Pos}^{Min}$$

Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

and even

$$MIL_{1-Pre} = MIL_{1-Pos} = MIL_{1-Pre}^{Min} = MIL_{1-Pos}^{Min}$$

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- · Axiomatized MILsem.

- Proving (un)decidability of MIL_{Sem} and solving the ancillary problems of fin. ax. and the FMP w.r.t. C_{Sem} .
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- · Axiomatized MILsem.

- Proving (un)decidability of MIL_{Sem} and solving the ancillary problems of fin. ax. and the FMP w.r.t. C_{Sem} .
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- · Axiomatized MILsem.

What comes next:

- Proving (un)decidability of *MIL_{sem}* and solving the ancillary problems of fin. ax. and the FMP w.r.t. *C_{sem}*.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- Axiomatized MIL_{Sem}.

What comes next:

- Proving (un)decidability of *MIL_{sem}* and solving the ancillary problems of fin. ax. and the FMP w.r.t. *C_{sem}*.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- · Axiomatized MIL_{Sem}.

- Proving (un)decidability of *MIL_{sem}* and solving the ancillary problems of fin. ax. and the FMP w.r.t. *C_{sem}*.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- · Axiomatized MIL_{Sem}.

- Proving (un)decidability of *MIL_{sem}* and solving the ancillary problems of fin. ax. and the FMP w.r.t. *C*_{Sem}.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

What we have done:

- Thorougly surveyed the landscape of MILs on preorders and posets.
- Made crossings with the Lambek Calculus and truthmaker logics.¹
- · Axiomatized MIL_{Sem}.

- Proving (un)decidability of *MIL_{sem}* and solving the ancillary problems of fin. ax. and the FMP w.r.t. *C*_{Sem}.
- Applying the techniques and heuristics of this thesis in other settings—not least those going into axiomatizing *MIL*_{sem}.
- Further exploring how MILs connect to other logics.

¹See the thesis for this, including proofs of decidability (and compactness) of a family of truthmaker logics.

Example

Note how ' $\langle \sup \rangle$ ' and ' \backslash ' are 'inverses':

 $\langle \sup \rangle p(p \backslash q) \to q$

and

 $p \to q \setminus (\langle \sup \rangle pq)$

are valid.