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◮ Intuitionistic Kripke frames, i.e., posets X = 〈X,"〉;

◮ Heyting algebras, i.e., structures A = 〈A;∧,∨,→, 0, 1〉 that
include a bounded lattice 〈A;∧,∨, 0, 1〉 and satisfy

a ∧ b " c ⇐⇒ a " b → c, for every a, b, c ∈ A.
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posets s.t. for every poset X,
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◮ a Sahlqvist antecedent (SA) if it is constructed from atoms,
negative formulas, and 0 and 1 using only ∧ and ∨;

◮ a Sahlqvist implication (SI) if it is positive, or of the form ¬ϕ
for a SA ϕ, or of the form ϕ → ψ for a SA ϕ and a positive ψ;

◮ Sahlqvist if it is constructed from SI using only ∧ and ∨.

Remark. Sahlqvist formulas are of the form ϕ = ϕ1 ∨ . . . ∨ ϕn. For
example, x ∨ ¬x and (x → y) ∨ (y → x) are Sahlqvist.
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◮ In the algebraic models of the 〈∧,¬〉-fragment of IPC there
are only three nonequivalent equations, while there are
infinitely many nonequivalent Sahlqvist quasiequations.
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Recall: a Sahlqvist quasiequation is of the form
Φ = (ϕ1 ∧ y " z)& . . . & (ϕn ∧ y " z) =⇒ (y " z).

Remark
For every Heyting algebra A it holds

A ⊨ Φ iff A ⊨ ϕ1 " z & . . . & ϕn " z ⇒ z ≈ 1.

Why the “context” y?

Example
The Sahlqvist quasiequation

¬x ∧ y " z &¬¬x ∧ y " z =⇒ y " z

is not equivalent to its “context free” version

¬x " z &¬¬x " z =⇒ z ≈ 1

over the algebraic models of the 〈∧,¬〉-fragment of IPC.
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The following holds for every Sahlqvist quasiequation Φ:
◮ Canonicity: For every Heyting algebra A,

if A ⊨ Φ, then Up(A∗) ⊨ Φ;

◮ Correspondence: There exists an effectively computable
sentence tr(Φ) such that for every poset X:

Up(X) ⊨ Φ ⇐⇒ X ⊨ tr(Φ).

Example. The meaning of tr(x ∨ ¬x) is “X is discrete” and that of
tr((x → y) ∨ (y → x)) is “X is a root system”.
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Sahlqvist theorem for fragments of IPC with ∧.
Let Φ be a Sahlqvist quasiequation in the language of L.
◮ For every L-subreduct A of a Heyting algebra, if A ⊨ Φ then

Up(A∗) ⊨ Φ;
◮ Φ has a first-order correspondent tr(Φ), i.e., for every poset X

it holds Up(X) ⊨ Φ ⇐⇒ X ⊨ tr(Φ).
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Let Φ be a Sahlqvist quasiequation in the language of a fragment L
of IPC including ∧. For every L-subreduct A of a Heyting algebra,

if A ⊨ Φ, then Up(A∗) ⊨ Φ.

Proof sketch (the case ∧,¬, 0 of pseudocomplemented
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Let A ∈ PSL and Φ a Sahlqvist quasiequation s.t. A ⊨ Φ. We
want to show Up(A∗) ⊨ Φ.

1. Model theoretic trick: There’s an embedding f : A → B for a
Heyting algebra B s.t. Up(B∗) ⊨ Φ.

2. Duality theoretic trick:
◮ There is a partial map f∗ : B∗ ❀ A∗ which is a surjective

partial negative p-morphism;
◮ There is an embedding of pseudocomplemented semilattices

( f∗)∗ : Up(A∗) → Up(B∗).

Since Up(B∗) validates Φ, so does Up(A∗).
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of IPC including ∧. For every L-subreduct A of a Heyting algebra,

A ⊨ Φ iff A∗ ⊨ tr(Φ).

Proof.
◮ A ⊨ Φ implies Up(A∗) ⊨ Φ by canonicity;
◮ Up(A∗) ⊨ Φ implies A ⊨ Φ because A embeds into Up(A∗);
◮ Therefore: A ⊨ Φ iff Up(A∗) ⊨ Φ;
◮ Moreover, Up(A∗) ⊨ Φ iff A∗ ⊨ tr(Φ) in view of the

correspondence part of the Intuitionistic Sahlqvist Theorem;
◮ The two items above yield

A ⊨ Φ iff A∗ ⊨ tr(Φ).
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Ψ = x ∧ y " z &¬x ∧ y " z =⇒ y " z.

Moreover, Up(X) ⊨ Ψ ⇐⇒ the order of X is the identity.

Similarly, A ⊨ Ψ ⇐⇒ the order of A∗ is the identity, for every
pseudocomplemented semilattice A.
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Example
The bounded top width n formula btwn can be rendered as

Φn = &
1!i!n+1

!
¬(¬xi ∧

"

0<j<i

xj) ∧ y " z
"
=⇒ y " z.

For every poset X and psuedocomplemented semilattice A, we have

Up(X) ⊨ Φn ⇐⇒ in principal upsets in X, every (n + 1)-element
antichain is below an n-element one;

A ⊨ Φn ⇐⇒ in principal upsets in A∗, every (n + 1)-element
antichain is below an n-element one.

Remark
The formula btwn cannot be rendered as an equation!



Thank you very much for your attention!


