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Contradictory information ...

We have to deal with inconsistent information al the time
(media, databases, scientific information, ...)
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Contradictory information ...

We have to deal with inconsistent information al the time
(media, databases, scientific information, ...)

@ get ride of inconsistencies (belief revison, ...)
@ develop some tools for reasoning in these situations

Inconsistencies: shortcomings of the available information
(Dunn: ... too much of a good thing”)

@ issue that has to be lived with until they can be resolved

@ many attempts in the literature to devlop paraconsistent logics
for these scenarios

@ we build our work on the Belnap-Dunn four valued logic
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Uncertainty

@ probability — the most prominent representation of uncertainty
@ defined on a boolean algebra
@ each value precisely known (subjective probability)

@ values of complex events are determined by the values of
simple ones
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Uncertainty

@ probability — the most prominent representation of uncertainty
@ defined on a boolean algebra
@ each value precisely known (subjective probability)

@ values of complex events are determined by the values of
simple ones

...too perfect!!

Alternatives:
@ avoiding precise values (interval probabilities, ...)
@ probability measures on weaker structures

@ weaker uncertainty measures (inner outer measures, belief
functions,... )
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o Representing incomplete/contradictory probabilistic information
@ Belnap-Dunn Logic
@ Non-standard probabilities

© Dempster-Shafer theory
@ Mass functions, belief functions and plausibility functions
@ Representation of evidence

e Dempster-Shafer theory and BD logic
@ Belief functions
@ Plausibility?
@ Combination of evidence
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o Representing incomplete/contradictory probabilistic information
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Belnap-Dunn square 4 [Belnap 19]

t

SN

n b
Belnap-Dunn square (4, A, V, ) is a de Morgan \ /

algebra.

® (4,A,V)is alattice f
@ each element represents the available Belnap-Dunn
positive and/or negative information square 4
@ n: no information
o f: false (is bottom)
o t: true (is top) (1.0)
e b: contradictory information / \
@ - is an involutive de Morgan negation. ‘ (0,0) (1.1)
(0.1)

Independence of positive and negative information.
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Belnap-Dunn Logic: models [Dunn 76]

Language. Lgp > ¢ :=p e Prop|oA@|e V|

BD Models. M = (W, vt, v~ : Prop — P(W))
vT(p): states containing information supporting p
v~(p): states containing information refuting p

7/29



Belnap-Dunn Logic: models [Dunn 76]

Language. Lgp > ¢ :=p e Prop|oA@|e V| J

BD Models. M = (W, vt, v~ : Prop — P(W))
vT(p): states containing information supporting p
v~(p): states containing information refuting p

Semantics. Two satisfaction relations £+, £~
wEeT piff we vt(p) w e piff we v (p)
wEeT —giff wEe ¢ wE —piff weT ¢
wet ong iffweT pandwet ¢ we gAP iffwE porwEe ¢
wet gve iffwet gorwet ¢ we gV iffwe gand we™ ¢

7/29



Belnap-Dunn Logic: models [Dunn 76]

Language. Lgp > ¢ :=p e Prop|oA@|e V| J

BD Models. M = (W, vt, v~ : Prop — P(W))
vT(p): states containing information supporting p
v~(p): states containing information refuting p

Semantics. Two satisfaction relations T, £~

wEeT piff we vt(p) w e piff we v (p)

wEeT —giff wEe ¢ wE —piff weT ¢
wet ong iffweT pandwet ¢ we gAP iffwE porwEe ¢
wet gve iffwet gorwet ¢ we gV iffwe gand we™ ¢

Can we introduce probability in this framework?
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Non-standard probabilities

Frame semantics (Klein, Majer, Rafiee Rad 2021)

@ independence of positive and negative probabilistic
information

@ BD model extended with a (classical) probability measure.
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Non-standard probabilities

Frame semantics (Klein, Majer, Rafiee Rad 2021)

@ independence of positive and negative probabilistic
information

@ BD model extended with a (classical) probability measure.

A probabilistic BD model is a tuple M = (W, v',v—, m), s.t.
(W, vt,v7)is a BD model and u : P(W) — [0, 1] is a probability
measure on W

Positive probability

P (@) = u(liel™)

Negative probability of ¢: p~(¢) := u(llell™)

Remark p~(¢) = p™(—¢), otherwise p™(¢) and p~(¢)
independent,

8/290



Non-standard probabilities: axioms

Theorem [Klein et al]

The following axiomatization of non-standard probabilities is
complete with respect to the class of probabilistic frames.

(A1) normalization 0 < pT(yp) <1
(A2) monotonicity if ¢ gp ¥ then pT () < p*(¥)
(A3) import-export - p*(p Ay) +p* (¢ Vi) =P (p) +p"(¥)
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Non-standard probabilities: axioms

Theorem [Klein et al]

The following axiomatization of non-standard probabilities is
complete with respect to the class of probabilistic frames.

(A1) normalization 0 < pT(yp) <1
(A2) monotonicity if ¢ gp ¥ then pT () < p*(¥)
(A3) import-export  p* (¢ Ay) +pT (e V) =pT () +pT(¥).

° p(¢) =p(-¥)
@ weaker than classical Kolmogorovian axioms.
(A3 instead of additivity).

@ Ingeneral pt(-¢) # 1 - p*(¢p)
@ onecanhave 0 < p™(p A —p),pT (¢ V —¢p) < 1
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Non-standard probabilities: intuitive representation

Continuous extension of Belnap-Dunn
square, which we can see as the product
bilattice Lo,1] © Lo,1

with Lo 47 = ([0, 1], min, max). (1,0)
@ (p*(¢),p (¢)): positive and negative O\
probabilistic support of ¢. (0.0) S 00.0)
@ (0,0): no information concerning ¢ is
available (0,1)

@ (1,1): maximally conflicting
information

@ vertical dashed line: “classical” case
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© Dempster-Shafer theory
@ Mass functions, belief functions and plausibility functions
@ Representation of evidence
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Dempster Shafer belief functions

@ bel(A) represents total evidence supporting A
@ defined on a boolean algebra of events
@ weaker than probability

@ complex formulas are not determined by the simpler ones
bel(A v B) > bel(A) + bel(B) for A, B disjoint
@ provides a lower bound for ‘true‘ probability
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Dempster Shafer belief functions

@ bel(A) represents total evidence supporting A
@ defined on a boolean algebra of events
@ weaker than probability

@ complex formulas are not determined by the simpler ones
bel(A v B) > bel(A) + bel(B) for A, B disjoint

@ provides a lower bound for ‘true‘ probability

Scenario. A patient has disease a, b or c.
A doctor says “given the evidence she has disease a or b with a
high certainty (e.g. 0.7).” However the doctor gives only a low
certainty to each of a, b (e.g. 0.1).
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Evidence via mass functions

Mass function
— evidence assigned exactly to a particular event

Definition

A function m : P(S) — [0, 1] is a mass function if
@ m(0)
® Yaep(s)M(A) =1.
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Evidence via mass functions

Mass function
— evidence assigned exactly to a particular event

Definition

A function m : £(S) — [0, 1] is a mass function if
@ m(0)
® Yaep(s)M(A) =1.

Belief function via mass function:

bel(A) = > m(B)
BCA
Probability via mass function:
p(A)= >, m(B) = ) m(is))
BCA seA

All information is encoded in singletons.
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Explicit representation of belief functions

Definition
f:P(S) — [0,1] is a belief function if f(0) =0, f(S) = 1 and

f{\/ A,-)z DU (e [/\A] (1)

1<i<k jed

holds for every k > 1, and for every Aq,..., Ax € P(S).

14/29



Explicit representation of belief functions

Definition
f:P(S) — [0,1] is a belief function if f(0) =0, f(S) = 1 and

f{ \/ A,-)z S (. [/\A] (1)
1<i<k Jc(i,..., k} jed
J+ O

holds for every k > 1, and for every Aq,..., Ax € P(S).

\

For every belief function bel there is a mass function
Mpel : P(S) — [0, 1] such that, for every A € P(S),

bel(A) = > Myei(B)

B<A

\,
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Plausibility functions

@ dual to belief
@ pl(A) represents evidence which is compatibe with A
@ gives an upper bound for ‘true’ probability

Plausibility from belief
pl(A) =1 -bel(-A)
Plausibility via mass function:

bel(A) = > m(B)

Explicit definition

f[ékAi}sJ 2, 0 [\/AJ @

jed
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Representation of evidence. Example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7
The doctor gives no information about disease c.

@ m: P(S) — [0,1] is computed based on the evidence

@ bel(A) = Y g m(B) : the evidence supporting a

@ pl(A) =1-bel(=A) = Ygnaz0 M(B) : the evidence not
contradicting A

@ bel(A) < pl(A).
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Representation of evidence. An example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
It is assumed it is impossible for the patient to have two of them.

.
Representation

@ S={a,b,c}and m,bel,pl: P(S) — [0,1]
@ m({a,b}) = 0.7 and m(S) = 0.3.

abc

SN

Ao
N
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An example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
The doctor gives no information about disease c.

Representation
@ S={a,b,c}and m,bel,pl : P(S) — [0,1]
@ m({a,b}) =0.7 and m(S) = 0.3.

We get:

bel({a )—bd( }) = bel(fc}) =0
bel(fa )zXca m(X) =0.7 pl({a,b}) = 1 -bel(fc}) = 1
pi({a )—pK }) = pi(fc}) = 1 —bel({a, b}) = 0.3

@ m({a, b}): the ‘probability’ that the disease is in the set {a, b}
without being able to say to which subset it belongs. J
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Dempster-Shafer combination rule

Let m¢ and my be two mass functions on £(S). Dempster-Shafer
combination rule computes their aggregation
Mgz : P(S) — [0, 1] as follows.

0 it X =
Mig2(X) = 4 S{mq(X1) - ma(X2) | X1 N X2 = X}
N

otherwise.

Normalization factor:
N = ZFTH m2X2)|X1ﬂX2¢®}
=1—Z{ 1(X4) - ma(X2) | X1 N Xo = @}
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What happens with contradictory evidence?

A patient has disease a, b or c.
Doctor 1:
“the patient has a with certainty 0.9 and b with certainty 0.1
Doctor 2:

“the patient has ¢ with certainty 0.9 and b with certainty 0.1.”

Representation

S ={a,b,c}
m1({a}) = 0.9 and m¢({b}) = 0.1.
mx({c}) = 0.9 and my({b}) = 0.1.

DS combination rule ignores contrtadictory information

Myg2({b}) = 1, Myg2({a}) = myg2(fc}) =0
because {a} N {b} ={a} n{c} = 0.
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e Dempster-Shafer theory and BD logic
@ Belief functions
@ Plausibility?
@ Combination of evidence
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Belief function on BD

Extending belief with a (classical) belief function

Definition belief on BD-models

M = (W, v*,v~, Bely, a BD model plus Bel : (W) — [0, 1].

bel™(¢) := Bel(lp|") and bel (¢) := Bel(|¢|")

bel™: belief function on the associated Lindenbaum algebra Lgp.
bel™: belief function on Lgp. J

Remark. if 1 and T are not in the language bel™ (resp. pl*) are
general belief (resp. plausibility) functions.
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Mass function

Non-standard probabilities

Models: (W, v, v_,m: W — [0, 1])
pt(¢) = Yselgrt M(s) and p~(¢) = Xseg- M(S)

Immediate generalisation for belief.

Non-standard beliefs

Models: (W, v, v-,m: P(W) - [0, 1])
bel™(¢) = Y xcigrt M(X) and bel™(¢) = X xcg- m(X)

@ bel*(¢): belief that ¢ is true
@ bel™(¢): belief that ¢ is false
@ bel™ satisfies the axioms of belief functions
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Two-dimensional interpretation

Two dimensional reading allows for various combinations of
positive/negative belief/plausibility:
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Two-dimensional interpretation

Two dimensional reading allows for various combinations of
positive/negative belief/plausibility:
@ classically bel(¢) = 1 — pl(—¢).
pl(—¢) maximum evidence against ¢ we can consider
in two dimensional reading it corresponds to pl~(¢)

(bel™(¢).pI(¢))

@ consider both belief and plausibility independently:

(bel*(¢), bel™(¢)), (P (¢). pI™(¢))

o If we require bel(X) < pl(X), for X € P(W),
then bel and pl must be defined from different mass functions.
a piece of evidence might support belief and plausibility in a
different way — gives rise to two mass functions
(e.g., circumstantial evidence vs. direct evidence)

24/29



Combination of evidence

Let £ be a finite distributive lattice.

Without L and T

Mig2 : L — [0,1]

X - Z{m1(x1) “ma(X2) | X1 A X2 = x}.

Mig2 : .£—> [0,1]
0 if x =1
X =9 2Amy(x1) - ma(x2) | X1 A X2 = X}
2Amy(x1) - mz(x2) | x4 A X2 # L}

otherwise.
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Examples. The two doctors

Scenario. A patient has disease a, b or c.
Doctor 1: a with certainty 0.9 and b with certainty 0.1.
Doctor 2: ¢ with certainty 0.9 and b with certainty 0.1.
Representation. m{,m, : DMz — [0, 1]

09 ifx=a 09 ifx=c
mi(x) =4 0.1 ifx=0>b ma(x) =4{ 0.1 ifx=0b
0 otherwise. 0 otherwise.

Dempster-Shafer combination rule gives

081 ifx=aAc

0.09 ifx=aAborx=bAc
0.01 ifx=b

0 otherwise.

Mig2(X) =

beligz2(a) = belig2(c) = 0.9 and belig2(b) = 0.19 |
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Examples. The two doctors

Representation. my,my : DMz — [0,1]

0.1 fx=—-aAbA-cC

09 ifx=aA-bA-cC
mi(x) =
0 otherwise.

0.1 fx==-aAbA-cC

09 ifx=-aA-bAc
ma(x) =
0  otherwise.
Dempster-Shafer combination rule gives

081 ifx=aA—-aA=-bAcCcA-C
0.09 ifx=aAn—-aAbA-bA-C

Mig2(X) = orx=-aAbA-bAcA-C
0.01 ifx==-aAbA-c
0 otherwise.

beligz(a) = beligz(c) = 0.9 and belyg2(b) = 0.19
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Future work

Reasoning with inconsistent / incomplete uncertain
information

@ other uncertinty measures (uppetr/lower probabilities, ...)
@ qualitative probability

@ various aggregation methods

@ two layered framework
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