Belief functions over Belnap-Dunn logic

Marta Bílková ${ }^{1}$, Sabine Frittella ${ }^{2}$, Daniil Kozhemiachenko ${ }^{2}$, Ondrej Majer ${ }^{3}$ and Sajad Nazari ${ }^{2}$

${ }^{1}$ Institute of Computer Science, ${ }^{3}$ Institute of Philosophy, Czech Academy of Sciences ${ }^{2}$ INSA Centre Val de Loire, Univ. Orléans

LATD + MOSAIC 2022

Contradictory information ...

We have to deal with inconsistent information al the time (media, databases, scientific information, ...)

Contradictory information

We have to deal with inconsistent information al the time (media, databases, scientific information, ...)

- get ride of inconsistencies (belief revison, ...)
- develop some tools for reasoning in these situations

Contradictory information

We have to deal with inconsistent information al the time (media, databases, scientific information, ...)

- get ride of inconsistencies (belief revison, ...)
- develop some tools for reasoning in these situations

Inconsistencies: shortcomings of the available information
(Dunn: "... too much of a good thing")

Contradictory information

We have to deal with inconsistent information al the time (media, databases, scientific information, ...)

- get ride of inconsistencies (belief revison, ...)
- develop some tools for reasoning in these situations

Inconsistencies: shortcomings of the available information
(Dunn: "... too much of a good thing")

- issue that has to be lived with until they can be resolved
- many attempts in the literature to devlop paraconsistent logics for these scenarios
- we build our work on the Belnap-Dunn four valued logic
- probability - the most prominent representation of uncertainty
- defined on a boolean algebra
- each value precisely known (subjective probability)
- values of complex events are determined by the values of simple ones
- probability - the most prominent representation of uncertainty
- defined on a boolean algebra
- each value precisely known (subjective probability)
- values of complex events are determined by the values of simple ones
...too perfect!!
- probability - the most prominent representation of uncertainty
- defined on a boolean algebra
- each value precisely known (subjective probability)
- values of complex events are determined by the values of simple ones
...too perfect!!

Alternatives:

- avoiding precise values (interval probabilities, ...)
- probability measures on weaker structures
- weaker uncertainty measures (inner outer measures, belief functions,...)
(1) Representing incomplete/contradictory probabilistic information
- Belnap-Dunn Logic
- Non-standard probabilities
(2) Dempster-Shafer theory
- Mass functions, belief functions and plausibility functions
- Representation of evidence
(3) Dempster-Shafer theory and BD logic
- Belief functions
- Plausibility?
- Combination of evidence
(1) Representing incomplete/contradictory probabilistic information
- Belnap-Dunn Logic
- Non-standard probabilities
(2) Dempster-Shafer theory
- Mass functions, belief functions and plausibility functions
- Representation of evidence

3 Dempster-Shafer theory and BD logic

- Belief functions
- Plausibility?
- Combination of evidence

Belnap-Dunn square 4 [Belnap 19]

Belnap-Dunn square $(4, \wedge, \vee, \neg)$ is a de Morgan algebra.

- $(4, \wedge, \vee)$ is a lattice
- each element represents the available positive and/or negative information
- n : no information
- f : false (is bottom)
- t : true (is top)
- b: contradictory information
- \neg is an involutive de Morgan negation.

Belnap-Dunn square 4

Independence of positive and negative information.

Language. $L_{\mathrm{BD}} \ni \varphi:=p \in \operatorname{Prop}|\varphi \wedge \varphi| \varphi \vee \varphi \mid \neg \varphi$

BD Models. $M=\left\langle W, v^{+}, v^{-}:\right.$Prop $\left.\rightarrow \mathcal{P}(W)\right\rangle$
$v^{+}(p)$: states containing information supporting p
$v^{-}(p)$: states containing information refuting p

Language. $L_{\mathrm{BD}} \ni \varphi:=p \in \operatorname{Prop}|\varphi \wedge \varphi| \varphi \vee \varphi \mid \neg \varphi$

BD Models. $M=\left\langle W, v^{+}, v^{-}:\right.$Prop $\left.\rightarrow \mathcal{P}(W)\right\rangle$
$v^{+}(p)$: states containing information supporting p
$v^{-}(p)$: states containing information refuting p

Semantics. Two satisfaction relations $\vDash^{+}, \mathfrak{F}^{-}$

$$
\begin{aligned}
& w \vDash^{+} p \text { iff } w \in v^{+}(p) \\
& w \mathfrak{F}^{+} \neg \phi \text { iff } w \vDash^{-} \phi \\
& w \mathfrak{F}^{+} \phi \wedge \phi^{\prime} \text { iff } w ₹^{+} \phi \text { and } w F^{+} \phi^{\prime} \\
& w F^{-} \phi \wedge \phi^{\prime} \text { iff } w \vDash^{-} \phi \text { or } w \vDash^{-} \phi^{\prime} \\
& w \mathfrak{F}^{+} \phi \vee \phi^{\prime} \text { iff } w \mathfrak{F}^{+} \phi \text { or } w \mathfrak{F}^{+} \phi^{\prime} \\
& w \mathfrak{F}^{-} \phi \vee \phi^{\prime} \text { iff } w \mathfrak{F}^{-} \phi \text { and } w \mathfrak{F}^{-} \phi^{\prime}
\end{aligned}
$$

Language. $L_{\mathrm{BD}} \ni \varphi:=p \in \operatorname{Prop}|\varphi \wedge \varphi| \varphi \vee \varphi \mid \neg \varphi$

BD Models. $M=\left\langle W, v^{+}, v^{-}:\right.$Prop $\left.\rightarrow \mathcal{P}(W)\right\rangle$
$v^{+}(p)$: states containing information supporting p
$v^{-}(p)$: states containing information refuting p

Semantics. Two satisfaction relations $\vDash^{+}, \mathfrak{F}^{-}$

$$
\begin{aligned}
& w \vDash^{+} p \text { iff } w \in v^{+}(p) \\
& w \vDash^{+} \neg \phi \text { iff } w \vDash^{-} \phi \\
& w \vDash^{-} p \text { iff } w \in v^{-}(p) \\
& w \mathfrak{F}^{-} \neg \phi \text { iff } w \vDash^{+} \phi \\
& w \mathfrak{F}^{+} \phi \wedge \phi^{\prime} \text { iff } w \mathfrak{F}^{+} \phi \text { and } w \mathfrak{F}^{+} \phi^{\prime} \quad w \vDash^{-} \phi \wedge \phi^{\prime} \text { iff } w \mathfrak{F}^{-} \phi \text { or } w \mathfrak{F}^{-} \phi^{\prime} \\
& w \mathfrak{F}^{+} \phi \vee \phi^{\prime} \text { iff } w \vDash^{+} \phi \text { or } w \vDash^{+} \phi^{\prime} \quad w \mathfrak{F}^{-} \phi \vee \phi^{\prime} \text { iff } w \mathfrak{F}^{-} \phi \text { and } w \mathfrak{F}^{-} \phi^{\prime}
\end{aligned}
$$

Can we introduce probability in this framework?

Non-standard probabilities

Frame semantics (Klein, Majer, Rafiee Rad 2021)

- independence of positive and negative probabilistic information
- BD model extended with a (classical) probability measure.

Non-standard probabilities

Frame semantics (Klein, Majer, Rafiee Rad 2021)

- independence of positive and negative probabilistic information
- BD model extended with a (classical) probability measure.

A probabilistic BD model is a tuple $M=\left\langle W, v^{+}, v^{-}, m\right\rangle$, s.t. $\left\langle W, v^{+}, v^{-}\right\rangle$is a BD model and $\mu: \mathcal{P}(W) \rightarrow[0,1]$ is a probability measure on W

Positive probability

$$
p^{+}(\varphi):=\mu\left(\|\varphi\|^{+}\right)
$$

Negative probability of $\varphi: \mathrm{p}^{-}(\varphi):=\mu\left(\|\varphi\|^{-}\right)$
Remark $p^{-}(\varphi)=p^{+}(\neg \varphi)$, otherwise $p^{+}(\varphi)$ and $p^{-}(\varphi)$ independent,

Theorem [Klein et al]

The following axiomatization of non-standard probabilities is complete with respect to the class of probabilistic frames.
(A1) normalization
$0 \leq p^{+}(\varphi) \leq 1$
(A2) monotonicity
(A3) import-export
if $\varphi \vdash_{B D} \psi$ then $p^{+}(\varphi) \leq p^{+}(\psi)$
$p^{+}(\varphi \wedge \psi)+p^{+}(\varphi \vee \psi)=p^{+}(\varphi)+p^{+}(\psi)$.

Non-standard probabilities: axioms

Theorem [Klein et al]

The following axiomatization of non-standard probabilities is complete with respect to the class of probabilistic frames.
(A1) normalization $0 \leq p^{+}(\varphi) \leq 1$
(A2) monotonicity if $\varphi \vdash_{B D} \psi$ then $p^{+}(\varphi) \leq p^{+}(\psi)$
(A3) import-export $p^{+}(\varphi \wedge \psi)+p^{+}(\varphi \vee \psi)=p^{+}(\varphi)+p^{+}(\psi)$.

Remarks

- $p^{-}(\varphi)=p^{+}(\neg \varphi)$
- weaker than classical Kolmogorovian axioms.
(A3 instead of additivity).
- In general $p^{+}(\neg \varphi) \neq 1-p^{+}(\varphi)$
- one can have $0<p^{+}(\varphi \wedge \neg \varphi), p^{+}(\varphi \vee \neg \varphi)<1$

Non-standard probabilities: intuitive representation

Continuous extension of Belnap-Dunn square, which we can see as the product bilattice $\mathbf{L}_{[0,1]} \odot \mathbf{L}_{[0,1]}$ with $\mathbf{L}_{[0,1]}=([0,1]$, min, max $)$.

- $\left(p^{+}(\varphi), p^{-}(\varphi)\right)$: positive and negative probabilistic support of φ.
- $(0,0)$: no information concerning φ is available
- (1,1): maximally conflicting information
- vertical dashed line: "classical" case
(1) Representing incomplete/contradictory probabilistic information
- Belnap-Dunn Logic
- Non-standard probabilities
(2) Dempster-Shafer theory
- Mass functions, belief functions and plausibility functions
- Representation of evidence

3 Dempster-Shafer theory and BD logic

- Belief functions
- Plausibility?
- Combination of evidence

Dempster Shafer belief functions

- $\operatorname{bel}(A)$ represents total evidence supporting A
- defined on a boolean algebra of events
- weaker than probability
- complex formulas are not determined by the simpler ones $\operatorname{bel}(A \vee B) \geq \operatorname{bel}(A)+\operatorname{bel}(B)$ for A, B disjoint
- provides a lower bound for 'true' probability

Dempster Shafer belief functions

- $\operatorname{bel}(A)$ represents total evidence supporting A
- defined on a boolean algebra of events
- weaker than probability
- complex formulas are not determined by the simpler ones $\operatorname{bel}(A \vee B) \geq \operatorname{bel}(A)+\operatorname{bel}(B)$ for A, B disjoint
- provides a lower bound for 'true' probability

Example

Scenario. A patient has disease a, b or c.
A doctor says "given the evidence she has disease a or b with a high certainty (e.g. 0.7)." However the doctor gives only a low certainty to each of a, b (e.g. 0.1).

Evidence via mass functions

Mass function

- evidence assigned exactly to a particular event

Definition
A function $\mathrm{m}: \mathcal{P}(S) \rightarrow[0,1]$ is a mass function if

- m(Ø)
- $\sum_{A \in \mathcal{P}(S)} \mathrm{m}(A)=1$.

Evidence via mass functions

Mass function

- evidence assigned exactly to a particular event

Definition

A function $\mathrm{m}: \mathcal{P}(S) \rightarrow[0,1]$ is a mass function if

- m(Ø)
- $\sum_{A \in \mathcal{P}(S)} \mathrm{m}(A)=1$.

Belief function via mass function:

$$
\operatorname{bel}(A)=\sum_{B \subseteq A} \mathrm{~m}(B)
$$

Evidence via mass functions

Mass function

- evidence assigned exactly to a particular event

Definition

A function $\mathrm{m}: \mathcal{P}(S) \rightarrow[0,1]$ is a mass function if

- m(Ø)
- $\sum_{A \in \mathcal{P}(S)} \mathrm{m}(A)=1$.

Belief function via mass function:

$$
\operatorname{bel}(A)=\sum_{B \subseteq A} m(B)
$$

Probability via mass function:

$$
p(A)=\sum_{B \subseteq A} m(B)=\sum_{s \in A} m(\{s\})
$$

All information is encoded in singletons.

Explicit representation of belief functions

Definition

$f: \mathcal{P}(S) \rightarrow[0,1]$ is a belief function if $f(\emptyset)=0, f(S)=1$ and

$$
\begin{equation*}
f\left(\bigvee_{1 \leq i \leq k} A_{i}\right) \geq \sum_{\substack{J \subseteq\{1, \ldots, k\} \\ j \neq \varnothing}}(-1)^{|J|+1} \cdot f\left(\bigwedge_{j \in J} A_{j}\right) \tag{1}
\end{equation*}
$$

holds for every $k \geq 1$, and for every $A_{1}, \ldots, A_{k} \in \mathcal{P}(S)$.

Explicit representation of belief functions

Definition

$f: \mathcal{P}(S) \rightarrow[0,1]$ is a belief function if $f(\emptyset)=0, f(S)=1$ and

$$
\begin{equation*}
f\left(\bigvee_{1 \leq i \leq k} A_{i}\right) \geq \sum_{\substack{J \subseteq\{1, \ldots, k\} \\ J \neq \varnothing}}(-1)^{\mid J+1} \cdot f\left(\bigwedge_{j \in J} A_{j}\right) . \tag{1}
\end{equation*}
$$

holds for every $k \geq 1$, and for every $A_{1}, \ldots, A_{k} \in \mathcal{P}(S)$.

Theorem

For every belief function bel there is a mass function $m_{\text {bel }}: \mathcal{P}(S) \rightarrow[0,1]$ such that, for every $A \in \mathcal{P}(S)$,

$$
\operatorname{bel}(A)=\sum_{B \leq A} \mathrm{~m}_{\mathrm{bel}}(B)
$$

Plausibility functions

- dual to belief
- $\mathrm{pl}(A)$ represents evidence which is compatibe with A
- gives an upper bound for 'true' probability

Plausibility from belief

$$
\operatorname{pl}(A)=1-\operatorname{bel}(\neg A)
$$

Plausibility via mass function:

$$
\operatorname{bel}(A)=\sum_{B \cap A \neq \emptyset} m(B)
$$

Explicit definition

$$
\begin{equation*}
f\left(\bigwedge_{1 \leq i \leq k} A_{i}\right) \leq \sum_{\substack{J \subseteq\{1, \ldots, k\} \\ j \neq \varnothing}}(-1)^{|J|+1} \cdot f\left(\bigvee_{j \in J} A_{j}\right) \tag{2}
\end{equation*}
$$

Example

Scenario. A patient has disease a, b or c.
A doctor says "the patient has disease a or b with certainty 0.7."
The doctor gives no information about disease c.

- $\mathrm{m}: \mathcal{P}(S) \rightarrow[0,1]$ is computed based on the evidence
- $\operatorname{bel}(A)=\sum_{B \leq A} m(B)$: the evidence supporting a
- $\mathrm{pl}(A)=1-\operatorname{bel}(\neg A)=\sum_{B \cap A \neq \emptyset} \mathrm{m}(B)$: the evidence not contradicting A
- $\operatorname{bel}(A) \leq \operatorname{pl}(A)$.

Representation of evidence. An example

Scenario. A patient has disease a, b or c.
A doctor says "the patient has disease a or b with certainty 0.7." It is assumed it is impossible for the patient to have two of them.

Representation

- $S=\{a, b, c\}$ and m, bel, $\mathrm{pl}: \mathcal{P}(S) \rightarrow[0,1]$
- $\mathrm{m}(\{a, b\})=0.7$ and $\mathrm{m}(S)=0.3$.

An example

Scenario. A patient has disease a, b or c.
A doctor says "the patient has disease a or b with certainty 0.7." The doctor gives no information about disease c.

Representation

- $S=\{a, b, c\}$ and m, bel, $\mathrm{pl}: \mathcal{P}(S) \rightarrow[0,1]$
- $\mathrm{m}(\{a, b\})=0.7$ and $\mathrm{m}(S)=0.3$.

We get:

$$
\begin{array}{ll}
\operatorname{bel}(\{a\})=\operatorname{bel}(\{b\})=\operatorname{bel}(\{c\})=0 & \\
\operatorname{bel}(\{a, b\})=\sum X \subseteq\{a, b\} \\
\operatorname{mi}(X)=0.7 & \operatorname{pl}(\{a, b\})=1-\operatorname{bel}(\{c\})=1 \\
\operatorname{pl}(\{a\})=\operatorname{pl}(\{b\})=1 & \operatorname{pl}(\{c\})=1-\operatorname{bel}(\{a, b\})=0.3
\end{array}
$$

- $m(\{a, b\})$: the 'probability' that the disease is in the set $\{a, b\}$ without being able to say to which subset it belongs.

Dempster-Shafer combination rule

Let m_{1} and m_{2} be two mass functions on $\mathcal{P}(S)$. Dempster-Shafer combination rule computes their aggregation $\mathrm{m}_{1 \oplus 2}: \mathcal{P}(\mathrm{S}) \rightarrow[0,1]$ as follows.

$$
\mathrm{m}_{1 \oplus 2}(X) \mapsto\left\{\begin{array}{lr}
0 & \text { if } X=\varnothing \\
\frac{\sum\left\{\mathrm{m}_{1}\left(X_{1}\right) \cdot \mathrm{m}_{2}\left(X_{2}\right) \mid X_{1} \cap X_{2}=X\right\}}{N} & \text { otherwise }
\end{array}\right.
$$

Normalization factor:

$$
\begin{aligned}
N & =\sum\left\{m_{1}\left(X_{1}\right) \cdot m_{2}\left(X_{2}\right) \mid X_{1} \cap X_{2} \neq \varnothing\right\} \\
& =1-\sum\left\{m_{1}\left(X_{1}\right) \cdot m_{2}\left(X_{2}\right) \mid X_{1} \cap X_{2}=\varnothing\right\}
\end{aligned}
$$

Scenario

A patient has disease a, b or c.
Doctor 1:
"the patient has a with certainty 0.9 and b with certainty 0.1 ."
Doctor 2:
"the patient has c with certainty 0.9 and b with certainty 0.1 ."

Representation

$$
\begin{aligned}
& S=\{a, b, c\} \\
& m_{1}(\{a\})=0.9 \text { and } m_{1}(\{b\})=0.1 . \\
& m_{2}(\{c\})=0.9 \text { and } m_{2}(\{b\})=0.1 .
\end{aligned}
$$

DS combination rule ignores contrtadictory information

$$
\mathrm{m}_{1 \oplus 2}(\{b\})=1, \mathrm{~m}_{1 \oplus 2}(\{a\})=\mathrm{m}_{1 \oplus 2}(\{c\})=0
$$

because $\{a\} \cap\{b\}=\{a\} \cap\{c\}=\emptyset$.
(1) Representing incomplete/contradictory probabilistic information

- Belnap-Dunn Logic
- Non-standard probabilities
(2) Dempster-Shafer theory
- Mass functions, belief functions and plausibility functions
- Representation of evidence
(3) Dempster-Shafer theory and BD logic
- Belief functions
- Plausibility?
- Combination of evidence

Extending belief with a (classical) belief function

Definition belief on BD-models

$M=\left\langle W, v^{+}, v^{-}, B e l\right\rangle$, a BD model plus Bel : $\mathcal{P}(W) \rightarrow[0,1]$.

$$
\operatorname{bel}^{+}(\phi):=\operatorname{Bel}\left(|\phi|^{+}\right) \quad \text { and } \quad \operatorname{bel}^{-}(\phi):=\operatorname{Bel}\left(|\phi|^{-}\right)
$$

bel $^{+}$: belief function on the associated Lindenbaum algebra $\mathcal{L}_{\mathrm{BD}}$. bel ${ }^{-}$: belief function on $\mathcal{L}_{\mathrm{BD}}^{o p}$.

Remark. if \perp and T are not in the language bel $^{+}\left(\right.$resp. $\left.\mathrm{pl}^{+}\right)$are general belief (resp. plausibility) functions.

Non-standard probabilities

Models: $\left(W, v^{+}, v^{-}, \mathrm{m}: W \rightarrow[0,1]\right)$
$p^{+}(\phi)=\sum_{s \in|\phi|^{+}} \mathrm{m}(s)$ and $p^{-}(\phi)=\sum_{s \in|\phi|^{-}} \mathrm{m}(s)$

Immediate generalisation for belief.

Non-standard beliefs

Models: $\left(W, v^{+}, v^{-}, m: \mathcal{P}(W) \rightarrow[0,1]\right)$ bel $^{+}(\phi)=\sum_{X \subseteq|\phi|^{+}} \mathrm{m}(X)$ and $\operatorname{bel}^{-}(\phi)=\sum_{X \subseteq|\phi|^{-}} \mathrm{m}(X)$

- bel $^{+}(\phi)$: belief that ϕ is true
- bel $^{-}(\phi)$: belief that ϕ is false
- bel $^{+}$satisfies the axioms of belief functions

Two-dimensional interpretation
Two dimensional reading allows for various combinations of positive/negative belief/plausibility:

Two-dimensional interpretation
Two dimensional reading allows for various combinations of positive/negative belief/plausibility:

- classically bel $(\phi)=1-\mathrm{pl}(\neg \phi)$. $\mathrm{pl}(\neg \phi)$ maximum evidence against ϕ we can consider in two dimensional reading it corresponds to $\mathrm{pl}^{-}(\phi)$

$$
\left(\mathrm{bel}^{+}(\phi), \mathrm{pl}^{-}(\phi)\right)
$$

Two-dimensional interpretation
Two dimensional reading allows for various combinations of positive/negative belief/plausibility:

- classically $\operatorname{bel}(\phi)=1-\mathrm{pl}(\neg \phi)$.
$\mathrm{pl}(\neg \phi)$ maximum evidence against ϕ we can consider in two dimensional reading it corresponds to $\mathrm{pl}^{-}(\phi)$

$$
\left(\mathrm{bel}^{+}(\phi), \mathrm{pl}^{-}(\phi)\right)
$$

- consider both belief and plausibility independently:

$$
\left(\operatorname{bel}^{+}(\phi), \operatorname{bel}^{-}(\phi)\right),\left(\mathrm{pl}^{+}(\phi), \mathrm{pl}^{-}(\phi)\right)
$$

Two-dimensional interpretation

Two dimensional reading allows for various combinations of positive/negative belief/plausibility:

- classically $\operatorname{bel}(\phi)=1-\mathrm{pl}(\neg \phi)$.
$\mathrm{pl}(\neg \phi)$ maximum evidence against ϕ we can consider in two dimensional reading it corresponds to $\mathrm{pl}^{-}(\phi)$

$$
\left(\mathrm{bel}^{+}(\phi), \mathrm{pl}^{-}(\phi)\right)
$$

- consider both belief and plausibility independently:

$$
\left(\mathrm{bel}^{+}(\phi), \operatorname{bel}^{-}(\phi)\right),\left(\mathrm{pl}^{+}(\phi), \mathrm{pl}^{-}(\phi)\right)
$$

- If we require $\operatorname{bel}(X) \leq \mathrm{pl}(X)$, for $X \in \mathcal{P}(W)$, then bel and pl must be defined from different mass functions. a piece of evidence might support belief and plausibility in a different way \rightarrow gives rise to two mass functions (e.g., circumstantial evidence vs. direct evidence)

Combination of evidence

Let \mathcal{L} be a finite distributive lattice.

Without \perp and T

$$
\begin{aligned}
\mathrm{m}_{1 \oplus 2}: \mathcal{L} & \rightarrow[0,1] \\
x & \mapsto \sum\left\{\mathrm{~m}_{1}\left(x_{1}\right) \cdot \mathrm{m}_{2}\left(x_{2}\right) \mid x_{1} \wedge x_{2}=x\right\} .
\end{aligned}
$$

With \perp and T

$$
\begin{aligned}
\mathrm{m}_{1 \oplus 2}: \mathcal{L} & \rightarrow[0,1] \\
x & \mapsto\left\{\begin{array}{lr}
0 & \text { if } x=\perp \\
\frac{\sum\left\{m_{1}\left(x_{1}\right) \cdot m_{2}\left(x_{2}\right) \mid x_{1} \wedge x_{2}=x\right\}}{\sum\left\{m_{1}\left(x_{1}\right) \cdot m_{2}\left(x_{2}\right) \mid x_{1} \wedge x_{2} \neq \perp\right\}} & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Examples. The two doctors

Scenario. A patient has disease a, b or c.
Doctor 1 : a with certainty 0.9 and b with certainty 0.1 .
Doctor 2: c with certainty 0.9 and b with certainty 0.1 .
Representation. $\mathrm{m}_{1}, \mathrm{~m}_{2}: \mathcal{D M}_{3} \rightarrow[0,1]$

$$
\mathrm{m}_{1}(x)=\left\{\begin{array}{ll}
0.9 & \text { if } x=a \\
0.1 & \text { if } x=b \\
0 & \text { otherwise }
\end{array} \quad \mathrm{m}_{2}(x)= \begin{cases}0.9 & \text { if } x=c \\
0.1 & \text { if } x=b \\
0 & \text { otherwise }\end{cases}\right.
$$

Dempster-Shafer combination rule gives

$$
\mathrm{m}_{1 \oplus 2}(x)= \begin{cases}0.81 & \text { if } x=a \wedge c \\ 0.09 & \text { if } x=a \wedge b \text { or } x=b \wedge c \\ 0.01 & \text { if } x=b \\ 0 & \text { otherwise }\end{cases}
$$

$\operatorname{bel}_{1 \oplus 2}(a)=\operatorname{bel}_{1 \oplus 2}(c)=0.9$ and $^{b^{\prime}}{ }_{1 \oplus 2}(b)=0.19$

Examples. The two doctors

Representation. $\mathrm{m}_{1}, \mathrm{~m}_{2}: \mathcal{D}_{3} \rightarrow[0,1]$

$$
\begin{aligned}
& \mathrm{m}_{1}(x)= \begin{cases}0.9 & \text { if } x=a \wedge \neg b \wedge \neg c \\
0.1 & \text { if } x=\neg a \wedge b \wedge \neg c \\
0 & \text { otherwise } .\end{cases} \\
& \mathrm{m}_{2}(x)= \begin{cases}0.9 & \text { if } x=\neg a \wedge \neg b \wedge c \\
0.1 & \text { if } x=\neg a \wedge b \wedge \neg c \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Dempster-Shafer combination rule gives

$$
\mathrm{m}_{1 \oplus 2}(x)= \begin{cases}0.81 & \text { if } x=a \wedge \neg a \wedge \neg b \wedge c \wedge \neg c \\ 0.09 & \text { if } x=a \wedge \neg a \wedge b \wedge \neg b \wedge \neg c \\ & \text { or } x=\neg a \wedge b \wedge \neg b \wedge c \wedge \neg c \\ 0.01 & \text { if } x=\neg a \wedge b \wedge \neg c \\ 0 & \text { otherwise }\end{cases}
$$

$\operatorname{bel}_{1 \oplus 2}(a)=\operatorname{bel}_{1 \oplus 2}(c)=0.9$ and bel $_{1 \oplus 2}(b)=0.19$

Reasoning with inconsistent / incomplete uncertain information

- other uncertinty measures (upper/lower probabilities, ...)
- qualitative probability
- various aggregation methods
- two layered framework
- [Dunn 76] Dunn, Intuitive semantics for first-degree entailments and 'coupled trees'. Philosophical Studies 29(3), 149-168, 1976
- [Belnap 19] Belnap, How a computer should think, New Essays on Belnap-Dunn Logic, 2019.
- [Halpern 17] J.Y. Halpern. Reasoning about uncertainty. The MIT Press, 2nd edition, 2017.
- [Klein et al] D. Klein, O. Majer, and S. Rafiee Rad. Probabilities with gaps and gluts. Journal of Philosophical Logic, 50(5):1107-1141, October 2021
- [Shafer 76] G. Shafer. A mathematical theory of evidence. Princeton university press, 1976.
- [Zhou 13] C. Zhou. Belief functions on distributive lattices. Artificial Intelligence, 201:1-31, 2013.

