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Contradictory information ...

We have to deal with inconsistent information al the time
(media, databases, scientific information, ...)

get ride of inconsistencies (belief revison, ...)

develop some tools for reasoning in these situations

Inconsistencies: shortcomings of the available information
(Dunn: ”... too much of a good thing”)

issue that has to be lived with until they can be resolved

many attempts in the literature to devlop paraconsistent logics
for these scenarios

we build our work on the Belnap-Dunn four valued logic
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Uncertainty

probability – the most prominent representation of uncertainty

defined on a boolean algebra

each value precisely known (subjective probability)

values of complex events are determined by the values of
simple ones

. . . too perfect!!

Alternatives:

avoiding precise values (interval probabilities, ...)

probability measures on weaker structures

weaker uncertainty measures (inner outer measures, belief
functions,... )
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Belnap-Dunn square 4 [Belnap 19]

Belnap-Dunn square (4,∧,∨,¬) is a de Morgan
algebra.

(4,∧,∨) is a lattice
each element represents the available
positive and/or negative information

n: no information
f : false (is bottom)
t : true (is top)
b: contradictory information

¬ is an involutive de Morgan negation.

f

n b

t

Belnap-Dunn
square 4

(0, 1)

(0, 0) (1, 1)

(1, 0)

Independence of positive and negative information.
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Belnap-Dunn Logic: models [Dunn 76]

Language. LBD ∋ φ := p ∈ Prop | φ ∧ φ | φ ∨ φ | ¬φ

BD Models. M = ⟨W , v+, v− : Prop→ P(W)⟩
v+(p): states containing information supporting p
v−(p): states containing information refuting p

Semantics. Two satisfaction relations ⊨+, ⊨−

w ⊨+ p iff w ∈ v+(p) w ⊨− p iff w ∈ v−(p)

w ⊨+ ¬ϕ iff w ⊨− ϕ w ⊨− ¬ϕ iff w ⊨+ ϕ

w ⊨+ ϕ ∧ ϕ′ iff w ⊨+ ϕ and w ⊨+ ϕ′ w ⊨− ϕ ∧ ϕ′ iff w ⊨− ϕ or w ⊨− ϕ′

w ⊨+ ϕ ∨ ϕ′ iff w ⊨+ ϕ or w ⊨+ ϕ′ w ⊨− ϕ ∨ ϕ′ iff w ⊨− ϕ and w ⊨− ϕ′

Can we introduce probability in this framework?
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Non-standard probabilities

Frame semantics (Klein, Majer, Rafiee Rad 2021)

independence of positive and negative probabilistic
information

BD model extended with a (classical) probability measure.

A probabilistic BD model is a tuple M = ⟨W , v+, v−,m⟩, s.t.
⟨W , v+, v−⟩ is a BD model and µ : P(W)→ [0, 1] is a probability
measure on W

Positive probability

p+(φ) := µ(||φ||+)

Negative probability of φ: p−(φ) := µ(||φ||−)

Remark p−(φ) = p+(¬φ), otherwise p+(φ) and p−(φ)
independent,
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Non-standard probabilities: axioms

Theorem [Klein et al]

The following axiomatization of non-standard probabilities is
complete with respect to the class of probabilistic frames.

(A1) normalization 0 ≤ p+(φ) ≤ 1
(A2) monotonicity if φ ⊢BD ψ then p+(φ) ≤ p+(ψ)
(A3) import-export p+(φ ∧ ψ) + p+(φ ∨ ψ) = p+(φ) + p+(ψ).

Remarks

p−(φ) = p+(¬φ)

weaker than classical Kolmogorovian axioms.
(A3 instead of additivity).

In general p+(¬φ) , 1 − p+(φ)

one can have 0 < p+(φ ∧ ¬φ), p+(φ ∨ ¬φ) < 1
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Non-standard probabilities: intuitive representation

Continuous extension of Belnap-Dunn
square, which we can see as the product
bilattice L[0,1] ⊙ L[0,1]
with L[0,1] = ([0, 1],min,max).

(p+(φ), p−(φ)): positive and negative
probabilistic support of φ.

(0, 0): no information concerning φ is
available

(1, 1): maximally conflicting
information

vertical dashed line: “classical” case

(0, 0)

(1, 0)

(0, 1)

(1, 1)
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Dempster Shafer belief functions

bel(A) represents total evidence supporting A

defined on a boolean algebra of events

weaker than probability

complex formulas are not determined by the simpler ones
bel(A ∨ B) ≥ bel(A) + bel(B) for A ,B disjoint

provides a lower bound for ‘true‘ probability

Example

Scenario. A patient has disease a, b or c.
A doctor says “given the evidence she has disease a or b with a
high certainty (e.g. 0.7).” However the doctor gives only a low
certainty to each of a, b (e.g. 0.1).
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Evidence via mass functions
Mass function
– evidence assigned exactly to a particular event
.

Definition

A function m : P(S)→ [0, 1] is a mass function if

m(∅)∑
A∈P(S) m(A) = 1.

Belief function via mass function:

bel(A) =
∑
B⊆A

m(B)

Probability via mass function:

p(A) =
∑
B⊆A

m(B) =
∑
s∈A

m({s})

All information is encoded in singletons.
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Explicit representation of belief functions

Definition

f : P(S)→ [0, 1] is a belief function if f(∅) = 0 , f(S) = 1 and

f

 ∨
1≤i≤k

Ai

 ≥ ∑
J ⊆ {1, . . . , k }

J , ∅

(−1)|J|+1 · f

∧
j∈J

Aj

 . (1)

holds for every k ≥ 1, and for every A1, . . . ,Ak ∈ P(S).

Theorem
For every belief function bel there is a mass function
mbel : P(S)→ [0, 1] such that, for every A ∈ P(S),

bel(A) =
∑
B≤A

mbel(B)
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Plausibility functions

dual to belief
pl(A) represents evidence which is compatibe with A
gives an upper bound for ‘true‘ probability

Plausibility from belief

pl(A) = 1 − bel(¬A)

Plausibility via mass function:

bel(A) =
∑

B∩A,∅

m(B)

Explicit definition

f

 ∧
1≤i≤k

Ai

 ≤ ∑
J ⊆ {1, . . . , k }

J , ∅

(−1)|J|+1 · f

∨
j∈J

Aj

 . (2)
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Representation of evidence. Example

Example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
The doctor gives no information about disease c.

m : P(S)→ [0, 1] is computed based on the evidence

bel(A) =
∑

B≤A m(B) : the evidence supporting a

pl(A) = 1 − bel(¬A) =
∑

B∩A,∅m(B) : the evidence not
contradicting A

bel(A) ≤ pl(A).
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Representation of evidence. An example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
It is assumed it is impossible for the patient to have two of them.

Representation

S = {a, b , c} and m, bel, pl : P(S)→ [0, 1]

m({a, b}) = 0.7 and m(S) = 0.3.

abc

ab

<<

ac

OO

bc

bb

a

OO <<

b

bb <<

c

bb OO

∅

bb OO ==
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An example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
The doctor gives no information about disease c.

Representation

S = {a, b , c} and m, bel, pl : P(S)→ [0, 1]

m({a, b}) = 0.7 and m(S) = 0.3.

We get:
bel({a}) = bel({b}) = bel({c}) = 0
bel({a, b}) =

∑
X⊆{a,b}m(X) = 0.7 pl({a, b}) = 1 − bel({c}) = 1

pl({a}) = pl({b}) = 1 pl({c}) = 1 − bel({a, b}) = 0.3

m({a, b}): the ‘probability’ that the disease is in the set {a, b}
without being able to say to which subset it belongs.
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Dempster-Shafer combination rule

Let m1 and m2 be two mass functions on P(S). Dempster-Shafer
combination rule computes their aggregation
m1⊕2 : P(S)→ [0, 1] as follows.

m1⊕2(X) 7→


0 if X = ∅∑
{m1(X1) ·m2(X2) | X1 ∩ X2 = X}

N
otherwise.

Normalization factor:

N =
∑
{m1(X1) ·m2(X2) | X1 ∩ X2 , ∅}

= 1 −
∑
{m1(X1) ·m2(X2) | X1 ∩ X2 = ∅}

19/29



What happens with contradictory evidence?

Scenario
A patient has disease a, b or c.
Doctor 1:
“the patient has a with certainty 0.9 and b with certainty 0.1.”
Doctor 2:
“the patient has c with certainty 0.9 and b with certainty 0.1.”

Representation

S = {a, b , c}
m1({a}) = 0.9 and m1({b}) = 0.1.
m2({c}) = 0.9 and m2({b}) = 0.1.

DS combination rule ignores contrtadictory information

m1⊕2({b}) = 1,m1⊕2({a}) = m1⊕2({c}) = 0

because {a} ∩ {b} = {a} ∩ {c} = ∅.
20/29
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Belief function on BD

Extending belief with a (classical) belief function

Definition belief on BD-models

M = ⟨W , v+, v−,Bel⟩, a BD model plus Bel : P(W)→ [0, 1].

bel+(ϕ) := Bel(|ϕ|+) and bel−(ϕ) := Bel(|ϕ|−)

bel+: belief function on the associated Lindenbaum algebra LBD.
bel−: belief function on Lop

BD.

Remark. if ⊥ and ⊤ are not in the language bel+ (resp. pl+) are
general belief (resp. plausibility) functions.

22/29



Mass function

Non-standard probabilities

Models: (W , v+, v−,m : W → [0, 1])
p+(ϕ) =

∑
s∈|ϕ|+ m(s) and p−(ϕ) =

∑
s∈|ϕ|− m(s)

Immediate generalisation for belief.

Non-standard beliefs

Models: (W , v+, v−,m : P(W)→ [0, 1])
bel+(ϕ) =

∑
X⊆|ϕ|+ m(X) and bel−(ϕ) =

∑
X⊆|ϕ|− m(X)

bel+(ϕ): belief that ϕ is true

bel−(ϕ): belief that ϕ is false

bel+ satisfies the axioms of belief functions
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Two-dimensional interpretation
Two dimensional reading allows for various combinations of
positive/negative belief/plausibility:

classically bel(ϕ) = 1 − pl(¬ϕ).
pl(¬ϕ) maximum evidence against ϕ we can consider
in two dimensional reading it corresponds to pl−(ϕ)

(bel+(ϕ), pl−(ϕ))

consider both belief and plausibility independently:

(bel+(ϕ), bel−(ϕ)), (pl+(ϕ), pl−(ϕ))

If we require bel(X) ≤ pl(X), for X ∈ P(W),
then bel and pl must be defined from different mass functions.
a piece of evidence might support belief and plausibility in a
different way→ gives rise to two mass functions
(e.g., circumstantial evidence vs. direct evidence)
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Combination of evidence

Let L be a finite distributive lattice.

Without ⊥ and ⊤

m1⊕2 : L → [0, 1]

x 7→
∑
{m1(x1) ·m2(x2) | x1 ∧ x2 = x}.

With ⊥ and ⊤

m1⊕2 : L → [0, 1]

x 7→


0 if x = ⊥∑
{m1(x1) ·m2(x2) | x1 ∧ x2 = x}∑
{m1(x1) ·m2(x2) | x1 ∧ x2 , ⊥}

otherwise.
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Examples. The two doctors
Scenario. A patient has disease a, b or c.
Doctor 1: a with certainty 0.9 and b with certainty 0.1.
Doctor 2: c with certainty 0.9 and b with certainty 0.1.
Representation. m1,m2 : DM3 → [0, 1]

m1(x) =


0.9 if x = a
0.1 if x = b
0 otherwise.

m2(x) =


0.9 if x = c
0.1 if x = b
0 otherwise.

Dempster-Shafer combination rule gives

m1⊕2(x) =


0.81 if x = a ∧ c
0.09 if x = a ∧ b or x = b ∧ c
0.01 if x = b
0 otherwise.

bel1⊕2(a) = bel1⊕2(c) = 0.9 and bel1⊕2(b) = 0.19
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Examples. The two doctors
Representation. m1,m2 : DM3 → [0, 1]

m1(x) =


0.9 if x = a ∧ ¬b ∧ ¬c
0.1 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

m2(x) =


0.9 if x = ¬a ∧ ¬b ∧ c
0.1 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

Dempster-Shafer combination rule gives

m1⊕2(x) =



0.81 if x = a ∧ ¬a ∧ ¬b ∧ c ∧ ¬c
0.09 if x = a ∧ ¬a ∧ b ∧ ¬b ∧ ¬c

or x = ¬a ∧ b ∧ ¬b ∧ c ∧ ¬c
0.01 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

bel1⊕2(a) = bel1⊕2(c) = 0.9 and bel1⊕2(b) = 0.19
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Future work

Reasoning with inconsistent / incomplete uncertain
information

other uncertinty measures (upper/lower probabilities, ...)

qualitative probability

various aggregation methods

two layered framework
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