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Typelogical grammars
[Moot & Retoré ]: book

Goal: develop a compositional and modular account of grammatical form
and meaning in natural languages:

formal grammar is presented as a logic.

The basic judgement

x1 : A1, . . . , xn : An ` x : A

reads: the (structured configuration of) linguistic expressions x1 of type
A1, . . . , xn of type An can be categorized as a well-formed expression x of
type A .

I Form: residuated families of type-forming operations (logical
level) + different means to control the grammatical resource
management (structural level)

I Meaning: algebraic, computational, relational, and categorial
semantics
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Parsing as deduction
[Ajdukiewicz 35, Bar-Hillel 64]: AB-grammars, [Lambek 58]: string of words, [Lambek 61]:
bracketed strings (phrases)

I Parts of speech (noun, verb...) logical formulas - types.
I Grammaticality judgement logical deduction - computation.

np · (np\s) · (((np\s)\(np\s))/np) · (np/n) · n ` s
time flies like an arrow

Lexicon
I transitive verb love: (np\s)/np

I kids (love games)

I conjunction words and/but: chameleon word (X\X)/X
I X = s : (kids like sweets)s but (parents prefer liquor)s
I X = np\s: kids (like sweets)np\s but (hate vegetables)np\s

I relative pronoun that: (n\n)/(s/np), i.e. it looks for a noun n to its
left and an incomplete sentence to its right (s/np: it misses a np, the
gap at the right)
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Deriving a sentence (in Natural Deduction - Gentzen)

Alice
np

found
(np\s)/np

the
np/n

key
n

/Enp
/E

np\s
\Es

Alice
np ` np

found
(np\s)/np ` (np\s)/np

the
np/n ` np/n

key
n ` n

/E
np/n · n ` np

/E
(np\s)/np · (np/n · n) ` np\s

\E
np · ((np\s)/np · (np/n · n)) ` s

Alice ` np
found ` (np\s)/np

the ` np/n key ` n
/E

the · key ` np
/E

found · (the · key) ` np\s
\E

Alice · (found · (the · key)) ` s

4 / 31



Deriving a sentence (in Natural Deduction - Gentzen)

Alice
np

found
(np\s)/np

the
np/n

key
n

/Enp
/E

np\s
\Es

Alice
np ` np

found
(np\s)/np ` (np\s)/np

the
np/n ` np/n

key
n ` n

/E
np/n · n ` np

/E
(np\s)/np · (np/n · n) ` np\s

\E
np · ((np\s)/np · (np/n · n)) ` s

Alice ` np
found ` (np\s)/np

the ` np/n key ` n
/E

the · key ` np
/E

found · (the · key) ` np\s
\E

Alice · (found · (the · key)) ` s

4 / 31



Deriving a sentence (in Natural Deduction - Gentzen)

Alice
np

found
(np\s)/np

the
np/n

key
n

/Enp
/E

np\s
\Es

Alice
np ` np

found
(np\s)/np ` (np\s)/np

the
np/n ` np/n

key
n ` n

/E
np/n · n ` np

/E
(np\s)/np · (np/n · n) ` np\s

\E
np · ((np\s)/np · (np/n · n)) ` s

Alice ` np
found ` (np\s)/np

the ` np/n key ` n
/E

the · key ` np
/E

found · (the · key) ` np\s
\E

Alice · (found · (the · key)) ` s

4 / 31



Modal Lambek calculus 1/2
[Moortgat at al. 97], [Morrill 17], [Sadrzadeh at al. 21]: Language expansion + axiomatic extensions

LC lacks the required expressivity for realistic grammar development.

The extended Lambek calculi LC^ enrich the type language with
modalities for structural control.

I Alice (found (the key)) ` s  LC

I key (that (Alice (found there))) ` n  LC^
I that: (n\n)/(s/^�np), there: (np\s)\(np\s)
I licensing (controlled associativity and (mixed) commutativity)

I (Kids love videogames) but (parents hate videogames)
` s  LC

I ((Kids love) but (parents hate)) videogames ` s LC^
I but: ((s/^�np)\�(s/np))/(s/^�np)
I licensing (controlled associativity OR controlled contraction)
I blocking (to avoid Kids love videogames but parents hate)
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Licensing Associativity via SC
√

[Moortgat 96, Kurtonina & Moortgat 97], [Morrill 17]: structural control

key

n

that

(n\n)/(s/♦2np)

[ ` ♦2np]1

alice

np

found

(np\s)/np
[ ` 2np]2

〈 〉 ` np
2E

found · 〈 〉 ` np\s
/E

alice · (found · 〈 〉) ` s
\E

(alice · found) · 〈 〉 ` s
cA

(alice · found) · ` s
♦E2

alice · found ` s/♦2np
/I1

that · (alice · found) ` n\n
/E

key · (that · (alice · found)) ` n
\E

λx.((key x) ∧ ((found x) alice))
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Licensing Mixed Commutativity via SC
√

key

n

that

(n\n)/(s/♦2np)

[ ` ♦2np]1

alice

np

found

(np\s)/np
[ ` 2np]2

〈 〉 ` np
2E

found · 〈 〉 ` np\s
/E

there

(np\s)\(np\s)
(found · 〈 〉) · there ` np\s

\E

alice · ((found · 〈 〉) · there) ` s
\E

alice · ((found · there) · 〈 〉) ` s
cMC

(alice · (found · there)) · 〈 〉 ` s
cA

(alice · (found · there)) · ` s
♦E2

alice · (found · there) ` s/♦2np
/I1

that · (alice · (found · there)) ` n\n
/E

key · (that · (alice · (found · there))) ` n
\E

λx.((key x) ∧ ((there (found x)) alice))
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Modal Lambek calculus 2/2
[De Marneffe et al. 21]: dependency structures, [Kogkalidis et al. 20]: d. modalities as blocking devices

Function-argument: opposition between a function type A/B (or B\A )
that combines with its argument B to produce an A .

Dependency structures: opposition between a head and its dependents
(i.e. complements selected by the head, or adjuncts modifying the head)

I (Alice left) unexpectedly  LC^�

I left is the head selecting for Alice as a complement with the subject
role (^sunp)\s

I unexpectedly is an adjunct modifying the head �adv(s\s)

Domain of locality: The dependency modalities have the effect of
sealing off (i.e. blocking) a structure (i.e. a head with its dependents): .

Interaction postulates: In some cases, the domain of locality should be
permeable, so dependency and structural control modalities can interact.
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Starting point: display calculi

I Natural generalization of Gentzen’s sequent calculi;
I sequents X ` Y , where X and Y are structures:

- formulas are atomic structures
- built-up: structural connectives (generalizing Gentzen’s comma in

sequents A1, . . . ,An ` B1, . . . ,Bm)
- generation trees (generalizing sets, multisets, sequences)

I Display property:

Y ` X \̌ Z
X ⊗̂ Y ` Z
Y ⊗̂ X ` Z

X ` Y \̌ Z

X ` ¬̌Y
Y ` ∼̌X

display rules semantically justified by adjunction/residuation

I Canonical proof of cut elimination (via metatheorem)
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Proper display calculi
[Wansing 98]: proper, [Belnap 82, 89]: display logic, [Mints 72, Dunn 73, 75]: structural connectives

Definition
A proper DC verifies each of the following conditions:

1. structures can disappear, formulas are forever;

2. tree-traceable formula-occurrences, via suitably defined
congruence relation (same shape, position, non-proliferation);

3. principal = displayed

4. rules are closed under uniform substitution of congruent
parameters (Properness!);

5. reduction strategy exists when cut formulas are principal.

Theorem (Canonical!)
Cut elim. and subformula property hold for any proper DC.
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Which logics are properly displayable?
[Ciabattoni et al. 15, Greco et al. 16]

Complete characterization:

1. the logics of any basic normal (D)LE;

2. axiomatic extensions of these with analytic inductive inequalities:
 unified correspondence

+φ

∧,∨
+f ,−g

+p −p

∧,∨
+g,−f

≤ −ψ

∧,∨
−g,+f

+p +p

∧,∨
−f ,+g

Fact: cut-elim., subfm. prop., sound-&-completeness, conservativity
guaranteed by metatheorem + ALBA-technology.
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Examples

The definition of analytic inductive inequalities is uniform in each
signature.

I Analytic inductive axioms

(A → (B ∨ C))→ ((A → B) ∨ C)

(^A → �B)→ �(A → B)

I Sahlqvist but non-analytic axioms

A → ^�A

(�A → ^B)→ (A → B)
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The excluded middle is derivable using Grishin’s rule:

A ` A
A ∧̂ > ` A
A ∧̂ > ` ⊥ ∨̌A
> ` A →̌ (⊥ ∨̌A)

Gri
> ` (A →̌⊥) ∨̌A

...
> ` ¬A ∨ A
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For many... but not for all.

I The characterization theorem sets hard boundaries to the scope of
proper display calculi.

I Interesting logics are left out:
I First order logic
I Non normal modal logics
I Conditional logics
I Dynamic epistemic logic
I Inquisitive logic
I Semi De Morgan logic
I Bi-lattice logic
I Rough algebras
I . . .

Can we extend the scope of proper display calculi?

Yes: proper display calculi proper multi-type calculi
(read: multi-sorted calculi)
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Multi-type ( multi-sorted) proper display calculi
[Greco et al. 14...]

Definition
A proper mDC verifies each of the following conditions:

1. structures can disappear, formulas are forever;

2. tree-traceable formula-occurrences, via suitably defined
congruence relation (same shape, position, non-proliferation)

3. principal = displayed

4. rules are closed under uniform substitution of congruent
parameters within each type (Properness!);

5. reduction strategy exists when cut formulas are principal.

6. type-uniformity of derivable sequents;

7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)
Cut elim. and subformula property hold for any proper mDC.
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The language of the modal Lambek calculus LC^�^

Fm 3 A ::= p

A / A | A ⊗ A | A \ A Lambek connectives

^i α | ^
cA | �mA s.c. and d. modalities

Fm 3 α ::= �i A

Str 3 X ::= A

X /̌X | X ⊗̂ X | X \̌ X Lambek connectives

ˆ̂ i Γ | ˆ̂ cX | �̌c | �̌ mX | _̂m s.c. and d. modalities

Str 3 Γ ::= �̌i X
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Basic display calculus

I Identity and Cut rules (preorder)

Id
A ` A

X ` A A ` Y
Cut

X ` Y
I Display rules (residuation)

X ` Z /̌Y
⊗ a /

X ⊗̂ Y ` Z
⊗ a \

Y ` X \̌ Z
I Logical rules (arity and tonicity)

A ⊗̂ B ` Y
⊗L

A ⊗ B ` Y
X ` A Y ` B

⊗R
X ⊗̂ Y ` A ⊗ B

X ` A B ` Y
\L

A \ B ` X \̌ Y
X ` A \̌ B

\RX ` A \ B

A ` X Y ` B
/L

A / B ` X /̌Y
X ` B /̌A

/RX ` B / A
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Language expansion: dependency modalities

I Display rules (adjunction)

Y ` �̌X
adj

ˆ̂Y ` X

I Logical rules (arity and tonicity)

ˆ̂X ` Y
^L
^X ` Y

X ` A
^R

ˆ̂X ` ^A

A ` X
�̌L
�A ` �̌X

X ` �̌A �R
X ` �A
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Language expansion: structural control operators

I Display rules (adjunction)

Γ ` �̌X
adj

ˆ̂Γ ` X

I Logical rules (arity and tonicity)

ˆ̂α ` X
^L
^α ` X

Γ ` α
^R

ˆ̂Γ ` ^α

A ` X
�̌L
�A ` �̌X

Γ ` �̌A �R
Γ ` �A
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Axiomatic extensions via analytic structural rules

I Structural rules

X ⊗̂ (Y ⊗̂ Z) `W
A

(X ⊗̂ Y) ⊗̂ Z `W

(X ⊗̂ Z) ⊗̂ Y `W
MC

(X ⊗̂ Y) ⊗̂ Z `W

I Controlled structural rules

X ⊗̂ (Y ⊗̂ ˆ̂Γ) `W
cA

(X ⊗̂ Y) ⊗̂ ˆ̂Γ `W

(X ⊗̂ ˆ̂Γ) ⊗̂ Y `W
cMC

(X ⊗̂ Y) ⊗̂ ˆ̂Γ `W
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Licensing rules: the case of Linear Logic

The full language of linear logic (in Girard’s notation) is the following:

A ::= p |
1 | ⊥ | A ⊗ A | A M A | A ( A | multiplicatives

! A | ? A | exponentials

> | 0 | A & A | A ⊕ A additives

Girard’s rules for exponentials (in sequent format):

I left (right) dereliction and right (left) promotion rules:

X ,A ` Y
X , !A ` Y

X ` A ,Y
X ` ?A ,Y

!X ` A , ?Y
!X ` !A , ?Y

!X ,A ` ?Y
!X , ?A ` ?Y

I left (right) weakening and left (right) contraction rules:

X ` Y
X , !A ` Y

X ` Y
X ` ?A ,Y

X , !A , !A ` Y
X , !A ` Y

X ` ?A , ?A ,Y
X ` ?A ,Y
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Is Linear Logic properly displayable?

[Belnap 92]: not a proper display calculus:

Z ` A
Z ` !A

A `W
!A `W

W ` A
W ` ?A

A ` Z
?A ` Z

Z more general than X ,Y on the previous slide, but still not arbitrary:
they are still exponentially restricted as before.

Notice that the following sequents are derivable:

!!A ⇔ !A

!A ` A

A ` B implies !A ` !B

!> ⇔ 1

!(A&B)⇔ !A ⊗ !B analytic?
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Linear logic: algebraic analysis
[Greco et al. 22]: to appear

!!a = !a !> = 1
!a ≤ a !(a&b) = !a ⊗ !b
a ≤ b implies !a ≤ !b

! : L→ L interior operator. Then ! := ^�, where

K! L

`

^

�

Fact: Range(!) has natural BA/HA-structure.

Upshot: natural semantics for the following multi-type language:

Kernel 3 α ::= �A | t | f | α ∧ α | α ∨ α | α→ α

Linear 3 A ::= p | ^α |

1 | ⊥ | A ⊗ A | A M A | A ( A |

> | 0 | A & A | A ⊕ A
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Reverse-engineering linear logic 1/2

Interior operator axioms/rule recaptured:

A ` A
�A ` �̌A

ˆ̂�A ` A
^�A ` A

!A ` A

A ` A
�A ` �̌A
�A ` �A

ˆ̂�A ` ^�A
�A ` �̌^�A
�A ` �^�A

ˆ̂�A ` ^�^�A
^�A ` ^�^�A

!A ` !!A

A ` B
�A ` �̌B
�A ` �B

ˆ̂�A ` ^�B
^�A ` ^�B

!A ` !B
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Reverse-engineering linear logic 2/2

Problem: the following axioms are non-analytic.

!> = 1  ^�> = 1
!(A & B) = !A ⊗ !B  ^�(A & B) = ^�A ⊗ ^�B

Solution: � surjective and finitely meet-preserving⇒ axioms above
semantically equivalent to the following analytic identities:

^t = 1 ^(α ∧ β) = ^α ⊗ ^β

corresponding to the following analytic rules:

1̂ ` X
nec / conec

ˆ̂ t̂ ` X

ˆ̂Γ ⊗̂ ˆ̂∆ ` X
reg / coreg

ˆ̂ (Γ ∧̂∆) ` X
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Deriving !(A & B)⇔ !A ⊗ !B

A ` A
A & B ` A

�(A & B) ` �̌A
�(A & B) ` �A

ˆ̂�(A & B) ` ^�A

B ` B
A & B ` B

�(A & B) ` �̌B
�(A & B) ` �B

ˆ̂�(A & B) ` ^�B
ˆ̂�(A & B) ⊗̂ ˆ̂�(A & B) ` ^�A ⊗ ^�B

reg
ˆ̂ (�(A & B) ∧̂ �(A & B)) ` ^�A ⊗ ^�B

�(A & B) ∧̂ �(A & B) ` �̌(^�A ⊗ ^�B)
C

�(A & B) ` �̌(^�A ⊗ ^�B)

ˆ̂�(A & B) ` ^�A ⊗ ^�B
^�(A & B) ` ^�A ⊗ ^�B

!(A & B) ` !A ⊗ !B
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Beyond analiticity: towards a general theory

Achievements in logic:
I Several examples of logics which are single-type not analytic but

multi-type analytic:
I DEL, Inquisitive logic, semi De Morgan logic
I (Substructural) first order logic
I Linear logic
I . . .
I (D)LEs and their analytic inductive axiomatic extensions

I Main guideline: discovering and exploiting hidden adjunctions.
I Can we make this practice into a uniform theory?

Open problems:
I find a list of sufficient (and necessary) conditions to show that a

multi-type presentation exists;
I provide a recipe to construct the multi-type presentation.
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Structural control via the multi-type approach
General strategy:
I Define a multi-modal logic where linguistic composition is relativized

to specific resource management modes (via a language
expansion: structural control and dependency modalities).

I The extra expressivity is obtained in a controlled fashion via the
addition of interaction postulates (via axiomatic extensions).

I Structural modalities can be used to licence (or to block) the
access to different regimes of resource management.

I Dependency modalities can be used to block the access to different
regimes of resource management.

Ingredients:

I The sort of general elements that inhabit the more restrictive
regime;

I The sorts of special elements that witness the licence of a more
liberal regime;

I The sort(s) of blocking elements that provide the room to block
structural transformations.
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Heterogeneous structural control algebras 1/2

For each i ∈ I, H := (G,Li ,Ri ,B) is a structure such that

I G := (G,≤G ,F ,G) is a fully residuated algebra;
I (Li ,≤Li ) and (Ri ,≤Ri ) are partial orders

Li G Ri
^i

`

�i

�i

`

_i

where the composition

^i�i defines an interior operator on G
�i_i defines a closure operator on G
�i^i defines identity on Li

_i�i defines identity on Ri
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Heterogeneous structural control algebras 2/2
For each i ∈ I, H := (G,Li ,Ri ,B) is a structure such that
I G := (G,≤G ,F ,G) is a fully residuated algebra;
I (Li ,≤Li ) and (Ri ,≤Ri ) are a partial orders;
I for the blocking type we use dependency modalities:

I B = G.

Li G Ri

G

a, `

^i

`

�i

�i

`

_i

_m,�c �m,^c

where the composition

�c^c defines a closure operator
_m�m defines an interior operator
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Conclusions

I Multi-type methodology: Uniform and modular algorithmic proof
theory paired with multi-sorted algebraic semantics.

I To do: lift the approach to categories providing semantics of
proofs.

I Work in the vicinity: Soft Sub-exponential (last invited talk today) +
Module actions (generalizing vector spaces) + n-ary heterogenous
modalities.

31 / 31


	Conclusions

