First-order fuzzy logics and their model theory

Carles Noguera

Department of Information Engineering and Mathematics University of Siena

LATD 2022

Main goals of the talk

- First-order fuzzy logics as studied in Mathematical Fuzzy Logic
- Two motivations:
 - Study reasoning with graded predicates
 - Study weighted (fuzzy) structures that appear in computer science
- Graded Model Theory as a part of MFL, inspired by Classical Model Theory
- Survey of known results
- Lines for future research

Mathematical Fuzzy Logic (MFL) - 1

- Started in the 90s by Petr Hájek, Vilém Novák, Siegfried Gottwald, Francesc Esteva, Lluís Godo, Daniele Mundici, Franco Montagna, Antonio Di Nola, and many others
- Logical foundations of fuzzy set theory
- MFL has become a genuine subdiscipline of Mathematical Logic, specializing in the study of certain many-valued logics
- Hájek's monograph (1998): G, Ł, Π, BL

Carles Noguera (University of Siena)

First-order fuzzy logics and their model theory

Mathematical Fuzzy Logic (MFL) – 2

- Standard semantics over the unit interval [0,1]
- \bullet Order-based connectives $\lor = \max$ and $\land = \min$
- Constants for total truth $(\overline{1})$ and total falsity $(\overline{0})$
- Another conjunction & interpreted by a (left-continuous) t-norm: binary commutative, associative, monotone function on [0, 1]
- An implication given by the residuum of the t-norm:

 $a \& b \le c$ if, and only if, $a \le b \to c$

Mathematical Fuzzy Logic (MFL) - 3

The state of the art (as of 2015) is summarized in:

P. Cintula, C. Fermüller, P. Hájek, C. Noguera (editors). Vol. 37, 38, and 58 of *Studies in Logic: Math. Logic and Foundations*. College Publications, 2011, 2015.

First-order fuzzy logics

- 1961: Mostowski proposes to study first-order many-valued logics (interpreting ∀ as infimum, and ∃ as supremum).
- 1962: Scarpellini proves that first-order Łukasiewicz logic is not recursively axiomatizable.
- 1963: Rasiowa and Sikorski interpret similarly first-order intuitionistic logic over Heyting algebras.
- 1963: Hay axiomatizes first-order Łukasiewicz logic (with an infinitary rule).
- 1969: Horn axiomatizes first-order Gödel–Dummett logic.
- 1986: Di Nola and G. Gerla, Fuzzy models of first-order languages.
- 1990: Novák studies first-order Pavelka logic (Łukasiewicz logic expanded with constants for each real number in [0, 1]).
- 1998: Based on these previous works, Hájek gives his general approach to first-order fuzzy logics. He axiomatizes the semantics based on all corresponding linearly algebras.

First motivation: Logic, reasoning, and gradedness

- Logic is concerned with reasoning.
- Everyday language and reasoning successfully handle graded properties all the time, i.e. properties that are a matter of more-or-less such as *red*, *old*, *tall*, or *rich*.
- Fuzzy logics have been proposed as useful mathematical apparatus to formalize (parts of) reasoning with graded properties.
- A logical analysis based only on propositional (or modal) fuzzy logics is clearly insufficient to account for most of instances of everyday reasoning with graded properties.
- We need to develop first-order fuzzy logics!

Second motivation: Study of graded structures

Fuzzy structures in fuzzy set theory:

- fuzzy subalgebras
- fuzzy orders
- fuzzy preference relations
- fuzzy topologies
- <u>►</u> ...
- Weighted structures in computer science:
 - weighted graphs
 - valued constraint satisfaction problems
 - <u>ا ...</u>

Going first-order – 1

- Usual classical syntax with a signature $\tau = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$
- Semantics as in Mostowski, Rasiowa, Hájek tradition (A, M) where:
 - A is an algebra of truth-values (for the propositional language)
 - $\mathbf{M} = \langle M, \langle P_{\mathbf{M}} \rangle_{P \in \mathbf{P}}, \langle F_{\mathbf{M}} \rangle_{F \in \mathbf{F}} \rangle$, where
 - ★ M is a set
 - ★ $F_{\mathbf{M}}$ is a function $M^n \to M$ for each *n*-ary function symbol $F \in \mathbf{F}$.
 - ★ $P_{\mathbf{M}}$ is a function $M^n \rightarrow A$, for each *n*-ary predicate symbol $P \in \mathbf{P}$
 - An \mathfrak{M} -evaluation of the object variables is a mapping $v: V \to M$

$$\begin{aligned} \|x\|_{v}^{\mathfrak{M}} &= v(x), \\ \|F(t_{1},\ldots,t_{n})\|_{v}^{\mathfrak{M}} &= F_{\mathbf{M}}(\|t_{1}\|_{v}^{\mathfrak{M}},\ldots,\|t_{n}\|_{v}^{\mathfrak{M}}), \\ \|P(t_{1},\ldots,t_{n})\|_{v}^{\mathfrak{M}} &= P_{\mathbf{M}}(\|t_{1}\|_{v}^{\mathfrak{M}},\ldots,\|t_{n}\|_{v}^{\mathfrak{M}}), \\ \|\circ(\varphi_{1},\ldots,\varphi_{n})\|_{v}^{\mathfrak{M}} &= \circ^{A}(\|\varphi_{1}\|_{v}^{\mathfrak{M}},\ldots,\|\varphi_{n}\|_{v}^{\mathfrak{M}}), \\ \|(\forall x)\varphi\|_{v}^{\mathfrak{M}} &= \inf_{\leq_{A}}\{\|\varphi\|_{v[x \to m]}^{\mathfrak{M}} \mid m \in M\}, \\ \|(\exists x)\varphi\|_{v}^{\mathfrak{M}} &= \sup_{\leq_{A}}\{\|\varphi\|_{v[x \to m]}^{\mathfrak{M}} \mid m \in M\}. \end{aligned}$$

Going first-order – 2

- Notion of safe structure, where truth values of all formulas are defined.
- Notion of model: For each v, $\|\sigma\|_v^{\mathfrak{M}} \in \mathcal{F}^A = \{a \mid \overline{1}^A \leq_A a\}.$
- As in classical logic, we have:
 - axiomatic Hilbert-style presentation
 - completeness theorem

P. Hájek and P. Cintula. On theories and models in fuzzy predicate logics. *Journal of Symbolic Logic*, 71(3):863–880, 2006.
P. Cintula and C. Noguera. A Henkin-Style Proof of Completeness for First-Order Algebraizable Logics, *Journal of Symbolic Logic*, 80(1):341–358, 2015.

Where do we start?

Classical model theory can be taken as a tentative map of an uncharted territory.

Model theory is the branch of mathematical logic that studies (classical) first-order structures.

- 1915, 1920: Löwenheim–Skolem.
- 1929, 1930, Gödel: completeness, compactness.
- 1950, Trakhtenbrot: undecidability of finite-model tautologies.
- 1953, Fraïssé: back-and-forth for elementary equivalence.
- 1955: Łoś: ultraproducts.
- 1961, Ehrenfeucht, Keisler: games and ultraprowers for elementary equivalence.
- 1961, Vaught: cardinal of models.
- 1965, Morley: categoricity.
- 1966, Robinson: non-standard analysis.
- 1969, Lindström: abstract model theory.
- 1973, Chang and Keisler: Model Theory.
- 1993, Hodges: Model Theory.

Wait! Isn't just two-sorted classical first-order logic?

Given a structure $\langle A, M \rangle$, we build a 2-sorted structure A_M :

- The universe of sort 1 is A and the universe of sort 2 is M.
- The symbols ≈_i are interpreted as crisp equality in the corresponding sorts.
- For each propositional *n*-ary connective λ , define $\lambda^{A_{M}}$ as λ^{A} .
- For each *n*-ary functional symbol $F \in \mathbf{Func}$, define $F^{A_{\mathbf{M}}}$ as $F_{\mathbf{M}}$.
- For each *n*-ary relational symbol $R \in \mathbf{Pred}$, define $R^{A_{\mathbf{M}}}$ as $R_{\mathbf{M}}$.

P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna and C. Noguera, Distinguished Algebraic Semantics For T-Norm Based Fuzzy Logics: Methods and Algebraic Equivalencies, *Annals of Pure and Applied Logic* 160(1):53–81, 2009.

Translation to two-sorted structures

Lemma 1

For each formula $\varphi(v_1, \ldots, v_n)$, there is a 2-sorted formula $E_{\varphi}(v_1, \ldots, v_n, x)$ such that, for every \mathcal{P} -structure $\langle \mathbf{A}, \mathbf{M} \rangle$, and each $d_1, \ldots, d_n \in M$,

 $\|\varphi(d_1,\ldots,d_n)\|_{\mathbf{M}}^{\mathbf{A}}=b$ if and only if $\mathbf{A}_{\mathbf{M}}\models E_{\varphi}(d_1,\ldots,d_n,b).$

Corollary 2

A structure $\langle A, \mathbf{M} \rangle$ is safe if and only if, for every \mathcal{P} -formula $\varphi(v_1, \ldots, v_n)$,

$$\mathbf{A}_{\mathbf{M}} \models (\forall v_1, \ldots, v_n) (\exists ! x) E_{\varphi}(v_1, \ldots, v_n, x).$$

But it is not exactly the same

- The 2-sorted approach will yield results (taken for free from classical model theory) whenever we regard as (A, M) as two-sorted structures where A and M "play a symmetrical role".
- However, whenever we want need to stress the "different nature" of A (truth values) and M (domain of discourse), for instance by keeping a fix intended algebra, the 2-sorted approach will not help.
- Moreover, the translation changes the complexity of formulas, so it is not useful for syntax-sensitive issues.
- Finally, there are cases in which the non-classical result is indeed the translation of a classical result, but not a famous one, rather an awkward never-formulated particular result.

Building up the theory

- Hájek–Cintula (2006): elementary equivalence and embeddings, conservative extensions, diagrams, exhaustive models, witnessed models.
- Dellunde (2011): Notions of homomorphisms and diagrams, reduced models.
- Dellunde (2012): Ultraproducts, Łoś theorem.
- Dellunde (2014): Compactness property for first-order languages with semantics given over a fixed finite MTL-chain: every finitely satisfiable set of sentences is satisfiable.

Immediate challenges for a graded model theory

Compactness fails in general when dealing with infinite MTL-chains: Hájek showed that product predicate logic with the standard semantics on the interval [0, 1] is not compact.

- Can we prove some version of Löwenheim–Skolem theorems?
- What notion of elementary equivalence should we use?
- Can we characterize elementary equivalence?

(Elementary) substructure

- $\langle \boldsymbol{B}, \mathbf{N} \rangle$ is a substructure of $\langle \boldsymbol{A}, \mathbf{M} \rangle$ if:
 - **()** B is a subalgebra of A.
 - $2 \ N \subseteq M.$
 - So For each *n*-ary function symbol $F \in \mathcal{P}$, and elements $d_1, \ldots, d_n \in N$,

$$F_{\mathbf{N}}(d_1,\ldots,d_n)=F_{\mathbf{M}}(d_1,\ldots,d_n).$$

• For each *n*-ary predicate $P \in \mathcal{P}$, P_N is the restriction of P_M to *N*.

Moreover, if both structures are safe, $\langle \boldsymbol{B}, \mathbf{N} \rangle$ is an elementary substructure of $\langle \boldsymbol{A}, \mathbf{M} \rangle$ if for every \mathcal{P} -formula $\varphi(x_1, \ldots, x_n)$, and elements $d_1, \ldots, d_n \in N$,

$$\|\varphi(d_1,\ldots,d_n)\|_{\mathbf{N}}^{\mathbf{B}} = \|\varphi(d_1,\ldots,d_n)\|_{\mathbf{M}}^{\mathbf{A}}$$

Homomorphisms

The pair $\langle f,g \rangle$ is a homomorphism from $\langle A, M \rangle$ into $\langle B, N \rangle$ (safe \mathcal{P} -structures) if

- 1) $f: \mathbf{A} \rightarrow \mathbf{B}$ is a homomorphism of L-algebras
- 2) $g: M \to N$ is a mapping from *M* to *N*
- 3) for every *n*-ary $F \in \mathcal{P}$ and $d_1, \ldots, d_n \in M$,

$$g(F_{\mathbf{M}}(d_1,\ldots,d_n))=F_{\mathbf{N}}(g(d_1),\ldots,g(d_n)).$$

4) For every *n*-ary predicate symbol $P \in \mathcal{P}$, and $d_1, \ldots, d_n \in M$,

$$P_{\mathbf{M}}(d_1,\ldots,d_n)\in\mathcal{F}^{\mathbf{A}}$$
 \Rightarrow $P_{\mathbf{N}}(g(d_1),\ldots,g(d_n))\in\mathcal{F}^{\mathbf{B}}.$

It is a σ -homomorphism if f preserves all the existing infima and suprema.

It is a strong homomorphism if for every *n*-ary predicate symbol $P \in \mathcal{P}$ and $d_1, \ldots, d_n \in M, f(P_{\mathbf{M}}(d_1, \ldots, d_n)) = P_{\mathbf{N}}(g(d_1), \ldots, g(d_n)).$

Elementary homomorphisms

A homomorphism from $\langle A, \mathbf{M} \rangle$ into $\langle B, \mathbf{N} \rangle$ (safe \mathcal{P} -structures) $\langle f, g \rangle$ is elementary if for each \mathcal{P} -formula $\varphi(x_1, \ldots, x_n)$ and elements $d_1, \ldots, d_n \in M$,

 $f(\|\varphi(d_1,\ldots,d_n)\|_{\mathbf{M}}^{\mathbf{A}}) = \|\varphi(g(d_1),\ldots,g(d_n))\|_{\mathbf{N}}^{\mathbf{B}}$

Three notions of elementary equivalence

Let $\langle A, M \rangle$ and $\langle B, N \rangle$ be safe \mathcal{P} -structures. We say that they are:

1 Elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv \langle B, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence φ , $\|\varphi\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\varphi\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$.

Assume now that A = B.

- 2 Filter-strongly elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv^{f_s} \langle A, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence φ , $\|\varphi\|_{\mathbf{M}}^A \in \mathcal{F}^A \Leftrightarrow \|\varphi\|_{\mathbf{N}}^A \in \mathcal{F}^A$ and, moreover, $\|\varphi\|_{\mathbf{M}}^A = \|\varphi\|_{\mathbf{N}}^A$ whenever $\|\varphi\|_{\mathbf{M}}^A \in \mathcal{F}^A$.
- 3 Strongly elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv^{s} \langle A, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence φ , $\|\varphi\|_{\mathbf{M}}^{A} = \|\varphi\|_{\mathbf{N}}^{A}$.
- Clearly, \equiv and \equiv^{fs} are the same notion for logics with weakening, because then $\mathcal{F}^A = \{\overline{1}^A\}$.

A useful lemma

Lemma 3

 $\langle f, g \rangle : \langle A, \mathbf{M} \rangle \rightarrow \langle B, \mathbf{N} \rangle$ strong homomorphism. If *f* is a σ -mapping and *g* is onto, then $\langle f, g \rangle$ is an elementary homomorphism.

Moreover, if *f* is one-to-one, we have $\langle \mathbf{A}, \mathbf{M} \rangle \equiv \langle \mathbf{B}, \mathbf{N} \rangle$.

An example $(\equiv^{fs} \neq \equiv^{s})$

Consider a predicate language with only one monadic predicate *P* and take ([0, 1]_G, **M**) and ([0, 1]_G, **N**), both with the set of natural numbers as domain.

$$P_{\mathbf{M}}(n) = \begin{cases} \frac{3}{4} - \frac{1}{n} & \text{if } n \ge 2, \\ 0 & 0 \le n \le 1. \end{cases}$$
$$P_{\mathbf{N}}(n) = \begin{cases} \frac{1}{2} - \frac{1}{n} & \text{if } n \ge 2, \\ 0 & 0 \le n \le 1. \end{cases}$$

 $\|(\exists x)P(x)\|_{\mathbf{M}} = \frac{3}{4}$ and $\|(\exists x)P(x)\|_{\mathbf{N}} = \frac{1}{2}$. Taking *f* as any non-decreasing bijection such that $f(\frac{3}{4}) = \frac{1}{2}$, f(1) = 1, f(0) = 0, and for every $n \in \mathbf{N}$, $f(\frac{3}{4} - \frac{1}{n}) = \frac{1}{2} - \frac{1}{n}$, and applying the lemma we obtain $\langle [0, 1]_{\mathbf{G}}, \mathbf{M} \rangle \equiv \langle [0, 1]_{\mathbf{G}}, \mathbf{N} \rangle$.

Another example ($\equiv \neq \equiv^{fs}$)

Consider a predicate language with only one monadic predicate *P* and (*A*, **M**) and (*A*, **N**) with both domains the set of all natural numbers, and *A* the standard uninorm given by:

$$x \&^{A} y = \begin{cases} \min\{x, y\}, & \text{if } x \le 1 - y, \\ \max\{x, y\}, & \text{if } x > 1 - y. \end{cases}$$
$$\mathcal{F}^{A} = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$$
$$P_{\mathbf{M}}(n) = \begin{cases} \frac{4}{5} - \frac{1}{n^{4}}, & \text{if } n \ge 2, \\ 0, & \text{if } 0 \le n \le 1. \end{cases}$$
$$P_{\mathbf{N}}(n) = \begin{cases} \frac{3}{5} - \frac{1}{n^{4}}, & \text{if } n \ge 2, \\ 0, & \text{if } 0 \le n \le 1. \end{cases}$$

 $\|(\exists x)P(x)\|_{\mathbf{M}} = \frac{4}{5}$ and $\|(\exists x)P(x)\|_{\mathbf{M}} = \frac{3}{5}$, but taking an appropriate strong σ -homomorphism $\langle f, Id \rangle$ and applying again the lemma, we obtain $\langle A, \mathbf{M} \rangle \equiv \langle A, \mathbf{N} \rangle$.

23/39

Downward Löwenheim–Skolem theorem

Theorem 4

Take a safe \mathcal{P} -structure $\langle \mathbf{A}, \mathbf{M} \rangle$ and assume that every subset of A definable with parameters in $\langle \mathbf{A}, \mathbf{M} \rangle$ has infimum and supremum. Then, for every $Z \subseteq M$ and every cardinal κ such that

 $\max\{\omega, |\mathcal{P}|, |Z|, p(A)\} \le \kappa \le |M|,$

there is a safe \mathcal{P} -structure $\langle \mathbf{A}, \mathbf{N} \rangle$ which is an elementary substructure of $\langle \mathbf{A}, \mathbf{M} \rangle$ such that $|N| = \kappa$ and $Z \subseteq N$.

P. Dellunde, À. García-Cerdaña, and C. Noguera. Löwenheim–Skolem theorems for non-classical first-order algebraizable logics. *Logic Journal of the IGPL* 24(3):321–345, 2016.

24/39

Upward Löwenheim–Skolem theorem

Theorem 5

Let \mathcal{P} be an equality-free language. For every infinite safe \mathcal{P} -structure $\langle A, \mathbf{M} \rangle$ and every cardinal κ with $\max\{|\mathcal{P}|, |\mathbf{M}|\} \leq \kappa$, there is a safe \mathcal{P} -structure $\langle A, \mathbf{N} \rangle$ of cardinality κ and an elementary embedding from $\langle A, \mathbf{M} \rangle$ to $\langle A, \mathbf{N} \rangle$.

P. Dellunde, À. García-Cerdaña, and C. Noguera. Löwenheim–Skolem theorems for non-classical first-order algebraizable logics. *Logic Journal of the IGPL* 24(3):321–345, 2016.

Failure of the Upward L–S Th. for logics with equality

- Take G_△ and assume that the language contains a unary predicate *P* and an equality symbol ≈.
- Take a semantics of models $\langle [0,1]_{G_{\bigtriangleup}}, M\rangle$, where \approx is interpreted as classical equality.
- Consider χ = (∀x)(∀y)(¬△(x ≈ y) → ¬△(P(x) ↔ P(y))) that codifies the fact that P is interpreted as an injective mapping from the domain to the algebra of truth-values.
- Therefore, $\langle [0,1]_G, \mathbf{M} \rangle$ is a model of χ if and only if $|M| \leq 2^{\aleph_0}$, and hence the upward theorem does not hold.

Löwenheim–Skolem Theorems (via 2-sorted structures)

Theorem 6

Let $\langle B, \mathbf{M} \rangle$ be a safe \mathcal{P} -structure. Then, for every $Z \subseteq M$, every $X \subseteq B$ and every cardinal κ such that $\max\{|\mathcal{P}|, \omega, |Z|, |X|\} \leq \kappa \leq \max\{|B|, |M|\}$, there is a safe \mathcal{P} -structure $\langle A, \mathbf{O} \rangle$ which is an elementary substructure of $\langle B, \mathbf{M} \rangle$ such that $|A| + |O| = \kappa, Z \subseteq O$, and $X \subseteq A$.

Theorem 7

Let $\langle A, \mathbf{M} \rangle$ be a safe infinite \mathcal{P} -structure and κ a cardinal such that $\max\{|\mathcal{P}|, |A|, |M|\} \leq \kappa$. Then there is a safe \mathcal{P} -structure $\langle B, \mathbf{N} \rangle$ such that $\langle A, \mathbf{M} \rangle$ is an elementary substructure of $\langle B, \mathbf{N} \rangle$ and $|B| + |N| = \kappa$.

Back-and-forth is a sufficient condition for elementary equivalence...

Theorem 8

Let \mathcal{P} be a finite predicate language. Let $\langle A, M \rangle$, $\langle B, N \rangle$ be safe \mathcal{P} -structures. The following holds:

$$\langle \boldsymbol{A}, \mathbf{M}
angle \cong_f \langle \boldsymbol{B}, \mathbf{N}
angle \quad \Rightarrow \quad \langle \boldsymbol{A}, \mathbf{M}
angle \equiv \langle \boldsymbol{B}, \mathbf{N}
angle.$$

Furthermore, if there is $\langle I_n | n \in \mathbb{N} \rangle$: $\langle A, \mathbf{M} \rangle \cong_f \langle A, \mathbf{N} \rangle$ such that for every n, and every $\langle p, r \rangle \in I_n$, $p \upharpoonright A \subseteq \mathrm{Id}_A$, then,

$$\langle \mathbf{A}, \mathbf{M} \rangle \equiv^{s} \langle \mathbf{A}, \mathbf{N} \rangle.$$

P. Dellunde, À. García-Cerdaña, and C. Noguera. Back-and-forth systems for fuzzy first-order models. *Fuzzy Sets and Systems* 345(1):83–98, 2018.

Let \mathcal{P} be a finite predicate language.

Let $\langle B_2, \mathbf{M} \rangle$ be a classical first-order \mathcal{P} -structure over a finite domain M.

Now take an infinite L-algebra A.

Since $B_2 \subseteq A$, we can also see $\langle B_2, \mathbf{M} \rangle$ as a structure over A. Clearly $\langle B_2, \mathbf{M} \rangle \equiv^s \langle A, \mathbf{M} \rangle$.

But it is not true that $\langle B_2, \mathbf{M} \rangle \cong_f \langle A, \mathbf{M} \rangle$.

Unions of elementary chains

Elementary chain: { $\langle A, \mathbf{M}_i \rangle \mid i < \gamma$ } where, for all $i < j < \gamma$, $\langle A, \mathbf{M}_i \rangle$ is an elementary substructure of $\langle A, \mathbf{M}_j \rangle$.

Theorem 9

Let $\langle \mathbf{A}, \mathbf{M} \rangle$ be the union of an elementary chain $\{ \langle \mathbf{A}, \mathbf{M}_i \rangle \mid i < \gamma \}$. Then, for each sequence \overline{a} of elements of \mathbf{M}_i and each formula $\varphi(\overline{x})$, $\|\varphi(\overline{a})\|_{\mathbf{M}}^A = \|\varphi(\overline{a})\|_{\mathbf{M}_i}^A$. Moreover, $\langle \mathbf{A}, \mathbf{M} \rangle$ is a safe structure.

G. Badia and C. Noguera. Fraïssé classes of graded relational structures. *Theoretical Computer Science* 737(1):81–90, 2018.

Fraïssé limits

Age(A, M): all finitely generated substructures of $\langle A, M \rangle$ and their isomorphic copies.

Homogeneous structure: if every isomorphism between two finitely generated substructures extends to an automorphism of the structure.

Theorem 10

 \mathbb{K} : countable class of finitely generated A-structures (same language).

- $\mathbb{K} = Age(A, \mathbf{N})$ for some $\langle A, \mathbf{N} \rangle$ iff \mathbb{K} satisfies HP and JEP.
- If K has HP, JEP, and AP, then there is a unique countable homogeneous structure ⟨A, M⟩ such that K = Age(A, M).
- If a structure is a homogeneous, then its age has AP.

G. Badia and C. Noguera. Fraïssé classes of graded relational structures. *Theoretical Computer Science* 737(1):81–90, 2018.

Saturated models

Consistent pair: $\langle T, U \rangle$ such that $T \models \bigvee U_0$ for no finite $U_0 \subseteq U$.

Type: $\langle p, p' \rangle$ pair of sets of formulas in *x* and parameters in $D \subseteq M$ such that $\langle Th_D(\mathfrak{M}) \cup p, \overline{Th}_D(\mathfrak{M}) \cup p' \rangle$ is consistent.

Set of all types: $S^{\mathfrak{M}}(D)$.

 κ -saturated model: for any $D \subseteq M$ such that $|D| < \kappa$, any type in $S^{\mathfrak{M}}(D)$ is satisfiable in \mathfrak{M} .

Theorem 11 For each cardinal κ , each model can be elementarily extended to a κ^+ -saturated model.

G. Badia and C. Noguera. Saturated models of first-order many-valued logics. *Logic Journal of the IGPL* 30:1–20, 2022.

Carles Noguera (University of Siena)

First-order fuzzy logics and their model theory

Omitting types theorem

Theorem 12

Let $\langle T, U \rangle$ be a tableau, such that at most finitely many of its elements involve object constants, realized by some model, and $\langle p, p' \rangle$ an unsupported n-type of $\langle T, U \rangle$. Then, there is a model satisfying $\langle T, U \rangle$ which omits $\langle p, p' \rangle$.

G. Badia, C. Noguera. A general omitting types theorem in mathematical fuzzy logic, *IEEE Transactions on Fuzzy Systems* 29:1386–1394, 2021.

An abstract model theory

Lindström theorem (1969)

Classical first-order logic is the *strongest logic* enjoying Löwenheim–Skolem and Compactness.

Abstract Model Theory: Jon Barwise, Solomon Feferman (eds). *Model-theoretic logics*, Springer–Verlag, 1985.

Do first-order fuzzy logics have Lindström-style characterizations? Would an abstract graded model theory be viable?

Hájek (2002): The analogues of Lindström theorem, in a certain sense, fail for some of the main first-order fuzzy logics (BL \forall , $\&\forall$, $\Pi\forall$, and G \forall).

Maximality of first-order fuzzy logics - 1

We consider logics based on a finite MTL-chain A.

 $\mathscr{L}_1^A \trianglelefteq \mathscr{L}_2^A$ means that for every formula of the first logic there is a 1-equivalent formula in the second. It is a preorder.

 $\mathscr{L}_1^A \simeq \mathscr{L}_2^A$ means that $\mathscr{L}_1^A \trianglelefteq \mathscr{L}_2^A$ and $\mathscr{L}_2^A \trianglelefteq \mathscr{L}_1^A$ (expressively equivalent abstract logics).

 $\mathscr{L}^{A}_{\omega\omega}$ is the abstract logic obtained from considering our first-order languages with crisp equality and constants for each element of *A*.

Maximality of first-order fuzzy logics – 2

Theorem 13

Let \mathscr{L}^A be an abstract logic such that $\mathscr{L}^A_{\omega\omega} \trianglelefteq \mathscr{L}^A$. If \mathscr{L}^A has the Löwenheim–Skolem property and the Compactness property for countable sets of formulas, then $\mathscr{L}^A \simeq \mathscr{L}^A_{\omega\omega}$.

G. Badia, C. Noguera. Lindström theorems in graded model theory, *Annals of Pure and Applied Logic*, 172(3):102916, 2021.

Asymptotic probabilities

For any τ -sentence φ , $a \in A$, and $n \ge 1$, $l_n^a(\varphi)$: cardinality of the (finite) set K_{τ}^a consisting of each model \mathfrak{M} for the signature τ with domain $\{1, 2, ..., n\}$ such that $\|\varphi\|^{\mathfrak{M}} = a$. $l_n(\tau)$: cardinality of the (finite) set containing all model for the signature τ with domain $\{1, 2, ..., n\}$. Now, let

$$\mu_n^a(\varphi) = \frac{l_n^a(\varphi)}{l_n(\tau)}.$$

The asymptotic probability of φ getting value *a* is defined as follows:

$$\mu^{a}(\varphi) = \lim_{n \to \infty} \mu^{a}_{n}(\varphi).$$

0-1 laws

Theorem 14

If φ is a sentence in the finite relational signature τ , then there is $a \in A$ such that $\mu^{a}(\varphi) = 1$ and for any other truth-value a', $\mu^{a'}(\varphi) = 0$.

Theorem 15

If φ is a sentence of $\mathscr{L}_{\infty\omega}^{kA}$ in the finite relational signature τ , then there is $a \in A$ such that $\mu^{a}(\varphi) = 1$ and for any other truth-value a', $\mu^{a'}(\varphi) = 0$.

G. Badia, C. Noguera. A 0-1 law in mathematical fuzzy logic, *IEEE Transactions on Fuzzy Systems*, 2022.

Future research

- Characterization of elementary equivalence.
- Levels of generality.
- An approach based on useful graded structures.
- Finite graded model theory.
- Extensions of the language: infinitary connectives, generalized quantifiers.