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» A short tale of Intuitionistic and constructive modal logic
» Constructive non-mormal modalities

» Proof theory: back to Constructive modal logic
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Intuitionistic modal logics: two traditions

Intuitionistic modal logics (Fischer Servi 1977,1980, Plotkin & Stirling 1986,
Ewald 1986, Simpson 1994)

» Theoretical interest of combining these two forms of logics.

» Define the intuitionistic analogue(s) of some classical modal logics.

» Justified by intuitionistic meta-theory: translation into first-order IL

Constructive modal logics (Prawitz 1965, Goldblatt 1981, Wijesekera 1990,
Masini 1993, Fairtlough & Mendler 1997, Bellin, de Paiva, Ritter 2001,)

» Designed for specific applications of logic to computer science.
> Verification and Knowledge representation.

» Natural deduction systems and type-theoretic interpretations.
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How to build an intuitionistic modal logic?

Some principles (Simpson 94)
» |IML should be a conservative extensions of IL
» O and < should be independent
» Disjunction Property: = AV B implies either : F Aor - B
» adding AV —A to IML we get Classical ML: controversiall
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How to build an intuitionistic modal logic?

Semantics
> Possible-world semantics (among others)
» Extend Kripke models of Intuitionistic Logic: bi-relational models

> Hereditary Property (refinement)
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How to build an intuitionistic modal logic?

Models
M=(W,=, R, V) where:
< is a pre-orderon W, RC W x W, and V : W — P(Atom) and satisfies:

> x <y implies V(x) C V(y)

Hereditary Property

» We want Hereditary Property: for any formula A
If M, x I+ A and x <y then M,y |- A

» How to define the truth conditions of O and < in order to ensure the
Hereditary Property?
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Simplest solution

Truth conditions for O and <&
Build the Hereditary property into the forcing relation:

> M,xIFOAif Vx'.x = x' Vy.Rxy implies M,y I- A
> M, xIFOCAIfVx . x < x" Jy.Rx'y & M,y IF A
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Simplest solution

Truth conditions for O and <&
Build the Hereditary property into the forcing relation:

> M,xIFOAif Vx'.x = x' Vy.Rxy implies M,y I- A
> M, xIFOCAIfVx . x < x" Jy.Rx'y & M,y IF A

Other truth conditions
The same as in IL

> M, x I P (Atom) if P € V(x)
> M, xIf L

» M, xIFAABiff M,xIFAand M,x I+ B

» M, xIFAVBiff M,xIFAor M,xIFB

> M,xIFADBiffVx'.x < x": if M,x" |- A then M,x" IF B

Notation: we write just x |- A instead of M, x IF A when no confusion arise
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Wijesekera WK

This corresoponds to the propositional part of Wijesekera's logic CCDL
(Wijesekera 1990), that we call WK
> IL+MP
2+ (Nec)
O(A>DB)DOADOB
OADB)DCADCOB

>
>
>
> oL
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Wijesekera WK

Features of WK

» Non Normal: it does not prove
Co: <O(AVB)DOCAVOB

(although it proves Co: DAA OB D O(AA B))
> |t satisfies Disjuction Property
> WK +AV —A # Classical K (Simpson 94)
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Wijesekera WK

Features of WK

» Non Normal: it does not prove
Co: <O(AVB)DOCAVOB

(although it proves Co: DAA OB D O(AA B))
> |t satisfies Disjuction Property
> WK +AV —A # Classical K (Simpson 94)
> However (Dalmonte 2022):

WK+ AV -A+ 0OAV O=A = Classical K

» Criticism (Bellin, De Paiva, Mendler etc.):
there are reason to reject also the nullary version of Co: O D L
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CK: Constructive K

The system CK (Bellin, de Paiva, Ritter 2001, Mendler & de Paiva 2000),
The system CK is just WK - {=< LY
» computer science applications (types)

» categorical semantics
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CK: Constructive K

The system CK (Bellin, de Paiva, Ritter 2001, Mendler & de Paiva 2000),
The system CK is just WK - {=< LY
» computer science applications (types)

» categorical semantics

Relational models for CK (Mendler & de Paiva 2005)
Models for WK + fallible worlds F C W:

» wik L Vw e F

> Atom C V(w) Yw € F

» F is R-closed and <-closed

In these models <L is satisfiable.
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Intuitionistic Modal Logic IK

System IK (Fischer Servi 1977, Simpson 94)

» Motivated by intuitionistic meta-theory
» Normal Modal Logic

Models for IK
The same as for WK, but the definition of < is local:
xIFOCA ifdy.Rxy & yIF A

But there are additional frame conditions

11/62



Additional frame conditions for IK

> (F1) if x < x" and Rxy then Jy’.y <y’ and Rx'y’

By)

IA

PN
<--------%
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Additional frame conditions for IK

> (F1) if x < x" and Rxy then Jy’.y <y’ and Rx'y’

By)

IA

IA
U

x

R
> (F2) if Rxy and y <y’ and then 3x’.x < x" and Rx'y’

IA
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Additional frame conditions for IK

> (F1) is needed to get the heredidary property for &
> (F2) is needed for completeness wrt. intuitionistic meta-theory
Axiomatisation

» Axioms and rules of WK

> O(AVB)D OAV OB (Co)

» (CADOB)D>O(ADB)
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Properties of IK

» Disjunction Property
» Conservative extension of IPL
» IK+AV —A = Classical K

» Meta-theoretical completeness wrt standandard translation in FOIL
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Properties of IK

» Disjunction Property
» Conservative extension of IPL
» IK+AV —A = Classical K

» Meta-theoretical completeness wrt standandard translation in FOIL

Translaton in FOIL
> p' = p(x)
> 1f=1
> (A#B)' = A'#B* for # € {V,A, D}
> (DA) =Vy(Rxy D A(y)")
> (CA)" = Jy(Rxy A A(y)")
Theorem (Simpson 94)
Fik A iff -pon VxA?
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» Make the O condition local:
M, x |- OA if Vy.Rxy implies M,y IF A

> in order to get Heredidary Property add (F3):
if x < x" and Rx'y’ then Jy.y <y’ and Rxy

!
X

A
S
PN

> (F3) validates
O(Av B) DOAVOB

Considered in (Bozi¢ and Dosen 1984, D'Agostino et als. 97, Balbiani et
als. 2021)
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Three intuitionistic versions of classical K

Intuitionistic K (1K) “Wijesekera's K" (WK) Constructive K (CK)
(Fischer Servi 1977, (Wijesekera 1990) (Bellin et al. 2001,
Simpson 1994) Mendler & de Paiva 2005)
A A A
OA dA OA

O(ADB)D(DADOB) DO(ADB)D(DADOB) O(ADB)D(DADOB)
OADB)D(CADOB) OADB)D(CADOB) O(ADB)D(CADOB)
01 -1
O(AV B)D CAV OB

(¢CADOB) D O(AD B)
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What are the relations?

Obvious remarks
» The O-fragment of CK and WK is the same.
» & is non-normal in CK and WK as C fails:

O(AV B) D OAV OB

» Different intuitionistic counterparts of the same classical modal logic.
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What are the relations?

Obvious remarks
» The O-fragment of CK and WK is the same.
» & is non-normal in CK and WK as C fails:

O(AV B) D OAV OB

» Different intuitionistic counterparts of the same classical modal logic.

Less obvious remark!

See: https://prooftheory.blog/2022/08/19/

brouwer-meets-kripke-constructivising-modal-logic/

Even O-fragment of IK is different from the one of CK and WK
» Counterexample by Das and Marin: —=—0Op D O-p

» Counterexample by Grefe in 96?7 (communicated by A. Simpson):
(-OL>Ol)>0OL

» The O-fragment of IK is not finitely axiomatisable (by C. Grefe reported
by Alex Simpson)
» The O-fragment of WK + Co is stronger than the O-fragment of WK

alone
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A glimpse to proof-theory

Sequent calculi

» Constructive modal logic WK and CK have simple Gentzen calculi

» Obtained in a natural way: just restrict to single succedent the standard
calculus for classical K
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A glimpse to proof-theory

Sequent calculi

» Constructive modal logic WK and CK have simple Gentzen calculi

» Obtained in a natural way: just restrict to single succedent the standard
calculus for classical K

Sequent calculus for Classical K
Modal Rules (with weakening)

. Y= AN R Y A=
rOr — 0A O, A r,0%,0A = O, A

0y = {C|O0Cex}
oN={D|oDen}

2 and 1 may be empty
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Calculus for WK and CK

Sequent Calculus for WK and CK

Modal Rules to add to a standard Gentzen calculus for IL: just make the rules
single succedent.

Y= A
RO T oy = oA
R Y, A= B
r,oOx,0A= OB
Y A=
RO oI oA= A

> Inrule RO, |A| <1
» For CK: remove RO |
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A glimpse to proof-theory

Constructive vs. Intuitionistic modal logic from a proof-theorical
viewpoint
To sum up:

» Natural internal Gentzen calculi for Constructive modal logic

» No (internal) cut-free Gentzen calculus is available for IK, not even for its
O-fragment.

> Sonia's talk :
Nested sequents (Galmiche and Salhi 2010, Strassburger 2013),
labelled sequents (Simpson 1994), (Marin, Morales, StraBburger
2021)

A good reason to distinguish Construtive from Intuitionistic Modal Logic
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From normal to non-normal intuitionistic modal logic

Reject Co
There are reasons to reject Co (Wijesekera 1990, Mendler & Scheele 2011)
» Lack of control/choice:

1. Agent/process: ©A means the agent/process can ensure A
2. Contextual : ©A means A holds in some context
3. Types: ©A means the program can produce a value of type A

» Normality : ¢A means A holds in normal circumstances
Same reasons lead to reject (CA D OB) D O(A D B)
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From normal to non-normal intuitionistic modal logic

Reject Co
There are reasons to reject Co (Wijesekera 1990, Mendler & Scheele 2011)

» Lack of control/choice:

1. Agent/process: ©A means the agent/process can ensure A
2. Contextual : ©A means A holds in some context
3. Types: ©A means the program can produce a value of type A

» Normality : ¢A means A holds in normal circumstances
Same reasons lead to reject (CA D OB) D O(A D B)

Do we keep Co 7
What about the dual

G :OAANOBDOO(AAB)?
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Intuitionistic non-normal modal logics

Why do not study Intuitionistic Non Normal Modal Logic?

» Classical non-normal modal logics are well studied (Chellas 1980, Pacuit
2017)

» No general investigation of intuitionistic logics with non-normal modalities.

Question

[ What are the intuitionistic counterparts of classical non-normal modal logics? ]
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Classical Non-normal modal logics

An axiomatisation of K

y

» Monotonicity
M O(AAB) 5 OA or RM—2—=B
0OA — OB
> Aggregation
C ODAAOB—O(AAB)
» Necessitation

A
N OT or RN OA

\

Objections
» Monotonicity: Deontic paradoxes, Omniscience
» Aggregation: Deontic paradoxes, Agent’ ability, “High probablity”

» Necessitation: Omniscience, deontic interpretation
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Non-normal modal logics: Classical cube

Basic system E

A< B
CPL + QA+« -O0-A + RE OA < OB
Extensions of E add any combination of:
A— B
M O(AAB)— OA or RM 0OA S OB
C ODAANOB— O(AAB)
A
N OT or RN OA
MCN (K)
MC — | ~MIN » 8 non-equivalent systems
S — > M/C/N derivable only if they explicitly
w belong to the axiomatisation
ECN - .
- { - N » Top system coincides with K
EC~ EN
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Intuitionistic non-normal modal logics

An attempt

A landcape of constructive non-normal modal logics that
» can be seen as intuitionistic counterparts of classical non-normal modal
logics;

» hope to accommodate also CK and WK.
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Requirements for intuitionistic non-normal modal logics

Intuitionistic non-normal modal logics must contain

» Characteristic modal axioms and rules of the systems of the classical cube.

e )

Mo DO(AAB)DOA Mo  QCADO(AVB)
Co OAAOBDO(AAB) Co O(AV B)DCAVOB
No aoT No =L

» But what interactions between O and < ?
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Requirements for intuitionistic non-normal modal logics

Weak duality principles

» Interactions between O and < that can be seen as weak duality principles
» State when OA and B are jointly incompatible:

»> when one of the two A or B is T and the other is L

» when one is the negation of the other

» when they are incompatible - (A A B)
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Requirements for intuitionistic non-normal modal logics

Weak duality principles

» Interactions between O and < that can be seen as weak duality principles
» State when OA and B are jointly incompatible:

»> when one of the two A or B is T and the other is L

» when one is the negation of the other

» when they are incompatible - (A A B)

weak, —(OT AOL) weaky, —(OLAOT) o -(AAB)

.
neg, —(O-AA CA) negy —(OAA O—-A) ~(DAA©B)
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Requirements for intuitionistic/constructive non-normal modal logics

Further requirements (cf. Simpson 1994)

1. Conservativity over IPL.

2. Disjunction property.

3. Homogeneus treatment of O and <

4. But constructive : Not contain Co O(AV B) D CAV OB.

How to proceed?
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Requirements for intuitionistic/constructive non-normal modal logics

Further requirements (cf. Simpson 1994)

1. Conservativity over IPL.

2. Disjunction property.

3. Homogeneus treatment of O and <

4. But constructive : Not contain Co O(AV B) D CAV OB.

How to proceed?

Proof-theoretic approach

» Extend Gentzen calculus with modal rules corresponding to principles

» Accept only the combinations of principles which give a cut-free
calculus.
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Sequent rules

Sequent rules for non-normal modalities (G3i-style)

s \

E A= B B= A M A= B N = A
° rLOA= OB ° T,0A= OB " r=10A
C A,...,An =B B=A .. B=A, MC A, ..., A, = B
. r,0A,...,0A,= OB ® T,0A4,..,0A,= OB
E A= B B= A M A= B N A=
© r,OA= OB ° T, 0A= OB °TOA= A

Interaction rules “weak duality principles”

,

= A B = A= = B
k, —————= 7 ky ——F——————
W THA OB = A W% THA OB = A
A B= -B= A A B= -A= B
neg, negy
roAOB= A MOACB= A
A B=

Y T OACB= A
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Lattice of intuitionistic non-normal modal logics

|
|
yau A
Mc ! pau 1E2NGC
TIEsC IE:N.C
| | TIEC !
! i
! Lo ! IE;C
| L !
| L !
| IMNG | |
- '
| ’ ! 1EsNGo
IMN. Vo T1E2NG
- \ - . -
’ IEsNo 1E1NG
M 0 IE2No
IE; " IE1No
T 1E2 _ ~ ,/,/’/
TTIE

» 24 distinct cut-free calculi
» Monotonicity compatible only with the strongest interaction
» Ng only in presence of No

» All of them weaker than WK
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Trivial intuitionistic counterparts of classical non-normal modal logics?

Example: the system IE3

ADCB ADCB -(AA B)
IPL REg ———— REG ———— . i A—
* °“ DADCOB °0A>CoB T (OAAOB)

» The rule str is classically equivalent to axiom M = 1E3 Z E.
» IE3 doesn’t contain Mo or M.

» IE3 doesn't trivially correspond neither to E nor to M.

Richer picture than in the classical setting

» Finer distinctions among principles that are equivalent in classical logics.

» Systems that do not correspond to any classical logic.
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Further properties, further systems

Further properties

» Disjunction property
» All of them decidable
» Craig interpolation for some of them

» Uniform interpolation for the O-fragment of IM [Tabatabai & als.
2022]
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Further properties, further systems

Further properties

» Disjunction property
» All of them decidable
» Craig interpolation for some of them

» Uniform interpolation for the O-fragment of IM [Tabatabai & als.
2022]

Further systems

> Deontic Logic with an intuitionistic basis [DGO WOLLIC 22], namely IE;
extended with:
(Co) P(AVB)D (PAVPB)
(D) OADPA
(No) —PL

» Extension with Axioms of the standard cube of normal modal logic
(T,D,4,5,B): to be studied.
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Possible worlds semantics for intuitionistic non-normal modal logics

Neighbourhood models for Kripke models for
non-normal modal logics intuitionistic logic

<1/\/7./\/’7 V> \ / <ij’v>

Models for intuitionistic
non-normal modal logics

<W7j7ND7NO7V>
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Possible worlds semantics for intuitionistic non-normal modal logics

Neighbourhood models for Kripke models for
non-normal modal logics intuitionistic logic

<1/\/7./\/’7 V> \ / <ij’v>

Models for intuitionistic
non-normal modal logics

<W7j7ND7NO7V>

» Two distinct neighbourhood functions Ng and No handling the modalities
separately

> Different connections between Ng and No corresponding to the
interaction axioms

» The combination must preserve the hereditary property:

IfwlFAand w<v, thenvIF A

33/62



Coupled intuitionistic neighbourhood models

CINMs: M = (W, <, Na,No, V), where:
» W, < and V as usual in Kripke models of IL
» Na, No are two neighbourhood functions W — PP(W) s.t.
w < v implies No(w) C Na(v) and No(w) C No(v).

Forcing conditions

Standard for p, L, T, BAC, BV C, BD> C
wl-0OB iff  [B] € Nao(w);
wlE OB iff [B] € No(w).
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Modular characterisation

Conditions corresponding to the axioms
» Conditions on Mg and No (o =0, <)

If « € No(w) and o C 3, then 8 € No(w) (Ms)
Ifa,ﬁGNu(W),then aﬂﬁGND(W) (Ca)
w ENO(W) (No)

> Relations between Ng and No (—a={w € W |for all v = w,v ¢ a})

If « € No(w), then W\ a ¢ No(w) (weakInt)
If —a € No(w), then a ¢ No(w) (neglnt,)
If & € Nog(w), then —a & No(w) (neglnty)

If « € Mo(w) and a C 3, then W\ 8 ¢ No(w)  (strint)
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CK and WK within the framework

WK

N

CK

IE*

Neighbourhood semantics for CK and WK

Common conditions
» Supplementation for Ao and Mo
> No: W e No(w)
> Co: o, 8 € Na(w), then an B € Na(w)
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CK and WK within the framework

WK

N

CK

IE*

Neighbourhood semantics for CK and WK

Common conditions
» Supplementation for Ao and Mo
> No: W e No(w)
> Co: o, 8 € Na(w), then an B € Na(w)

Additional conditions:
> Wintn @ If « € No(w) and 8 € No(w), then a N B € No(w)

> weakint for WK : If « € Na(w), then W\ o ¢ No(w)
(equivalent condition () & No(w))
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Neighbourhood semantics for CK and WK

» Models for CK without “fallible worlds”
» Direct transformations with their original relational models
»> But relational models are much larger...
> Alternative Neighbourhood semantics for WK (Kojima 2012, Dalmonte
2022)
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Transformation between Neighbourhood and Relational models

From Relational models to Neighbourhood models

For WK

Given M = (W, <X, R, V). For x € W let
R(x)={y e W: Rxy}

we define M, = (W, X, R, V,Na, No) where

Ma(x) ={a CW |Vy = x.R(y) C o}
No(x) ={a CW|Vy = x.R(y) Na # 0}

For CK
M=W,F,=<,R,V), where F C W and for all x € F x I L. For let

ot =a—F fora CW,
we define M, = (W, X, V, No, No) where

No(x) = {a™ CW|Vy = x.R(y) C o}
No(x) = {at CW |Vy = x.R(y)Nat # 0}

38/62



Transformation between Neighbourhood and Relational models

From Neighbourhood models to Relational models

For WK
Given M = (W, <, V,No, No). We define M* = (W, <*, R*, V*) as follows:
-W={(w,a) |weW,W—adgNo(w),and a C [\ Nao(w)}
-(w,a) X (u,B) iffw<u
- (w, )R (u, B) iffu € «
-Vi((w,a)) = V(p)
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Transformation between Neighbourhood and Relational models

From Neighbourhood models to Relational models

For CK
Given M = (W, <,V, N, No). Let f & W we define We define
= (W, 2*,R*,V*) as follows:

W = {(w,a)|weW,0¢No(w), W —agNo(w),and a C [ |Na(w)}
(w,(\No(w) U{F}) | w € W,0 € No(w))}
{( AN}

and :
-(w,a) X" (u,p) iffwuvorw=v=F
-R" as for WK
-V((w, @) = V(w)
- V((f,{f})) = AtomU { L}
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Back to proof-theory for CMLs

» A proof system must provide a decision procedure, whenever the logic
is decidable
» Proofs and countermodels are equally important:
> A proof is a witness of the validity of a formula
» A countermodel is a witness of its non-validity
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Back to proof-theory for CMLs

State of the art

> Gentzen calculi for WK and CK (Wijesekera 1990; Bellin, de Paiva &
Ritter 2001) (not possible for IMLs)

> 2-sequent calculus for CK (Mendler & Scheele 2011)

» Nested calculi for CK and some extensions (Arisaka, Das & StraBburger
2015)
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Back to proof-theory for CMLs

State of the art
> Gentzen calculi for WK and CK (Wijesekera 1990; Bellin, de Paiva &
Ritter 2001) (not possible for IMLs)
> 2-sequent calculus for CK (Mendler & Scheele 2011)

» Nested calculi for CK and some extensions (Arisaka, Das & StraBburger
2015)

What we want

-

Proof systems for CMLs that

» are simple: Gentzen calculi without additional structure, as allowed by
CMLs

> Are strictly terminating (provide direct decision procedure)

» Allow for direct countermodel extraction from failed proofs
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Starting point | terminating calculus

G3-calculi for intuitionistic logic are not strictly terminating

NMADB=A NB= A

L> FASB= A

» Left premiss of LD can be more complex than the conclusion

» Need of loop-checking mechanism

Remark
» Explicit contraction or loop-checking = no strict termination

» No study of countermodel extraction
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Starting point | terminating calculus

Starting point: base calculus for IPL

» Dyckhoff's G4ip (Dyckhoff 1992): terminating, simple, famous.

> Pinto & Dyckhoff’s refutation calculus (Pinto & Dyckhoff 1995): calculus
for “non-derivability” in G4ip: directly constructs countermodels.
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Dyckhoff's calculus G4ip (multisuccedent)

LD of G3-calculus
NMADB=A MB=A
NA>DB=A

replaced with four rules, one for every possible connective in the antecedent of

D
Mp,B=A rco(boB)=A
L0 LAD
Mp,p>B=A rn(CAD)DB=A
L, COBDOB=A _ NcDoB=D rB=A
°r(CvD)oB=A -2 (CoD)>B=A

> All premisses have a smaller complexity than the conclusion (according to
a suitable notion of complexity).

» Bottom-up proof search is terminating.
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Starting point Il (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

> Anti-sequents I # A ~» “\/ A does not follow from AT
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Starting point Il (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

> Anti-sequents I = A ~» “\/ A does not follow from AT”"

» Convert G4-rules into refutation rules: if the premisses are not derivable,
then the conclusion is not derivable
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Starting point Il (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

> Anti-sequents I = A ~» “\/ A does not follow from AT”"
» Non-derivable initial Sequents ' = A

» Convert G4-rules into refutation rules

One rule for every invertible premiss of a rule of G4ip:
If the premiss is not derivable, then the conclusion is not derivable

Examples:
Ly, _AZA
L, A=A nB=aA — LAVE=# A
F,A\/B:>A \>LV2 F,B#A
NAVB= A
155 r¢,Do>B=D NB=A 155 B+ A
r(CoD)>DB=A r(CoD)>DB»# A

(Only the right premiss of LDD is invertible).
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Starting point Il (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

> Anti-sequents I = A ~» “\/ A does not follow from AT”"
» Non-derivable initial Sequents ' = A

» Convert G4-rules into refutation rules

A single rule dealing with all non-invertible premisses of G4ip:
Excludes all possible derivations of the conclusion

r,C,Di D Bj=D; rB = A rE = F
LDOD Ro—
r(Gobh)>B=A r=Eo>FA

N

N,D1 >DB,GG# D1 ... Th,Dy D By, Cyp+# Dy rl,E]_ # F1 ... F’,E,,, + Fm
I (CiD>D1)DB1,....(CaDDp) D Bn# E1 D Fiyeeey Em D Fy A

nip

> I =T,(C.DD1)DBy,..(Co D Da) D Ba. T, =T"\{(C D D) D Bi}.

+ Suitable application conditions (= no other rule is applicable)
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Starting point Il (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip
> A REFUTATION IS A COUNTERMODEL

Invertible rules = Local rules = Same world
Non-invertible rules = Create new worlds reachable through <

p#q ___q#p PRy aPp
#pDqg,qOp lsv - ; P
# (P2 q) V(gD p) # (p Sq)dq O p)
P+ qae

N

“P—-a-vta—>p)-
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Starting point Il (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip
> A REFUTATION IS A COUNTERMODEL

Invertible rules = Local rules = Same world
Non-invertible rules = Create new worlds reachable through <

pHa___a#p P& aPp
#pDqqgOp lsv » ; P
# (P2 q) V(gD p) # (p Sq)dq O p)
PQ*\O/B’
“p—v-{a—p)

Remark: 1-1 correspondence between premisses of non-invertible rules and worlds
of the model
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Extension to WK and CK

“Positive” G4-calculus for WK and CK
» Rules of G4ip

» Standard modal rules:

K Yy =B K r,B=C
° T,0%¥ = 0B,A °T,0%,0B = oC,A
Y, B=
No Tz oB=a (WK

» Special rule Kg
Y= C r,oT,B= A
roxr,0Co>B= A

LOD

» Special rule LOD
D= C rox,oD,B= A

LOS F Oy, oD,0C5>B= A

Note: G4+Ko+ LOD = calculus for the O-fragment of CK by [lemhoff 2018]

Remarks
» The calculus is terminating

» Only the right premiss of LOD and LOD are invertible.
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From G4-rules to refutation rules for WK and CK

Initial anti-sequents
Initial sequents: are not axioms, nor a conclusion of any rule:

(init) I, O = A" A (init) o T, O, 0" % A

rna=ao.

I contains only propositional variables, atomic implications, and implications of the form ¢A D B;
A contains only atomic formulas;

ifp DAET, thenp ¢T;

if [ contains an implication ®A D B, then or’ =g,

vvyvyYyYyy

One rule for every invertible premiss

o, E=C _ rore=aA . rB=A
° T T OrO0CoBoA S TFocoB-A
Lo, ED=C 0%, oD,B= A L r,oD,B= A
- rox,oD,oCo5>B= A ° T oD, oCoB=A
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From G4-rules to refutation rules for WK and CK

A single rule (nip) dealing with all non-invertible premisses invertible

premiss
Non-invertible premisses of modal or D-rules
{r®+A | DADBEeT} {r" % A | OAe A}
{r%,C+A | CADB,OCeT} {ff, A% B | CAcT,OBc A}
{I",D>B,C#D | (CoD)D>DBerl} {ILA®-B | ADBeA}

M- A

» "=r\{(C>D)>B}.
If OA1,...,0A, are all the O-formulas of ', then '™ = Ay, ..., A,.
> Application conditions similar to G4 (= no other rule applicable)

» for WK: an additional rule: similar but includes non-derivability with No.
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What about countermodels?
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What about countermodels?

A refutation is a neighbourhood countermodel Q@

Rules and worlds
» Invertible rules = Local rules = Same world

» Non-invertible rules = Create new worlds
e Premisses determined by D-formulas = worlds reachable through <
e Premisses determined by modal formulas = worlds belonging
to the neighbourhood

Extracting the neighbourhood (idea)
> A ={[%A|AcT).
> OAT % A~w — AT € Ng(w).
> OCAT 5 A~w — AY € No(w).
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A refutation is a neighbourhood countermodel

e Local rules = same world
e Premisses determined by D-formulas = worlds reachable through <
e Premisses determined by modal formulas = worlds belonging

to the neighbourhood

a#’p p+>q q HR p #2g
LV & — Lv Lv LV
pvVqg+-p pVqg+q nip quWp pVWq nip
O(pVq) # Op,Oq O(pV q) #,0p, O
O(pVq) #H Opv Oq nip O(pV q) PYOpV Og ni
21 O(pvg) D OpVvOgq »! <>(p\/q¢<>p\/<>q
S(pVaq)
-
0 No
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A refutation is a neighbourhood countermodel

Annotation
annotation o = ny.n. ... .Ngk.
Anti-sequents are annotated ' =7 A as follows:
» The root anti-sequent I' # A is annotated with 1.
» (Rule) # different from nip: the premiss is annotated with the same
annotation then its conclusion

» (nip): if the conclusion is annotated with o, then its premisses are
annotated as follows:

> Premisses from (C D D) D B on the left of the conclusion, or A D B
on the right, are annotated each with a different o.n, with n new
» Other Premisses each with a different new k
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A refutation is a neighbourhood countermodel

For an annotated refutation R of I ! A:
MF={r|r+"AecR}and A = J{A|T 7 A e R}.

» W = the set of annotations occurring in R
» o < p iff p = 0. for some possibly empty annotation .
> V(p)={oceW|pel}
> For every OA, OA occurringin R At ={c e W|AeTl7}.
> For every o € W, Na(o) and No(o) are defined as follows:
» |If there are no O-formulas in 7, then:
> No(o) = {W}.
> No(o)={a C W |thereis OB € T st. Bt C a}.
» Otherwise, if OA;,...,0A, are all the O-formulas in 7, then:
> No(e)={a CW|A n..NnA} Ca}.
> No(o)={a C W |thereis OB €T st. A Nn...NAI NnB" C a}.
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A refutation is a neighbourhood countermodel

Countermodel for O(p Vv g) D OpV <Oq:

init init

2 3

+ +
Ly q p p q Ly
nip

pVvag=+’p pVaqg+q
O(pV q) ! Op,Oq
O(pVq) M OpVv Ogq
21 O(pVg) D OpVOg

ni

W ={1,1.1,2,3}

1<11

v(@3)={p} V(2)={aq}

No(w) = {W} for every w e W
No(w)=0 forevery w e W, w# 1.1
No(ll)={a|(pVq)" Ca}=
{{2,3},{2,3,1},{2,3,1.1},{2,3,1,1.1}}
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A refutation is a neighbourhood countermodel

Countermodel for (Op D Og) D O(p D q):

31 init
ETN
7[)2 9 nip
#pPo4q nip
Op > Og»" O(pDq) nip

#! (Op>0q) D B(pDq)

W ={1,1.1,2,2.1}
1<11 2<21

V(2.1)={p} V(w)=0forw #21
No(w) = {W} for every w e W
No(w)=0 for every w € W
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A refutation is a neighbourhood countermodel

Countermodel for ¢ 1 DO L
———— initex

Sl %" 1L nip
ol o1

w=1{1,11}

1<1.1.

No(l) ={W} MNa(1.1)={W}
No(1)=0 No(1.1) =P(W)
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How can we get relational countermodels?

» One can apply the transformation from neighbourhood to relational models

» But: The resulting relational model can be exponentially larger than the
original neighbourhood one

» Special case: what about the fragment with only O7

» Loss of 1-1 correspondence between premisses of non-invertible rules of
the refutation and worlds of the countermodels

[ Neighbourhood models are the natural semantics of the refutation calculus. ]
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Conclusion

What we know

» Constructive modal logics lead naturally to study Non-Normal modalities
with an intuitionistic base
» We have a framework for intuitionistic non-normal modal logic:

= Simple proof theory: Sequent calculi
= modular semantic by Neighbourhood models

» CK and WK have their place

» The simple proof-theory of CK and WK allows us to define good
terminating calculi for provability and refutation

» The refutation calculus justifies the Neighbourhood semantics as the
natural one
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Conclusion

What we do not know yet
» Other systems to study: Extensions by the classical cube (T,D,B,4,5)

» (Uniform) interpolation: recent results for some systems
> terminating (refutation) calculi for other Non-normal CMLs
>

Extract relational countermodels for CK and WK : of the same size as
neighbourhood ones, directly from the calculus or by transformation s it
possible?

» Complexity: we conjecture that all these logics, including CK and WK are
in PSPACE, but we are not aware of any proof

e If so, find optimal calculi taking as a base an optimal calculus for IPL (G4ip
is not)

» Type-theoretic interpretation of Non-Normal CMLs in the style of (Bellin,

De Paiva, Ritter 2001)
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Thank you!
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