# A Journey in Intuitionistic Modal Logic: normal and non-normal modalities 

Nicola Olivetti

LIS, Aix-Marseille Université

## MOSAIC KICK OFF MEETING CONFERENCE

Paestum, September 2022

Based on joint works with Tiziano Dalmonte and Charles Grellois

## Outline

- A short tale of Intuitionistic and constructive modal logic
- Constructive non-mormal modalities
- Proof theory: back to Constructive modal logic


## Intuitionistic modal logics: two traditions

Intuitionistic modal logics (Fischer Servi 1977,1980, Plotkin \& Stirling 1986, Ewald 1986, Simpson 1994)

- Theoretical interest of combining these two forms of logics.
- Define the intuitionistic analogue(s) of some classical modal logics.
- Justified by intuitionistic meta-theory: translation into first-order IL

Constructive modal logics (Prawitz 1965, Goldblatt 1981, Wijesekera 1990, Masini 1993, Fairtlough \& Mendler 1997, Bellin, de Paiva, Ritter 2001,)

- Designed for specific applications of logic to computer science.
- Verification and Knowledge representation.
- Natural deduction systems and type-theoretic interpretations.


## How to build an intuitionistic modal logic?

Some principles (Simpson 94)

- IML should be a conservative extensions of IL
- $\square$ and $\diamond$ should be independent
- Disjunction Property: $\vdash A \vee B$ implies either : $\vdash A$ or $\vdash B$
- adding $A \vee \neg A$ to IML we get Classical ML: controversial!


## How to build an intuitionistic modal logic?

Semantics

- Possible-world semantics (among others)
- Extend Kripke models of Intuitionistic Logic: bi-relational models
- Hereditary Property (refinement)


## How to build an intuitionistic modal logic?

## Models

$M=(\mathcal{W}, \preceq, R, V)$ where:
$\preceq$ is a pre-order on $W, R \subseteq W \times W$, and $V: W \rightarrow \mathcal{P}($ Atom $)$ and satisfies:

- $x \preceq y$ implies $V(x) \subseteq V(y)$


## Hereditary Property

- We want Hereditary Property: for any formula $A$

$$
\text { If } M, x \Vdash A \text { and } x \preceq y \text { then } M, y \Vdash A
$$

- How to define the truth conditions of $\square$ and $\diamond$ in order to ensure the Hereditary Property?


## Simplest solution

Truth conditions for $\square$ and $\diamond$
Build the Hereditary property into the forcing relation:

- $M, x \Vdash \square A$ if $\forall x^{\prime} . x \preceq x^{\prime} \forall y . R x^{\prime} y$ implies $M, y \Vdash A$
- $M, x \Vdash \diamond A$ if $\forall x^{\prime} . x \preceq x^{\prime} \exists y \cdot R x^{\prime} y \& M, y \Vdash A$


## Simplest solution

## Truth conditions for $\square$ and $\diamond$

Build the Hereditary property into the forcing relation:
$-M, x \Vdash \square A$ if $\forall x^{\prime} . x \preceq x^{\prime} \forall y . R x^{\prime} y$ implies $M, y \Vdash A$
$-M, x \Vdash \diamond A$ if $\forall x^{\prime} . x \preceq x^{\prime} \exists y \cdot R x^{\prime} y \& M, y \Vdash A$

## Other truth conditions

The same as in IL
$-M, x \Vdash P$ (Atom) if $P \in V(x)$

- $M, x \nVdash \perp$
$-M, x \Vdash A \wedge B$ iff $M, x \Vdash A$ and $M, x \Vdash B$
$-M, x \Vdash A \vee B$ iff $M, x \Vdash A$ or $M, x \Vdash B$
- $M, x \Vdash A \supset B$ iff $\forall x^{\prime} \cdot x \preceq x^{\prime}:$ if $M, x^{\prime} \Vdash A$ then $M, x^{\prime} \Vdash B$

Notation: we write just $x \Vdash A$ instead of $M, x \Vdash A$ when no confusion arise

## Wijesekera WK

This corresoponds to the propositional part of Wijesekera's logic CCDL (Wijesekera 1990), that we call WK

- IL+MP
- $\frac{A}{\square A}(\mathrm{Nec})$
- $\square(A \supset B) \supset \square A \supset \square B$
- $\square(A \supset B) \supset \diamond A \supset \diamond B$
- $\neg \diamond \perp$


## Wijesekera WK

## Features of WK

- Non Normal: it does not prove

$$
C_{\diamond}: \diamond(A \vee B) \supset \diamond A \vee \diamond B
$$

(although it proves $\left.C_{\square}: \square A \wedge \square B \supset \square(A \wedge B)\right)$

- It satisfies Disjuction Property
- WK $+A \vee \neg A \neq$ Classical K (Simpson 94)


## Wijesekera WK

## Features of WK

- Non Normal: it does not prove

$$
C_{\diamond}: \diamond(A \vee B) \supset \diamond A \vee \diamond B
$$

(although it proves $\left.C_{\square}: \square A \wedge \square B \supset \square(A \wedge B)\right)$

- It satisfies Disjuction Property
- WK $+A \vee \neg A \neq$ Classical K (Simpson 94)
- However (Dalmonte 2022):

$$
\mathrm{WK}+A \vee \neg A+\square A \vee \diamond \neg A=\text { Classical } K
$$

## Wijesekera WK

## Features of WK

- Non Normal: it does not prove

$$
C_{\diamond}: \quad \diamond(A \vee B) \supset \diamond A \vee \diamond B
$$

(although it proves $C_{\square}: \square A \wedge \square B \supset \square(A \wedge B)$ )

- It satisfies Disjuction Property
- WK $+A \vee \neg A \neq$ Classical K (Simpson 94)
- However (Dalmonte 2022):

$$
\mathbf{W K}+A \vee \neg A+\square A \vee \diamond \neg A=\text { Classical } K
$$

- Criticism (Bellin, De Paiva, Mendler etc.): there are reason to reject also the nullary version of $C_{\diamond}: \diamond \perp \supset \perp$


## CK: Constructive K

The system CK (Bellin, de Paiva, Ritter 2001, Mendler \& de Paiva 2000), The system CK is just WK $-\{\neg \diamond \perp\}$.

- computer science applications (types)
- categorical semantics


## CK: Constructive K

The system CK (Bellin, de Paiva, Ritter 2001, Mendler \& de Paiva 2000), The system CK is just WK $-\{\neg \diamond \perp\}$.

- computer science applications (types)
- categorical semantics

Relational models for CK (Mendler \& de Paiva 2005)
Models for $\mathbf{W K}+$ fallible worlds $\mathcal{F} \subseteq \mathcal{W}$ :

- $w \Vdash \perp \forall w \in \mathcal{F}$
- Atom $\subseteq \mathcal{V}(w) \forall w \in \mathcal{F}$
- $\mathcal{F}$ is $R$-closed and $\preceq$-closed

In these models $\diamond \perp$ is satisfiable.

## Intuitionistic Modal Logic IK

System IK (Fischer Servi 1977, Simpson 94)

- Motivated by intuitionistic meta-theory
- Normal Modal Logic

Models for IK
The same as for WK, but the definition of $\diamond$ is local:
$x \Vdash \diamond A$ if $\exists y . R x y \& y \Vdash A$
But there are additional frame conditions

## Additional frame conditions for IK

- (F1) if $x \preceq x^{\prime}$ and $R x y$ then $\exists y^{\prime} \cdot y \preceq y^{\prime}$ and $R x^{\prime} y^{\prime}$



## Additional frame conditions for IK

- (F1) if $x \preceq x^{\prime}$ and $R x y$ then $\exists y^{\prime} \cdot y \preceq y^{\prime}$ and $R x^{\prime} y^{\prime}$

- (F2) if $R x y$ and $y \preceq y^{\prime}$ and then $\exists x^{\prime} \cdot x \preceq x^{\prime}$ and $R x^{\prime} y^{\prime}$



## Additional frame conditions for IK

- (F1) is needed to get the heredidary property for
- (F2) is needed for completeness wrt. intuitionistic meta-theory


## Axiomatisation

- Axioms and rules of WK
- $\diamond(A \vee B) \supset \diamond A \vee \diamond B \quad\left(C_{\diamond}\right)$
- $(\diamond A \supset \square B) \supset \square(A \supset B)$


## Properties of IK

- Disjunction Property
- Conservative extension of IPL
- $\mathrm{IK}+A \vee \neg A=$ Classical K
- Meta-theoretical completeness wrt standandard translation in FOIL


## Properties of IK

- Disjunction Property
- Conservative extension of IPL
- $\mathrm{IK}+A \vee \neg A=$ Classical K
- Meta-theoretical completeness wrt standandard translation in FOIL


## Translaton in FOIL

- $p^{t}=p(x)$
- $\perp^{t}=\perp$
- $(A \# B)^{t}=A^{t} \# B^{t}$ for $\# \in\{\vee, \wedge, \supset\}$
- $(\square A)^{t}=\forall y\left(R x y \supset A(y)^{t}\right)$
- $(\diamond A)^{t}=\exists y\left(R x y \wedge A(y)^{t}\right)$

Theorem (Simpson 94)
$\vdash_{\text {IK }} A$ iff $\vdash_{\text {FOIL }} \forall x A^{t}$

## More Systems!

- Make the $\square$ condition local: $M, x \Vdash \square A$ if $\forall y . R x y$ implies $M, y \Vdash A$
- in order to get Heredidary Property add (F3): if $x \preceq x^{\prime}$ and $R x^{\prime} y^{\prime}$ then $\exists y . y \preceq y^{\prime}$ and $R x y$

- (F3) validates

$$
\square(A \vee B) \supset \square A \vee \diamond B
$$

Considered in (Božić and Došen 1984, D'Agostino et als. 97, Balbiani et als. 2021)

## Three intuitionistic versions of classical K

Intuitionistic K (IK)
(Fischer Servi 1977,
Simpson 1994)

$$
\begin{aligned}
& \frac{A}{\square A} \\
& \square(A \supset B) \supset(\square A \supset \square B) \\
& \square(A \supset B) \supset(\diamond A \supset \diamond B) \\
& \neg \diamond \perp \\
& \diamond(A \vee B) \supset \diamond A \vee \diamond B \\
& (\diamond A \supset \square B) \supset \square(A \supset B)
\end{aligned}
$$

"Wijesekera's K" (WK) (Wijesekera 1990)
$\frac{A}{\square A}$
$\square(A \supset B) \supset(\square A \supset \square B)$
$\square(A \supset B) \supset(\diamond A \supset \diamond B)$
$\neg \diamond \perp$
$\qquad$

Constructive K (CK)
(Bellin et al. 2001, Mendler \& de Paiva 2005)
$\frac{A}{\square A}$
$\square(A \supset B) \supset(\square A \supset \square B)$
$\square(A \supset B) \supset(\diamond A \supset \diamond B)$

## What are the relations?

Obvious remarks

- The $\square$-fragment of CK and WK is the same.
- $\diamond$ is non-normal in CK and WK as $C_{\diamond}$ fails:

$$
\diamond(A \vee B) \supset \diamond A \vee \diamond B
$$

- Different intuitionistic counterparts of the same classical modal logic.


## What are the relations?

Obvious remarks

- The $\square$-fragment of CK and WK is the same.
$\checkmark \diamond$ is non-normal in CK and WK as $C_{\diamond}$ fails:

$$
\diamond(A \vee B) \supset \diamond A \vee \diamond B
$$

- Different intuitionistic counterparts of the same classical modal logic.

Less obvious remark!
See: https://prooftheory.blog/2022/08/19/
brouwer-meets-kripke-constructivising-modal-logic/
Even $\square$-fragment of IK is different from the one of CK and WK

- Counterexample by Das and Marin: $\neg \neg \square p \supset \square \neg p$
- Counterexample by Grefe in 96? (communicated by A. Simpson):

$$
(\neg \square \perp \supset \square \perp) \supset \square \perp
$$

- The $\square$-fragment of IK is not finitely axiomatisable (by C. Grefe reported by Alex Simpson)
- The $\square$-fragment of $\mathbf{W K}+C_{\diamond}$ is stronger than the $\square$-fragment of WK alone


## A glimpse to proof-theory

## Sequent calculi

- Constructive modal logic WK and CK have simple Gentzen calculi
- Obtained in a natural way: just restrict to single succedent the standard calculus for classical K


## A glimpse to proof-theory

## Sequent calculi

- Constructive modal logic WK and CK have simple Gentzen calculi
- Obtained in a natural way: just restrict to single succedent the standard calculus for classical K

Sequent calculus for Classical K
Modal Rules (with weakening)

$$
\mathrm{R} \square \frac{\Sigma \Rightarrow A, \Pi}{\Gamma, \square \Sigma \Rightarrow \square A, \diamond \Pi, \Delta} \quad \mathrm{R} \diamond \frac{\Sigma, A \Rightarrow \Pi}{\Gamma, \square \Sigma, \diamond A \Rightarrow \diamond \Pi, \Delta}
$$

$\square \Sigma=\{C \mid \square C \in \Sigma\}$
$\diamond \Pi=\{D \mid \diamond D \in \Pi\}$
$\Sigma$ and $\Pi$ may be empty

## Calculus for WK and CK

## Sequent Calculus for WK and CK

Modal Rules to add to a standard Gentzen calculus for IL: just make the rules single succedent.
$\mathrm{R} \square \frac{\Sigma \Rightarrow A}{\Gamma, \square \Sigma \Rightarrow \square A}$
$\mathrm{R} \diamond \frac{\Sigma, A \Rightarrow B}{\Gamma, \square \Sigma, \diamond A \Rightarrow \diamond B}$
$\mathrm{R} \diamond_{\perp} \frac{\Sigma, A \Rightarrow}{\Gamma, \square \Sigma, \diamond A \Rightarrow \Delta}$

- In rule $\mathrm{R} \diamond_{\perp}|\Delta| \leq 1$.
- For CK: remove $\mathrm{R} \diamond_{\perp}$


## A glimpse to proof-theory

Constructive vs. Intuitionistic modal logic from a proof-theorical viewpoint
To sum up:

- Natural internal Gentzen calculi for Constructive modal logic
- No (internal) cut-free Gentzen calculus is available for IK, not even for its $\square$-fragment.
- Sonia's talk : Nested sequents (Galmiche and Salhi 2010, Strassburger 2013), labelled sequents (Simpson 1994), (Marin, Morales, Straßburger 2021)

A good reason to distinguish Construtive from Intuitionistic Modal Logic

## From normal to non-normal intuitionistic modal logic

## Reject $C_{\diamond}$

There are reasons to reject $C_{\diamond}$ (Wijesekera 1990, Mendler \& Scheele 2011)

- Lack of control/choice:

1. Agent/process: $\diamond A$ means the agent/process can ensure $A$
2. Contextual : $\diamond A$ means $A$ holds in some context
3. Types: $\diamond A$ means the program can produce a value of type $A$

- Normality : $\diamond A$ means $A$ holds in normal circumstances

Same reasons lead to reject $(\diamond A \supset \square B) \supset \square(A \supset B)$

## From normal to non-normal intuitionistic modal logic

## Reject $C_{\diamond}$

There are reasons to reject $C_{\diamond}$ (Wijesekera 1990, Mendler \& Scheele 2011)

- Lack of control/choice:

1. Agent/process: $\diamond A$ means the agent/process can ensure $A$
2. Contextual : $\diamond A$ means $A$ holds in some context
3. Types: $\diamond A$ means the program can produce a value of type $A$

- Normality : $\diamond A$ means $A$ holds in normal circumstances

Same reasons lead to reject $(\diamond A \supset \square B) \supset \square(A \supset B)$
Do we keep $C_{\square}$ ?
What about the dual

$$
C_{\square}: \square A \wedge \square B \supset \square(A \wedge B) ?
$$

## Intuitionistic non-normal modal logics

Why do not study Intuitionistic Non Normal Modal Logic?

- Classical non-normal modal logics are well studied (Chellas 1980, Pacuit 2017)
- No general investigation of intuitionistic logics with non-normal modalities.

Question
What are the intuitionistic counterparts of classical non-normal modal logics?

## Classical Non-normal modal logics

## An axiomatisation of K

- Monotonicity

$$
M \quad \square(A \wedge B) \rightarrow \square A \quad \text { or } \quad R M \frac{A \rightarrow B}{\square A \rightarrow \square B}
$$

- Aggregation

$$
C \quad \square A \wedge \square B \rightarrow \square(A \wedge B)
$$

- Necessitation

$$
N \quad \square \top \quad \text { or } R N \frac{A}{\square A}
$$

## Objections

- Monotonicity: Deontic paradoxes, Omniscience
- Aggregation: Deontic paradoxes, Agent' ability, "High probablity"
- Necessitation: Omniscience, deontic interpretation


## Non-normal modal logics: Classical cube

## Basic system E

$$
\mathrm{CPL}+\diamond A \leftrightarrow \neg \square \neg A \quad+\quad R E \frac{A \leftrightarrow B}{\square A \leftrightarrow \square B}
$$

Extensions of $E$ add any combination of:

$$
\begin{array}{ll}
M \quad \square(A \wedge B) \rightarrow \square A & \text { or } R M \frac{A \rightarrow B}{\square A \rightarrow \square B} \\
C \square A \wedge \square B \rightarrow \square(A \wedge B) & \text { or } R N \frac{A}{\square A} \\
N \square \top &
\end{array}
$$



- 8 non-equivalent systems
- $M / C / N$ derivable only if they explicitly belong to the axiomatisation
- Top system coincides with K


## Intuitionistic non-normal modal logics

## An attempt

A landcape of constructive non-normal modal logics that

- can be seen as intuitionistic counterparts of classical non-normal modal logics;
- hope to accommodate also CK and WK.


## Requirements for intuitionistic non-normal modal logics

Intuitionistic non-normal modal logics must contain

- Characteristic modal axioms and rules of the systems of the classical cube.

| $R E_{\square}$ | $\frac{A \supset \subset B}{\square A \supset \subset \square B}$ | $R E_{\diamond}$ | $\frac{A \supset \subset B}{\diamond A \supset \subset \diamond B}$ |
| :--- | :--- | :--- | :--- |
| $M_{\square}$ | $\square(A \wedge B) \supset \square A$ | $M_{\diamond}$ | $\diamond A \supset \diamond(A \vee B)$ |
| $C_{\square}$ | $\square A \wedge \square B \supset \square(A \wedge B)$ | $C_{\diamond}$ | $\diamond(A \vee B) \supset \diamond A \vee \diamond B$ |
| $N_{\square}$ | $\square \top$ | $N_{\diamond}$ | $\neg \diamond \perp$ |

- But what interactions between $\square$ and $\diamond$ ?


## Requirements for intuitionistic non-normal modal logics

## Weak duality principles

- Interactions between $\square$ and $\diamond$ that can be seen as weak duality principles
- State when $\square A$ and $\diamond B$ are jointly incompatible:
- when one of the two $A$ or $B$ is $T$ and the other is $\perp$
- when one is the negation of the other
- when they are incompatible $\vdash \neg(A \wedge B)$


## Requirements for intuitionistic non-normal modal logics

Weak duality principles

- Interactions between $\square$ and $\diamond$ that can be seen as weak duality principles
- State when $\square A$ and $\diamond B$ are jointly incompatible:
- when one of the two $A$ or $B$ is $T$ and the other is $\perp$
- when one is the negation of the other
- when they are incompatible $\vdash \neg(A \wedge B)$

$$
\begin{array}{lll}
\text { weak }_{a} \neg(\square \top \wedge \diamond \perp) & \text { weak }_{b} \neg(\square \perp \wedge \diamond \top) & \text { str } \frac{\neg(A \wedge B)}{\neg(\square A \wedge \diamond B)} \\
\text { neg }_{a} \neg(\square \neg A \wedge \diamond A) & \text { neg }_{b} \neg(\square A \wedge \diamond \neg A) &
\end{array}
$$

## Requirements for intuitionistic/constructive non-normal modal logics

Further requirements (cf. Simpson 1994)

1. Conservativity over IPL.
2. Disjunction property.
3. Homogeneus treatment of $\square$ and
4. But constructive : Not contain $C \diamond \diamond(A \vee B) \supset \diamond A \vee \diamond B$.

How to proceed?

## Requirements for intuitionistic/constructive non-normal modal logics

Further requirements (cf. Simpson 1994)

1. Conservativity over IPL.
2. Disjunction property.
3. Homogeneus treatment of $\square$ and
4. But constructive : Not contain $C_{\diamond} \diamond(A \vee B) \supset \diamond A \vee \diamond B$.

How to proceed?
Proof-theoretic approach

- Extend Gentzen calculus with modal rules corresponding to principles
- Accept only the combinations of principles which give a cut-free calculus.


## Sequent rules

Sequent rules for non-normal modalities (G3i-style)

$$
\begin{aligned}
& \mathrm{E}_{\square} \frac{A \Rightarrow B \quad B \Rightarrow A}{\Gamma, \square A \Rightarrow \square B} \quad \mathrm{M}_{\square} \frac{A \Rightarrow B}{\Gamma, \square A \Rightarrow \square B} \quad \mathrm{~N} \quad \mathrm{~N} \frac{\Rightarrow A}{\Gamma \Rightarrow \square A} \\
& \mathrm{C}_{\square} \frac{A_{1}, \ldots, A_{n} \Rightarrow B \quad B \Rightarrow A_{1} \ldots B \Rightarrow A_{n}}{\Gamma, \square A_{1}, \ldots, \square A_{n} \Rightarrow \square B} \quad \mathrm{MC}_{\square} \frac{A_{1}, \ldots, A_{n} \Rightarrow B}{\Gamma, \square A_{1}, \ldots, \square A_{n} \Rightarrow \square B} \\
& \mathrm{E}_{\diamond} \frac{A \Rightarrow B \quad B \Rightarrow A}{\Gamma, \diamond A \Rightarrow \diamond B} \quad \mathrm{M}_{\diamond \frac{A \Rightarrow B}{\Gamma, \diamond A \Rightarrow \diamond B}} \quad \mathrm{~N}_{\diamond} \frac{A \Rightarrow}{\Gamma, \diamond A \Rightarrow \Delta}
\end{aligned}
$$

Interaction rules "weak duality principles"

$$
\begin{array}{cc}
\text { weak }_{\mathrm{a}} \frac{\Rightarrow A \quad B \Rightarrow}{\Gamma, \triangleright A, \diamond B \Rightarrow \Delta} & \text { weak }_{\mathrm{b}} \frac{A \Rightarrow \quad \Rightarrow B}{\Gamma, \square A, \diamond B \Rightarrow \Delta} \\
\text { neg }_{\mathrm{a}} \frac{A, B \Rightarrow \quad \neg B \Rightarrow A}{\Gamma, \square A, \diamond B \Rightarrow \Delta} & \text { neg } \mathrm{b} \frac{A, B \Rightarrow \quad \neg A \Rightarrow B}{\Gamma, \square A, \diamond B \Rightarrow \Delta} \\
& \operatorname{str} \frac{A, B \Rightarrow}{\Gamma, \square A, \diamond B \Rightarrow \Delta}
\end{array}
$$

## Lattice of intuitionistic non-normal modal logics



- 24 distinct cut-free calculi
- Monotonicity compatible only with the strongest interaction
- $N_{\square}$ only in presence of $N_{\diamond}$
- All of them weaker than WK


## Trivial intuitionistic counterparts of classical non-normal modal logics?

Example: the system $\mathbf{I E}_{3}$
$\mathrm{IPL}+R E_{\square} \frac{A \supset \subset B}{\square A \supset \subset \square B} \quad R E_{\diamond} \frac{A \supset \subset B}{\diamond A \supset \subset \diamond B} \quad \operatorname{str} \frac{\neg(A \wedge B)}{\neg(\square A \wedge \diamond B)}$

- The rule str is classically equivalent to axiom $M \Rightarrow \mathbf{I E}_{3} \nsubseteq \mathbf{E}$.
- $\mathrm{IE}_{3}$ doesn't contain $M_{\square}$ or $M_{\diamond}$.
- $\mathbf{I E}_{3}$ doesn't trivially correspond neither to $\mathbf{E}$ nor to $\mathbf{M}$.

Richer picture than in the classical setting

- Finer distinctions among principles that are equivalent in classical logics.
- Systems that do not correspond to any classical logic.


## Further properties, further systems

Further properties

- Disjunction property
- All of them decidable
- Craig interpolation for some of them
- Uniform interpolation for the $\square$-fragment of IM [Tabatabai \& als. 2022]


## Further properties, further systems

## Further properties

- Disjunction property
- All of them decidable
- Craig interpolation for some of them
- Uniform interpolation for the $\square$-fragment of IM [Tabatabai \& als. 2022]


## Further systems

- Deontic Logic with an intuitionistic basis [DGO WOLLIC 22], namely $\mathbf{I E}_{\mathbf{1}}$ extended with:

$$
\begin{aligned}
& \left(C_{\diamond}\right) \quad \mathcal{P}(A \vee B) \supset(\mathcal{P} A \vee \mathcal{P} B) \\
& (D) \quad \mathcal{O} A \supset \mathcal{P} A \\
& \left(N_{\diamond}\right) \neg \mathcal{P} \perp
\end{aligned}
$$

- Extension with Axioms of the standard cube of normal modal logic ( $\mathrm{T}, \mathrm{D}, 4,5, \mathrm{~B}$ ): to be studied.


## Possible worlds semantics for intuitionistic non-normal modal logics

Neighbourhood models for non-normal modal logics
$\langle\mathcal{W}, \mathcal{N}, \mathcal{V}\rangle$


Models for intuitionistic non-normal modal logics

$$
\left\langle\mathcal{W}, \preceq, \mathcal{N}_{\square}, \mathcal{N}_{\diamond}, \mathcal{V}\right\rangle
$$

Kripke models for intuitionistic logic
$\langle\mathcal{W}, \preceq, \mathcal{V}\rangle$

## Possible worlds semantics for intuitionistic non-normal modal logics

Neighbourhood models for
non-normal modal logics
Kripke models for intuitionistic logic
$\langle\mathcal{W}, \mathcal{N}, \mathcal{V}\rangle$


$$
\langle\mathcal{W}, \preceq, \mathcal{V}\rangle
$$

- Two distinct neighbourhood functions $\mathcal{N}_{\square}$ and $\mathcal{N}_{\diamond}$ handling the modalities separately
- Different connections between $\mathcal{N}_{\square}$ and $\mathcal{N}_{\diamond}$ corresponding to the interaction axioms
- The combination must preserve the hereditary property:

$$
\text { If } w \Vdash A \text { and } w \preceq v \text {, then } v \Vdash A
$$

## Coupled intuitionistic neighbourhood models

CINMs: $\mathcal{M}=\left\langle\mathcal{W}, \preceq, \mathcal{N}_{\square}, \mathcal{N}_{\diamond}, \mathcal{V}\right\rangle$, where:

- $\mathcal{W}, \preceq$ and $\mathcal{V}$ as usual in Kripke models of IL
- $\mathcal{N}_{\square}, \mathcal{N}_{\Delta}$ are two neighbourhood functions $\mathcal{W} \longrightarrow \mathcal{P P}(\mathcal{W})$ s.t.

$$
w \preceq v \text { implies } \mathcal{N}_{\square}(w) \subseteq \mathcal{N}_{\square}(v) \text { and } \mathcal{N}_{\diamond}(w) \subseteq \mathcal{N}_{\diamond}(v) .
$$

Forcing conditions

$$
\begin{aligned}
& \text { Standard for } p, \perp, \top, B \wedge C, B \vee C, B \supset C \\
& w \Vdash \square B \text { iff } \quad \llbracket B \rrbracket \in \mathcal{N}_{\square}(w) ; \\
& w \Vdash \diamond B \text { iff } \quad \llbracket B \rrbracket \in \mathcal{N}_{\diamond}(w) .
\end{aligned}
$$

## Modular characterisation

Conditions corresponding to the axioms

- Conditions on $\mathcal{N}_{\square}$ and $\mathcal{N}_{\diamond}(\circ=\square, \diamond)$

$$
\begin{array}{ll}
\text { If } \alpha \in \mathcal{N}_{\circ}(w) \text { and } \alpha \subseteq \beta \text {, then } \beta \in \mathcal{N}_{\circ}(w) & \left(M_{\circ}\right) \\
\text { If } \alpha, \beta \in \mathcal{N}_{\square}(w) \text {, then } \alpha \cap \beta \in \mathcal{N}_{\square}(w) & \left(C_{\square}\right) \\
\mathcal{W} \in \mathcal{N}_{\circ}(w) & \left(N_{\circ}\right)
\end{array}
$$

- Relations between $\mathcal{N}_{\square}$ and $\mathcal{N}_{\diamond}(-\alpha=\{w \in \mathcal{W} \mid$ for all $v \succeq w, v \notin \alpha\})$

$$
\begin{array}{ll}
\text { If } \alpha \in \mathcal{N}_{\square}(w) \text {, then } \mathcal{W} \backslash \alpha \notin \mathcal{N}_{\diamond}(w) & \text { (weakInt) } \\
\text { If }-\alpha \in \mathcal{N}_{\square}(w) \text {, then } \alpha \notin \mathcal{N}_{\diamond}(w) & \text { (neglnt } \\
\text { If } \alpha \in \mathcal{N}_{\square}(w) \text {, then }-\alpha \notin \mathcal{N}_{\diamond}(w) & \text { (neglnt } \\
\text { If } \alpha \in \mathcal{N}_{\square}(w) \text { and } \alpha \subseteq \beta \text {, then } \mathcal{W} \backslash \beta \notin \mathcal{N}_{\diamond(w)} & \text { (strInt) }
\end{array}
$$

## CK and WK within the framework



Neighbourhood semantics for CK and WK
Common conditions

- Supplementation for $\mathcal{N}_{\square}$ and $\mathcal{N}_{\diamond}$
- $N_{\square}: W \in \mathcal{N}_{\square}(w)$
- $C_{\square}: \alpha, \beta \in \mathcal{N}_{\square}(w)$, then $\alpha \cap \beta \in \mathcal{N}_{\square}(w)$


## CK and WK within the framework



## Neighbourhood semantics for CK and WK

Common conditions

- Supplementation for $\mathcal{N}_{\square}$ and $\mathcal{N}_{\diamond}$
- $N_{\square}: W \in \mathcal{N}_{\square}(w)$
- $C_{\square}: \alpha, \beta \in \mathcal{N}_{\square}(w)$, then $\alpha \cap \beta \in \mathcal{N}_{\square}(w)$

Additional conditions:

- WInt ${ }_{\cap}:$ If $\alpha \in \mathcal{N}_{\square}(w)$ and $\beta \in \mathcal{N}_{\diamond}(w)$, then $\alpha \cap \beta \in \mathcal{N}_{\diamond}(w)$
- weaklnt for WK: If $\alpha \in \mathcal{N}_{\square}(w)$, then $\mathcal{W} \backslash \alpha \notin \mathcal{N}_{\diamond}(w)$ (equivalent condition $\emptyset \notin \mathcal{N}_{\diamond}(w)$ )


## Neighbourhood semantics for CK and WK

- Models for CK without "fallible worlds"
- Direct transformations with their original relational models
- But relational models are much larger...
- Alternative Neighbourhood semantics for WK (Kojima 2012, Dalmonte 2022)


## Transformation between Neighbourhood and Relational models

## From Relational models to Neighbourhood models

## For WK

Given $M=(\mathcal{W}, \preceq, R, V)$. For $x \in W$ let

$$
\mathcal{R}(x)=\{y \in W: R x y\}
$$

we define $M_{n}=\left(\mathcal{W}, \preceq, R, V, \mathcal{N}_{\square}, \mathcal{N}_{\diamond}\right)$ where

$$
\begin{aligned}
& \mathcal{N}_{\square}(x)=\{\alpha \subseteq \mathcal{W} \mid \forall y \succeq x \cdot \mathcal{R}(y) \subseteq \alpha\} \\
& \mathcal{N}_{\diamond}(x)=\{\alpha \subseteq \mathcal{W} \mid \forall y \succeq x \cdot \mathcal{R}(y) \cap \alpha \neq \emptyset\}
\end{aligned}
$$

## For CK

$$
\begin{aligned}
& M=(\mathcal{W}, \mathcal{F}, \preceq, R, V), \text { where } \mathcal{F} \subseteq \mathcal{W} \text { and for all } x \in \mathcal{F} x \Vdash \perp . \text { For let } \\
& \quad \alpha^{+}=\alpha-\mathcal{F} \text { for } \alpha \subseteq \mathcal{W},
\end{aligned}
$$

we define $M_{n}=\left(\mathcal{W}, \preceq, \mathcal{V}, \mathcal{N}_{\square}, \mathcal{N}_{\diamond}\right)$ where

$$
\begin{aligned}
& \mathcal{N}_{\square}(x)=\left\{\alpha^{+} \subseteq \mathcal{W} \mid \forall y \succeq x \cdot \mathcal{R}(y) \subseteq \alpha\right\} \\
& \mathcal{N}_{\diamond}(x)=\left\{\alpha^{+} \subseteq \mathcal{W} \mid \forall y \succeq x \cdot \mathcal{R}(y) \cap \alpha^{+} \neq \emptyset\right\}
\end{aligned}
$$

## Transformation between Neighbourhood and Relational models

From Neighbourhood models to Relational models

## For WK

Given $M=\left(\mathcal{W}, \preceq, \mathcal{V}, \mathcal{N}_{\square}, \mathcal{N}_{\diamond}\right)$. We define $M^{*}=\left(\mathcal{W}, \preceq^{*}, \mathcal{R}^{*}, \mathcal{V}^{*}\right)$ as follows:
$-\mathcal{W}^{*}=\left\{(w, \alpha) \mid w \in W, W-\alpha \notin \mathcal{N}_{\diamond}(w)\right.$, and $\left.\alpha \subseteq \bigcap \mathcal{N}_{\square}(w)\right\}$

- $(w, \alpha) \preceq^{*}(u, \beta)$ iff $w \preceq u$
- $(w, \alpha) \mathcal{R}^{*}(u, \beta)$ iff $u \in \alpha$
- $\mathcal{V}^{*}((w, \alpha))=\mathcal{V}(p)$


## Transformation between Neighbourhood and Relational models

From Neighbourhood models to Relational models

## For CK

Given $M=\left(\mathcal{W}, \preceq, \mathcal{V}, \mathcal{N}_{\square}, \mathcal{N}_{\diamond}\right)$. Let $\mathbf{f} \notin W$ we define $W e$ define $M^{*}=\left(\mathcal{W}, \preceq^{*}, \mathcal{R}^{*}, \mathcal{V}^{*}\right)$ as follows:

$$
\begin{aligned}
\mathcal{W}^{*}= & \left\{(w, \alpha) \mid w \in W, \emptyset \notin \mathcal{N}_{\diamond}(w), W-\alpha \notin \mathcal{N}_{\diamond}(w), \text { and } \alpha \subseteq \bigcap \mathcal{N}_{\square}(w)\right\} \\
& \left.\cup\left\{\left(w, \bigcap \mathcal{N}_{\square}(w) \cup\{\mathbf{f}\}\right) \mid w \in W, \emptyset \in \mathcal{N}_{\diamond}(w)\right)\right\} \\
& \cup\{(\mathbf{f},\{\mathbf{f}\})\}
\end{aligned}
$$

and :
$-(w, \alpha) \preceq^{*}(u, \beta)$ iff $w \preceq u$ or $w=v=\mathbf{f}$

- $\mathcal{R}^{*}$ as for WK
$-\mathcal{V}^{*}((w, \alpha))=\mathcal{V}(w)$
$-\mathcal{V}^{*}((\mathbf{f},\{\mathbf{f}\}))=$ Atom $\cup\{\perp\}$


## Back to proof-theory for CMLs

- A proof system must provide a decision procedure, whenever the logic is decidable
- Proofs and countermodels are equally important:
- A proof is a witness of the validity of a formula
- A countermodel is a witness of its non-validity


## Back to proof-theory for CMLs

State of the art

- Gentzen calculi for WK and CK (Wijesekera 1990; Bellin, de Paiva \& Ritter 2001) (not possible for IMLs)
- 2-sequent calculus for CK (Mendler \& Scheele 2011)
- Nested calculi for CK and some extensions (Arisaka, Das \& Straßburger 2015)


## Back to proof-theory for CMLs

## State of the art

- Gentzen calculi for WK and CK (Wijesekera 1990; Bellin, de Paiva \& Ritter 2001) (not possible for IMLs)
- 2-sequent calculus for CK (Mendler \& Scheele 2011)
- Nested calculi for CK and some extensions (Arisaka, Das \& Straßburger 2015)


## What we want

Proof systems for CMLs that

- are simple: Gentzen calculi without additional structure, as allowed by CMLs
- Are strictly terminating (provide direct decision procedure)
- Allow for direct countermodel extraction from failed proofs


## Starting point I terminating calculus

G3-calculi for intuitionistic logic are not strictly terminating

$$
\mathrm{L} \supset \frac{\Gamma, A \supset B \Rightarrow A \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}
$$

- Left premiss of $\mathrm{L} \supset$ can be more complex than the conclusion
- Need of loop-checking mechanism


## Remark

- Explicit contraction or loop-checking $\Rightarrow$ no strict termination
- No study of countermodel extraction


## Starting point I terminating calculus

Starting point: base calculus for IPL

- Dyckhoff's G4ip (Dyckhoff 1992): terminating, simple, famous.
- Pinto \& Dyckhoff's refutation calculus (Pinto \& Dyckhoff 1995): calculus for "non-derivability" in G4ip: directly constructs countermodels.


## Dyckhoff's calculus G4ip (multisuccedent)

$\mathrm{L} \supset$ of G3-calculus

$$
\mathrm{L} \supset \frac{\ulcorner, A \supset B \Rightarrow A \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}
$$

replaced with four rules, one for every possible connective in the antecedent of $\supset$ :

$$
\begin{array}{cr}
\mathrm{L} 0 \supset \frac{\Gamma, p, B \Rightarrow \Delta}{\Gamma, p, p \supset B \Rightarrow \Delta} & \mathrm{~L} \wedge \supset \frac{\Gamma, C \supset(D \supset B) \Rightarrow \Delta}{\Gamma,(C \wedge D) \supset B \Rightarrow \Delta} \\
\mathrm{~L} \vee \frac{\Gamma, C \supset B, D \supset B \Rightarrow \Delta}{\Gamma,(C \vee D) \supset B \Rightarrow \Delta} & \mathrm{~L} \supset \supset \frac{\Gamma, C, D \supset B \Rightarrow D \quad \Gamma, B \Rightarrow \Delta}{\Gamma,(C \supset D) \supset B \Rightarrow \Delta}
\end{array}
$$

- All premisses have a smaller complexity than the conclusion (according to a suitable notion of complexity).
- Bottom-up proof search is terminating.


## Starting point II (countermodels)

Pinto \& Dyckhoff 1995: refutation calculus for "non-derivability" in G4ip - Anti-sequents $\Gamma \nRightarrow \Delta \leadsto$ " $\bigvee \Delta$ does not follow from $\wedge \Gamma^{\prime \prime}$

## Starting point II (countermodels)

Pinto \& Dyckhoff 1995: refutation calculus for "non-derivability" in G4ip

- Anti-sequents $\Gamma \nRightarrow \Delta \leadsto$ " $\bigvee \Delta$ does not follow from $\wedge \Gamma$ "
- Convert G4-rules into refutation rules: if the premisses are not derivable, then the conclusion is not derivable


## Starting point II (countermodels)

Pinto \& Dyckhoff 1995: refutation calculus for "non-derivability" in G4ip

- Anti-sequents $\Gamma \nRightarrow \Delta \leadsto$ " $\bigvee \Delta$ does not follow from $\wedge \Gamma$ "
- Non-derivable initial Sequents $\Gamma \nRightarrow \Delta$
- Convert G4-rules into refutation rules

One rule for every invertible premiss of a rule of G4ip:
If the premiss is not derivable, then the conclusion is not derivable
Examples:

$$
\begin{aligned}
& \mathrm{L} \vee \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \vee B \Rightarrow \Delta} \longrightarrow \mathrm{~L} \vee_{1} \frac{\Gamma, A \nRightarrow \Delta}{\Gamma, A \vee B \nRightarrow \Delta} \\
& \mathrm{~L} \vee_{2} \frac{\Gamma, B \nRightarrow \Delta}{\Gamma, A \vee B \nRightarrow \Delta} \\
& \mathrm{~L} \supset \frac{\Gamma, C, D \supset B \Rightarrow D \quad \Gamma, B \Rightarrow \Delta}{\Gamma,(C \supset D) \supset B \Rightarrow \Delta} \mathrm{~L} \supset \supset \frac{\Gamma, B \nRightarrow \Delta}{\Gamma,(C \supset D) \supset B \nRightarrow \Delta}
\end{aligned}
$$

(Only the right premiss of $\mathrm{L} \supset \supset$ is invertible).

## Starting point II (countermodels)

Pinto \& Dyckhoff 1995: refutation calculus for "non-derivability" in G4ip

- Anti-sequents $\Gamma \nRightarrow \Delta \leadsto$ " $\bigvee \Delta$ does not follow from $\wedge \Gamma$ "
- Non-derivable initial Sequents $\Gamma \nRightarrow \Delta$
- Convert G4-rules into refutation rules

A single rule dealing with all non-invertible premisses of G4ip:
Excludes all possible derivations of the conclusion

$$
\begin{aligned}
& \mathrm{L} \supset \frac{\Gamma, C_{i}, D_{i} \supset B_{i} \Rightarrow D_{i} \quad \Gamma, B_{i} \Rightarrow \Delta}{\Gamma,\left(C_{i} \supset D_{i}\right) \supset B_{i} \Rightarrow \Delta} \quad \mathrm{R} \supset \frac{\Gamma, E_{j} \Rightarrow F_{j}}{\Gamma \Rightarrow E_{j} \supset F_{j}, \Delta} \\
& \operatorname{nip} \frac{\Gamma_{1}, D_{1} \supset B_{1}, C_{1} \nRightarrow D_{1} \ldots \Gamma_{n}, D_{n} \supset B_{n}, C_{n} \nRightarrow D_{n} \quad \Gamma^{\prime}, E_{1} \nRightarrow F_{1} \ldots \Gamma^{\prime}, E_{m} \nRightarrow F_{m}}{\Gamma,\left(C_{1} \supset D_{1}\right) \supset B_{1}, \ldots,\left(C_{n} \supset D_{n}\right) \supset B_{n} \nRightarrow E_{1} \supset F_{1}, \ldots, E_{m} \supset F_{m}, \Delta}
\end{aligned}
$$

$-\Gamma^{\prime}=\Gamma,\left(C_{1} \supset D_{1}\right) \supset B_{1}, \ldots,\left(C_{n} \supset D_{n}\right) \supset B_{n} . \quad \Gamma_{i}=\Gamma^{\prime} \backslash\left\{\left(C_{i} \supset D_{i}\right) \supset B_{i}\right\}$.

+ Suitable application conditions ( $=$ no other rule is applicable)


## Starting point II (countermodels)

Pinto \& Dyckhoff 1995: refutation calculus for "non-derivability" in G4ip

- A REFUTATION IS A COUNTERMODEL

Invertible rules $\Rightarrow$ Local rules $\Rightarrow$ Same world
Non-invertible rules $\Rightarrow$ Create new worlds reachable through $\preceq$


## Starting point II (countermodels)

Pinto \& Dyckhoff 1995: refutation calculus for "non-derivability" in G4ip

- A REFUTATION IS A COUNTERMODEL

$$
\begin{aligned}
& \text { Invertible rules } \Rightarrow \text { Local rules } \Rightarrow \text { Same world } \\
& \text { Non-invertible rules } \Rightarrow \text { Create new worlds reachable through } \preceq
\end{aligned}
$$



Remark: 1-1 correspondence between premisses of non-invertible rules and worlds of the model

## Extension to WK and CK

"Positive" G4-calculus for WK and CK

- Rules of G4ip
- Standard modal rules:

$$
\begin{gathered}
\mathrm{K}_{\square} \frac{\Sigma \Rightarrow B}{\Gamma, \square \Sigma \Rightarrow \square B, \Delta} \quad \mathrm{~K}_{\diamond} \frac{\Sigma, B \Rightarrow C}{\Gamma, \square \Sigma, \diamond B \Rightarrow \diamond C, \Delta} \\
\mathrm{~N}_{\diamond} \frac{\Sigma, B \Rightarrow}{\Gamma, \square \Sigma, \diamond B \Rightarrow \Delta}(\text { for } \mathrm{WK})
\end{gathered}
$$

- Special rule K ${ }_{\square}$

$$
\operatorname{L\square \supset } \frac{\Sigma \Rightarrow C \quad\ulcorner, \square \Sigma, B \Rightarrow \Delta}{\Gamma, \square \Sigma, \square C \supset B \Rightarrow \Delta}
$$

- Special rule Lロכ

$$
\mathrm{L} \diamond \supset \frac{\Sigma, D \Rightarrow C \quad\ulcorner, \square \Sigma, \diamond D, B \Rightarrow \Delta}{\Gamma, \square \Sigma, \diamond D, \diamond C \supset B \Rightarrow \Delta}
$$

Note: G4+K $\quad$ + Lםכ = calculus for the $\square$-fragment of CK by [lemhoff 2018]
Remarks

- The calculus is terminating
- Only the right premiss of $\mathrm{L} \square \supset$ and $\mathrm{L} \diamond \supset$ are invertible.


## From G4-rules to refutation rules for WK and CK

## Initial anti-sequents

Initial sequents: are not axioms, nor a conclusion of any rule:

$$
\text { (init) } \Gamma, \square \Gamma^{\prime} \nRightarrow \diamond \Delta^{\prime}, \Delta \quad(\text { init })_{C K} \Gamma, \square \Gamma^{\prime}, \diamond \Gamma^{\prime \prime} \nRightarrow \Delta
$$

- $\Gamma \cap \Delta=\emptyset$.
$-\Gamma$ contains only propositional variables, atomic implications, and implications of the form $\diamond A \supset B$;
- $\Delta$ contains only atomic formulas;
- if $p \supset A \in \Gamma$, then $p \notin \Gamma$;
- if $\Gamma$ contains an implication $\diamond A \supset B$, then $\diamond \Gamma^{\prime \prime}=\emptyset$;

One rule for every invertible premiss

$$
\begin{gathered}
\mathrm{L} \square \supset \frac{\Sigma \Rightarrow C \quad \Gamma, \square \Sigma, B \Rightarrow \Delta}{\Gamma, \square \Sigma, \square C \supset B \Rightarrow \Delta} \\
\mathrm{~L} \diamond \supset \frac{\Sigma, D \Rightarrow C \quad \Gamma, \square \Sigma, \diamond D, B \Rightarrow \Delta}{\Gamma, \square \Sigma, \diamond D, \diamond C \supset B \Rightarrow \Delta} \\
\longrightarrow \mathrm{~L} \supset \frac{\Gamma, B \nRightarrow \Delta}{\Gamma, \square C \supset B \nRightarrow \Delta} \\
\mathrm{~L} \diamond \supset \frac{\Gamma, \diamond D, B \nRightarrow \Delta}{\Gamma, \diamond D, \diamond C \supset B \nRightarrow \Delta}
\end{gathered}
$$

## From G4-rules to refutation rules for WK and CK

A single rule (nip) dealing with all non-invertible premisses invertible premiss
$\square$
Non-invertible premisses of modal or $\supset$-rules $\downarrow$

```
\(\left\{\Gamma^{\square} \nRightarrow A \mid \square A \supset B \in \Gamma\right\}\)
\(\left\{\Gamma^{\square} \nRightarrow A \mid \square A \in \Delta\right\}\)
\(\left\{\Gamma^{\square}, C \nRightarrow A \mid \diamond A \supset B, \diamond C \in \Gamma\right\} \quad\left\{\Gamma^{\square}, A \nRightarrow B \mid \diamond A \in \Gamma, \diamond B \in \Delta\right\}\)
\(\left\{\Gamma^{\prime}, D \supset B, C \nRightarrow D \mid(C \supset D) \supset B \in \Gamma\right\} \quad\{\Gamma, A \nRightarrow B \mid A \supset B \in \Delta\}\)
```

$\Gamma \nRightarrow \Delta$

- $\Gamma^{\prime}=\Gamma \backslash\{(C \supset D) \supset B\}$.

If $\square A_{1}, \ldots, \square A_{n}$ are all the $\square$-formulas of $\Gamma$, then $\Gamma^{\square}=A_{1}, \ldots, A_{n}$.

- Application conditions similar to G4 ( $=$ no other rule applicable)
- for WK: an additional rule: similar but includes non-derivability with $\mathrm{N}_{\diamond}$.

What about countermodels?

## What about countermodels?

A refutation is a neighbourhood countermodel

## What about countermodels?

A refutation is a neighbourhood countermodel
Rules and worlds

- Invertible rules $\Rightarrow$ Local rules $\Rightarrow$ Same world
- Non-invertible rules $\Rightarrow$ Create new worlds
- Premisses determined by $\supset$-formulas $\Rightarrow$ worlds reachable through $\preceq$
- Premisses determined by modal formulas $\Rightarrow$ worlds belonging to the neighbourhood

Extracting the neighbourhood (idea)

- $A^{+}=\{\Gamma \nRightarrow \Delta \mid A \in \Gamma\}$.
- $\square A, \Gamma \nRightarrow \Delta \leadsto w \quad \longrightarrow \quad A^{+} \in \mathcal{N}_{\square}(w)$.
$\triangleright \diamond A, \Gamma \nRightarrow \Delta \leadsto w \quad \longrightarrow \quad A^{+} \in \mathcal{N}_{\diamond}(w)$.

A refutation is a neighbourhood countermodel

- Local rules $\Rightarrow$ same world
- Premisses determined by $\supset$-formulas $\Rightarrow$ worlds reachable through $\preceq$
- Premisses determined by modal formulas $\Rightarrow$ worlds belonging to the neighbourhood



## A refutation is a neighbourhood countermodel

## Annotation

annotation $\sigma=n_{1} . n_{2}$. ... . $n_{k}$.
Anti-sequents are annotated $\Gamma \not \overbrace{}^{\sigma} \Delta$ as follows:

- The root anti-sequent $\Gamma \nRightarrow \Delta$ is annotated with 1 .
- (Rule) $\neq$ different from nip: the premiss is annotated with the same annotation then its conclusion
- (nip): if the conclusion is annotated with $\sigma$, then its premisses are annotated as follows:
- Premisses from $(C \supset D) \supset B$ on the left of the conclusion, or $A \supset B$ on the right, are annotated each with a different $\sigma . n$, with $n$ new
- Other Premisses each with a different new $k$


## A refutation is a neighbourhood countermodel

For an annotated refutation $\mathcal{R}$ of $\Gamma \not \Re^{1} \Delta$ :

$$
\Gamma^{\sigma}=\bigcup\left\{\Gamma \mid \Gamma \not \nrightarrow^{\sigma} \Delta \in \mathcal{R}\right\} \text { and } \Delta^{\sigma}=\bigcup\left\{\Delta \mid \Gamma \not \nrightarrow^{\sigma} \Delta \in \mathcal{R}\right\}
$$

- $\mathcal{W}=$ the set of annotations occurring in $\mathcal{R}$
- $\sigma \preceq \rho$ iff $\rho=\sigma$. $\pi$ for some possibly empty annotation $\pi$.
- $\mathcal{V}(p)=\left\{\sigma \in \mathcal{W} \mid p \in \Gamma^{\sigma}\right\}$.
- For every $\square A, \diamond A$ occurring in $\mathcal{R} A^{+}=\left\{\sigma \in \mathcal{W} \mid A \in \Gamma^{\sigma}\right\}$.
- For every $\sigma \in \mathcal{W}, \mathcal{N}_{\square}(\sigma)$ and $\mathcal{N}_{\diamond}(\sigma)$ are defined as follows:
- If there are no $\square$-formulas in $\Gamma^{\sigma}$, then:
- $\mathcal{N}_{\square}(\sigma)=\{\mathcal{W}\}$.
- $\mathcal{N}_{\diamond}(\sigma)=\left\{\alpha \subseteq \mathcal{W} \mid\right.$ there is $\diamond B \in \Gamma^{\sigma}$ s.t. $\left.B^{+} \subseteq \alpha\right\}$.
- Otherwise, if $\square A_{1}, \ldots, \square A_{n}$ are all the $\square$-formulas in $\Gamma^{\sigma}$, then:
- $\mathcal{N}_{\square}(\sigma)=\left\{\alpha \subseteq \mathcal{W} \mid A_{1}^{+} \cap \ldots \cap A_{n}^{+} \subseteq \alpha\right\}$.
- $\mathcal{N}_{\diamond}(\sigma)=\left\{\alpha \subseteq \mathcal{W} \mid\right.$ there is $\diamond B \in \Gamma^{\sigma}$ s.t. $\left.A_{1}^{+} \cap \ldots \cap A_{n}^{+} \cap B^{+} \subseteq \alpha\right\}$.


## A refutation is a neighbourhood countermodel

Countermodel for $\diamond(p \vee q) \supset \diamond p \vee \diamond q:$
$\mathcal{W}=\{1,1.1,2,3\}$
1 〔 1.1
$\mathcal{V}(3)=\{p\} \quad \mathcal{V}(2)=\{q\}$
$\mathcal{N}_{\square}(w)=\{\mathcal{W}\}$ for every $w \in \mathcal{W}$
$\mathcal{N}_{\diamond}(w)=\emptyset \quad$ for every $w \in \mathcal{W}, w \neq 1.1$
$\mathcal{N}_{\diamond}(1.1)=\left\{\alpha \mid(p \vee q)^{+} \subseteq \alpha\right\}=$
$\{\{2,3\},\{2,3,1\},\{2,3,1.1\},\{2,3,1,1.1\}\}$

## A refutation is a neighbourhood countermodel

$$
\begin{aligned}
& \text { Countermodel for }(\diamond p \supset \square q) \supset \square(p \supset q) \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{W}=\{1,1.1,2,2.1\} \\
& 1 \preceq 1.1 \quad 2 \preceq 2.1 \\
& \mathcal{V}(2.1)=\{p\} \quad \mathcal{V}(w)=\emptyset \text { for } w \neq 2.1 \\
& \mathcal{N}_{\square}(w)=\{\mathcal{W}\} \text { for every } w \in \mathcal{W} \\
& \mathcal{N}_{\diamond}(w)=\emptyset \quad \text { for every } w \in \mathcal{W}
\end{aligned}
$$

## A refutation is a neighbourhood countermodel

$$
\begin{aligned}
& \text { Countermodel for } \diamond \perp \supset \perp \\
& \frac{\overbrace{}^{1.1} \perp}{\text { init }_{C K}} \underset{\Re^{1} \diamond \perp \supset \perp}{ } \text { nip } \\
& \mathcal{W}=\{1,1.1\} \\
& 1 \preceq 1.1 \text {. } \\
& \mathcal{N}_{\square}(1)=\{\mathcal{W}\} \quad \mathcal{N}_{\square}(1.1)=\{\mathcal{W}\} \\
& \mathcal{N}_{\diamond}(1)=\emptyset \quad \mathcal{N}_{\diamond}(1.1)=\mathcal{P}(\mathcal{W})
\end{aligned}
$$

## How can we get relational countermodels?

- One can apply the transformation from neighbourhood to relational models
- But: The resulting relational model can be exponentially larger than the original neighbourhood one
- Special case: what about the fragment with only $\square$ ?
- Loss of 1-1 correspondence between premisses of non-invertible rules of the refutation and worlds of the countermodels

Neighbourhood models are the natural semantics of the refutation calculus.

## Conclusion

What we know

- Constructive modal logics lead naturally to study Non-Normal modalities with an intuitionistic base
- We have a framework for intuitionistic non-normal modal logic:
$\Rightarrow$ Simple proof theory: Sequent calculi
$\Rightarrow$ modular semantic by Neighbourhood models
- CK and WK have their place
- The simple proof-theory of CK and WK allows us to define good terminating calculi for provability and refutation
- The refutation calculus justifies the Neighbourhood semantics as the natural one


## Conclusion

What we do not know yet

- Other systems to study: Extensions by the classical cube (T,D,B,4,5)
- (Uniform) interpolation: recent results for some systems
- terminating (refutation) calculi for other Non-normal CMLs
- Extract relational countermodels for CK and WK : of the same size as neighbourhood ones, directly from the calculus or by transformation Is it possible?
- Complexity: we conjecture that all these logics, including CK and WK are in PSPACE, but we are not aware of any proof
- If so, find optimal calculi taking as a base an optimal calculus for IPL (G4ip is not)
- Type-theoretic interpretation of Non-Normal CMLs in the style of (Bellin, De Paiva, Ritter 2001)


## Thank you!

## Some References

- Arisaka R., Das A. , Straßburger L. : On Nested Sequents for Constructive Modal Logics. Log. Methods Comput. Sci. 11(3) (2015).
- Bellin G., De Paiva, V., Ritter, E.: Extended curry-howard correspondence for a basic constructive modal logic. In: Proceedings of methods for modalities. vol. 2, (2001).
- Chellas B. F.: Modal Logic: An Introduction. CUP, 1980.
- Dalmonte T., Grellois, C., Olivetti, N.: Intuitionistic non-normal modal logics: A general framework. Journal of Philosophical Logic 49(5), 833-882 (2020).
- Dalmonte T. Grellois, C., Olivetti, N. :Terminating Calculi and Countermodels for Constructive Modal Logics. TABLEAUX 2021: 391-408, 2021.
- Dalmonte T., Grellois C., Olivetti, N.: Towards an intuitionistic deontic logic tolerating conflicting obligations. Proc. WOLLIC 2022 (to appear).
- Dalmonte T.: Wijesekera-style constructive modal logics. Proc. AIML 2022 (to appear).
- Dyckhoff R.: Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic Logic 57(3), 795-807 (1992).
- Galmiche D., Salhi Y. : Label-free natural deduction systems for intuitionistic and classical modal logics. J. Appl. Non Class. Logics 20(4): 373-421 (2010)
- Kojima K.: Relational and neighborhood semantics for intuitionistic modal logic. Reports on Mathematical Logic 47, 87-113 (2012).
- Marin S., Morales M., , Straßburger L.: A fully labelled proof system for intuitionistic modal logics. J. Log. Comput. 31(3): 998-1022 (2021)
- Mendler M., De Paiva V.: Constructive CK for contexts. Context Representation and Reasoning (CRR-2005) 13, 2005.
- Mendler M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Information and Computation 209(12), 1465-1490 (2011).
- Pacuit E.: Neighborhood Semantics for Modal Logic, Springer 2017.
- Pinto L., Dyckhoff R.: Loop-free construction of counter-models for intuitionistic propositional logic. In: Symposia Gaussiana, Conference A. pp. 225-232, 1995.
- Simpson A.K.: The proof theory and semantics of intuitionistic modal logic, 1994.

