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Outline

▶ A short tale of Intuitionistic and constructive modal logic
▶ Constructive non-mormal modalities
▶ Proof theory: back to Constructive modal logic
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Intuitionistic modal logics: two traditions

Intuitionistic modal logics (Fischer Servi 1977,1980, Plotkin & Stirling 1986,
Ewald 1986, Simpson 1994)
▶ Theoretical interest of combining these two forms of logics.
▶ Define the intuitionistic analogue(s) of some classical modal logics.
▶ Justified by intuitionistic meta-theory: translation into first-order IL

Constructive modal logics (Prawitz 1965, Goldblatt 1981, Wijesekera 1990,
Masini 1993, Fairtlough & Mendler 1997, Bellin, de Paiva, Ritter 2001,)
▶ Designed for specific applications of logic to computer science.
▶ Verification and Knowledge representation.
▶ Natural deduction systems and type-theoretic interpretations.
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How to build an intuitionistic modal logic?

Some principles (Simpson 94)
▶ IML should be a conservative extensions of IL
▶ 2 and 3 should be independent
▶ Disjunction Property: ⊢ A ∨ B implies either : ⊢ A or ⊢ B
▶ adding A ∨ ¬A to IML we get Classical ML: controversial!
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How to build an intuitionistic modal logic?

Semantics
▶ Possible-world semantics (among others)
▶ Extend Kripke models of Intuitionistic Logic: bi-relational models
▶ Hereditary Property (refinement)
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How to build an intuitionistic modal logic?

Models
M = (W, ⪯, R, V ) where:
⪯ is a pre-order on W , R ⊆ W × W , and V : W → P(Atom) and satisfies:
▶ x ⪯ y implies V (x) ⊆ V (y)

Hereditary Property
▶ We want Hereditary Property: for any formula A

If M, x ⊩ A and x ⪯ y then M, y ⊩ A

▶ How to define the truth conditions of 2 and 3 in order to ensure the
Hereditary Property?
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Simplest solution

Truth conditions for 2 and 3

Build the Hereditary property into the forcing relation:
▶ M, x ⊩ 2A if ∀x ′.x ⪯ x ′ ∀y .Rx ′y implies M, y ⊩ A
▶ M, x ⊩ 3A if ∀x ′.x ⪯ x ′ ∃y .Rx ′y & M, y ⊩ A

Other truth conditions
The same as in IL
▶ M, x ⊩ P (Atom) if P ∈ V (x)
▶ M, x ̸⊩ ⊥
▶ M, x ⊩ A ∧ B iff M, x ⊩ A and M, x ⊩ B
▶ M, x ⊩ A ∨ B iff M, x ⊩ A or M, x ⊩ B
▶ M, x ⊩ A ⊃ B iff ∀x ′.x ⪯ x ′: if M, x ′ ⊩ A then M, x ′ ⊩ B

Notation: we write just x ⊩ A instead of M, x ⊩ A when no confusion arise
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Wijesekera WK

This corresoponds to the propositional part of Wijesekera’s logic CCDL
(Wijesekera 1990), that we call WK
▶ IL+MP
▶ A

2A (Nec)
▶ 2(A ⊃ B) ⊃ 2A ⊃ 2B
▶ 2(A ⊃ B) ⊃ 3A ⊃ 3B
▶ ¬3⊥
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Wijesekera WK

Features of WK
▶ Non Normal: it does not prove

C3 : 3(A ∨ B) ⊃ 3A ∨ 3B

(although it proves C2: 2A ∧ 2B ⊃ 2(A ∧ B))
▶ It satisfies Disjuction Property
▶ WK +A ∨ ¬A ̸= Classical K (Simpson 94)

▶ However (Dalmonte 2022):

WK + A ∨ ¬A + 2A ∨ 3¬A = Classical K

▶ Criticism (Bellin, De Paiva, Mendler etc.):
there are reason to reject also the nullary version of C3: 3⊥ ⊃ ⊥
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CK: Constructive K

The system CK (Bellin, de Paiva, Ritter 2001, Mendler & de Paiva 2000),
The system CK is just WK - {¬3⊥}.
▶ computer science applications (types)
▶ categorical semantics

Relational models for CK (Mendler & de Paiva 2005)
Models for WK + fallible worlds F ⊆ W:
▶ w ⊩ ⊥ ∀w ∈ F
▶ Atom ⊆ V(w) ∀w ∈ F
▶ F is R-closed and ⪯-closed

In these models 3⊥ is satisfiable.
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Intuitionistic Modal Logic IK

System IK (Fischer Servi 1977, Simpson 94)
▶ Motivated by intuitionistic meta-theory
▶ Normal Modal Logic

Models for IK
The same as for WK, but the definition of 3 is local:

x ⊩ 3A if ∃y .Rxy & y ⊩ A

But there are additional frame conditions
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Additional frame conditions for IK

▶ (F1) if x ⪯ x ′ and Rxy then ∃y ′.y ⪯ y ′ and Rx ′y ′

⪯ ⪯

R

R

x

x ′

y

y ′

▶ (F2) if Rxy and y ⪯ y ′ and then ∃x ′.x ⪯ x ′ and Rx ′y ′

⪯ ⪯

R

R

x

x ′

y

y ′
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Additional frame conditions for IK

▶ (F1) is needed to get the heredidary property for 3
▶ (F2) is needed for completeness wrt. intuitionistic meta-theory

Axiomatisation
▶ Axioms and rules of WK
▶ 3(A ∨ B) ⊃ 3A ∨ 3B (C3)
▶ (3A ⊃ 2B) ⊃ 2(A ⊃ B)
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Properties of IK

▶ Disjunction Property
▶ Conservative extension of IPL
▶ IK+A ∨ ¬A = Classical K
▶ Meta-theoretical completeness wrt standandard translation in FOIL

Translaton in FOIL
▶ pt = p(x)
▶ ⊥t = ⊥
▶ (A#B)t = At#Bt for # ∈ {∨, ∧, ⊃}
▶ (2A)t = ∀y(Rxy ⊃ A(y)t)
▶ (3A)t = ∃y(Rxy ∧ A(y)t)

Theorem (Simpson 94)
⊢IK A iff ⊢FOIL ∀xAt
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More Systems!

▶ Make the 2 condition local:
M, x ⊩ 2A if ∀y .Rxy implies M, y ⊩ A

▶ in order to get Heredidary Property add (F3):
if x ⪯ x ′ and Rx ′y ′ then ∃y .y ⪯ y ′ and Rxy

⪯ ⪯

R

R

x

x ′

y

y ′

▶ (F3) validates
2(A ∨ B) ⊃ 2A ∨ 3B

Considered in (Boz̆ić and Dos̆en 1984, D’Agostino et als. 97, Balbiani et
als. 2021)
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Three intuitionistic versions of classical K

——————————– ——————————– ——————————–
Intuitionistic K (IK) “Wijesekera’s K” (WK) Constructive K (CK)
(Fischer Servi 1977, (Wijesekera 1990) (Bellin et al. 2001,
Simpson 1994) Mendler & de Paiva 2005)

A
2A

A
2A

A
2A

2(A ⊃ B) ⊃ (2A ⊃ 2B) 2(A ⊃ B) ⊃ (2A ⊃ 2B) 2(A ⊃ B) ⊃ (2A ⊃ 2B)
2(A ⊃ B) ⊃ (3A ⊃ 3B) 2(A ⊃ B) ⊃ (3A ⊃ 3B) 2(A ⊃ B) ⊃ (3A ⊃ 3B)
¬3⊥ ¬3⊥ ——————————–
3(A ∨ B) ⊃ 3A ∨ 3B ——————————–
(3A ⊃ 2B) ⊃ 2(A ⊃ B)
——————————–
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What are the relations?

Obvious remarks
▶ The 2-fragment of CK and WK is the same.
▶ 3 is non-normal in CK and WK as C3 fails:

3(A ∨ B) ⊃ 3A ∨ 3B

▶ Different intuitionistic counterparts of the same classical modal logic.

Less obvious remark!
See: https://prooftheory.blog/2022/08/19/
brouwer-meets-kripke-constructivising-modal-logic/
Even 2-fragment of IK is different from the one of CK and WK
▶ Counterexample by Das and Marin: ¬¬2p ⊃ 2¬p
▶ Counterexample by Grefe in 96? (communicated by A. Simpson):

(¬2⊥ ⊃ 2⊥) ⊃ 2⊥

▶ The 2-fragment of IK is not finitely axiomatisable (by C. Grefe reported
by Alex Simpson)

▶ The 2-fragment of WK + C3 is stronger than the 2-fragment of WK
alone

17 / 62
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A glimpse to proof-theory

Sequent calculi
▶ Constructive modal logic WK and CK have simple Gentzen calculi
▶ Obtained in a natural way: just restrict to single succedent the standard

calculus for classical K

Sequent calculus for Classical K
Modal Rules (with weakening)

Σ ⇒ A, Π
R2 Γ,2Σ ⇒ 2A,3Π, ∆

Σ, A ⇒ Π
R3 Γ,2Σ,3A ⇒ 3Π, ∆

2Σ = {C | 2C ∈ Σ}
3Π = {D | 3D ∈ Π}

Σ and Π may be empty
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Calculus for WK and CK

Sequent Calculus for WK and CK
Modal Rules to add to a standard Gentzen calculus for IL: just make the rules
single succedent.

Σ ⇒ AR2 Γ,2Σ ⇒ 2A

Σ, A ⇒ B
R3 Γ,2Σ,3A ⇒ 3B

Σ, A ⇒
R3⊥ Γ,2Σ,3A ⇒ ∆

▶ In rule R3⊥ |∆| ≤ 1.
▶ For CK: remove R3⊥
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A glimpse to proof-theory

Constructive vs. Intuitionistic modal logic from a proof-theorical
viewpoint
To sum up:
▶ Natural internal Gentzen calculi for Constructive modal logic
▶ No (internal) cut-free Gentzen calculus is available for IK, not even for its

2-fragment.
▶ Sonia’s talk :

Nested sequents (Galmiche and Salhi 2010, Strassburger 2013),
labelled sequents (Simpson 1994), (Marin, Morales, Straßburger
2021)

A good reason to distinguish Construtive from Intuitionistic Modal Logic
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From normal to non-normal intuitionistic modal logic

Reject C3

There are reasons to reject C3 (Wijesekera 1990, Mendler & Scheele 2011)
▶ Lack of control/choice:

1. Agent/process: 3A means the agent/process can ensure A
2. Contextual : 3A means A holds in some context
3. Types: 3A means the program can produce a value of type A

▶ Normality : 3A means A holds in normal circumstances
Same reasons lead to reject (3A ⊃ 2B) ⊃ 2(A ⊃ B)

Do we keep C2 ?
What about the dual

C2 : 2A ∧ 2B ⊃ 2(A ∧ B) ?
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Intuitionistic non-normal modal logics

Why do not study Intuitionistic Non Normal Modal Logic?
▶ Classical non-normal modal logics are well studied (Chellas 1980, Pacuit

2017)
▶ No general investigation of intuitionistic logics with non-normal modalities.

Question

What are the intuitionistic counterparts of classical non-normal modal logics?
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Classical Non-normal modal logics

An axiomatisation of K

▶ Monotonicity

M 2(A ∧ B) → 2A or A → BRM
2A → 2B

▶ Aggregation
C 2A ∧ 2B → 2(A ∧ B)

▶ Necessitation
N 2⊤ or ARN

2A

Objections
▶ Monotonicity: Deontic paradoxes, Omniscience
▶ Aggregation: Deontic paradoxes, Agent’ ability, “High probablity”
▶ Necessitation: Omniscience, deontic interpretation
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Non-normal modal logics: Classical cube

Basic system E

CPL + 3A ↔ ¬2¬A + A ↔ BRE
2A ↔ 2B

Extensions of E add any combination of:

M 2(A ∧ B) → 2A or A → BRM
2A → 2B

C 2A ∧ 2B → 2(A ∧ B)

N 2⊤ or ARN
2A

E

M

EC EN

MC MN

ECN

MCN (K)
▶ 8 non-equivalent systems
▶ M/C/N derivable only if they explicitly

belong to the axiomatisation
▶ Top system coincides with K
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Intuitionistic non-normal modal logics

An attempt

A landcape of constructive non-normal modal logics that
▶ can be seen as intuitionistic counterparts of classical non-normal modal

logics;
▶ hope to accommodate also CK and WK.
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Requirements for intuitionistic non-normal modal logics

Intuitionistic non-normal modal logics must contain
▶ Characteristic modal axioms and rules of the systems of the classical cube.

RE2
A ⊃⊂ B

2A ⊃⊂ 2B RE3
A ⊃⊂ B

3A ⊃⊂ 3B
M2 2(A ∧ B) ⊃ 2A M3 3A ⊃ 3(A ∨ B)

C2 2A ∧ 2B ⊃ 2(A ∧ B) C3 3(A ∨ B) ⊃ 3A ∨ 3B

N2 2⊤ N3 ¬3⊥

▶ But what interactions between 2 and 3 ?
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Requirements for intuitionistic non-normal modal logics

Weak duality principles
▶ Interactions between 2 and 3 that can be seen as weak duality principles
▶ State when 2A and 3B are jointly incompatible:

▶ when one of the two A or B is ⊤ and the other is ⊥
▶ when one is the negation of the other
▶ when they are incompatible ⊢ ¬(A ∧ B)

weaka ¬(2⊤ ∧ 3⊥) weakb ¬(2⊥ ∧ 3⊤) ¬(A ∧ B)
str

¬(2A ∧ 3B)nega ¬(2¬A ∧ 3A) negb ¬(2A ∧ 3¬A)
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Requirements for intuitionistic/constructive non-normal modal logics

Further requirements (cf. Simpson 1994)
1. Conservativity over IPL.
2. Disjunction property.
3. Homogeneus treatment of 2 and 3

4. But constructive : Not contain C3 3(A ∨ B) ⊃ 3A ∨ 3B.

How to proceed?

Proof-theoretic approach

▶ Extend Gentzen calculus with modal rules corresponding to principles
▶ Accept only the combinations of principles which give a cut-free

calculus.
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Sequent rules

Sequent rules for non-normal modalities (G3i-style)

A ⇒ B B ⇒ AE2 Γ,2A ⇒ 2B
A ⇒ BM2 Γ,2A ⇒ 2B

⇒ AN2 Γ ⇒ 2A

A1, ..., An ⇒ B B ⇒ A1 ... B ⇒ AnC2 Γ,2A1, ...,2An ⇒ 2B
A1, ..., An ⇒ B

MC2 Γ,2A1, ...,2An ⇒ 2B

A ⇒ B B ⇒ AE3 Γ,3A ⇒ 3B
A ⇒ BM3 Γ,3A ⇒ 3B

A ⇒N3 Γ,3A ⇒ ∆

Interaction rules “weak duality principles”

⇒ A B ⇒weaka Γ,2A,3B ⇒ ∆
A ⇒ ⇒ Bweakb Γ,2A,3B ⇒ ∆

A, B ⇒ ¬B ⇒ Anega Γ,2A,3B ⇒ ∆
A, B ⇒ ¬A ⇒ Bnegb Γ,2A,3B ⇒ ∆

A, B ⇒
str Γ,2A,3B ⇒ ∆
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Lattice of intuitionistic non-normal modal logics

IM
IE3

IE2

IE1

IE2N3

IE3N3

IMN3 IE2N2

IE3N2

IMN2

IE1N3

IE1N2

IE1C

IE1N2C

IE1N3C

IE2C

IE3C
IMC IE2N3C

IE3N3C
IMN3C IE2N2C

IE3N2C
IMN2C

▶ 24 distinct cut-free calculi
▶ Monotonicity compatible only with the strongest interaction
▶ N2 only in presence of N3

▶ All of them weaker than WK
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Trivial intuitionistic counterparts of classical non-normal modal logics?

Example: the system IE3

IPL + A ⊃⊂ BRE2
2A ⊃⊂ 2B

A ⊃⊂ BRE3
3A ⊃⊂ 3B

¬(A ∧ B)
str

¬(2A ∧ 3B)

▶ The rule str is classically equivalent to axiom M ⇒ IE3 ̸⊆ E.
▶ IE3 doesn’t contain M2 or M3.
▶ IE3 doesn’t trivially correspond neither to E nor to M.

Richer picture than in the classical setting
▶ Finer distinctions among principles that are equivalent in classical logics.
▶ Systems that do not correspond to any classical logic.
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Further properties, further systems

Further properties
▶ Disjunction property
▶ All of them decidable
▶ Craig interpolation for some of them

▶ Uniform interpolation for the 2-fragment of IM [Tabatabai & als.
2022]

Further systems
▶ Deontic Logic with an intuitionistic basis [DGO WOLLIC 22], namely IE1

extended with:
(C3) P(A ∨ B) ⊃ (PA ∨ PB)
(D) OA ⊃ PA
(N3) ¬P⊥

▶ Extension with Axioms of the standard cube of normal modal logic
(T,D,4,5,B): to be studied.
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Possible worlds semantics for intuitionistic non-normal modal logics

Neighbourhood models for
non-normal modal logics

⟨W, N , V⟩

Kripke models for
intuitionistic logic

⟨W, ⪯, V⟩

Models for intuitionistic
non-normal modal logics

⟨W, ⪯, N2, N3, V⟩

▶ Two distinct neighbourhood functions N2 and N3 handling the modalities
separately

▶ Different connections between N2 and N3 corresponding to the
interaction axioms

▶ The combination must preserve the hereditary property:
If w ⊩ A and w ⪯ v , then v ⊩ A
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▶ The combination must preserve the hereditary property:
If w ⊩ A and w ⪯ v , then v ⊩ A
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Coupled intuitionistic neighbourhood models

CINMs: M = ⟨W, ⪯, N2, N3, V⟩, where:
▶ W, ⪯ and V as usual in Kripke models of IL
▶ N2, N3 are two neighbourhood functions W −→ PP(W) s.t.

w ⪯ v implies N2(w) ⊆ N2(v) and N3(w) ⊆ N3(v).

Forcing conditions
Standard for p, ⊥, ⊤, B ∧ C , B ∨ C , B ⊃ C
w ⊩ 2B iff JBK ∈ N2(w);
w ⊩ 3B iff JBK ∈ N3(w).

34 / 62



Modular characterisation

Conditions corresponding to the axioms
▶ Conditions on N2 and N3 (◦ = 2,3)

If α ∈ N◦(w) and α ⊆ β, then β ∈ N◦(w) (M◦)
If α, β ∈ N2(w), then α ∩ β ∈ N2(w) (C2)
W ∈ N◦(w) (N◦)

▶ Relations between N2 and N3 (−α = {w ∈ W | for all v ⪰ w , v /∈ α})

If α ∈ N2(w), then W \ α /∈ N3(w) (weakInt)
If −α ∈ N2(w), then α /∈ N3(w) (negInta)
If α ∈ N2(w), then −α /∈ N3(w) (negIntb)
If α ∈ N2(w) and α ⊆ β, then W \ β /∈ N3(w) (strInt)
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CK and WK within the framework

IE∗

WK

CK

Neighbourhood semantics for CK and WK
Common conditions
▶ Supplementation for N2 and N3

▶ N2: W ∈ N2(w)
▶ C2: α, β ∈ N2(w), then α ∩ β ∈ N2(w)

Additional conditions:
▶ WInt∩ : If α ∈ N2(w) and β ∈ N3(w), then α ∩ β ∈ N3(w)
▶ weakInt for WK : If α ∈ N2(w), then W \ α /∈ N3(w)

(equivalent condition ∅ ̸∈ N3(w))
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Neighbourhood semantics for CK and WK

▶ Models for CK without “fallible worlds”
▶ Direct transformations with their original relational models

▶ But relational models are much larger...
▶ Alternative Neighbourhood semantics for WK (Kojima 2012, Dalmonte

2022)
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Transformation between Neighbourhood and Relational models

From Relational models to Neighbourhood models

For WK
Given M = (W, ⪯, R, V ). For x ∈ W let

R(x) = {y ∈ W : Rxy}

we define Mn = (W, ⪯, R, V , N2, N3) where
N2(x) = {α ⊆ W | ∀y ⪰ x .R(y) ⊆ α}
N3(x) = {α ⊆ W | ∀y ⪰ x .R(y) ∩ α ̸= ∅}

For CK
M = (W, F , ⪯, R, V ), where F ⊆ W and for all x ∈ F x ⊩ ⊥. For let

α+ = α − F for α ⊆ W,
we define Mn = (W, ⪯, V, N2, N3) where

N2(x) = {α+ ⊆ W | ∀y ⪰ x .R(y) ⊆ α}
N3(x) = {α+ ⊆ W | ∀y ⪰ x .R(y) ∩ α+ ̸= ∅}
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Transformation between Neighbourhood and Relational models

From Neighbourhood models to Relational models

For WK
Given M = (W, ⪯, V, N2, N3). We define M∗ = (W, ⪯∗, R∗, V∗) as follows:

- W∗ = {(w , α) | w ∈ W , W − α ̸∈ N3(w), and α ⊆
⋂

N2(w)}
- (w , α) ⪯∗ (u, β) iff w ⪯ u
- (w , α)R∗(u, β) iff u ∈ α
- V∗((w , α)) = V(p)
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Transformation between Neighbourhood and Relational models

From Neighbourhood models to Relational models

For CK
Given M = (W, ⪯, V, N2, N3). Let f ̸∈ W we define We define
M∗ = (W, ⪯∗, R∗, V∗) as follows:

W∗ = {(w , α) | w ∈ W , ∅ ̸∈ N3(w), W − α ̸∈ N3(w), and α ⊆
⋂

N2(w)}

∪ {(w ,
⋂

N2(w) ∪ {f}) | w ∈ W , ∅ ∈ N3(w))}

∪ {(f, {f})}

and :
- (w , α) ⪯∗ (u, β) iff w ⪯ u or w = v = f
- R∗ as for WK
- V∗((w , α)) = V(w)
- V∗((f, {f})) = Atom ∪ {⊥}

40 / 62



Back to proof-theory for CMLs

▶ A proof system must provide a decision procedure, whenever the logic
is decidable

▶ Proofs and countermodels are equally important:
▶ A proof is a witness of the validity of a formula
▶ A countermodel is a witness of its non-validity
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Back to proof-theory for CMLs

State of the art
▶ Gentzen calculi for WK and CK (Wijesekera 1990; Bellin, de Paiva &

Ritter 2001) (not possible for IMLs)
▶ 2-sequent calculus for CK (Mendler & Scheele 2011)
▶ Nested calculi for CK and some extensions (Arisaka, Das & Straßburger

2015)

What we want

Proof systems for CMLs that
▶ are simple: Gentzen calculi without additional structure, as allowed by

CMLs
▶ Are strictly terminating (provide direct decision procedure)
▶ Allow for direct countermodel extraction from failed proofs
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Starting point I terminating calculus

G3-calculi for intuitionistic logic are not strictly terminating
Γ, A ⊃ B ⇒ A Γ, B ⇒ ∆

L⊃ Γ, A ⊃ B ⇒ ∆

▶ Left premiss of L⊃ can be more complex than the conclusion
▶ Need of loop-checking mechanism

Remark
▶ Explicit contraction or loop-checking ⇒ no strict termination
▶ No study of countermodel extraction
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Starting point I terminating calculus

Starting point: base calculus for IPL
▶ Dyckhoff’s G4ip (Dyckhoff 1992): terminating, simple, famous.
▶ Pinto & Dyckhoff’s refutation calculus (Pinto & Dyckhoff 1995): calculus

for “non-derivability” in G4ip: directly constructs countermodels.
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Dyckhoff’s calculus G4ip (multisuccedent)

L⊃ of G3-calculus
Γ, A ⊃ B ⇒ A Γ, B ⇒ ∆

L⊃ Γ, A ⊃ B ⇒ ∆

replaced with four rules, one for every possible connective in the antecedent of
⊃:

Γ, p, B ⇒ ∆
L0⊃ Γ, p, p ⊃ B ⇒ ∆

Γ, C ⊃ (D ⊃ B) ⇒ ∆
L∧⊃ Γ, (C ∧ D) ⊃ B ⇒ ∆

Γ, C ⊃ B, D ⊃ B ⇒ ∆
L∨⊃ Γ, (C ∨ D) ⊃ B ⇒ ∆

Γ, C , D ⊃ B ⇒ D Γ, B ⇒ ∆
L⊃⊃ Γ, (C ⊃ D) ⊃ B ⇒ ∆

▶ All premisses have a smaller complexity than the conclusion (according to
a suitable notion of complexity).

▶ Bottom-up proof search is terminating.
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Starting point II (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

▶ Anti-sequents Γ ⇏ ∆ ; “
∨

∆ does not follow from
∧

Γ”
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Starting point II (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

▶ Anti-sequents Γ ⇏ ∆ ; “
∨

∆ does not follow from
∧

Γ”
▶ Non-derivable initial Sequents Γ ⇏ ∆
▶ Convert G4-rules into refutation rules

One rule for every invertible premiss of a rule of G4ip:
If the premiss is not derivable, then the conclusion is not derivable

Examples:

Γ, A ⇒ ∆ Γ, B ⇒ ∆
L∨ Γ, A ∨ B ⇒ ∆

Γ, A ⇏ ∆
L∨1 Γ, A ∨ B ⇏ ∆

Γ, B ⇏ ∆
L∨2 Γ, A ∨ B ⇏ ∆

Γ, C , D ⊃ B ⇒ D Γ, B ⇒ ∆
L⊃⊃

Γ, (C ⊃ D) ⊃ B ⇒ ∆
Γ, B ⇏ ∆

L⊃⊃
Γ, (C ⊃ D) ⊃ B ⇏ ∆

(Only the right premiss of L⊃⊃ is invertible).
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Starting point II (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

▶ Anti-sequents Γ ⇏ ∆ ; “
∨

∆ does not follow from
∧

Γ”
▶ Non-derivable initial Sequents Γ ⇏ ∆
▶ Convert G4-rules into refutation rules

A single rule dealing with all non-invertible premisses of G4ip:
Excludes all possible derivations of the conclusion

Γ, Ci , Di ⊃ Bi ⇒ Di Γ, Bi ⇒ ∆
L⊃⊃

Γ, (Ci ⊃ Di ) ⊃ Bi ⇒ ∆
Γ, Ej ⇒ Fj

R⊃ Γ ⇒ Ej ⊃ Fj , ∆

Γ1, D1 ⊃ B1, C1 ⇏ D1 ... Γn, Dn ⊃ Bn, Cn ⇏ Dn Γ′, E1 ⇏ F1 ... Γ′, Em ⇏ Fmnip
Γ, (C1 ⊃ D1) ⊃ B1, ..., (Cn ⊃ Dn) ⊃ Bn ⇏ E1 ⊃ F1, ..., Em ⊃ Fm, ∆

▶ Γ′ = Γ, (C1 ⊃ D1) ⊃ B1, ..., (Cn ⊃ Dn) ⊃ Bn. Γi = Γ′ \ {(Ci ⊃ Di ) ⊃ Bi }.
+ Suitable application conditions (= no other rule is applicable)
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Starting point II (countermodels)

Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

▶ A REFUTATION IS A COUNTERMODEL

Invertible rules ⇒ Local rules ⇒ Same world
Non-invertible rules ⇒ Create new worlds reachable through ⪯
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Pinto & Dyckhoff 1995: refutation calculus for “non-derivability” in G4ip

▶ A REFUTATION IS A COUNTERMODEL

Invertible rules ⇒ Local rules ⇒ Same world
Non-invertible rules ⇒ Create new worlds reachable through ⪯

Remark: 1-1 correspondence between premisses of non-invertible rules and worlds
of the model
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Extension to WK and CK

“Positive” G4-calculus for WK and CK
▶ Rules of G4ip
▶ Standard modal rules:

Σ ⇒ BK2 Γ,2Σ ⇒ 2B, ∆
Σ, B ⇒ C

K3 Γ,2Σ,3B ⇒ 3C , ∆
Σ, B ⇒

N3 (for WK)
Γ,2Σ,3B ⇒ ∆

▶ Special rule K2

Σ ⇒ C Γ,2Σ, B ⇒ ∆
L2⊃ Γ,2Σ,2C ⊃ B ⇒ ∆

▶ Special rule L2⊃
Σ, D ⇒ C Γ,2Σ,3D, B ⇒ ∆

L3⊃ Γ,2Σ,3D,3C ⊃ B ⇒ ∆

Note: G4+K2+ L2⊃ = calculus for the 2-fragment of CK by [Iemhoff 2018]

Remarks
▶ The calculus is terminating
▶ Only the right premiss of L2⊃ and L3⊃ are invertible.
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From G4-rules to refutation rules for WK and CK

Initial anti-sequents
Initial sequents: are not axioms, nor a conclusion of any rule:

(init) Γ,2Γ′ ⇏ 3∆′, ∆ (init)CK Γ,2Γ′,3Γ′′ ⇏ ∆

▶ Γ ∩ ∆ = ∅.
▶ Γ contains only propositional variables, atomic implications, and implications of the form 3A ⊃ B;
▶ ∆ contains only atomic formulas;
▶ if p ⊃ A ∈ Γ, then p /∈ Γ;
▶ if Γ contains an implication 3A ⊃ B, then 3Γ′′ = ∅;

One rule for every invertible premiss
Σ ⇒ C Γ,2Σ, B ⇒ ∆

L2⊃ Γ,2Σ,2C ⊃ B ⇒ ∆
Γ, B ⇏ ∆

L2⊃ Γ,2C ⊃ B ⇏ ∆

Σ, D ⇒ C Γ,2Σ,3D, B ⇒ ∆
L3⊃ Γ,2Σ,3D,3C ⊃ B ⇒ ∆

Γ,3D, B ⇏ ∆
L3⊃ Γ,3D,3C ⊃ B ⇏ ∆
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From G4-rules to refutation rules for WK and CK

A single rule (nip) dealing with all non-invertible premisses invertible
premiss

Non-invertible premisses of modal or ⊃-rules

{Γ2 ⇏ A | 2A ⊃ B ∈ Γ} {Γ2 ⇏ A | 2A ∈ ∆}
{Γ2, C ⇏ A | 3A ⊃ B,3C ∈ Γ} {Γ2, A ⇏ B | 3A ∈ Γ,3B ∈ ∆}
{Γ′, D ⊃ B, C ⇏ D | (C ⊃ D) ⊃ B ∈ Γ} {Γ, A ⇏ B | A ⊃ B ∈ ∆}

Γ ⇏ ∆

▶ Γ′ = Γ \ {(C ⊃ D) ⊃ B}.
If 2A1, ...,2An are all the 2-formulas of Γ, then Γ2 = A1, ..., An.

▶ Application conditions similar to G4 (= no other rule applicable)
▶ for WK: an additional rule: similar but includes non-derivability with N3.
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What about countermodels?

A refutation is a neighbourhood countermodel

Rules and worlds
▶ Invertible rules ⇒ Local rules ⇒ Same world
▶ Non-invertible rules ⇒ Create new worlds

• Premisses determined by ⊃-formulas ⇒ worlds reachable through ⪯
• Premisses determined by modal formulas ⇒ worlds belonging

to the neighbourhood

Extracting the neighbourhood (idea)
▶ A+ = {Γ ⇏ ∆ | A ∈ Γ}.
▶ 2A, Γ ⇏ ∆ ; w −→ A+ ∈ N2(w).
▶ 3A, Γ ⇏ ∆ ; w −→ A+ ∈ N3(w).
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A refutation is a neighbourhood countermodel

• Local rules ⇒ same world
• Premisses determined by ⊃-formulas ⇒ worlds reachable through ⪯
• Premisses determined by modal formulas ⇒ worlds belonging

to the neighbourhood
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A refutation is a neighbourhood countermodel

Annotation
annotation σ = n1.n2. ... .nk .
Anti-sequents are annotated Γ ⇏σ ∆ as follows:
▶ The root anti-sequent Γ ⇏ ∆ is annotated with 1.
▶ (Rule) ̸= different from nip: the premiss is annotated with the same

annotation then its conclusion
▶ (nip): if the conclusion is annotated with σ, then its premisses are

annotated as follows:
▶ Premisses from (C ⊃ D) ⊃ B on the left of the conclusion, or A ⊃ B

on the right, are annotated each with a different σ.n, with n new
▶ Other Premisses each with a different new k
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A refutation is a neighbourhood countermodel

For an annotated refutation R of Γ ⇏1 ∆:

Γσ =
⋃

{Γ | Γ ⇏σ ∆ ∈ R} and ∆σ =
⋃

{∆ | Γ ⇏σ ∆ ∈ R}.

▶ W = the set of annotations occurring in R
▶ σ ⪯ ρ iff ρ = σ.π for some possibly empty annotation π.
▶ V(p) = {σ ∈ W | p ∈ Γσ}.
▶ For every 2A,3A occurring in R A+ = {σ ∈ W | A ∈ Γσ}.
▶ For every σ ∈ W, N2(σ) and N3(σ) are defined as follows:

▶ If there are no 2-formulas in Γσ , then:
▶ N2(σ) = {W}.
▶ N3(σ) = {α ⊆ W | there is 3B ∈ Γσ s.t. B+ ⊆ α}.

▶ Otherwise, if 2A1, ...,2An are all the 2-formulas in Γσ , then:
▶ N2(σ) = {α ⊆ W | A+

1 ∩ ... ∩ A+
n ⊆ α}.

▶ N3(σ) = {α ⊆ W | there is 3B ∈ Γσ s.t. A+
1 ∩ ... ∩ A+

n ∩ B+ ⊆ α}.
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A refutation is a neighbourhood countermodel

Countermodel for 3(p ∨ q) ⊃ 3p ∨ 3q:

init
q ⇏2 p

L∨
p ∨ q ⇏2 p

init
p ⇏3 q

L∨
p ∨ q ⇏3 q nip

3(p ∨ q) ⇏1.1 3p,3q
R∨

3(p ∨ q) ⇏1.1 3p ∨ 3q
nip

⇏1 3(p ∨ q) ⊃ 3p ∨ 3q

W = {1, 1.1, 2, 3}
1 ⪯ 1.1
V(3) = {p} V(2) = {q}
N2(w) = {W} for every w ∈ W
N3(w) = ∅ for every w ∈ W, w ̸= 1.1
N3(1.1) = {α | (p ∨ q)+ ⊆ α} =
{{2, 3}, {2, 3, 1}, {2, 3, 1.1}, {2, 3, 1, 1.1}}
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A refutation is a neighbourhood countermodel

Countermodel for (3p ⊃ 2q) ⊃ 2(p ⊃ q):

init
p ⇏2.1 q nip
⇏2 p ⊃ q nip

3p ⊃ 2q ⇏1.1 2(p ⊃ q)
nip

⇏1 (3p ⊃ 2q) ⊃ 2(p ⊃ q)

W = {1, 1.1, 2, 2.1}
1 ⪯ 1.1 2 ⪯ 2.1
V(2.1) = {p} V(w) = ∅ for w ̸= 2.1
N2(w) = {W} for every w ∈ W
N3(w) = ∅ for every w ∈ W
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A refutation is a neighbourhood countermodel

Countermodel for 3⊥ ⊃ ⊥
initCK

3⊥ ⇏1.1 ⊥ nip
⇏1 3⊥ ⊃ ⊥

W = {1, 1.1}
1 ⪯ 1.1.
N2(1) = {W} N2(1.1) = {W}
N3(1) = ∅ N3(1.1) = P(W)
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How can we get relational countermodels?

▶ One can apply the transformation from neighbourhood to relational models
▶ But: The resulting relational model can be exponentially larger than the

original neighbourhood one
▶ Special case: what about the fragment with only 2?

▶ Loss of 1-1 correspondence between premisses of non-invertible rules of
the refutation and worlds of the countermodels

Neighbourhood models are the natural semantics of the refutation calculus.
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Conclusion

What we know
▶ Constructive modal logics lead naturally to study Non-Normal modalities

with an intuitionistic base
▶ We have a framework for intuitionistic non-normal modal logic:

⇒ Simple proof theory: Sequent calculi
⇒ modular semantic by Neighbourhood models

▶ CK and WK have their place
▶ The simple proof-theory of CK and WK allows us to define good

terminating calculi for provability and refutation
▶ The refutation calculus justifies the Neighbourhood semantics as the

natural one
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Conclusion

What we do not know yet
▶ Other systems to study: Extensions by the classical cube (T,D,B,4,5)
▶ (Uniform) interpolation: recent results for some systems
▶ terminating (refutation) calculi for other Non-normal CMLs
▶ Extract relational countermodels for CK and WK : of the same size as

neighbourhood ones, directly from the calculus or by transformation Is it
possible?

▶ Complexity: we conjecture that all these logics, including CK and WK are
in PSPACE, but we are not aware of any proof

• If so, find optimal calculi taking as a base an optimal calculus for IPL (G4ip
is not)

▶ Type-theoretic interpretation of Non-Normal CMLs in the style of (Bellin,
De Paiva, Ritter 2001)
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Thank you!
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