From unified correspondence to parametric correspondence

Alessandra Palmigiano

LATD 9 September 2022

joint work with Willem Conradie, Apostolos Tzimoulis, Andrea De Domenico, Krishna Manoorkar, Mattia Panettiere, Sabine Frittella...

Unified correspondence

Duality-theoretic approach to nonclassical logics

- canonical extensions;
- ALBA + translation;
- uniform definition of Sahlqvist/inductive formulas/inequalities;
- applications to structural proof theory (ALBA- driven generation of analytic rules).

Methodologically unified mathematical theory of LE-logics (LE: lattice expansions)

- duality-induced relational semantics (polarity-based frames, graph-based frames...);
- generalized Sahlqvist correspondence and canonicity;
- syntactic and semantic cut elimination, finite model property;
- Goldblatt-Thomason theorem.

Main tool: the algorithm ALBA

- computes the first-order correspondent of LEterms/inequalities.
- reduction steps sound on complex algebras of relational structures (perfect LEs)

Examples: reflexivity and transitivity $\forall p \square p < p$

iff
$$\forall p \forall j \forall m[(j \leq \Box p \& p \leq m) \Rightarrow j \leq m]$$

iff $\forall p \forall j \forall m [(\blacklozenge j \le p \& p \le m) \Rightarrow j \le m]$

iff
$$\forall j \forall m [\blacklozenge j \le m \Rightarrow j \le m]$$

iff $\forall j [j \le \diamondsuit j]$

iff $\forall \mathbf{i} [\Diamond \Diamond \mathbf{i} \leq \Diamond \mathbf{i}]$

(generators) (adjunction) (Ackermann) (Ackermann)

$\forall p[\Diamond \Diamond p \le \Diamond p]$

- iff $\forall p \forall j \forall m[(j \le p \& \Diamond p \le m) \Rightarrow \Diamond \Diamond j \le m]$ iff $\forall j \forall m[\Diamond j \le m \Rightarrow \Diamond \Diamond j \le m]$
- (generators) (Ackermann) (Ackermann)

Modularity: One reduction, many translations!

On Kripke frames (W, R): $\forall j[j \le \blacklozenge j] \iff \forall w (\Delta[w] \subseteq R[w])$ i.e. $\Delta \subseteq R$ $\forall j[\diamondsuit \diamondsuit j \le \diamondsuit j] \iff \forall w (R^{-1}[R^{-1}[w]] \subseteq R^{-1}[w])$ i.e. $R \circ R \subseteq R$

On polarity-based frames $(A, X, I, R_{\Box}, R_{\diamond})$: $\forall j[j \leq \blacklozenge j] \quad \rightsquigarrow \quad \forall a \left(R_{\Box}^{(1)}[a] \subseteq I^{(1)}[a] \right) \quad \text{i.e. } R_{\Box} \subseteq I$ $\forall j[\diamondsuit \Diamond j \leq \diamondsuit j] \quad \rightsquigarrow \quad \forall a((R_{\Diamond;I} R_{\Diamond})^{(0)}[a] \subseteq R_{\Diamond}^{(0)}[a]) \quad \text{i.e. } R_{\Diamond} \subseteq R_{\Diamond;I} R_{\Diamond}$

On graph-based frames $(Z, E, R_{\Box}, R_{\diamond})$: $\forall \mathbf{j}[\mathbf{j} \leq \mathbf{4j}] \quad \rightsquigarrow \quad \forall z \left(E^{[1]}[z] \subseteq R^{[1]}_{\Box}[z] \right) \quad \text{i.e. } E \subseteq R_{\Box}$ $\forall \mathbf{j}[\diamond \diamond \mathbf{j} \leq \diamond \mathbf{j}] \quad \rightsquigarrow \quad \forall z((R_{\diamond} \star_{E} R_{\diamond})^{[0]}[z] \subseteq R^{[0]}_{\diamond}[z]) \quad \text{i.e. } R_{\diamond} \star_{E} R_{\diamond} \subseteq R_{\diamond}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

A commutative diagram of semantic contexts 1/2

- These semantic contexts relate to each other via embeddings;
- Can we systematically relate the f.o.-correspondents of (modal) axioms to each other along these embeddings?
- Can we retrieve the intuitive meaning of these axioms in each context?

A commutative diagram of semantic contexts 2/2

- Complex algebras preserved under embeddings.
- $\blacktriangleright z_A I_R z'_X \text{ iff } zRz' \qquad z_X J_R z'_A \text{ iff } zRz';$
- ► Lifting preserves composition! E.g. $I_{(R \circ S)^c} = I_{R^c} I_{S^c}$.

Epistemic interpretation of modal axioms

Axiom	Kripke	Polarity-based	Graph-based
	frames	frames	frames
$\Box p \rightarrow p$	$\Delta \subseteq R$	R ⊆ I	$E \subseteq R$
Factivity:	states that	agent's	states that
if agent knows	agent tells	attributions	agent tells
p then p true	apart are	factually	apart are not
	non-identical	correct	inher. indist.
$\Box p \to \Box \Box p$	$R \circ R \subseteq R$	$R\subseteq R$; R	$R \circ_E R \subseteq R$
Positive	if agent tells	If agent thinks	positive
introspection:	apart x, y	object <i>a</i> is an	introspection
if agent knows	then agent can	x-object, then	+
p then	distinguish	agent must also	inherent
agent knows	y from	attribute to a all	indistinguishab.
of knowing	any z agent	features shared	
р	cannot tell	by x-objects	
	apart from x	according to i	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Skimming through the technicalities

In each semantic context:

- Various compositions of binary relations have been defined;
- these compositions used as interpretations of term-constructors in an algebraic language of binary relations;
- f.o.-correspondents of Sahlqvist MRPs (modal reduction principles) translated as term-inequalities in this language.

Thanks to compositions being preserved under embeddings, term-inequalities "lifted" and "shifted" along the embeddings among contexts.

Preliminary results: the f.o.-correspondents of...

Conclusions: towards parametric correspondence

- Groundwork for a framework for systematically comparing f.o.-corr's of inductive formulas/inequalities across different relational semantics;
- correspondence theories for different logics and semantic contexts both methodologically *unified* by the same algebraic and algorithmic mechanisms, and *parametrically* related in terms of their outputs.
- Question: can other results be parametrically transferred in analogous ways?

How far can these results be extended?

- From Sahlqvist to inductive?
 - Yes, this should be no problem (but see below);
- to all LE-signatures?
 - Yes, this should be no problem (but see below);
- from modal reduction principles to all Sahlqvist/inductive inequalities?
 - ▶ No. Consider $\Diamond (p \lor q) \le \Diamond (p \land q)$, which is Sahlqvist. Its f.o.-corr. on Kripke frames is $R \subseteq \emptyset$, which lifts to $X \times A \subseteq R_{\Diamond}$, which is NOT equivalent to its f.o.-corr. on polarity-based frames.
- What goes wrong?
 - Conjecture: we believe the failure is due to the loss of order-theoretic properties of the interpretation of A in moving from the classical to the lattice-based environment. Notice that no such loss occurs for the connectives occurring in modal reduction principles.