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BOOLEAN ALGEBRAS WITH FURTHER OPERATIONS

ROBERTO MAGARI, SIENA, ITALY.

Summary. Both Model theory and Algebraic Logic lead to Boolean Algebras
with further operations. In this paper we will establish some basic facts for
such algebras.

Riassunto. Siala teoria dei modelli che la logica algebrica conducono ad alge-
bre di Boole con ulteriori operazioni. Si danno alcuni fatti basilari riguardanti
tali algebre.

1. Introduction.

In a previous paper [7] we have studied Boolean Algebras with Hemimor-
phisms and we have observed that some aspects of this theory are generaliz-
able. This is a first generalization. .

We think that further generalizations are possible: one can, for example,
consider, instead of Boolean algebras, filtrable varieties, or distributive lat-
tices, or primal algebras, and so on. It is also possible to consider infinitary
operations; therefore we think that this intermediate stage of generalization
1s useful for algebraic logic and for model theory.

In section 2 we introduce the algebras (bafos) of the title and develop the
easy theory of ideals, section 3 is a technical one, in section 4 we study limited
and near limited bafos, in section 5 we study ideal classes of bafos and in
section 6 we present some problems.

(added Jan. 24, 1990: Some concepts and results are already present in: Prime Ideals in
Universal Algebra, Acta Univ. Carol. Mat. et Phis. 25 (1984) 75-87 by Aldo Ursini. Some
new results are in my: A note on bafos, Dipt. Mat. Un. Siena, n. 204, 1989).

2. Generality, ideal theory.

2.1 Definition. A Boolean algebra with further operations (bafo) is a sys-
tem A = (A,+,-,1,0,1, fi)icr where:
2.1.1 (A,+,+,v,0,1) is a boolean algebra (+, - are the lattice operations
and v the complementation);
2.1.2 The f; are finitary operations on A.



Of course, fixing I and, for every i, the arity p; of f; we have a variety of
bafos, the bafos of the “type” (I,p).

It follows from well known theories (see A.G. Kurosh {3] chap. III, §2, n. 4)
that:

2.2 Lemma. The equivalence classes of 0 in the congruences of a bafo are
the (Boolean) ideals J such that for every i € I:

221 Ifzy +y1, 22+ y2,...,2n + yn € J then:
f(xlyxz"'wzn)'i'f(yl)y%"')yﬂ)e‘] (Z’i,y;'EA)
where n is the arity of f and z 4+ y stands for ¢ - vy + vz - y.

Of course, the bafos have a good theory of ideals (see Aldo Ursini [8]) with
the 0-ideals (or, simply, ideals) as in Lemma 2.2.

Let A be as in 2.1 and for every f; (of arity, say, n) let us consider the
(2n + 1)-ary operation g so defined:

2.3 g(p)zlxz2)'-"xnyylyy%""yn) =
fi(z1,22,. .., 2.) + filz1 + py1, 22+ pY2, . .., 20 + DYn)-

Let us call these functions “basic idealizing functions” (bifs). It is easy to
see that:

2.4 Lemma. The ideals of a bafo are the Boolean ideals closed (with respect

to the first argument) for all the bifs, i.e.: If g is a bif, p € J; z;,y; € A then:

g(pyxlyx%-":zﬂ’y11y2)"')yn) eJ

Now applying Zorn’s lemma:

2.5 Theorem. In a bafo every proper ideal is extendable to a maximal
proper ideal.

3. Normal operations and the radical.

Let {I, p) be a type and V the variety of all the bafos of this type.
3.1 Definition. A normal polynomial of type (I, p} is a polynomial f for
which:

3.1.1 f(0,z2,23,...,2,) =0 (AeV,z; € A)

Of course every ideal of the bafo is closed for normal polynomials, that is:
32if p€ J and z3,23,...,2, € A then f(p,z2,23,...,25) €J (AeV,
J ideal of A)

In a sense, only the normal polynomials contribute to the formation of an
ideal. More precisely we have:

3.3 Lemma. Let A be a bafo, J an ideal of A and p € A. Then the ideal
J U {p} generated by J U {p} is:

3.3.1 K = {q € A : there exists a j € J, a normal polynomial f of the
type and z2,%3,...,2n € A for which ¢ = f(p+ j,z2,23,...,2n)}

Proof. First, let r be an element of K and s < r; for suitable j € J,
a3,ds,...,a, € A and f normal polynomial of the type:

r=f(p+j,a2,a3,...,a,,).

But the g defined by:

g(x1,22,...,2n,9) = yf(z1,22,...,2n)

is also a normal polynomial of the type and
s = y(p+j,a2,(13,.. .,a,,,.s).

Now let 7, s be elements of K and v = r + s. For suitable normal poly-
nomials f, g and for suitable j,l € J, as,a3,...,a,,b2,b3,...,b,, € A we
have:

r= f(p+j,a2,a3,...,an), s = g(p+lab27b3)"':bM)'
Now let us consider the polynomial k defined by

h(t,y,Z,xz;l‘a,-“,fmyz,ys,--',ym) =

f(ty) Z2,Z3,... ’zﬂ) +g(tz7y2ay3" aym)

Of course, h is a normal polynomial and
u::r+s=h(p+j+l,p+j,p+l,a2,a3,...,an,bz,bg,...,bm).

Now let j be an element of J and let us consider the polynomial f defined
by:
f(w, z) = wa.

Of course, f is normal, but j = f(p + j,j) so j € K. The same f gives

p=f(p+ij.p)sopEK. - .
Finally, let r = g(a1,a2,...,a4) + g(by, b2,...,bs) with ¢; = a; + b; € K;

We have, for suitable elements j; € K, dS’) € A, f; normal polynomials:

C = f:(P+]n Zi),dgi): se ads:;))



(we can suppose that all f; have the same arity m). Let us consider the
polynomial A of arity n(m + 1) + 1 defined by:

h(w,zl,zz,...,zn,xl,xz,...,:c,.,...,yg'),yg’),..., ,(,’;),...)z

g(zlaxh e ,1’") 'i' g( oy T + fi(wziyygi)) y:(;)) ey S:z)); v )
This is a normal polynomial and:

r= h(p+Zjnp-*—j1,P+jz,...,p+jn,a.1,a2,...,a,.,...,d(zi),dgi),...,d(,,';),...).
t

So K is an ideal containing J U {p}. But by 3.2, K D JU {p}, so

K =JuU{p}.

Of course, we can read in the above lemma “normal polynomial of arity no
less than k” instead of “normal polynomials”, for every fixed natural number
k.

Let A be a bafo, f a normal polynomial, and let n be the arity of f.

For every choice of a = (as,as,...,a,) € A" we can consider a unary
operation h on A (not necessarily an operation of A) defined by:

hp:f(p;a%ali)“')an) (peA)

For every bafo A, let Hy be the set of all such operations (varying f, n
and a). We call these “normal operators” of A.
Of course, we can also read Lemma 3.3 as follows:

JU{p} = {q : there exists j € J and a normal operator h for which

¢ =h(p+j)}-

Now we can find the radical (the meet of maximal proper ideals, or the
whole of A if there are not maximal proper ideals).

3.4 Theorem. The radical R of A is:

{p: for every j, if there exists a normal operator h for which h(p+ =
1, then also exists a normal operator k for which kj = 1}.

Mutatis mutandis, the elements of R have Frattini’s property. 3.4 is sub-
stantially a particular case of the following general theorem, which is an easy
generalization of well known facts regarding the Frattini subgroup of a group.

If K is a Moore algebraic operator on a set M (that is: K : P(M) —
P(M) and, for X,Y C M andz € M, X CKX,KK = K, K(XUY) D
KX, ifz € KX then a finite Z C X exists for which ¢ € KZ) then the
“non-generators” (the x for which, for all X C M, if KX = M then

K(X \ {z}) = M) form a closed set, and precisely the meet of M with
all maximal proper closed sets.

Proof (of 8.4). Let pbein R, and suppose that, for suitable &, j, h(p+j) = 1.
Then the ideal generated from j is all A (otherwise, it generates a proper ideal
and it is possible to find a maximal ideal J with p ¢ J) and so there exists a
normal operator k, with kj = 1.

If p ¢ R then there is a maximal ideal J with p ¢ J and so J U {p} = A.
Then, for suitable h,j € J we have h(p + j) = 1 but, J being proper, there
is no operator k with k7 = 1.

If p€ A, anelement j € A is a pseudocomplement of p if a normal operator
k exists such that k(p + j) = 1. Then the element of the radical are the p
such that for every pseudocomplement j of p there is a normal operator h for
which hj = 1.

If, for example, A is a topological algebra (4, +,,v,0,1, k) then the min-
imum pseudocomplement of p is vkp and we have, as in [6, Theor. 9] and in
[7, n. 3]:

R={p:kvkp=1}.

4. The limited bafo.

4.1 Definition. A limited bafo (lbafo) is a bafo for which normal operators
have a maximum, k.

4.2 Theorem. If in a lbafo, A, k is the maximum normal operator, then:
4.2.1 k0=90

42.2 p<kp (e A)
4.2.3 kkp=kp (peA)
4.2.4 if p < q then kp < kq (r,g€A)

Proof. 4.2.1 is obvious. The h defined by:
hp=p+kp (p€A)

is also a normal operator and kp < hp < kp (because k is the maximum) and
so kp = hp > p. kk is also a normal operator: but by 4.2.2 k < kk and being
k the maximum kk < k, so k = kk.

Now suppose p < ¢. The operator h defined by: hz = k(pz) + kz is also
normal and so h < k. Now kq > hq = k(pq) + kq = kp + kq > kp.

In [7} we have seen that the semisimple lbahs form a variety; this is no
longer true for lbafos:



4.3 Example. Let S be {a,b,c,d} (four different elements) and A the
Boolean algebra of the subsets of S with the unary Moore operator k which
has as closed sets @, {a,b}, {c}, S. This algebra has the maximal ideals
J = {0,{c}} and {0, {a}, {b},{a,b}}. The algebra A/J is isomorphic with
the algebra of the subsets of {a, b,d} with the operator k in which the closed
sets are 0, {a,b}, {a,b,d}. A is semisimple but A/J is not.

It is useful to introduce also the following:

4.4 Definition. A near limited bafo (nlbafo) is a bafo in which there exists
an n > 1 and a normal polynomial f of arity n + 1 such that for every
normal polynomial g, of arity, say, m + 1 > 1 and for every choice af some
ap,a1,...,a, there exist by,b,,...,b, for which:

4.4.1 g(ao, A1,..., am) < f(ao, b1, ba, ... ,b,,)

Of course an lbafo is a nlbafo but:

4.5 Example. Let A be an infinite Boolean algebra and 0 = ay < a; <
+++<ap < ... elements of A and B = {a; : i € w}. Let us define a binary
function f on A putting:

451 f(:c,y):{o %fm_Oorm¢Bory¢B

y ifz#£0,z€B,yeB

In the bafo (A, f) the ideal generated by a, is, of course, {x € A : there
exists an ¢ € w with ¢ < a;}. Every normal operator maps a; in some a,, and
there is not a maximum, but f satisfies the condition for having a nlbafo.

5. Ideality.
Let X be a class of similar algebras and A C Hi A; a subalgebra of the

product of certain A; € X. Let L; be the congruence lattice of A;, L = IL Ls.

and for z,y € A put:

9.1 (A=z,9))i = {(=i,4:)},
where M stands for “the congruence of A generated by M”.
If J is an ideal of L then the R defined by:

5.2 tRy iff A(z,y) e J (z,y € A)

is a congruence of A.

Let us remember that X is an ideal class iff every congruence of every sub-
direct product of algebras of X is linked with an ideal by 5.2 (see R. Franci [1]
or R. Magari [5]).

An algebra A is ideal iff {A} is ideal.

The variety VX generated by an ideal class X is called idealizable.

If X has only simple algebras then the ideals of L are linked with the filters
on I and we have a filtral class and the generated variety is filtrable.

Let us remember also Lemma 4 of [4]. '

5.3 Proposition. Let (A;);cr be a family of similar algebras and let A be a
subalgebra of []; Ai. A necessary and sufficient condition for A to have only
ideal congruences (that is congruences “linked” with ideals as in 5.2) is that
for every n € w, n # 0 and for every choice of pairs p,p(®,pM), ..., p("=1) of
elements of A if:

A(p) < \/ (@9)

i€n
then:

pe {p® :ien}
(where of course M stands for “congruence generated by M in A”).

Now let us suppose that the A; belong to a variety of algebras with a good
theory of ideals (as the bafos) and suppose that every finitely generated ideal
is principal (this is the case for bafos).

We have:

5.4 Corollary. Under the above hypotheses, an equivalent condition for A
to have only ideal congruences is: for every choice of z,y € A, if y; belongs
to the ideal generated by z; (i € I), then: y belongs to the ideal generated
by z.

Now we can generalize a theorem of [7] on bahs:
5.6 Lemma. FEvery variety of nlbafos is ideal.

Proof. Let X be a variety of nlbafos and let F' be the free algebra of X on Rg
generators (a;)icy- F itself is a nlbafo and let f, n be as in Definition 4.4, so
for every normal polynomial g; of arity, say, ni+1 > 1 there exist by, bs,...,b,
for which:
gi(a();al:' ..,(ln) < f(ao’b1;b2) .. ';bn)

Now let I be a set, for i € I let A; € X, let A be a subalgebra of []; A:

and z,y € A with:
wel (el

(T =ideal generated by ... )

For every i € I there exists a normal polynomial g; of arity, say, n;+1 > 1
and agk) € A; with:
1 2 i
(1)o@ qn)

Yi —= gi(xi, a;
Now let ¢;: FF — A; be such that ¢;a¢ = z;, diar = a,(k); we have:

gi(zi,al™,af®, ..., al™) < f(zi, biby, biba, - . ., Biba)



and so: -

¥ < f(=,(dibr)ier, (dib2)ier, - - -, (bibn)icr)

and y € {z}.
So X is ideal.

5.7 Lemma. Every ideal bafo is near limited.
Proof. Let A be an ideal bafo, M the set of the normal polynomials of the
type; if g € M let its arity be ny > 1. Let us set:

I= {(gaaI;GZ;-"’ang) -9 € M,(l,' € A}

and consider B = Al.
Let be p,q € B defined by:

pi=a

i={g,a1,a9,...,8, >€I
g = g(a1,as,...,a,,) (i=(g,a1,05,..,n, )

Of course ¢; € {pi} and so, being A ideal, ¢ € {p}. Hence there exists an
n > 1, a normal polynomial f of arity n + 1 and some () € B with:

g = f(p,b®, 63, .. b))
and so, for every ¢ € I:
g(al’az’ T ’a") = f(alibgl)v bEZ); .. ,bfn))

Now we can state the following;:

5.8 Theorem. A variety of bafos is ideal if and only if it is a variety of near
Iimited bafos.

Proof. By the previous lemmas.

Let us remember that a (universal) algebra A is superprincipal iff for every
compact congruence R of A and for every z there exists an y € A such that
R is generated by {(z,y)}. Since, of course, every bafo is superprincipal we
have:

5.9 Corollary. Every variety of Ibafos falls into case (b) of [5], that is, it is
superprincipally idealizable.

Let us remember that in the classification of [5] we have examined the
following properties for a variety X.

(a,1) X is filtrable i.e., there exists a filtral class Y for which X = VY.
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(a,2) X =V(ZNX) (where X is the class of simple algebras) and N X
is filtral.

(b,1) X is ideal and generated by I N X (where I is the class of super-
principal algebras).

(b,2) X is superprincipally idealizable.

(c,1) X is ideal.

(c,2) X isidealizable and regular (that is, if A, B € X, A subalgebra of B
and R is a congruence of A, then there exists a congruence S of B
with R = A%N S).

(d) X is idealizable.
In [5] we have seen that properties with the same letter are equivalent and
(8) => (b) => (¢) = (d) (properly).
Now, being the bafos superprincipal, we have:

5.10 Theorem. Every idealizable variety of bafos is superprincipally ideal-
izable and so it is ideal itself and its algebras are near limited.

Now we have seen that the varieties of bafos which have property (d) have
also (b) and are varieties of Ibafos.
We can ask for property (a); it is easy to see that:

5.11 Theorem. A variety of bafos is filtrable iff it is a semisimple variety
of 1bafos.

(Remember that a filtrable variety is semisimple, see again [5]).

6. Problems.

6.1 Let X be a variety of algebras with property (d) and add further
operations. Can we generalize the results of this paper?

(If not, suppose that X have (c) or (b) or (a).)

6.2 A particular case of 6.1 (with property (a)): suppose X a variety of
distributive lattices.

6.3 Suppose X is a variety of groups (see Kurosh loco citato).

6.4 The Boolean algebras with a Moore operator are a paradigmatic case
for lbafo: it will be interesting to study these algebras.

(added Feb. 7, 1990: we have studied this problem in a short paper: Boolean Algebras
with a Moore Operator Dipt. Mat. Un. Siena n. 207, 1989).
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