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20133 Milan, Italy

Someone thinks of a number between one and one million

(which is just less than 2°°).

Another person is allowed to ask up to twenty questions,

to each of which the first person is supposed to answer only yes or no.

Obviously the number can be guessed by asking first:

Is the number in the first half million ?

then again reduce the reservoir of numbers in the next question by one-half, and so on.
Finally the number is obtained in less than log, (1000000).

Now suppose one were allowed to lie once or twice,
then how many questions would one need to get the right dnswer ?

S.M.ULAM,

Adventures of a Mathematician
‘Scribner's, New York, 1976

page 281

1. Playing Ulam's game The questions and answers exchanged between Questioner and
Responder in Ulam's game with & lies are propositions. In this paper we show that the
Lukasiewicz (k+2)-valued sentential calculus [14], [15] provides a natural logic for these
propositions. .

Throughout this paper, the Responder is identified with Pinocchio. Author and Reader
will often impersonate the Questioner. Unless otherwise stated, in this section we consider
Ulam's game with at most one lie.

Initially, Pinocchio and the Questioner agree to fix a search space S = {0,1,..., 2"-1}.
Writing numbers in binary notation, § is more conveniently represented by the n-cube
{0,1}". Pinocchio arbitrarily chooses a number x € S, writes it on a sheet of paper, and puts
the paper in his pocket. We shall henceforth call x the written number. To guess the written
number, the Questioner chooses his first question Q. InUlam's game, Q is (uniquely
determined by) a subset of S. To fix ideas, let us suppose Q is the set of even numbers in S.
Thus, the Questioner asks Pinocchio

"is the number x even ?".

The opposite question Q is givenby §— 0, the complement of Q in S. Pinocchio's answer
to O caneitherbe "yes" or "no". Since a negative answer to Q is the same as a positive



answer to O, let us consider without loss of generality the effect (on our state of knowledge
of x) of a positive answer to Q: The original search space S is partitioned into two
components A and B, where A=Q and B= O = the odd numbers in S. We cannot exclude
the possibility that the written number is odd. Indeed, this can be the case if, and only if, (iff)
Pinocchio's positive answer to Q isalie. Now we ask our second question G, say

"is x €67

Again, G is identified with the set G = {y € S|y < 6}, and G={yeS|ly>6)LIf
Pinocchio's answer to G is positive, in our new state of knowledge S is partitioned into
three components C, D, E, where
C = ANnG are the numbers satisfying both answers, namely the even numbers < 6;
E = BN G are the numbers falsifying both answers. These can be safely excluded from our
search. For, if the written number were an odd number > 6, Pinocchio would have lied in both
answers—which is impossible;
D =S—(E U C)=(An G)u (BN G) are the numbers falsifying exactly one of Pinocchio's
answers, namely the even numbers > 6, together with the odd numbers < 6. Although their
record is not so clean as for the numbers in C, they cannot be excluded from consideration as
we did for the numbers in E. In fact, the written number is equal to a number in D iff exactly
one of the two answers is a lie.

If Pinocchio's answer to G is negative, then C, D, and E are similarly obtained from A
and B, by interchanging the roles of G and G .

Proceeding by induction on the number of questions, suppose Pinocchio gives answers aj,...q;
to questions Q1=Q, Q2=G, 03,..., Q;, respectively. Let our current state of knowledge
about x be represented by a triple of pairwise disjoint sets (Cy, Dy, E;), where
C; is the set of numbersin S satisfying all answers aj,...,a;;
E; is the set of numbers of § falsifying at least two answers;
D, is the set of numbers falsifying exactly one answer.

If Pinocchio's answer a4+ to the next question Q.1 happens to be positive, then our
state of knowledge is transformed into a new triple (Cre1, Di+1, Ef+1), where
Ce+1 = Cr M O41, the numbers satisfying all answers ay,...,ar , Gg+1;
Et1=E; U (D; Qp1), the numbers falsifying at least two answers;
D1 =(Cy 0 O1) U (D N Ors1), the numbers falsifying exactly one answer.

If the answer to Q.1 is negative, one similarly obtains (Cry1, Dpr1, Ery1)  from
(C;, Dy, Ep), by interchanging the roles of Q1 and QO -
Itis easy to see that Cy41, D1, and Eyyq are pairwise disjoint.

The initial state of knowledge (Cp,Dg, Egp), i.., the state before the first answer, is
of course given by the triplet (S, @, @) with no falsified answers.

A state of knowledge (Cy,Dy,E,) is called final iff all numbers of S except one, say
w, arein Ey. Then we can confidently say that the written number equals w. Indeed, we have
the additional information that if w belongs to C,,, then Pinocchio has never lied; if w belongs
to Dy, Pinocchio has lied exactly once.

Already from this simple example, we see that Pinocchio's answers do not behave as
propositions in classical logic in the following respects:

1. Two opposite answers a; and g; to the same (repeated) question, such as "yes, the
written number is even” and "no, the written number is odd", do not lead to the inconsistent
state of knowledge (8,8,5), to the effect that no number can be equal to the written number.
On the contrary, from @; and g; we obtain the information that Pinocchio's reservoir of lies is
reduced by one. We conclude that the connectives in the logic of Ulam's game are so arranged
that the conjunction of two opposite answers need not express an unsatisfiable property of
numbers in the search space.

2. The conjunction of two answers, each saying “the written number is odd", is
generally more informative than a single answer "the written number is odd"; for instance, under
the present stipulation that Pinocchio can lie at most once, two equal answers "the written
number is odd" suffice to establish that the written number is odd, while a single answer need
not suffice. Specialists would say that the logic of Ulam's game with lies does not obey the
contraction rule; we prefer to say that this logic obeys the  repetita juvant (repetitions are
helpful) principle.

3. Although for people having direct access to the written number, each answer of
Pinocchio is either true or false, this absolute truth-value is of little significance to the
Questioner's strategy, and to his current state of knowledge. The Questioner tries to make the
best use of all answers aj,...q; , since in general he cannot discriminate between informative
and misleading answers. Besides, if required to minimize the length of the game—as in Ulam's
problem—the Questioner will carefully balance his questions in such a way that either answer
"yes" or "no" is for him equally informative, in a sense which can be made precise [31,[4]. His
current state of knowledge (C.D.E;) assigns toeach point yeS, a "falsity-value" given
by the quantity g(y) of answers falsified by y. Here, g(y) ranges in the set {zero, one,
“too many"}, and C,=g¢-1(0), D,=q"1(1), E;= ¢1("too many"). We conclude that the
logic of Ulam's game is many-valued.



Similarly, if Pinocchio is allowed to lieup to & times, his answers determine a
function ¢:S — {0,1,2,....,k, "too many"} assigning to each point y the quantity g(y) of
answers falsified by y. Given a question Q < S, a positive answer to Q naturally

transforms ¢ into a new assignment g, as follows:

(1)  if y satisfies the answer (i.e.,y €Q), or ¢(y) = "too many", then ¢'(y) =q(y),
otherwise g'(y) = g(y)+1, where k+1 = "too many".

The effect on ¢ of a negative answerto @ is similarly defined with reference to the opposite
question 0. To record the Questioner's current state of knowledge, instead of using the
function g we will find it convenient to use the relative distance functiond : S — {0, 1/(k+1),

2/(k+1)...., ki(k+1), 1} given by
V3] d@y) = (k+1-qO)/(k+1),

where k+1-"too many" = 0. Thus, d(y) =0iff y falsifies more than &k answers (i.e.,y isan
excluded number); d(y) = 1/(k+1) iff y falsifies exactly. & answers, ..., d(y) = k/(k+1) iff
y falsifies exactly one answer, d(y) =1 iff y satisfies all answers. Intuitively, the rational
number d(y) is the distance (relative to k+1) of y from the set of excluded numbers.
We shall henceforth identify each state of knowledge with its corresponding relative distance

function.

2. States of knowledge are Lukasiewicz conjunctions of Post functions
For any two numbers x and y in the real unit interval [0,1]; the Lukasiewicz
conjunction x<y is the amount by which the sum x+y exceeds 1 (this amount being 0 in

case x+y <1). Insymbols,

3) x*y = max (0, x+y—1).

The Lukasiewicz disjunction x®y is the truncated sum of x and y,

@ x@y =min (1, x+y) = (x*ey*)*, where x* = 1—x is the negation functié)n.

If x and y are only allowed to range over the two-element set -{0,1}, then (3) and (4) take

the more familiar form xey = min (x,y), x®y = max(x,y), respectively giving the truth table
of Boolean conjunction and disjunction; of course, x* then gives Boolean negation. For

each m = 2,3,4,., we shalldenote by I, the m-element Lukasiewicz chain {0,
Y(m-1), 2/(m-1),..., (n-2)/(m-1), 1}, equipped with the operations *, ¢, @,

In the light of [6, Theorems 16-18], any function f:§ —1I,, iscalleda Post function
(onS) oforderm. By (2), every relative distance function d in Ulam's game with k lies
is a Post function of order &+2. Since states of knowledge are (uniquely determined by)
conjunctions of Pinocchio's answers, the latter, too, must be representable as Post functions.
According to (1) and (2), the positive answer to a question Q penalizes each y ¢ Q
decreasing by 1/(k+1) its relative distance from the set of excluded numbers, unless this
distance already equals 0. This motivates the following

1. DEFINITION.  Given a question @ in Ulam's game with % lies, the positive answer to
Q is the function fp:S ~>{k/(k+1), 1} given by

®) | fo) =1 if yeQ
Fo®) = k/k+1) if ye Q.

The negative answer to Q is the positive answer fg to Q0 = S—-0. The Post Junction
S of Pinocchio’s answer to Q is given by f= fg» or f =fg according as Pinocchio’s
answerto @ is positive or negative.

Remark.  The inconsistency-tolerance property mentioned in the previous section follows from
the above definition of answer: as a matter of fact, except in the 0-lie game, the negative answer
fg toaqueston Q is different from the negation 1-fp of the positive answer to Q.

2. PROPOSITION. Let d and d' be the relative distance functions immediately before and
after Pinocchio answers a question Q. Let f be the Post function of Pinocchio's answer
to Q. Then d' = def.

Proof. 1Itis sufficient to analyze the effect of Pinocchio’s positive answer fo. Llet g and ¢’
be the functions corresponding to d and d’, as given by (2). Foreach ye S, we have
two possible cases: '

Case 1: d(y)=d'(y), ie., y isnotpenalized by the positive answer.

Then by (1) and (2), either d(y) =0 (thatis, ¥ is already in the set of excluded numbers), or
fo®) =1 (thatis, y satisfies Pinocchio's answer). Recalling (3) and (5), in the first subcase
we have  d(y)fp(y) = 0g(») =0=d(y) =d'(y). In the second subcase we have d®) o)
=dy)1 =dG) =dy).

Case 2: 'y Iispenalized by the positive answer.



Then by (1) and (2), y falsifies f without being an excluded number. We then have in
particular, d(y) 2 1/(k+1), qg)=q()+1, and d'(y) =d@) - 1/(k+1). By (3) and (5)
we get dO)fp() = max(0, d(y) + fo®) - 1) =max(©, dy) - V(k+1)) =d'(y).

In any case, we have d'(y) = d()fp(y), whence d'=d-fy, asrequired.
QED

The initial state of knowledge is the Post functionon S constantly equal to 1. A Post
function g:5—1I,, isa final state of knowledge iff for exactly one xS we have g(x) #0.

The Questioner's states of knowledge are given by Pinocchio's answers as follows

3. COROLLARY. The relative distance function d after Pinocchio’s answers to questions
01,...,Q; is given by the Lukasiewicz conjunction of the Post functions of the answers.

3. Formalization of Ulam's game in Lukasiewicz logic

For each m =2,3,4,..., the set of variable and connective symbols in the m-valued

sentential calculus of Lukasiewicz [14], [15], and the set of formulas are exactly the same as for
the 2-valued (Boolean) calculus. Just as in the 2-valued calculus every formula represents a
Boolean function, in the m-valued calculus each formula p with variables Xj,...,X,
represents the function fp:(I))* — I, according to the following inductive definition: Each
variable X; represents the projection onto the i-th axis; if weknow f; and fr, then
Jnotqg =1-fq s fqandr = fgofr, ad foorr=f3®f. Twoformulas p and ¢ are
logically equivalent iff fp = fg. A tauwtology isaformula p = p(Xy,....Xp) such that
fp is the constant function 1 on ()" For example, "(notX)orX" is a tautology in
each m-valued calculus, while "(not (X or X)) or X" is a tautology only in the 2-valued
calculus. In fact, foreach m 2 3, the formula "X or X" is not logically equivalent to the
formula "X" inthe m-valued calculus. This is just a reformulation of the repetita juvant
principle.

We shall formalize Ulam's game with at most & lies in the (k+2)-valued sentential
calculus of Lukasiewicz. By Corollary 3, we must only code Post functions of Pinocchio's
answers by means of formulas of the Lukasiewicz calculus. Our formalization is then a natural
generalization of the familiar representation of Boolean functions by formulas in the 2-valued
calculus. For the importance of the formalization procedure, already in the 2-valued case, see
[2, p. 5l '

We cannot identify the search space {0,1}" with the set of extreme points of the cube
Ue2)™ 1§S a matter of fact, McNaughton's fundamental representation theorem [8] states that
the set of functions {f, |p is a formula in the (k+2)-valued calculus} is the set of restrictions of
McNaughton functions to the n-dimensional cube ([z42)". By definition, a McNaughton

Sunction  £:[0,1]* — [0,1] is a piecewise linear (continuous) functions all of whose pieces have
integral coefficients. Let x = (x1..x,) € (r42)". Write each rational coordinate X; asa
fraction a;/b;, where a;, b; are integers, ged(a, b =1, a4, 2 0,b; > 0. Let v be
the least common multiple of the denominators b;. Let Vx be the set of possible values of
McNaughton functions at x . Then a straightforward computation shows that

(6) Ve ={tivlt =0,1,...v}.

Thus in particular, a McNaughton function can only take the values 0 and 1 on the Cantor cube
{0,1}*, and hence its restriction to {0,1}" cannot be a Post function of order > 2. Tofinda
substitute for the original search space {0,1}*, let us consider the cube C(nk) = {1/(k+1),
kf(k+1)}". Note that C(n,k) isindeed a cube for each £ > 0, except £ = 1. In order to
avoid notational complications, in the rest of this paper we shall assume k # 1.

4. PROPOSITION. (i) For each function f:C(nk)—> Iiy2 there is a formula p such that f
equals the restriction of Jp to C(nk).

(ii) For each formula r, the restriction of fr to C(nk) is a Post function of order k+2 on
C(n,k). :

Proof. (i) Foreach xeC(nk) let gy:[0,1]7 —[0,1] be any McNaughton function such that

g2x(x) = f(x). The existence of g, is ensured by (6). Let U, be an open
neighbourhood of x. We can safely assume U, N Uy = @ whenever x #y. By [9,
4.17], foreach x thereis a McNaughton function 4, such that he(x) =1, and hy =
0 outside Uy. Therefore, the McNaughton function £ = sup{gx A hy lxe C(nk))
equals f on C(nk). By McNaughton's theorem, there is a formula p suchthat f,
= h.

(i) Trivial, using (6).

QED

We are now ready to formalize Ulam's game with % liesin the (k+2)-valued calculus.
Let the map u:{0,1) = {1/(k+1), k/(k+1)} be defined by: w(0) = 1/(k+1), and p(1) =
k/(k+1). Then p induces a one-one correspondence x = (x1...xp) = XM = (L(x1)...1(xn))
from the original search space § = {0,1}* onto C(n,k), in symbols, p:{0,1}* = C(n,k).
By Proposition 4, we have a natural one-one correspondence

©)) = M, where f(x) =f(x1) forall x e {o,1}?

between Post functions on S of order k+2, and restrictions to C(n,k) of McNaughton
functions. Under this correspondence, the inifial state of knowledge corresponds to the function



constantly equal to 1 on C(n,k). The latter is in turn represented by any formula p such that
fp equals 1 on C(nk). For instance, any tautology will do. Similarly, a final state of
knowledge is represented by any formula r which is uniquely satisfiable in C(n,k), in the
sense that there is precisely one xe C(nk) suchthat f(x)=#0.

Let @ < S be a question. Then the correspondence y1:{0,1}* = C(n,k) canonically
transforms Q intoasubset QM of C(nk), by the stipulation xe Q iff xhe Q. In
the light of Definition 1, together with the correspondence (7), Pinocchio's positive answer
fo is then represented by any formula a such that fy(x)=1 forall xe O, and f(x)=
k/(k+1) for all x € C(n,k) — Q*. Formulas representing negative answers are similarly
defined, with @ inplace of Q. Formulas representing the actual answer to Q are now
defined according as the answer is "yes" or "no". Suppose d is the Questioner's state of
knowledge after Pinocchio's answers to questions Qj1,...,Q; Suppose formula g;
represents the answer to Q;, foreach i =1,.,.. Then by Corollary 3, the (Lukasiewicz)
conjunction s = (a; and a, and...and a;) represents d, in the sense that the Post function
d" coincides with the restrictionof f; to  C(n.k).

Summing up our analysis, we have the following table:

ULAM GAME LUKASIEWICZ LOGIC

maximum number & of lies k+2 truth-values 0, 1/(k+1),..., k/(k+1), 1
search space S = {0,1}* C(n, k) = S* = (1/(k+1), k/(k+1))"

number y in § point y* in C(n, k)

initial state of knowledge tautology

final state of knowledge formula uniquely satisfiable in C(n, k)
current state of knowledge d formula s such that d* = f. in C(n, k)
question Q@ corresponding subset O* of C(n, k)
opposite question (_2 complementary subset of é in C(n, k)
positive answer fg to Q formula p with (fp}* = fp in C(n, k)
negative answer fg to Q formula p with (fé W =fp in C(n,k)
state d after answers to Qy,...,0¢ conjunction s of corresponding formulas
set of excluded numbers, d—}(0) points of C(n, k) falsifying s

3. Concluding remarks

1. A long-standing problem in m-valued logic—one to which Lukasiewicz himself
devoted considerable attention—is to give natural interpretations to truth-values when m =3
{15, p.275]. In our interpretation, truth-values are distances (measured in units of m—1) from
the set of excluded numbers, in Ulam's game with m-2 lies. The contraction rule fails because

10

the repetita juvant principle holds—just as in everyday life. Noncontradictory co-existence of
opposite answers, which is inevitable in the presence of lies, can be handled using more than
two truth-values.

2. In the 0-lie case, an optimal strategy [1, pp.6 and 62] to guess a number x € {0,1}%,
is by definition a sequence of questions, alias Boolean functions fj,...f, of n variables, such
that for each choice of the parameters €1,...,6, € {yes, no}, the function fi¥l A...A % is
nonzero in exactly one point. Here, f¥eS = f, and fM° = 1-f. Equivalently, f},....fn is an
independent setof n elements in the free Boolean algebra with n generators [12, p. 39].
Note that the binary notation system is a by-product of the particular optimal strategy b1,....bp,
where each Boolean function b; asks "isthe i-th digitof x equalto 17"

Considering now the case when at most & lies are allowed, in the (nonadaptive, static,
predetermined [1, p.9]) case when all questions precede all answers, optimal searching
strategies immediately yield optimal k-error correcting codes. However [7], very few optimal
such codes are known when k2 2. The situation is much better in the (adaptive, dynamical,
sequential) case of Ulam's game, where questions may depend on Pinocchio's answers. For
small values of k optimal strategies are known [11], [3], [4], [10]. These strategies can also
be used in the equivalent version of Ulam's game where Pinocchio need not know when he lied.
We can for instance, assume that a honest Pinocchio is sending us his answers from a distant
place, using a low-power transmitter. Distortion can affect Pinocchio's transmission. On the
other hand, using powerful transmitters, we can send our questions to Pinocchio without any
distortion. We must correct the distortions (lies ?) of Pinocchio's answers, by asking the
minimum number of questions. In this way, Ulam's game naturally fits in the theory of
communication with feedback [5], [13]. The representation of searching strategies in terms of
formulas is a starting point to measure the complexity of the underlying coding and decoding
procedures.

3. Since the many-valued sentential calculus of Lukasiewicz is deeply related to  AF
C*-algebras [9], and since AF C*-algebras are useful in the description of quantum spin
systems, our interpretation of Ulam's game may be of help in the analysis of the logical aspects
of such systems.
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Someone thinks of a number between one and one million (which is just less than 2%°).
Another person is allowed to ask up to twenty questions,

to each of which the first person is supposed to answer only yes or no.

Obviously the number can be guessed by asking first:

Is the number in the first half million ?

then again reduce the reservoir of numbers in the next question by one-half, and so on.
Finally the number is obtained in less than log, (1000000).

Now suppose one were allowed to lie once or twice,
then how many questions would one need to get the right answer ?

S.M.ULAM,

Adventures of a Mathematician
Scribner's, New York, 1976

page 281

0. Prologue In this paper we continue the logical analysis [11] of Ulam's game. We shall
conveniently identify with Pinocchio the "first person” in the above quotation.

Ulam's game has an alternative interpretation in the framework of communication with
feedback [6], [16]. Here, a low power transmitter P (a sincere Pinocchio who does not
know which of his answers may turn out to be false) is sending binary numbers to a receiver Q
(the Questioner). Distortion may transform into 1-b any bit b traveling from P to Q;
however, after receiving each bit, @ can communicate with no distortionto P whether b
or 1-b was actually received. We naturally expect that a long binary number x contains
more distorted bits than a short one. Accordingly, in this paper we consider the generalization
of Ulam's game where each number x is associated with a maximum number m(x) of lies,
or distortions, depending on x. We also give an algebraic analysis of the simplest generaliza-
tions of Ulam's game with an infinite search space. We shall describe a one-one correspondence
between a fairly large class of Ulam games and of MV algebras. We assume familiarity with
MYV algebras. Wereferto [3], [4], and [8, § 3] for background.
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1. Notation and terminology [11] A Ulam game isatriple G =(S,m, L), where S
is a structure, m is a function from § to N = {0,1,2,...}, and L is a set of subsets of S. §
is called the search space, m is the lie bound, and L is the language of the game. Each Q
€ L is called a question, and is canonically identified with the question "does the unknown x
belong to the set @ ?"; in particular, the empty set corresponds to the trivial question "is x
outside the search space ?". Apart from the case of no lies, which is widely considered in
combinatorial search theory [1], in the literature one finds examples of Ulam's games with m #
0 where S is a linearly ordered set and L is the set of initial segments, or § is a topological
space and questions are measurable subsets of S; see, e.g., [13],[14]. The above quotation
deals with the Ulam game G = (S, m, L) with S the set of numbers between one and one million,
m the function constantly equal to 2, and L the powerset of S. Optimal searching strategies
are described in [5] and [12].

Games G =(S,m,L) and G'=(S', m', L") are isomorphic iff there exists an'

isomorphism 6:S = §' suchthat m(x) =m'(6(x)) foreach xe §, and for every
subset X of S wehavethat Xe L' iff {6(x)lxe X}e L'.

A state of knowledge of the Questioner (the second person in the above quotation) is
completely described by a function assigning to each point xe S the quantity ¢q{x) of an-
swers currently falsified by x, where q(x) € {0,1,2,...,m(x), "too many"}. Upon identifying
"too many" with m(x) +1, and dividing g(x) by m(x) +1, we can represent the current state
of knowledge by the relative number of answers falsificd by x, or, dually, by the quantity
d(x) = 1-qx)/(m(x)+1). By definition, a state of knowledge of the game G = (S, m, L)
is a function d:§ —> Q such that for each x €S, d(x) € {0, 1/m(x)+1),..., m()/(m(x)+1),
1}. The quantity d(x) is the relative distance (in units of m(x)+1) of x from the condition
of falsifying too many answers. The initial state of knowledge is the function constantly equal
toone (no x falsifies any answer). After Pinocchio has answered questions 0Q1:001 , the
state of knowledge d is uniquely determined by his answers, as follows: For any subset Q
of S, the positive answer (Q¥eS: S — Q is defined by QVeS(x) = 1 whenever x € Q, and
OYes(x) = 1 — 1/(m(x)+1), otherwise. This accounts for the fact that if x 0, the number of
answers falsified by x isunchanged, whileif x¢ Q, x takes a step towards the condition of
falsifying too many answers. Also define Qno = Qyes, where O =S\ Q is the opposite ques-
tion. Then the state of knowledge after questions Q1,....Q; have respectively been answered
€1, €, (where ¢je {yes, no} foreach j=1,...,2) is the function Qlel-...- 0%, where » is
Lukasiewicz conjunction, a «b=max(0, @ +b — 1). A state of knowledge d is final iff
d(x) #0 holds for exactly one element x in the search space.

~ Givena Ulam game G =(S,m,L) the MV algebra Ag associatedto G is the MV
algebra of rational valued functions on S, with pointwise operations, generated by the answers
to the quesfions of L.
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2. Bounded numbers of lies A Ulam game G =(S,m, L) is finite iff S is a finite
set—or, a finite discrete topological space—and L is the powerset of S. It follows that con-
junctions of answers exhaust all possible functions f : § = Q such that f(x) € {0, 1/(m(x) +
1), e, m(x)/(m(x) + 1), 1} forevery x e S. The MV algebra Ag is finite.

Conversely, let A be afinite MV algebra. Let S be the set of maximal ideals of A;
foreach Je S let A/J be the quotient algebra of A. Then A/ = {0, 1/(k;+1),...,
kj/(kj+1), 1}, for some kyeN. By the well-known representation theorem of finite MV
algebras (see for instance [10, Proof of 5.1]), A is isomorphic to the finite product TT{A/|J
€ S}). The latter is the MV algebra of all rational valued functions f over S such that for
each Je §, f(J) e (0, 1/(ky+1),..., ks/(ks+1), 1}. Let m:S — N be defined by m(J) = kj.
The game G4 = (S, m, powerset(S)) has the property that A = Ag,. Up to isomorphism, the
maps A — G4 and G — Ag are inverse of each other. In conclusion we have

2.1 THEOREM. The map G — Ag induces a one-one correspondence between isomorphism

classes of finite Ulam games, and isomorphism classes of finite MV algebras.
An application [10, Proposition 5.1] of Grothendieck’s functor K, yields the following

2.2 COROLLARY. Isomorphism classes of finite Ulam games are in one-one correspondence
with isomorphism classes of finite dimensional C*-algebras.

For each n =2,3,4,..., we let I, be the Lukasiewicz chain with n elements, i.e., the
MYV algebra (0, 1/(n-1), 2/(n-1), ..., (n =2)/(n 1), 1} with natural MV operations. Let X
be a Boolean (i.e., a totally disconnected, compact, Hausdorff) space. We denote by C(X, I,;)
the MV algebra of all continuous functions from X into [, the latter being equipped with
the discrete topology. In the light of Epstein's representation theorem [7, Theorem 16], we say
that an MV algebra B isa Post MV algebra of order n iff B = C(X,I,) for some
Boolean space X. Thus in particular, Post MV algebras of order 2 are the same as Boolean
algebras.

Generalizing the notion of finite game, we say that a Ulam game G = (S, m, L) is
Boolean iff S isa Boolean space, m is a continuous function from § to N, the latter
being equipped with the discrete topology, and L is the set of all clopen subspaces of .
We say that G has constant lie bound iff, in addition, m is a constant function, say
m(x) = k forall xe S. It follows that, foreach Qe L, QY¢S is a continuous function
from § into Jx4n. Since the pointwise MV operations preserve continuity, Ag  will be an
algebra of continuous functions from S into Ij42. On the other hand, it is easy to see that
for each continuous function f:S — Ix4p there exist answers to questions of L whose con-

junction equals f. Therefore, Ag isaPost MV algebra of order k+2. Conversely, given
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aPost MV algebra A of order k+2, say A=C(X,I132) with X Boolean, let m be
the function constantly equalto &k over X, andlet L be the set of clopen subspaces of
X. Let H=(X,m,L). Thenitis easy to show that A= Ay. Trivially, isomorphic MV
algebras correspond to isomorphic games. We have proved

2.3 THEOREM. For each k=0, 1,...,the map G — Ag induces a one-one correspondence
between isomorphism classes of Boolean Ulam games with constant lie bound equal to k, and
isomorphism classes of Post MV algebras of order k+2.

We can now specializg Theorem 2.1 to the case of constant lie bound

2.4 COROLLARY. Under the above map, finite Ulam games with constant lie bound correspond
to finite Post MV algebras of finite order.

If G=(S,m,L) is a Boolean game where m is no more assumed to be a constant
function, still by compactness it follows that the range of m is finite, and § is the union of
finitely many pairwise disjoint clopen subsets  Xi,..., X, suchthat m is constant over
each X;. Thus, G splits into a finite number of Boolean Ulam games, each with a constant
lie bound. An application of Theorem 2.3 immediately yields

2.5 COROLLARY. The map G — Ag induces a one-one correspondence between isomorphism

classes of Boolean Ulam games, and isomorphism classes of finite products of Post MV alge-
bras of finite order.

3. Arbitrarily large numbers of lies Generalizing the examples of the previous section,

we say that a Ulam game G = (S, m, L) is quasiboolean iff G obeys the following three
conditions:

(i) S isaset, and L isafield of subsetsof S. In addition, L is reduced, i.e., for
any two points x' and x" in S, thereisaquestion Q in L suchthat x'e @ and
x"e Q, [15, p. 18]

(i) Foreach n =0,1,2,.., theset m-l(n)={xe St m(x) =n} is a memberof L.

(ili) For every ultrafilter (maximal filter) U of L whichis not determined by any point
of § (i;.e., NU =@, [15p.15]) wehave lim,_,;m(x) = oo, in the sense that for
each reN thereis Ye U suchthat m(y) >r forall yeY.
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Intuitively, Condition (i) means that any two distinct points of S can be distinguished
by the questions available in L. Condition (ii) enables the Questioner to ask Pinocchio "is x
among the elements for which the rules of the game allow you to lie at most » times ?". Condi-
tion (iii) states that any "nonstandard” point x* outside S determined by a maximal consis-
tent set U/ of questions of L is actually outside the scope of any searching strategy, because
the number of lies Pinocchio can tell about the "standard” points near x* tends to infinity.

FROM G TO Ag.

Given a quasiboolean Ulam game G =(S,m, L), since Ag is a subdirect product of
finite Lukasiewicz chains, Ag is Archimedean (i.c., the intersection of maximal ideals of
Ag is zero. Note that Chang [3], [4] uses the adjective "representable” instead of
"Archimedean"). The positive answer @YeS to the trivial empty question takes the value 1—
1/(m(x)+1) foreach x in S. Its dual, namely the function s givenby

(¢))] ’ sx) = 1/(m(x)+1), foreach xe S,

turns out to be a singular element of Ag (i.e., s>0, and whenever a@ b=s with a<b
=0, and a,be Ag, then aAb=0. Here,asusnal, @ denotes truncated addition, a ® b
= min(1, a+b). Itis easy to verify that an element ¢ of an MV algebra A issingular iff ¢
is singular, in the usual sense [2, p. 232] as an element of the abelian /-group with strong
unit corresponding to A via the functor I, asin{8,3.10]). Further, ‘s is the greatest
singular element of Ag. Foreach quesion Qe L, theelement 1-QY° coincides with s
over S\(Q, and isconstantly equal to zeroover Q. Thus in particular, 1-—QV®$ isa sin-
gular element of Ag. By definition of Ag, it follows that Ag is generated by its singular
elements, together with the constant function 1.  Clearly, if G' and G" are isomorphic
games, thensoare Ag and Agr.

FROM A TO Ga.

Conversely, let A be an Archimedean MV algebra that is generated by its singular el-
ements (together with the constant element 1) , and has a greatest singular element s. Then an
obvious generalization of [9, 3.1] yields a cardinal &, and a compact Hausdorff subspace V
of the Tichonoff cube [0,11%, suchthat A can be identified with the MV algebra of restric-
tionsto V of the (McNaughton) functions in the free MV algebra L, over ¥ generators.
The functions in A are continuous, and separate points in V. Asin [8, §8], thereis a
canonical one-one correspondence between maximalideals J in A andpoints x; in V;
J and xy satisfy the relation J = {fe Al f(x)) = 0}. Under this correspondence, the quo-
tient map @ — a/J can be safely identified with the evalnation map a— a(xj), ae€ A.
We partition V into the disjointsets S and T asfollows:
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§ = {xeVis(x)>0},and T = {xeViskx) =0}

Claim 1. T has at most one element.

As a matter of fact, eachsingular ¢ € A is constantly zero over 7', while the el-
ement 1 constantly takes the value 1. Since A is generated by its singular elements, to-
gether with the constant 1, each function of A is constant over T. If there were two distinct
points x' and x" in V, then by the above mentioned separation property of A, there
would exist a function f € A suchthat f(x)>0 and f(x")=0, whence f  would
not be constant over T, a contradiction.

Claim 2. Foreach be A, if b(x)=0 forall xe S, then bh=0.

As a matter of fact, assume b >0 (absurdum hypothesis). Then b(i) >0, where i
is the only point of 7. Since & - is generated via a finite number of applications of pointwise
MV operations starting from the singular elements of A and the constant 1, and since all sin-
gular elements take value zero at point i, it follows that b(i) = 1. Letting I be the maximal
idealof A comrespondingto i, the quotient A/l isisomorphic to the two-element MV
algebra {0,1}. Itfollows that b is singular. However, the fact that 1= b() > sG) =0
contradicts our assumption that s is the greatest singular elementin A,

Claim 3. The map restrictingto § eachfunctionof A isan isomorphismof A onto
an algebra A* of rational valued functions over S.

Indeed, Claim2 already shows that the restrictionmap to S is one-one. To prove
that all functionsin A* (equivalently, all functions in A) are rational valued, it is sufficient to
show that for every maximalideal J, the quotient A/ is a finite Lukasiewicz chain, say
Al = {0, 1/(k+1),..., k/(k+1), 1} for some k=kye N. Thisis true by [3, 3.19], because
A/J is a subalgebra of the unit real interval [0,1], and the singular element  s/J =s(xy) is the
atomof A/J, insymbols, s(x;) =1/(k;+1).

After the proof of Claim 3, let the Ulam game G4 = (S, m, L) be defined as follows:
The lie bound m of G, is given by

2 m(x) = 1/s(x)—1, foreach xe S.

We have just proved that ' m(x) € N. Further, a subset X of S isanelementof L
iff either X isthe empty set, or X is the support of a singular element of A, in
symbols, X = supp(t)={x e §!(x)>0), for some singular element ¢ € A. Note that
.§ =supp(s). L isclosed under unions and intersections, because sups and infs of sin-
gular elements are singular. Whenever X is in L, say X =supp(t), for some singular
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t, thenalso S\X isin L, since S\X =supp(s—), and s—t is a well defined singular
element of A, namely s— = (1-f)ss, where * is Lukasiewicz conjunction [3, 3.15]. We
have proved that L is a field of subsets of S. Toprovethat L isreduced, given any
two distinct points x' and x" in S, since the functionsin A  separate points,
thereis ge A suchthat g(x)=0, and g(x")>0. Letting h=gAs, wehave h(x)=
0 and A (x")>0, because g(x") 2 s(x") >0. Since h issingular, L isreduced.

Claim 4. Foreach k = 0, 1,2,..., the inverse image m~1(k) isamemberof L.

Using (2), we shall equivalently prove that for each n =1, 2, ..., there is a singular
element s,<€A suchthat supp(sy) = s~1(1/n). Let (H, 1) be the abelian I-group with
strong unit corresponding to A via the functor I, asgivenby [8, 3.10]. H isthel-
group of rational valued functionsover V  generatedby A,  with the constant function 1
as the strong unit. Let ge H bedefinedby g = Ins—1l, where | | is absolute
value. Then, forevery xeV wehave gkx)=0 iff s(x)=1/n. Therefore, s—(sAg)

is a singular elementof A  having the required property.

Claim 5. For each nondetermined ultrafilter U in L, lim, ,ym(x) = oo.

Suppose to the contrary that there is a natural number » and  a nondetermined ultra-
filler U of L suchthatevery Xe U  hasnonempty intersection with the set M =
m-l0)uml(1)u..uml(n). Foranysuch X thereis asingularelement teA such
that ¢-1(0) = X U T. Since ¢ isacontinuous functionover V, then X U T isa
closed subspace of V. Similarly, foreach & = 1,2, ..., the inverse image s 1K) s
a closed subspace of V, whence by (2), soistheset M. The compactnessof V
now yields a point ye M < § containedin each Xe U; thus, U is determined by y,

a contradiction.

G— Ag 1S THE INVERSE MAP OF A— Ga.

Starting from an Archimedean MV algebra A  generated by its singular elements
(together with the constant element 1), and possessing a greatest singular element s, we have
obtained a quasiboolean Ulam game G4. It is clear from the construction thatif A = B
then G4 = Gp. We shall prove that, up to isomorphism, the map A — G4 is thein-
verse of the map G — Ag .

Claim6. Ag, = A* = A.
As a matter of fact, since the search space § of G4  consists of all points xe V
such that s(x) >0, the domain of all functionsin Ag, is the same as for the functions in

A*. Further, by (1) and (2), the greatest singular element of A* is the same as the greatest
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singular element of Ag, . Every singular element ¢e A* is also a singular element of Ag,,
since the set {xe A* 1 #(x) > 0} = (xe A | 1(x) > 0} belongs to the language L of Gy4.
Therefore, A* isa subalgebraof Ag,. Conversely, Ag . is generated by singular ele-

ments of the form
3) sx(x) = s(x), if xe X, and sy(x) =0, otherwise,

letting X range over all questions of the language L of G4. Now, each sy 1isalso
amember of A*. Recalling Claim 3, the proof of Claim 6 is complete.

In order to prove that Gag = G, assume G = (S,m,L) tobe quasiboolean. For
each X e L, define the singular element sy € Ag asin(3). Let s be the greatest singular
elementof Ag. Also, foreach feAg, let supp()={xe S| f(x) >0}. Forevery n =
1,2,3,..,let S, and Spe be defined by

Sp = s1(/n) ={x € S1s(x)=1/n}, and
Speo = Sp U Spt1 U Spaa U ..

Claim 7. For each singular re Ag andeach n =1,2,.., thereis Xe L such that
supp() NS, = X.

We first observe that for each fe Ag andeach xe S, thereis Ye L suchthat x
€Y and fly)=f(x) forall y e Y. Thisis trivially true of the constant 1, and it is also
true of each singular sy e A¢ (X € L), by Condition (ii) in the definition of quasiboolean
games. Therefore, by definition of Ag, itis true of fQV\By Condition (iii), each ultrafilter
of L containing S, mustbe determined. Therefore the family {ZnS,!Ze L} isa
clopen basis making S, into a Boolean space. Hausdorffness follows from Condition ).
Foreach xe supp(f) » S, thereis aclopen Y, Sp suchthat xe Yy, Yye L, and
y)=1/n forall y € Yy. Thus, supp(t) "\ S, is openin S, indeed it is clopen,
being the complementin S, of the open set supp(s—1) N §,. There are sets NN £7)
whose union Y coincides with the compact set  supp() N S,. Since Y e L, the proof
of Claim 7 is complete.

Claim 8. Foreach fe Ag thereis n>0 such that Sn,eo  is the union of finitely many
pairwise disjoint elements of L, say Xi,..Xg, and there are integers my,...,mg 2 0
such that over each  X;, either f = m; Sx;» or f=1l-msy,.

The proof is by induction on the number of basic MV operations in f. It is sufficient
to only consider negation a -~ 1—a, and truncated addition (@, b) >a®b = min(l, a+b).
Basis. Foreach Xe L, the singular element sy satisfies the claim, and so does the
constant lj by Condition (i).

Negation step. Trivial.
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Addition step. Here, f=g@®h and, by induction hypothesis, g has a number »' >0,
together with sets  Y1,..,Y, andintegers pi,..., p, satisfying the claim. Similarly, A
has n",Z1,...2y, q1,....qr- Let n = max(n',n"). Let X;,..X; Dbe the coarsest parti-
tionof Sp.  refining both partitions induced by the Y's and the Z's. Foreach i=
1,..k, X; isamemberof L, since X; isthe intersection of S, .  withsome Y
e {¥1,....Y,} and some Ze {Zy,..,Z,}. Also, there are natural numbers ay,....a;y for
g, and biy,..by for h suchthatover X;, g and h satisfy the conditions of the
claim. Note that {ai,...ax} < {p1,..hu ), and {b1,....b¢ } < {q1,....qr}. We examine
the restriction of f overeach X;. Itisno loss of generality to assume that n > a1 +... +
ap +b1+ ... + by
Casel. g = aj sy; and h = bj sy;.

Then g®h = (a;j+b;)sy;.
Case2. g = 1-a;sx; and h = 1-b; sy;.

Then g@®h =1 (over X;).
Case3. g = a; sx; and h = 1-b; sy;.

Thenif a; 2 b;, g®h = 1, ‘while i ai < bj, g®h = 1-(bi—a;)sy;.
This completes the proof of Claim 8.

Claim 9. For each singular re Ag thereis Xe L suchthat ¢ = sx.

It is sufficient to find X e L suchthat X =supp(z). To this purpose, firstly, using
Claim 8 we choose an r >0, apartition Xj,..,Xgx of Spe, andintegers my,..., my
20 suchthatovereach Xj, r coincides with m; sy;. By the assumed singularity of
t,  we can safely exclude the case ¢ = 1-my; sy;; further, m; € {0,1}. Therefore,
supp(f) N Speo coincides with the union R of those X; suchthat m; =1. Since
X1,..Xy € L, itfollowsthat Re L. Secondly, by Claim 7 there are Yj,..,Y,.1 in
L suchthatforeach j = 1,.,n-1, supp(d) n S;j = ¥;. Then supp(r)= X, where
X =RuUYiU..UYp 1, and X is anelementof L, asrequired.

Claim 10. Themap yw:xe S — Jy ={fe Ag|f(x) =0} is a one-one correspondence be-

tween S and the set of maximal ideals of Ag not containing s.

As a matter of fact, foreach xe S, Jy isamaximal ideal of Ag. By Condition
(1) in the definition of quasiboolean games, if x'#x" then Jy # Jy». Then v isa
one-one map from § into the set of maximal ideals of Ag not containing s. To prove
that y isonto this set, let J be an arbitrary maximal ideal of Ag suchthat selJ.
Theset {Xe LlsyeJ } isanultrafilter U of L. If U were notdetermined by any
pointof § (absurdum hypothesis), then, since Ag is Archimedean and se¢ J, iden-
tifying Ag/J  with a subalgebra of the real MV algebra [0,1], there is a natural number
n>0 such that the singular element sU/ equals 1/n. On the other hand, Condition (jii)
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yieldsan Xe U suchthat, say, s(x)<1/(3n) forall xe X. Tt follows that sxlJ <
1/n. By definition of U, sx/J >0, whence sy/J =s/J =1/n, a contradiction.
Therefore, U is determined, ie., U = {Xe Lly € X} for some y € S. Weshall
prove that J =Jy. Foreach Xe L wehave syeJ iff sx/7 >0 iff Xe U iff
yeX iff sx(y)>0 iff sye Jy. Thus by Claim9, J and Jy contain the same sin-
gular elements of Ag. If feJ, then the singularelement fase J, and hence fAas e
Jy. From s()>0 weget f(»)=0. Thus, J C Jy, and by the assumed maximality of
J, J=Jy. The proof is complete.

Claim11. Gp, = G.

Asnoted above, Ag is Archimedean, has a greatest singular element s, and is
generated by its singular elements, together with the constant 1. There is an isomorphism 7
of Ag ontoanMV algebra A of continuous functions over a compact Hausdorff space V,
and maximal ideals of A canonically correspond to pointsin V. By Claim 10, it follows that
v induces a one-one correspondence 6 between § and the set S* = {ye VIimEsHy) >
0} = supp(n(s)), in such a way that foreach xe § and fe Ag wehave f(x) =
(MM(6(x)). By construction, the search space of Gag is S* since 7(s) is the great-
estsingular element of A. By (1) and (2), the lie bound function m* of G4, satisfies
the identity m*(6(x)) = m(x) forall xeS. Foreach Xe L, the set 6X)={6(x)1x
€X} isin the language of Gag, being the support of the singular element 7)(sx) € A.
Conversely, foreach Y in the language of Ga; wecanwrite Y = supp(f) for some
singular reA. By Claim9, ¢ =n(sx) forsome Xe L. Then 6 isan isomorphism
between G and GAg » and the proof of Claim 11 is complete.

In conclusion, we have proved

3.1 THEOREM. Themap G — Ag induces a one-one correspondence between isomorphism
classes of quasiboolean Ulam games, and isomorphism classes of Archimedean MYV algebras

with greatest singular element, and which are generated by their singular elements together with
the constant element 1.

An application of the results of [8, §3] yields
3.2. COROLLARY. The map (H,u) — NMHu)—» G IH,u) induces a one-one correspondence
between isomorphism classes of Archimedean I-groups with Strong unit, with a greatest singular

element, generated by their singular elements and by the strong unit u, and isomorphism
classes of qiiasiboolean Ulam games.
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Let us finally recapitulate our algebraization:

ULAM GAME

MV-ALGEBRA

game G =(S,m,L)

search space S

element x € §

lie bound for x is m(x)

G is finite with k lies

G is finite with variable lie bound

G is infinite Boolean with & lies

G is Boolean

G is Boolean with no lies

quasiboolean, possibly unbounded lie bound
initial state of knowledge

arbitrary state of knowledge

question

opposite question

question in L

answer )
answer "yes, x is outside the search space”
state of knowledge after some answers

final state of knowledge

algebra A

maximal ideal space of A (*)

maximal ideal J in A (*)

cardinality of quotient chain A/ is m(x)+2

A is a finite Post MV algebra of order k+2

A is a finite MV algebra

A is an infinite Post MV algebra of order k+2

A is a finite product of Post MV algebras of finite order

A is a Boolean algebra

Archimedean, generated by singulars, with greatest singular

" the constant element 1

arbitrary element of A

subset of maximal ideal space (*)

complementary subset

support of singular element of A

dual of singular clement

dual 1-s of greatest singular element

conjunction of corresponding duals of singular elements

nonzero multiple of an atom

(*) When the number of lies is unbounded, elements in the search space correspond to maximal ideals of the alge-
bra, with the exception of the only maximal ideal containing the greatest singular element.
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