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Abstract

In this work we show that every structure .4 can be expanded to a
partial structure A* with universal functions for the class of polynomi-
als on A4*. We can embed A* monomorphically in a total structure 4°
that preserves universal functions of .4* and that is universal among
such structures, i.e. A° can be homomorphically embedded in ev-
ery total structure that preserves universal functions of A4*. Universal
functions are the starting point for developing recursion theoretic tools
in an A* that satisfies some simple additional conditions.

1 Introduction

The most interesting aspect of partial structures is expressed in Gratzer
(1968) as follows: “We can say that the language of partial algebras is the
natural one if we want to talk about subsets of an algebra and the proper-
ties of operations on these subsets even if the subsets are not closed under
all the operations.” There is, however, another reason for studying par-
tial structures, namely, the introduction of universal functions. In par.3 we
show that every structure A for £ can be expanded to a structure A* for
L* with universal functions for the class of polynomial functions, and A*
cannot in general be total, following Cantor’s theorem. This is developed in
par.4 where it is shown that in A*, under some fairly general conditions, a
relevant part of recursion theory can be developed and a result that resem-
bles recursion theorem can be proved. In par.5 we introduce analogues of
natural numbers and show that polynomial functions are closed with respect



to primitive recursion (on these analogues). In pars.6, 7, 8 we study a kind
of completion of A* that satisfies some particular properties. The passage
from a partial to a total structure, retaining some relevant characteristics of
the given partial structure, is important because it is only in the field of to-
tal structures that all the usual methods of classical logic and model theory
can be freely used. In our case we are interested in completions preserving
the universal functions with respect to a given monomorphism, in a sense
that will be made clear in par.6. In par.8 we construct a structure A° and
a monomorphism x : A* — A° that is universal among such completions in
the following sense: for every completion B preserving universal functions
of A* with respect to a monomorphism 6 : A* — B, there is a morphism
P : A° — B extending 8, i.e. such that § = 9 o x. In what follows we
reserve the word ‘function’ for total functions, but when we speak of partial

functions we include total functions as a particular case.
/7

2 Partial structures

Let £ be a first order language without relational symbols except for identity.
We can set L ={z,:n€w}U{e;j:j€JIU{fi:i€I}U{=}. A function
ar : I — w — 1 assigns to every function symbol its arity. We denote
with T(L) the set of terms of £, but we simply write T if the language
L is clear from the context. If £ is a first order language as above, we
can introduce the notion of a partial structure A for £ as follows: we set
A= (A{/A:i¢ I},{e;‘ : j € J}) where fA is an ar(i)-ary partial
function and e;-" € A. As total functions are particular partial functions,
total structures are to be seen as particular partial structures. When we
speak in general of structures, partial structures are intended. We denote
with = the identity symbol and the identity relation. The identity relation
is supposed to be a total relation in every structure. In the sequel we
abbreviate with f(xz) T (resp.f(z) |) the assertion ”f is undefined (resp.

defined) for argument z”, and with f(z) ~ f(y) the assertion ‘either f(z) |,

g(z) | and f(z) = g(a), or f(z) T and g(a) 1"

We say that a term ¢ € T is an n-ary term and write t(zy...zy,), if the
variables occurring in it are among z1,...,z,. We denote with T}, the set of
n-ary terms. To every ¢ € T, an n-ary partial function ¢4 on A is associated
as follows. For all aq,...,a, € A,

1. If t is z; with (i < n), then t4(a;...a,) = a;

2. If t is e, then e;‘(al celly) = e'jA.

3. Let t be f(ti(z1...24)...tk(z1...25)). If for all ¢ < k there is
b; such that t{‘(al...an) = b;, then tA(al ceety) = fA(L coobe); if
t#(a1 ...ay) 1 for some i < k, then t4(a;1...an) 1.

We say that an n-ary partial function ¢ on A is a partial n-ary term function
on A if ¢ = t* for some t € T}, and we denote with F(*)(A) the set of all
n-ary partial term functions on .A. We simply write F(*) when the structure
is clear from the context.

If £ C L' and A is a structure for £, we say that a structure A’ for £’ is
an expansion of A to £’ if A’ and A have the same domain and the symbols
in £ receive the same interpretation in A as in A’. For every A we can define
a language L4 = LU {c, : @ € A}, where every ¢, is new with respect to
L and ¢, is different from ¢; whenever a # b. We expand A to a structure
B for L4 setting ¢ = a. To every t € T,(L4) an n-ary function term t®
on B can be associated as before and such a function is called a polynomial
on A. So every polynomial arises from a term function by parametrization.
We denote with P(")(A) the set of n-ary polynomials on .A.

There are three kinds of homomorphism between partial structures. Fol-
lowing Gritzer (1968) we call them homomorphism, full homomorphism and
strong homomorphism. We say that a total function ¢ : A — B is a homo-
morphism if

1. For all j € J, w(e;‘) = ef

2. For all i € I, if ar(i) = n, then o(fA(a;...a,)) = fB(p(a1)...¢(an))
for all a4,...,a, € A such that f{“(al .o.ag) |

We say that ¢ : A — Bis a full homomorphism if it is a homomorphism and,
for all ay,...,a, € A, if fP(p(a1)...0(an)) | and fP(p(a1)...0(an)) =
@(b) for some b € A, then there are @;, ¢ < n, and b such that ¢(a;) =
©(ai), ¢(b) = ¢(b) and fA(@...a,) = b. We say that o : A — Bis a
strong homomorphism if it is a homomorphism and, for all ay,...,a, € A,
fE(p(ar). . p(az)) | implies f(as...ax) |.

It is easily seen that strong homomorphisms are also full, and every
full homomorphism is a homomorphism. None of these inclusions can be
reversed. An injective homomorphism (full resp. strong) ¢ : A — B is
called a monomorphism (full resp.strong). If ¢ is bijective, full and strong
homomorphism are the same thing and ¢ is said to be an isomorphism. In
this case we say that A and B are isomorphic and write A ~ B. Isomorphism



is an equivalence relation between partial structures. If ¢ is bijective and
¢ : A — B is only a homomorphism, then we do not introduce an analogous
notion of isomorphism, but simply say that ¢ is a monomorphism onto B.
In fact we reserve the name ‘isomorphism’ for a morphism ¢ : A — B that
can be reversed, so that an equivalence relation ~ between partial structures
results. If ¢ : A — B is only a monomorphism onto B, then ¢! : B — A is
not in general a morphism.

The three notions of monomorphism give rise to three different notions of
substructure. We say that A is a weak substructureof B, A C B,ifid4 : A —
B is a monomorphism. In this case we have A C B and fA C f%n A7+l
We say that A is a relative substructure of B, A C, B, ifidy : A — Bis a
full monomorphism. In this case we have fA = f8n A™*1. We say that A
is a substructure of B, A C, B, if id4 : A — B is a strong homomorphism.
In this case fA is {(z,y) € fB : = € A"}, i.e. the restriction of f5 to A™.
The main characteristic of A C B is that we can have A = B and still
[ C fB, because fA is less defined than fB: so fA cannot be conceived
as the restriction of f® to A. If A C, B, a function f can be less defined
than f7 only if fB(a) = b € B — A for some a € A, so total functions can
become partial. If A C; B, then A must be closed with respect to functions
1B of B.

Let ¢ : A — B be a monomorphism. We denote with ¢[A] the struc-
ture induced by ¢ on ¢[A] as follows. If we set C = ¢[A], then we have:

Fo(p(ar). .. ¢(an)) L and f(p(ar). .. p(an)) = @(fA(ar ... an)) if fA(a1 ... an |,

fe(e(ar)...@(an)) 1if fA(ay...a,) 1. If ¢ is a monomorphism, then A ~ C
and C C B, if ¢ is also full then C C, B, if ¢ is strong then C C; B.

Lemma 2.1 If ¢: A — B is a morphism and t(z; ...z,) € Ty, then

P(t4(a ... an)) = 15(p(ar) ... ¢(an))

forallay...a, € A such that tA(al ceep) |

Proof. By induction on ¢. Let t = z;. Then

p(ef(a1...an)) = p(a) = 22 (¢(a1) ... p(an)).
Let t = e}. Then

(7 (a1...an)) = p(ef) = e¥(p(a1) ... #(an))-

Let t = f(t1...t). If tA(ay ...ay) |, then there are by,...,b; such that
tA(a1...an) = b;, i < k, and fA(by...by) |. By induction hypothesis
o(bi) = t5(p(a1) .. ¢(an)). Then

e(t*(ar- - an)) = @(fA(br ... b)) = FP(p(b1) - .. p(Br))) =

t%(¢(a1). .. ¢(an)). O

3 Universal functions

In this paragraph we introduce universal functions, a concept that is closely
connected with partial functions. If F = | {F, : n € w}, where F, is
a set of functions A" — A, we say that ¢, : A"t! — A is a universal
function for ¥, if there is a surjective function v, : A — F, such that,
for all a,by...b, € A, pp(a,by...b,) = vu(a)(by...b,). We say that the
element a € A is an index of v, (a) € F,. If for every n there is a ¢, € F as
above, then we say that F is closed with respect to universal functions. It
is clear that the behaviour of every n-ary function of F can be simulated by
a parametrization of ¢,. It is easy to show, by Cantor’s diagonal method,
that if F is a set of total functions closed with respect to composition and
there is a h € F such that h(a) # a, for all @ € A, then F cannot be
closed with respect to universal functions: if we want ¢, € F then we
must admit partial functions in F. In fact, let ¢(z) = h(¢1(z,)) and let
vi(a) = 9. Then ¢i(a,a) = ¥(a) = h(p1(a,a)) # ¢1(a,a). As we cannot
have a contradiction, we must have ¢;(a,a) 1.

From the preceding argument it is clear that if A is a total structure
for £ and there is a polynomial function t# such that t%(a) # a, for all
a € A, then the set of polynomial functions on .A is not closed with respect
to universal functions, i.e. the universal functions cannot be polynomials.
However, if we admit partial structures, then we can show that every partial
or total structure A for £ can be expanded to a partial structure A* for a
language £* D £ in which the universal functions for polynomials on .A* are
polynomials.

In the first place we set L* = LU {gn : 7 € w} U {c, : a € A}, where
L,{gn :n € w} and {¢, : a € A} are pairwise disjoint, ¢, # c; whenever
a #b, and g, is an n+1-ary function symbol, for all n. In the following we
always suppose that | A | is infinite and | £ |<| A |, so that | £* |= sup(| £ |
,No,| A |) =| A|. We consider an expansion .A* of A to £*. Let a surjective



vn : A — T,(L*) be given, for all n. We say that A* is closed with respect
to universal functions (for the given {v, : n € w}) if

9 (a,b1...b,) = vy (a)A7(By ... . by)

for all a,by...b, € A. In this case we also say that v, is an indexing of
P™(A*), the n-ary partial polynomials on .A. From now on we reserve
symbols g, for universal functions and symbols f; for other functions.

We must now show that structures closed with respect to universal func-
tions do exist. Doubts may arise as to their existence because universal
functions g,’f' are functions of a particular kind. They presuppose the ex-
istence of all partial polynomials on A*, and if A* is closed with respect
to universal functions, then gA” is itself a partial polynomial on .A*. This
autoreferential feature can be disturbing and we could be led to think that
such structures (if any) are more the result of a lucky coincidence than the
result of a proper construction.

Theorem 3.1 If A is a partial or total structure for £, | A | is infinite and
| £ |<| A, then A can be ezpanded to a partial structure A* for L* that is
closed with respect to universal functions.

Proof. We define by induction a sequence {4y : k¥ € w} of structures for
L* as follows. For all k, Ay, is an expansion of A to £*; so we can denote A
with (A, g2 )new, because fiA" = fA and e‘f" = eA. In Ag we set go = 0,
the completely undefined function, for all n € w. We proceed by induction;
so we suppose we have defined Ay and we define Ay, setting

g#k+1(a,b1 cooby) = diff Vn(a)'A"(bl Loby)=d

for all a,b,...b,,d € A.

We easily show that g% C gf:"“, for all k, and so Ax C Agyq. f k=0,
it is obvious. We suppose that g,f *=1 C g7* and show that g% C gﬁ‘ k1
If g*(a,b;...b,) = d, then, by definition of 9% un(a)A%-1(by ... b,) = d.
As Ax_1 C Ag, by lemma 2.1 we have v,(a)**(b; ...by) = d; so we can
conclude with g#"“(a, by...b,) =d.

We set A* = J{Ay : k € w} and show that A* is closed with respect
to universal functions. If gA"(a,b,...b,) = d, for some d, then there is
a k > 0 such that g¥(a,b;...b,) = d. By definition of g%, we have
vn(a)*=1(by ...by) = d. Since Az_; C A*, we have Un(a)A' (b1 ...b,) = d
by lemma 2.1. We show that g7\"(a,b; ...b,) 1 implies v,(a)A" (b ...b,) 1.
We need the following;:

Lemma 3.2 For all t(zy...z,) € T(L*), if tA"(a1...a,) = b then, for
some k, t*(ay...ay) = b.

Proof. By induction on . If t = z;,t = e; or t = ¢, it is obvious. Induction
step. Case a). Let t = f(#;...%), where f € £. If tA"(a;...a,) = b,
then there are by,...,b such that tA"(a;...a,) = b;, for i < k, and
A (b .. .by) = b. By induction hypothesis we can find, for all i < k, a
structure A, ;) such that t;%(‘) (a1...an) = b;. Let p = max{p(i) : i < k}.

Then tf“’ (a1...a,) = b;, for all 1 < k. Since the interpretation of f does not
vary in the various A; and in A*, we have

b= fA(by...by) = fA(t5%(ar ... an) ... 11" (a1 ... an)) = t4%(as .. . an).

Case b). Let t = gi(ty "'tkjl)' As before, there are by,...,bg4y such
that #4"(a; ... a,) = b; and g{'*(b1...br41) = b. So there is a g such that
gk'A"(bl ...bg41) = b. By inductive hypothesis, there are structures A (i) such
that t?“’(")(al .+ @p) = b;. Let p = max{p(¢) : i < k+1} and s = max{p, ¢},
then '

b=gio(t{*(a1.. . an)... 000 (a1 .. 0,)) = t*° (a1 . .. ap).

The proof of the lemma is now complete and we can return to the main
proof. If v,(a)?" | then there is a b such that

Un(@)A (by...by) = b
and, by the lemma, there is a k such that
Va(a)*(by ...b,) = b and gi*¥* (a,b; ...b,) = b

so that g7\ (a,b1 ...b,) |. By contraposition we have the desired result. O

So far we have proved that, for any .A, there is at least one expansion
A* of A that is closed with respect to universal functions. We reserve the
notation A* for the expansion obtained in theorem 3.1. The next theorem
shows that every expansion of A that is closed with respect to universal
functions must include A* as a substructure.

Theorem 3.3 If A is a partial structure for L, A’ is an expansion of A
to L* that is closed with respect to universal functions (for a given set of
indexing functions {v, : n € w}), then A* C A'.



Proof. We show that, for all k, Ay C A’. If k = 0, it is obvious. Suppose
Ap C A'. T gi*¥+ (a,by ... b,) = d, then v (a)**(by...b,) = d. As Ay C A,
we have

vn(a)* (by...by) = d and g'(a,by...b,) = d.

This proves that g,’f"“ Cgr and Apy1 C A So A* = {Ar:kew} C
A O,

4 The recursion theorem

A peculiar feature of recursive definitions is that a function can occur as
a part of its definition. This kind of self-reference exists, because every
polynomial has an index (or better, infinitely many indices) and can be
viewed as an object in the domain, therefore we can apply a polynomial
to arguments which include the index of the polynomial itself. However, if
we want to obtain an analogue of recursion theorem, we must start from
a structure A that satisfies some minimal conditions. Firstly, we suppose
that A is a structure for £, where £ contains a constant ¢, for every a € A,
different constants being assigned to different objects, so that term-functions
and polynomials on .4 amount to the same thing.

We now explain our second condition. If t(z1...Zn,Znt1-.-Tntm) €
Tn+m and ai,...,a, € A, then the n-ary function tA(arl e Ty @1 e Gy
that arises from a parametrization of tA(a:l «esZnyTuyl - - - Tnpm) 18 the poly-
nomial tA(a:l e ZpyCayye -y Cay ). As there is a strict connection between
parametrizing a polynomial and carrying out a substitution in the corre-
sponding term, we can define, for every m, n, an operator S, , : P("+m)(.A) X

A™ — P(™(A), setting

Sn,m(tA(arl e &y Tl e Tnpm )y G- - Q) = tA(:vl R O P I

Every such operator induces a function ¢, m, : AX A™ — A, since every poly-
nomial has an index in A. Our second condition amounts to the requirement
that ¢, ., is a polynomial on A. ‘

It can easily be shown that every A for £ can be expanded to an A*
for £° = LU {spm : n,m € w} that satisfies our second condition. Firstly
we define, for every n, an indexing function v, : A — T,(L?), as in the
preceding paragraph. Then, by the axiom of choice, we assign to every v,
a function v : T,,(L*) — A such that v, (v;1(t)) = t, for all ¢t € T,(L?).
Finally we set, for all ay,...,a,,b € A,

s;‘fm(b, a1...ap) = V,jl(vn+m(b)(:vn+1\ca1 oo Tntm\Capn))
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where

Vntm(0)(Znt1\Cqy - - - Tntm \Capm )
arises from

Un4m(0)(Z1 ... Zny Tpt1 -+ Trgm)

by substituting c,; to Z,4i, for all ¢ < m. It can be easily verified that, for
all a1,...,am,e1,...,en,b € A,

z/n(s;f;n(b, ai.. .am))As(el ceilp) un+m(b)’45(el R S S

Before stating our third condition we introduce analogues of natural
numbers in \A. From our second condition we can suppose that indexing
functions v, have been given and that parametrization functions are avail-
able in A. In what follows, to save notations, we write {a}, instead of
vn(a)*, omitting the index when it is clear from the context. Let a be
such that {a}; = id(z), i.e. @ is an index of the identity function, then
a can be seen as the number zero and we write 0 instead of a. For the
same reason, we write 0 instead of ¢,, the numeral zero. We define a suc-
cessor function as follows. Let {d}2 = #2(z1,22). . We define the term
s(z) = s1,1(cq,z): s* can be seen as a successor function. In fact we have
{s4(0)} = {si“,l(d,O)} = 72(21,0), i.e. the 1-ary constant function that al-
ways gives 0. If we write 1 instead of s4(0), we have {1} # {0} and 1 # 0,
because different indices correspond to different functions. In the same way
we have {2} = {sA(s4(0))}, {2} # {0}, {2} # {1}, that implies 2 # 0,
2 # 1, and so on. In this way, if we denote sA(...s4(0)...) (n times) with
n, we obtain an infinite sequence 0, 1,...,n,... of objects, different in pairs,
that can be viewed as the set w of natural numbers. The whole set w will
not be useful until the next paragraph, but we immediately need 0 and 1
because our third condition on A runs as follows: we suppose that the char-

acteristic function of identity is represented by a polynomial 74 such that,
for all a, b € A,

r4(a,b) =0 if a=0b
rAa,b)=1 if a#b
The following fact will be used in the next lemma: there is a polynomial A4
such that h*4(a) # a, for all @ € A: simply define h(z) = r(z, 1).
At this point we can expand a structure A satisfying the three conditions
above to a structure A* for £* = LU {gn : » € w} as in the preceding

paragraph: A* is closed with respect to universal functions anq we can
show that an analogue of the recursion theorem holds in A*.

11



Lemma 4.1 The completely undefined 1-ary function is a polynomial on

A*.

Proof. As A* is a partial structure, there is at least a term ¢(¢cp) such that
t4"(cp) 1. For instance, let p(z) = h(gi(z,2z)), where h is such that A4" is
total and h4"(a) # a, for all @ € A. (Remember the remark after our third
condition on A.) Let {b}; = p*", then we must have g{*"(b,b) 1, otherwise

g1 (b,0) = h*" (g7 (b,0)) # 91" (b, ).

Thus we can set t(cy) = g1(cs,¢5). If we can show that there is a term
q(z) such that, for all @ € A, ¢*"(a) = b, then t4"(¢*"(a)) 1, for all a,
and so t(g(z)) denotes the completely undefined polynomial on A*. But the
constant c; can be conceived as an 1-ary term ¢(z) such that ¢*” (a) = b for
all a. We can also give a more formal definition of ¢(z). Let d € A be such
that {d}; = 72(z1,22), the 2-ary projection function that gives the second
coordinate. We have

{3{‘,;(‘1’ bh(e) = ”%(e’b) =b

for all e € A. So we can set g(z) = g1(s1,1(ca, ), z), because

gt (s1(d,b),e) = {s1'1(d,b) }1(e). O

Let {a¢ : £ < a} be an enumeration of A, where a =| A |. As every a;
can be viewed as an index of a 1-ary polynomial {a¢}, we can associate to
every a; the following a-termed sequence of polynomials:

{Hag}(ao)},- - {H{agk(an)}s- . (n < o).

If {a¢}(ay) 1, we place the completely undefined function @ at the 5-th place,
and () is a polynomial by the lemma above.

The following lemma shows that if {a,} is not total, then there is a total
{ai} that gives rise to the same sequence, and the index a; can be recovered
from a; by means af a total polynomial.

Lemma 4.2 There is a total polynomial ¢**(z) such that, for all a € A,
1. {g*"(a)} is a total polynomial
2. {g*" (0)}(0)} = {{a}(V)}, for all b€ A.

12

Proof. Let {e}s = g{*"(¢{*' (z2,23),21). Then by parametrization,
{sfa(e;a1,02)}(a3) = {{a1}(a2)}(5)

for all ay, ay, az € A. Let {d}; = sf;(e,xg,xg). Then

{s11(d,a1)}(a2) = sf'3(e, 01,02)
for all a1,a3 € A. We can therefore conclude that

{{s71(d, a1)}(a2) }(as) = {s{3(e, a1, 02)}(as) = {{a1}(a2)}(az)

for all a;, ag, as € A. Then we have {{sﬁ(d, a)}(®)} = {{a}(b)}, for all
a, b € A, and this proves (2) setting g(z) = s1,1(cq, z), because s{';(d,z) is
total. As for (1), we observe that {q(a)} = s{;(e, a,2), a total function. O

Theorem 4.3 (Recursion Theorem) For any t(z) € Ti(L*) such that
tA" is a total polynomial, there is an a € A such that {a} = {t*'(a)}.

Proof. Take as given an enumeration {a; : £ < a} of A, where | A |= a. As
we have seen before, every {a,} gives rise to an enumeration of polynomials
{{a¢}(ay)}, as n varies in a. If we allow the variation of £ in @, we obtain a
square matrix of polynomials. When {a¢}(a,) 1, we set the 1-ary polynomial
§ at the intersection of the ¢-th row with the 7-th column. We observe
that the dlagonal of the matrix is the enumeration given by g{*"(z,z). Let
{ax} = ¢{*"(z,2): then the dlagonal occurs as the k-th row. If ¢(2) is
as in the lemma above, then {g*"(a;)} is total and g1ves rise to the same
enumeration as {a;x}. So the diagonal occurs as the ¢*"(ax)- th row and

{{e* (ax)}(an)} = {{ax}(an)} = {{an}(an)} (1)

by point (2) of the lemma above Let p(z) = t(g1(q(cq, ), @), then {a,} =
, for some o < @, and p*” is total by its definition. Then

{{ao}(a0)} = {t*" (61" (@ (ar), a0))} = {4 ({0*" (@) }(a0))}
by definition of p(z), and
{{ao}a0)} = {{g*" (ar)}(a0)}

by (1). The theorem follows if we set a = {g*"(ax)}(a,). O
The following Corollary shows that the index of a polynomial can occur
in the definition of the polynomial itself.

13



Corollary 44 For any p(zx1,z2) € To(L*), there is an a € A such that
{a}(®) = p*'(b,a), for all b € A.

Proof. Let {e}, = p*". If we can prove that there is an a such that {a} =
{31 1(e,a)}, then we have achieved our objective. Let t(z) = s1,1(ce,z), then
t4" is total and by the theorem above there is an a such that {a} = {t*"(a)}.
(This corollary can obviously be generalized to p(z; ...zy,), for all n.) O

Let T be an operator on A* such that ' : P(V(A*) - PW(A4*), then T is
said to be a polynomial operator if there is a total polynomial t4" : A — A
that describes the behaviour of T' of as follows: for any polynomial ¢** on
A* and any a € A such that ¢*" = {a}, T(¢*") = t4"(a).

Theorem 4.5 IfT is a polynomial operator on A*, then T has a fized point.
Proof. Immediate, by the preceding corollary. O

5 Primitive recursion

As we have just seen in the preceding paragraph, there is a set of analogues
of natural numbers in .A4* and this fact can be used to introduce primitive
recursion. We say that a partial function f : A2 — a is defined by primitive
recursion from the partial functions ¢ : A — A and h : A3 — A if the
restriction of (the domain of) f to w X A is such that

f(0,2) ~ g(z)
fn+1,2) = h(f(n.z),m,2)
We'll prove that the set of partial polynomials on .A* is closed with respect

to primitive recursion i.e. if g and h are partial polynomials on A*, so is f .

In the first place we must show that a predecessor function and a pair-
ing functlon are available as polynomials. We observe that the polynomial
o(z) = g{*"(2,0) is a predecessor function for our natural numbers, because

a(0) = {0}(0) = d(0) =0
and
a(n + 1) = {*"(n)}(0) = 73(0,n) = n.

Before defining our pairing function we introduce a sign function B(z) such
that

pO) = 0
B(n+1) =1
14
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We set B(z) = r"(z,a(z)), where r4° is the characteristic function of
identity. (Remember our third condition on A in the preceding paragraph.)
If z ¢ w, then B(z) may be 0, 1 or it may diverge.
Finally we define our pairing function §(z,y, 2) such that

6(z,y,2)=z if 2=0

(z,y,2) =y if z2=n+1
as follows. Let {d}; = m3(z1,2) and 6(z) = sf {1(d,z). We have, for all a,
be A, {6(a)}(b) = a. We define

5(z,9,2) = g1 (91" (B(2),0(2)), 1" (6(v), 2))-

If z=0, we have

6(a,b,0)

{{8(0)}(6(a))}({6(6)}(0))
{{0}(6(a))}(8) = {6(a)}(b) = .

If z=n+1, we have

§(a,;b,n +1) = {{B(n+1)}(6(a))}(8(8)}(n + 1))
= {{1}6(a))}(b) = {0}(b) = b.
If 2 ¢ w then 6(a, b, 2) may be a, bor it may diverge: it depends on S(z2).
At this point we can introduce the traditional definition of primitive
recursion by means of the recursion theorem (see, for instance, theorem 2.10
in Hinman (1978)). Suppose that f is defined by primitive recursion from

g and h, as in the schema above, and that g and h are polynomials on A*.
Let €1, e; be such that

{61} = Q(W§($1,$2,$3))
and
{e2} = h(g3" (21, 0(22), 23), a(2), z3).
We can define a polynomial
77(371,$2,$3) = g.:,’A‘(é‘(el, €2, IL‘2),$1,$2,II)3).

By the corollary 4.4 there is an index ¢ such that {i}(z2,z3) ~ n(i, zq,23).
We can prove by induction on w that {i} = f. In fact,

{i}(0,z3) = 7(4,0,23) = {6(e1, e2,0)}(5, 0, 2)
{e1}(3,0,2) 2 g(2)

12
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and

M+ L,a0) = nlisn+ 1,35) = {8(er, 2, + }(i,n +1,25)
{e2}(i,n + 1,23) =~ h({i}(n,23),n,23) =~ h(f(n.z3),n,3)

by inductive hypothesis.

12

6 Completions of partial structures

These remaining paragraphs are devoted to the passage from partial to total
structures. First, we define the concept of completion of a partial structure.
If B is partial structure for £, we say that a total structure C for £ is a com-
pletion of B if there is a full monomorphism ¢ : B — C. The completion of a
partial structure can be conceived, roughly speaking, as a total structure in
which the partial structure is included as a relative substructure: the values
for previously undefined functions can be found among the new elements.
For instance, we can define a completion B simply by adding a new element
as the value for all instances of indefiniteness. We set B = B U {u}, with
u ¢ B and define fB as follows: for all b € B, fB(b) = fB(b) if f2(b) |,
fB(b) = wif f5(b) 1, f%(u) = u. We say that B is the trivial completion of

Before constructing a different kind of completion, we analyse what hap-
pens in the trivial completion. The main characteristic of B is that every
equation t5(b) = ¢B(b) gives raise to an equation t5(b) = ¢5(b), for all b € B.
In fact, if t3(b) | and ¢5(b) |, we have, for some ¢ € B, t5(b) = ¢ = ¢5(b),
so that t5(b) = ¢ = ¢B(b). If t5(b) T and ¢B(b) 1, we have by definition of
B, t3(b) = u = ¢5(b). (This preservation result no longer holds in general
when we take a completion C of B, because we can have t“(b) # ¢¢(b) when
tB(b) 1 and ¢®(b) 1.) This happy state of affairs is compensated by a lacking
of generality of the trivial completion. B cannot generally be embedded in
total structures in which B is embeddable, because too many identifications
of objects have taken place in B: so B is not properly represented by B in
the realm of total structures. In Gratzer (1968) a completion with good em-
bedding properties is constructed and we’ll obtain an analogous completion
with some additional properties related to the preservation of universal func-
tions. We cannot be satisfied with Gritzer’s completion, because we want
universal functions to be still at work in the completion, even if we know
that they can act as universal functions only on a subdomain (by Cantor’s
theorem).
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In the preceding paragraphs we have shown that every structure A for
L can be expanded to a structure A4* for £* that is closed with respect to
universal functions. We know that A* cannot be total, under fairly general
conditions, but we can look for a good representation A° of A* in the realm
of total structures in the following sense. We firstly require that A° be a
completion of A*, so that (an isomorphic image of) .A* can be found as a
relative substructure of A°. (So the initial structure A is a substructure of
the restriction of A° to L.)

Before formulating the second requirement, the embedding property, we
must introduce some definitions. Starting from A* we define a set ¥ of
axioms as follows:

Y ={gn(ca,Z1...2n) = vp(a)(z1...2,) 1 a € A,n € w}.

In ¥ the behaviour of universal functions and the meaning of the indices of
polynomial functions are represented, for a given set of indexing functions
vn. (Remember that v,(a) is a term of £* for every choice of a.) Let a
structure B for £* and a monomorphism ¢ : A* — B be given. We say that
a structure B preserves universal functions (of A*) with respect to ¢, if

B F(ay...on)l¢(ar). . o(an)]

for all ay,...,a, € A, for all F(z,...2,) € X, for all n € w. This means
that ¢(a) can be conceived as an index for the polynomial function v,(a)?
as long as we apply v,,(a)® only to arguments in @[A]. In fact

B gn(casz1...20) = vp(a)(z1 ... z5)[e(a1) ... ¢(an)]
so that
9n(@(a),0(a1) ... ¢(an)) = va(a)®(¢(a1) ... ¢(an)),

because ¢ is a morphism and ¢ = ¢(a), for all @ € A. This behaviour of
universal functions cannot in general be extended beyond the subdomain
¢[A] by Cantor’s theorem.

We can now state our second requirement for the completion A° of A*.
There is a full monomorphism x : A* — A° such that, for every total
structure B for L£*, for every monomorphism 6 : A* — B such that B
preserves universal functions (of .A*) with respect to #, there is a morphism
¥ : A° — B such that, for all a € A, 6(a) = ¥(x(e)). The construction of
an A° with such properties, carried out in the final paragraph, requires an
analysis of the computation process of partial polynomials, particularly with
respect to universal functions. This is undertaken in the next paragraph.
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7 Analysis of the computation process -

Let £ and £*, A and A*, be as in par.3, let CT(L*) be the set of closed
terms of £L*. We define three binary relations contr, =, — on CT(L*) as
follows.

Definition 1. For all t,,t; we set t; contr t, iff

a) thereisi € I'and ay,...,a,,b € A such that ar(i) = n, fA"(a1...a,) = b
and

t1 = ficay -+ - Ca,) and t5 = cp

or

b) thereisn € w — 1 and a,b; ...b, € A such that

t1 = gnlca,Cpy ... b,) and t2 = vy(a)(cp, --- b, )
or
c) there is a constant symbol e € £ such that eA = ¢ and ¢, = e, ta = Cq.

We say that ¢ is contractible if ¢ contr ¢’ for some #’: in this case we say that
t' is the contractum of ¢. (There is at most one such ¢.)

Definition 2. For all ty, t2, we set t; = t, iff ¢, is obtained from t; by
replacing an occourrence of a contractible subterm of t; with its contractum.
Definition 3. For all ¢, to, we set t; — t, iff there is a finite sequence
81y.-.,85 such that ¢y = s1, t3 = s, and s; = s;41, for all 7 < n.

Remarks

1. The relation contr is univocal; => is not univocal because a term can
contain several different occourrences of contractible subterms; — is not
univocal.

2. The relations contr and = are irriflexive; — is reflexive. Infact t — ¢
holds because there is a sequence s1...s, such that n =1, sy = t;, s, = ¢
and s; = s;11, for all ¢ < n, holds vacuousely.

3. If f is not a universal function symbol and fA(al ...ay) T, then there
is no b such that f(c,, ...cq,) contr ¢,. But if gA(a,by...5,) 1, then we
always have gn(ca,cp, ...cs,) contr vp(a)(cp, ...cp,). So every term like
gn(CasChy - .. Cp,) is contractible.

4. If A does not contain universal functions, then we can define an analogous
relation contr omitting clause b) in definition 1 above. As for = and — we
can retain definition 2 and 3.
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We say that ¢ is in normal form (n.f.) if there is no ¢’ such that ¢t = ¢/,
i.e. if no contraction can take place in it. We say that ¢ is in strong normal
form if it is in n.f. and ¢ is ¢, for some a € A; otherwise, t is said to be in
weak normal form. It is easy to give an inductive definition of weak normal
form. We define a subset W C CT(L*) as follows: t € W iff
1. tis fi(¢cqy ... Ca, ), for some ¢ € I and ay,...,a, € Asuch that f{“(al cevan)

or
2. tis fi(s1...8y), for some ¢ € [ and s ...8, € CT(L*), such that, for all
1< m,s; €W ors;is ¢,, for some a € A.

It is easy to prove that ¢ is in weak n.f. iff t € W. On the one hand
we show that if ¢ € W then ¢ is in n.f., and no element of W is of the kinf
¢q- On the other, we show by induction on t that if ¢ is in n.f. and is not
in strong n.f., then it must be in W. From remark 3 above, ¢ must be of
the kind f(s1...8,). If t is of minimal complexity, all s; are ¢,, for some
a € A, and then t € W from 1 in definition above. If ¢ is not of minimal
complexity, then there are some s; not of the kind ¢,. Every such s; must
be in n.f. and is not in strong n.f. by hypothesis. So they must be in W by
inductive hypothesis and ¢t € W from 2 in the above definition of W.

We say that ¢ has (strong resp. weak) n.f. if there is a t' in (strong
resp. weak) n.f. such that t — t'. It is easy to see that there are terms
without n.f. (strong or weak). For instance, let v(a) = g1(z,z). Then
gl(caaca) = gl(Ca,Ca) = ...

We show that computations of partial polynomials on A* can be rep-
resented by relation — in the following sense. Let p € P(")(A*). We can-
not speak of the computation of a function without giving an intensional
characterization of the function itself. So we choose t € T,,(A*) such that
tA" = p. We prove that, for all a;,...,a, € A, if t4"(a;...a,) | and
tA"(a1...a,) = b, for some b € A, then t(cs, ...¢s,) — 5. The sequence:
81438, With 81 = t(cg, ... Cq, ) and s, = ¢, given by t(cq, ... Cq,) — Cp, is
to be understood as a computation of the function 4", applied to arguments
a1,...,0y, leading to its value b.

In the first place we define, corrisponding to every .4 introduced in

theorem 3.1, the binary relations contry, é, X, on CT(L*) as follows.
We define tycontrit; like ¢;contr 2, but changing clause b) of Definition 1
into the following:

b’). Thereis n € w — 1, a,by,...,b, € A such that gA*(a,b,...b,) | and

h = gn(cmcbl .. °cbn)7 t; = V(a)(cbl .. 'cbn)'
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We define #; =X, to and t4 LY to on the basis of contr; as above. We need
the following lemmas.

Lemma 7.1 a) If j < i, then t; 4, to implies t, LN to.
b) For all i, t; — implies t; — t,

Proof. a) It is immediate if we observe that,

if  g9(ayby...by) |,  then  gi(a,by...by) | .

So ticontr;t, implies ¢;contr;ts.
b) Trivial.

Lemma 7.2 Forallt € T,(L*), for all ay,...,a.,,b € A, iftA"(ay...a,) =
b, then there is a k such that t**(a; ...a,) = b.

Proof. By induction on t. If ¢t = 2; or ¢t = ¢;, then the lemma holds for any
k. Ift = f(t1...t), then there are by,...,bs such that t;“'(al cee@n) = by,
(i < k), and fA"(b;...b,) = b. By induction hypothesis, we can choose,
for every i < h, a (i) such that t4¢()(a;...a,) = b;. Let j = max{ep(4) :
i < h}. Then £{9(ay...an) = b;, for all i < h, and fAi(b;...by) = b. So
tAi(ay...a,) = b. Ift = gu(ty ...thy1), then there are by,...,bp41 such
that ¢4 (a1 ...a,) = b;, for every i < h+ 1, and g8 (by...bpy1) = b. By
definition of g,’;“, there is a p such that g'hA" (b1...bgy1) = b. We can prove,
as above, that there is a j such that tf‘j(al co.ap)=by,forall: < h+1). If
we set k = max{p, j}, then t**(a;...a,) = b.

Lemma 7.3 Forallt € T,(L*), forallay...a,,b € A, iftA*(ay...a,) = b
then t(cq, . .. Ca,) X, ¢

Proof. By induction on the complexity of ¢t and on k. If k£ = 0, then the
lemma holds trivially. If ¢ = 2; or t = ¢;, then the lemma holds for any

k. Let t = f(t;1...t3). If t*(ay...a,) = b, then there are by,...,b; such
that t{'*(a;...a,) = b;, for all i < h, and f4%(b;...bs) = b. By induction

hypothesis on t, t;(cq, - . - Ca,) X, cy;- As f(ep, ...cp,) k, ¢y, we also have

t(cay -+ Cay) X e Lett = gr(ty...the1). If tA%(ar...an) = b, then
there are by,...,bn41 such that ¢]*(a;...a,) = b;, for all i < h + 1, and
gf" (b1...bp41) = b. By induction hypothesis on ¢, we have

(1) ti(ca, ---€an) X, ey, forall i < h +1.
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By definition of X, we have

(2) gh(Cbl e cbh+l) _l‘(_’ Vh(bl)(cbg e cbh+1)

By definition of gf",

g,':("(cb1 ciChyy ) =b  implies  wy(b1)** 1 (cp, - ceChyyy)

So by induction hypothesis on k,

k-1
Vh(bl)(cb2 e cbh+1) — Cp.

Then .
vi(b1)(ep, -+ - Chyyy) — b

by lemma 7.1 a), and #(cq, .- . €q,,) X, ¢, follows from 1), (2), (3).
Theorem 7.4 For allt € T,(L*), for all ay,...,a,,b € A,
if  t*7(a1...a,)=b  then  t(cs ...Ca,) — b

Proof. By lemma 7.2, there is a k such that t4¥(a; . .. a,) = b. By lemma 7.3
, we can prove that #(cg, ... ¢4,) X, ¢. The desired result t(cay -+ Cay) X,
¢y follows from lemma 7.4 b).

Theorem 7.4 still holds if we substitute A* with any partial structure
A for L: the proof can be extracted from the proof of the above theorem.
However theorem 7.4 does not hold for all expansions of A to a structure
A’ for L* closed with respect to universal functions. but only if A’ is A%,

the canonical expansion. The converse of 7.4 will be proved in the next
paragraph as corollary 8.5.

8 The completion A°

The analysis of the computation process given in the preceding paragraph
is a first step in the construction of a total structure A° in which .4* can be
monomorphically embedded. The domain A° of A° is obtained as follows.
We define a binary relation = on CT(L*) setting t; = ¢, iff there is a 3 such
that 3 — t3 and ¢ — t3. We prove in theorem 8.3 that = is an equivalence
relation. We set A° = CT(L*)/ = and denote with | ¢ | the class of ¢ modulo
=. For every constant symbol e € L*, we set e*” = |¢,|, where a = 4.
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For every n-ary function symbol A € £*, be it a universal function or not,
we define

Bt ] ee | e ]) =l Bt .. 1) |

for all ¢4,...,t, € CT(A*). We must show that this is a good definition,
i.e.that s; = ¢;, for all ¢ < n, implies h(s1...8,) = h(ty...1,). If s; =
t;, then there is u; such that s; — wu; and t; — u;, for all ¢ < n. So
we have h(sy...s,) — h(uy...u,) and h(ty...t,) — h(uy...u,), so that
h(s1...8,) = h(t1 ...1,). The definition of A° is now complete.

Theorem 8.1 The function ¢ : A* — A°, where p(a) =| ¢, |, is a monomor-
phism.

Proof. ¢ is injective because if @ # b, then the symbol ¢, is different from
¢p; ¢o and ¢, are terms in n.f. and so there is no ¢t such that ¢, — t and
ey, —>t,ie. | cq |#] e |- ¢ is a morphism. In fact, let e;-“ = a, then

e(ef") = p(a) =| ca |= f.

Suppose now that h4*(a;...a,) |, then we have @(h*4"(a;...a,)) =| ¢, |,
for some a in A such that A4 (a; .. .an) = a. So we have

h(p(a1).- . plaz)) = A4 Cay | -] €an ) = hla; - a) | -
By theorem 7.4

h*(a1...0,) = a implies h(cy;...cq,) — Cq.
Thus, from ¢, — ¢,, we have | h(cyy ... ¢6,) |=| o |. O

What has still to be proved is that = is an equivalence relation. We need
the following:

Lemma 8.2 For any t1,t2,t3 € CT(L*), if t1 — t2 and t; — t3, then there
is t4 € CT(L*) such that ty — t4 and t3 — 14.

Proof. Case a). We suppose t; = t3 and t; => t3, i.e t; — t; and ¢; — t3 in
one step. We introduce the following notation for replacement. For every
subterm s of ¢, we suppose that the occurrences of s in ¢ are numbered in
a sequence s',...,s" (where n depends on s). So we note with #[s'/u] the
replacement of the i-th occurrence of s in t with u, and with t[s*/u,p’/q]
the simultaneous replacement of the i-th occurrence of s with « and of the
j-th occurrence of p with g. From our hypothesis we see that t; = t;]s*/]
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and t3 = t1[p*/q], where s contr » and p contr q. If s = p and 7 = j, then
t2 = t3, and we can set t4 = t; = t3. In any other case we have

talp’ [q] = t1[s*u, 9 [q] = t1[p7 [q, 5 [u] = ta[s' /],

because the order in which replacements take place does not affect the result.
So we can set t4 = t1[s*/u,p’ /q] and conclude with t, = t4 and t3 = t4.
Case b). We suppose t; = 3 and t; — t3 in n steps, so there is a sequence
81y+-+58n41 such that s; = 1), sp,41 =tz and s; = s;4 forall: < n. Byn
applications of case a), we can find a sequence u; ... u, such that t; = u
and s = Uy, ..., Un—1 = Uy and Sp41 = Up. SOty — Uy and $p41 = i3 — Uy,
and we can set t4 = uy,.

Case ¢). We suppose t; — & in m steps and ¢; — #3 in n steps. Then we
obtain case c) with m applications of case b), as we have obtained case b)
from case a). O

Lemma 8.3 The relation = is an equivalence.

Proof. = is obviously reflexive and symmetric. We suppose t; = t, and
13 = t3, then we have, for some t4, t5, t) — 14, 3 — t4 and ty — t5, 3 — 5.
By the lemma, there is tg such that ¢4 — t¢ and t5 — . So, by transitivity
of —, t; — tg and t3 — tg, and t; = 3 follows. O

In the next theorems we show that A° properly represents .4* in the
realm of total structures and satisfies the requirements formulated in par.6.

Lemma 8.4 If B is a structure for L*, ¢ : A* — B is a morphism and

B preserves universal functions (of A*) with respect to ¢, then, for all t,
q € TC(L*),

1. t contr g implies 8 = qB
2. t = q implies t% = ¢B
3. t — q implies t% = ¢B
4. t = q implies tB8 = ¢B

Proof. 1. There are three cases, corresponding to a), b) and c) in definition
1 of par.7.

Case a). t = f(cay.--Can)y ¢ = €a, fA(a1...0,) = a. As ¢ is a
morphism and t4* |, ¢4" |, we have

1% = (") = o(f* (a1...an)) = p(a)
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and
= o(q") = p(cd") = p(a)
Case b). t = gn(CasCty ..., ), ¢ = Vn(a)(cs, ...cp,). Then

= 07 (#(a), @(b1) .. 9(bn)) = va(@)P((B1) .. - 0(bn)) = ¢°

as B preserves universal functions.

Case c). t = e and q = c,, where e is a constant of £ and eA” = a. As
¢ is a morphism, we have t% = p(e4") = ¢(a) and ¢® = p(cA") = ¢(a).

2. We adopt the notation of lemma 8.2. If t = ¢ then we have ¢ = t[s* /4]
and s contr u, where s* is the i-th occurrence in ¢ of the subterm s of . We
have ¢® = (t[s*/u])® = tB, because s*5 = u® by part 1 of this lemma.

3. If t — g, then there is a finite sequence ti,...,%, such that ¢t = #;,
q =1, and t; = t;41, for i < n. By part 2, tf =...=t8and 18 = ¢5.

4. If t = g, then there is a s such that { — s and ¢ — s, by 8.2, so, by
point 3 above, 18 = 8 = ¢8. O

Now we can prove the converse of 7.4:

Corollary 8.5 For allt € T,(L*), for all ay,...,a,,b € A,
if  t(eqy..-Cap) = 0 then t*"(a1...an) = b.

Proof. We observe that ¢d : A* — A* is a morphism and .A4* obviously
preserves universal functions with respect to id. So, by lemma 8.4 (3),
t(Cay - -+ Ca) — ¢y implies t(cqy ... o, ) = ¢f', ie. t47(a1...0,) = b. O

Lemma 8.6 For allt, ¢ € CT(L*), t*° = ¢*° implies tA" = ¢

Proof. We remember that, by definition of A°, for all t € CT(L*), t4° =| t |.
We prove the contrapos1t10n of the lemma and suppose t4* # gt

Case a). t4" = a1, ¢*" = ag, @1 # ay. In this case t — ¢,,, and ¢ — ¢,,,
by 7.4, and t # q (otherwise ¢, =t = g = c,,, which is absurd). Therefore
| |#] ¢ | and t4° # ¢*°, because t4° =| t | and ¢*° =| ¢ |, by definition of
A°.

Case b). t4" = q; and ¢*" 1. (If t*° 1 and g2 = a,, the proof is the
same.) As go is a morphism, p(t4") = t4°, s0 t4° = p(ar) = ca1 =| ¢q, |-
If tA° = g*°, then | t |=| ¢ | and | ca1 |—| t |=| ¢ |, because tA =|t| and
’ =|q|. Sowehaweq—»ca1 and ¢4 _cj.“l,by85 So ¢A" = ay = t47,
what is absurd. O

Theorem 8.7 The morphism ¢ of theorem 8.1 is full.
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Proof. Let h*°(p(ay)...¢(as)) = ¢(b). We have p(b) = cf° and

R (@(a1) ... 9(an)) = BA°(| cay | -+ - | €an |) =| h(Cay +- . Ca,) |= h(ca, g )

So ¢f!° = h(cay...€a,)A°, and b = e’ = h(cay - ca ) = b4 (a1...a,),
by 8.6. O

In this way we have shown that A° is a completion of A* and this
satisfies the first requirement stated in par.6. It can easily be shown that

A®° preserves universal functions with respect to ¢, i.e. for all a; ...a, € 4,
for all F(zy...2,) € &,

A° | F(zy...z,)[p(a1) ... ¢(a,)]

If F.(a:l veoZn) s gn(Ca,Z1... %) = vu(a)(21 ... 2,), we have

g#o(ca,cp(al)...go(an)) = gio(l ca |l Ca, | ... | can 1) =l gn(caacal -)--Can) |
and |
vn(@°(¢(a1) ... 9(an)) = V(@A (| Cay | - | Can 1) =] v (@)(Cay - - - €an) |

but gn(cqa,Cq; - - - Ca,) contr vy(a)(cq, - - - 4, ), 50

| gn(casCay - €a,) |=| vn(a)(ca, eeiCay) |-

We conclude our work by showing that A° also satisfies the second re-
quirement.

Theorem 8.8 There is a full monomorphism x : A* — A° such that, for
every total structure B for L*, for every monomorphism 6 : A* — B such
that B preserves universal functions (of A*) with respect to 0, there is a
morphism 1 : A° — B such that, for all a € A, 6(a) = ¥(x(a)).

Proof. We define x(a) =| ¢, |, for all a € A, and define (| t |) = t5, for all
t € CT(L*). Firstly we show that ¢ is a function. If | t |=| ¢ |, then t = ¢
and, by lemma 8.4 (4), t® = ¢B. Then we show that 8(a) = ¥(x(a)). In
fact, 8(a) = 2, as 6 is a morphism, and ¥(x(a)) = ¥(] ¢, |) = ¢5. Finally
we show that 1 is a morphism. For all | ; |,...,| t, |€ A°, for all n-ary
h € £*, we have

RNt ] tn ) =| A(ts...ta) ] -
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So we have, by definition of ¥,
PR ([t |- [t ) = (| Aty ... 1) |= Aty ... 1,)B =
hE@ET .. 18) = RB((| ta |)...%(| 2a ). O
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