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Abstract

The Axiom of Infinity can be expressed by stating the existence of sets satisfying a formula
which involves restricted universal quantifiers only, even if the Axiom of Foundation is not
assumed.
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The problem of expressing the existence of infinite sets in the first order set theoretic language by
means of formulae of low logical complexity has been addressed in [PP88] and [PP90b]. While the
usual formulations of the Infinity Axiom (/nf) make use of formulae involving (at least) alternations
of universal and existential restricted quantifiers, [PP88] provided the first example of a formula
involving only restricted universal quantifiers, whose satisfiability entails the existence of infinite
sets, provided the Foundation Axiom (FA) is assumed together with the usual axioms of Zermelo-
Fraenkel except, of course, the Infinity Axiom. It was then observed in {PP90b] that an even
shorter formula had the same property. As explained in [PP88] the above problem is related to
the so-called decision problem for fragments of set theory (see [CF090]).

Set theories not assuming FA but rather contradicting it in various forms have come to attract
considerable interest (see [Acz88]) and the corresponding decision problem has begun to be investi-
gated (see [PP90a]). It is therefore of particular interest to ask whether there are restricted purely
universal formulae which are satisfiable but not finitely satisfiable, even when FA is dropped.

In this note we show that a positive answer can be obtained through an appropriate merging
of the two formulae in [PP88] and [PP90b], although none of them suffices alone.

Let L¢ be the first order set theoretic language with identity, based on the membership relation
€. A formula of L¢ is restricted if it does not contain quantifiers except for the restricted quantifiers
(Ve €y) and (Jz€y).

Let ZF~ denote ZF — Inf and ZF~~ denote ZF~ ~ FA.In ZF~~ one can define the
ordinals as transitive sets well ordered by € and the non-zero natural numbers as successor ordinals
with zero and successor ordinals only, as elements. Finiteness is taken to stand for equinumerousity
with a natural number and Inf can be stated as the existence of a set containing all the natural
numbers.

In ZF-,butnotin ZF~~, Inf is equivalent to any of the other formulations of the Infinity
Axiom in use. Note that Inf states the satisfiability of a formula that, besides restricted quantifiers
of both types, involves also an unrestricted universal quantifier needed to express well foundedness.

Let o1 and ¢, be the following formulae from [PP88] and [PP90b):

a#b AagbAbdal
(Vzea)(Vuez)(ueh) A (Vzed)(Vuee)(uca) A (Yzea)(zgbd) A
(Ve,yca)(Vz,wed)(z€Ez AzEw A weEy — z€y) A
(Vz,yed)(Vz,wea)(z€z A 2cw A wey - z€y),

and

aZb AagbAbdan
(Ve €a)Vuez)(uebd) A (Vzeb)(Vue z)(uca)A
(Vzea)Vyeb)(zey V yea).

From [PP88] and [PP90b] we have the following property:

PROPOSITION 1

1) ZF- F (3a,b)pi(a,b) — Inf ;
2) ZF-t+ (Ja,b)ps(a,b) — Inf .

Actually 2) follows immediately from 1) since ZF~ F ¢(a,b) — 1(a,b). [PP90b] provides
specific examples which show that ZF~ F ¢,(a,b) — v2(a,b).

PROPOSITION 2 ZF-~ jf (3a,b)p1(a,b) — Inf .

Proof. Consider the following graph G :

Qay - ﬂl
[¢7]

B2
as

B3
ay

By making use of a suitable permutation of the universe it is easy to define a model M of
ZF~~ 4+ =Inf in which there are elements a,a;,as,a3,a4 and b, by, by, b3 such that

a = {al,az,aa,a4}M;

b {b1, b2, b3},
a €Mb; o a—f; for1<i<4, 1<5<3;
bieMa; & fi—a; for1<i<3 1<j<4.

It is then straightforward to check that ¢ and b satisfy ¢; in M. |



PROPOSITION 3 ZF-- } (3a,b)ps(a,b) — Inf.

Proof. Use the same kind of argument as for the previous property starting with the following

graph G7:
/ ﬂl
a //
B2

asg

Remark. Since G; and G, are extensional graphs, i.e. two different nodes have different
sets of predecessors, the consistency results following from Proposition 2 and Proposition 3 can be
improved to claim that the existence of finite sets satisfying ¢; and ¢, is actually a theorem of
ZF~~ + BA, where BA, stands for the weak form of Boffa’s antifoundation axiom discussed in
[Acz88). ‘

The transitive closures of the finite sets a and b described by G; and G contain a loop of
the form a; € a; € a; and a; € bj € a2 € by € a; respectively. That is no exception. Let us begin
by noticing that because the two conjuncts

(Ve € a)(Vu € z)(u € bd)

and
(Vz € b)(Vu € z)(u € a)

are in both i, and ¢y, if a and b satisfy either ¢; or ¢, then aUb contains both the transitive
closure of a and the transitive closure of b. Thus if a and b satisfy either ¢; or ¢, and are
finite, then they are actually hereditarily finite, by which, in absence of FA, it is meant that they
have finite pictures (like G; and G in the above examples),(see [Acz88]).

PROPOSITION 4 (In ZF~~ ) If a and b are finite and ¢1(a,b) holds, then there is a; in
a and by in b such that ay € by and by € ay.

Proof. From the proof in [PP88] it follows that if a and b are finite and ¢;(a,b) holds, then
aUb cannot be well founded. Hence a U b must contain a cycle with respect to membership, say
cpECpE...ECr€EC].

From ¢,(a,b) it follows that an element of an element of a cannot be itself an element of a,
since otherwise aNb # @. Similarly an element of an element of b cannot be itself an element of
b. From that it follows that ¢;,...,¢, contains alternatively an element of a and an element of
b, and furthermore that n is even. Then by induction on 7, using the condition

(Vey, 22 € a)(Vy, y2 €D)(z1 EYLAYL EZ2AZ2 €EY2 — T € ¥2),
when c¢; € a, or the condition
(Ve z2 € D)(Vy, e €a)(z1 Egi Ay €ET2AT2E Y2 — =1 € Ya)
when ¢; € b, it follows immediately that in any such cycle we must have ¢; € ¢, , and our claim

is proved by taking ¢; for a; and e, for b,. | ]

As a straightforward consequence of the previous Proposition we have that if, we add the
conjunct
: (Vzea)(Vyed)ecy—yde)

then we obtain a formula ¢; involving only restricted universal quantifiers whose satisfiability
entails the existence of infinite sets even if FA is dropped. -

COROLLARY 1 ZF~~ F (Ja,b)(p1(a,b)A (Ve € a)(Vyed)(zcy -y gz)—Inf.

Proof. By Proposition 4, the existence of a and b satisfying ¢, entails the existence of non
finite sets. By a well known argument (see [Lev79]), using the Power Set Axiom, the existence of
a non finite set implies Inf in ZF~—. |

A proof entirely similar to the one given for Proposition 4 shows that:

PROPOSITION 5 (In ZF~~ ) If a and b are finite and py(a,b) holds and anNb =0, then
there are aj,ay in a and by, by in b such that ay €by €az €by€ay or by€a;€bycaz €b;.

Therefore the addition to ¢, of (Ve € a)(z ¢ b) and the two further conditions
(Vz, 22 €a)(Vy, 2 €EB) (@1 €V AL €22 AT €Yz — 2 € 21)

and
(Vei,z2 € a)(Vy, 92 €0)(z1 €A ET2AZ2 €Y = Y2 € 21)
also yields a formula ¢, which satisfies Corollary 1.



It follows immediately from [PP88] that ¢; and ¢, are irredundant, in the sense that if
one drops one of the conjuncts than this property fails. We can however provide an even simpler
formula whose satisfiability entails Inf in ZF~~ . Such a formula is of particular interest also in
connection with the decision problem since, unlike <p'1 and ¢, , it does not introduce conjuncts
which are implications whose consequent is a negative literal.

Let ¢(a,b) be the following formula:

a#£bAagbAb¢an
(Vz € a)(Vy € 2)(y € B) A (Vz € a)(Vy € z)(y € B)A
(V21,22 € a)(Vy1, 12 €D (1 EN A1 ET2 AT Eyr = 21 EY)A(Vz € a)(Vyed)(zeyVy € )

PROPOSITION 6 ZF-- I (3a,b)p(a,b) — Inf.

Proof. Working in ZF~~ we show that if ¢ and b satisfy ¢ then aUb cannot be finite.
The conclusion follows as in Proposition 5.

Assuming that a and b satisfy ¢ we show that if X is a finite non empty subset of aUb then
there is an element cy € X such that either ¢y € a and XNbCecy or cx € b and XNaCey.
That is proved by induction on the cardinality of X .

If X is a singleton the claim is clear since aNb = @. So assume X has more than one element.
If XNa=90 then every element in X can be taken as cy ; otherwise pick a; € X Na and let
X' =X\ {a}.

By induction hypothesis thereis ¢y/ in X " satisfying our claim. If eyt €a and X "NbC ey
then, since aNb=9, XNb = X Nb,hence XNbC cx’ and we can take cy to be ey itself.
On the other hand, if ¢y € b and X'NaCcyr wehave two cases:

case 1. a; € cyr . Then it still suffices tolet cx = cyr;

case 2. a; ¢ cy:. Then, since (Vz ca)(Vyeb)(zeyvyese), cyr€a;. HINX Coa,
then of course it suffices to let c¢x = a; . Otherwise there must be a b; € bN X such that
b; ¢ a; . Then, as above, a; € b; . In this case it suffices to let cy = &;. In fact since
(Vz1,22 € a)(¥y1,92 € B) (@1 € Y1 AY1 ET2 ATy €y — 2z € ¥2) from X' NaC ey,
cx’ € a; and a; € b;, it follows that X'NaCb; and therefore that X Na C b;.

We can now prove that aU b cannot be finite.

First of all aUb # @, since otherwise ¢ = b =0 and ¢(a,b) would fail.

If aUb were finite and non-empty, then we could take aUb for X in the above claim and
conclude that there is ¢ € aUb such that either ¢ € ¢ and (aUb)Nb=bCc or c€b and
(aubd)na =aC c. In the former case it would follow that ¢ = b since from ¢ € a it follows that
¢ C b, because of the condition (Vz € a)(Vy € z)(y € b). But then b € a contradicting b ¢ o as
required by ¢ . Similarly in the latter case we would get a € b contrary to a ¢ b. =

Obviously Proposition 6 still holds if we exchange a with b .

As for ¢; in [PP88] it is easy to see that if any of the conjunct in ¢ is dropped then the
resulting formula turns out to be satisfiable by finite (although not necessarily well founded) sets.

Remark. It would be interesting to prove Proposition 6 without using the Power Set Axiom.

Note that the implication in Proposition 1, Corollary 1, and Proposition 6 can be reversed
since @, @1, 02,1 as well as @, are all satisfied by w' = {fo, f1,...} and " = {90, 91,-- .}
where fo = 0,9, = {fos--s fa} Far1 = {90s-++,9n} , and the existence of w' and w"” is ensured
in ZF~~ provided Inf is assumed. Thus the existential closures of @, @1, P2, 9] as well as ¢,
can all be used to express the Axiom of Infinity in ZF~~ . To that end the presence of nesting
of quantified variables, as in (Vz € a)(Vy € z)(y € b) is in general unavoidable, in fact it is
unavoidable in any restricted universal formula which is satisfiable but not finitely satisfiable (see
[PP88]). Furthermore the presence of at least two free variables is necessary, in fact if a restricted
universal formula with just one free variable is satisfied by a set a and there is a finite descending
chain of memberships starting with a and ending with the empty set, its Mostowski’s collapse
provides an hereditarily finite set satisfying the same formula , on the other hand if no such chain
exists then under Aczel’s antifoundation axiom AFA, a is just the finite set 2.
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The Decision Problem for Restricted Universal Quantification in
Set Theory and the Axiom of Foundation
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Abstract

The still unsettled decision problem for the restricted purely universal formulae,( (V)o -formulae),
of the first order set-theoretic language based over =, €, is di d in relation with the adopti
or rejection of the axiom of foundation. Assuming the axiom of foundation, the related finite set-
satisfiability problem, for the very significant subclass of the (¥), -formulae consisting of the formulae
involving only nested variables of level 2, is proved to be semidecidable on the ground of a reflection
property over the hereditarily finite sets, and various extensions of this result are obtained.

When variables are restricted to range only over sets, in universes with infinitely many urelements,
the set-satisfiability problem is shown to be solvable provided the axiom of foundation is assumed; if
it is not, then the decidability of a related derivability problem still holds. That, in turn, suggests
the alternative adoption of an antifoundation axiom under which the set-satisfiability problem is also
solvable (of course with different answers).

Turning to set theory without urelements, assuming a form of Boffa’s antifoundation axiom, the
complement of the set-satisfiability problem for the full class of A -formulae is shown to be semide-
cidable; a result that is known not to hold, for the set-satisfiability problem itself, even for a very
restricted subclass of the Ao -formulae.

Key phrases: Set-satisflability problem, antifoundation axioms
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1 Introduction

Due to the incompleteness of any consistent axiomatization of a sufficiently strong mathematical theory,
the well known decision problem for first order logic has two possible set theoretic versions. Namely:

1) the derivability problem: to establiﬁh, given a sentence @, whether ¢ is derivable or not in a given
formal system for set theory like, say, ZF,

2) the validity problem: to establish, given a sentence ¢, whether ¢ holds in the intended set theoretic
universe.

Although apparently more vaguely defined, it is the latter form of the problem that has been mostly
tackled in the research work that has been done in this area, see ((CF0O80]). The form the problen;
haﬁ generally taken has been that of determining, for any given formula in a syntactically defined class,
whether there are sets satisfying it or not. For this reason the problem studied has been often referred
to as a satisfiability problem. Since, however, it is Problem 1 that is equivalent to the ordinary logical
satisfiability problem, for the sake of clarity we will refer to the above version of Problem 2 as the set-
satisfiability ptoblcm: When the sets satisfying a formula are required to be finite, we have the finite
set-satisfiability problem that has also been considered in the literature.

Problem 1 and Problem 2 are rather naturally related‘ In general, as is shown in [PP88a], a positive
solution to Problem 2 entails a positive solution to Problem 1, since it yields the completeness of an
appropriate theory with respect to the class of formulae under consideration. On the other hand positive
solutions to Problem 1 have been obtained that do not entail a positive solution to the corresponding
Problem 2, although they indicate possible strengthening of our set theoretic assumptions under which
Problem 2 has also a positive solution.

In both forms the decision problem is quite sensitive to the axiomatic of set theory, even for very
restricted and simply defined classes of formulas. A difference is that, unlike Problem 1, Problem 2 may
well turn out to be not even semidecidable ([PP90d]). .

In this work, the above issues will be discussed with reference to the use of the restricted universal

quantification in the {€,=}-language and to the axiom of foundation.

2 Reductions and reflection

Let us recall that the Ay formulae are the formulae in the first order language consisting of the equality and
membership relation and a constant for the empty-set, in which only restricted quantifiers are involved.
The Ag formulae that can be transformed in a purely universal prenex form are called (¥)o formulae.

They can be characterized as follows (see [PP90a]):

12

PROPOSITION 2.1 ¢ € (V) iff it is equivalent to a conjunction

1. ¢t A...A¢m such thal:
2 Vi,1<i<m
pi = (Yzieyl)... (Ve eyiNbiv...VE),
where & , for 1 < k < h;, is a literal of the form a € ba g ba="b or a £ b with a and b

variables.

Note. If we allow in the previous definition only literals of the form a € b and a # b, the expressive

‘power of the class of formulae defined does not change.

As amatter of fact, given a formula ¢ € (V)o it is always possible to write down a formula ¢’ € (¥)o such
that the literals in the matrices of the conjuncts in ¢ are all of the form a € b or @ # b, and such that p and
' are equisatisfiable. To see this it is enough to observe that a € b can be replaced by (Vzq € b)(z4 # a)
and that, thanks to extensionality, a = b can be replaced by (Vz; € b)(2s € a) A (Y2, € a)(2a € b). After
these changes (and possibly after a renaming of bound variables) ¢’ is obtained by simply shifting the
universal quantifiers in their correct position according to the previous definition.

Analogously we could allow, in the definition of (V)o -formulae, the use of the constant @ for the
empty-set, without changing the expressive power for the class. In this casé every occurrence of 9 should

be eliminated by substituting it with a new variable 2y, and adding the conjunct (¥z € z5)(z # 2).
For further reference let us note that thé above observations are in no way related to the assumption
of the axiom of foundation.

DEFINITION 2.1 given ¢ € (V)o we will call level of nesting of ¢ the natural K in the longest chain
of the form:

(Y=o € 2)(Vz) € z0)...(V2K € TK_1),

in one of the prefizes of one of the conjuncis of ¢ .
We will indicate by (¥)o,x the subclass of the (V)o -formulae containing all formulae having level of

nesting < K .

Although partial results have been obtained, the decision problem, in both forms, for the class of the
(Y)o-formulae, remains still open. On one hand, various subclasses of the (¥)o-formulae have been proved
to be decidable (see [BFOS81] [PP90a] [CCP88] } and among these let us recall the class (Y)o,0 that,
beside being decidable, has the property that if ¢ € (V)o,0 is satisfiable, then it is satisfied by hereditarily

finite sets (when this situation holds we will say that the given class reflects over %F ). On the other
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hand, {PP90d] shows that the addition to the language of a unary predicate P(z) intended to mean that

z is a pair is already sufficient to make it unsolvable.

Two reductions of the general set-satisfiability problem are possible. By the first of these two reductions
the satisfiability of a given @ € (V) is equivalent to the satisfiability of an easy to determine @ € (V)o,2.
This implies that the decision problem for (V)o,2 is no easier than the decision problem for the whole
class (V)o .

PROPOSITION 2.2 Given o(z1,...,2,) € (Y)o we can determine @(zy,...,2,) € (¥)o,2 such that'
ZF~ + 3¢« 3IEp.
Proof.For each quantified conjunct ¢; in ¢ of the form:
| g = (V3 € ). (v, € 4ol
In @ we will have the following conjunct @; associated with ¢; :
g = (Vzie i)...(V:r.;_, ez)(eM vaigyl v z;., "3 y;;).
Then the set of conjuncts of ¢ will be completed by the following formulae:

1) (Yy € )Yy €y )(v1 € 8);

2) z;€3;

n+l) z, €%.

The idea is simply that 2 must play the role of a sufficiently large transitive set (a sort of universe) that
can be the bound for any of the restricted quantifiersin ¢.

Let us prove that ¢ and @ are equisatisfiable:

a) if Mzy,...,Mz, are n sets satisfying ¢ then, denoting by trcl(a) the transitive closure of a set
a, we have that

Mzy, ..., Mz, trel({M=y,..., Mz,})

are n + 1 sets that satisfy @ when substituted for the variables z,,...,2,,2 respectively.

thy 37 and Vip we denote, respectively, the existential and unjversal closures of the formula ¢

14

B) vice versa, if @ is satisfied by M=,,..., Mz,, MZ, then it is immediate to check that Mzy,...,Mz,
satisfy ¢.

Finally notice that @ meets all the requirements to be a (V)o -formula and that its only nested conjunct

is the formula at point 1) above, which has level of nesting two. n

Thus every (V)o formula is equivalent (in ZF~ ) to a (V¥)o,0 formula containing a unique positive
occurrence of the predicate Trans. On the other hand every (V)0 formula containing any number of
occurrences of Trans, no matter whether positive or negative, is equisatisfiable with a (V)2 formula
since occurrences of —Trans(z) can be eliminated, by adding two additional variables z; and 2, in

favorof z; €2 A 23 €2, A z3 & z. Therefore we have:
PROPOSITION 2.3 The decision problems for the class (¥)o and (¥)o,o + Trans are equivalent.

Let us note that the proof of proposition 2.2-depends on the existence of the transitive closure of any
given set.
Under the assumption of the well foundeness of the universe this is always true, whereas for non well

founded universes the transitive closure of a set a can be defined as

Uu‘eu U‘ a,

but this requires the axiom of infinity.

Without the axiom of infinity, the existence of the transitive closure of a set cannot be a theorem,
since in models of ZF~ — oo + (Vz)(Finite(z)) having an infinity of elements forming a déscending chains
with respect to the membership relation, the transitive closure of a set in such a chain would provide an

infinite element in the model.

The decision problem for the (¥)o-formulae can also be reduced to the decision problem for a subclass
of the (¥3)o -formulae which is defined as follows:

DEFINITION 2.2 ¢ € (Y3)o if and only if ¢ € Ay and there ezisis one of its prenez normal forms
in which the quantified prefiz is of the form-

Vylv"'vynazl,.-.,-‘l:l.

A complete and motivated definition of the Ay -hierarchy is given in [PP88a].

15



PROPOSITION 2.4 given ¢(z1,...,%,) € (Y)o we can determine ¢(z1,...,2a, &) € (YI)y such that

no nesting of variables occur in @ ,it has only one ezistential quantifier and
ZF F Jzp — Iz@.

Proof. ¢ will be obtained in a way analogous to ¢ above.

For each quantified conjunct ¢; in ¢ of the form

i (vzi € ¥})...(Val, € ¥f,)el.

we put the following conjunct @; in ¢:

¢ = (Yai€&)...(Vaj, €E)(p]) Vv o gui v 2} ¢yf)

Then we complete the set of conjuncts in ¢ by adding the following formulas:

1) (mez)(Vnez)(n#r - CucE)(wmey A pey) vV (13€y: A ya €y)) to be denoted

by E=zt(3),
2) 2t G i‘,
n+1) z, €%.

Again the idea is to introduce a new set that will act as a universe and to ask, using a (V3)o-formula,
that it is rich enough to have witnesses for all the disequalities involving pairs of sets in it.

Notice that the transitive closure used in the previous case can be seen to be a particular case of such
a universe. In fact it is always the case that an (n + 1) -tuple of sets satisfying @ will also satisfy .

The vice versa is not true.

Let us prove that ¢ and ¢ are equisatisfiable:

a) Asin case a) of proposition 3.1.

B) Vice versa, if Mzy,...,Mz,, Mz is an (n+ 1) -tuple safisfying @ , define inductively the function

f as )
f(:):{ {0) |y e 20 012} if 2815 £ 0

otherwise

thenlet Mz; = f(Mz;) for 1<i<n.
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It is easy to check that since MZ satisfies the formula at point 1 in @, we have that for any

T,y € Mz
ﬂ z=y = f(z)=fly)
B from which it follows that
s€y — f(z) € fy).
As we already noticed, the previous two properties are sufficient to guarantee that Mz,,..., Mz,

satisfy ¢ , since if this were not true then the inverse images with respect to f of sets satisfying the

negation of a conjunct in ¢ would satisfy the negation of the corresponding conjunct in &. ]

Since as far as satisfiability is concerned, negative occurrences of Ezt(z) can be eliminated, by adding
two additional variables z, and z;,infavorof z; €z A z3€2 A 21 #2; A (Vy€z)(yez — y€
z3) A (VYy€z)(y €22 — y € z)., the same argument leading from proposition 3.1 to proposition 3.2
applies to yield:

PROPOSITION 2.5 The decision problems for the class (V)o and (V)o,0 + Ezt are equivalent.

. Notice that like (Yz)(3y)(z C y A Trans(y)) ). also (Vz)(3y)(z Cy A Ezi(y)) is non derivable
in ZF~ — oo, since in non-standard models of ZF~ — oo + (Vz)(Finite(z)), for any z belonging to an

infinite descending chain, {z,0} cannot be extended into any extensional set.

The next result is the reflection property over HF for the finite s-satisfiability of the class (V)2
relative to a well founded universe. We point out that this result does not entail that this form of reflection
holds for the whole (¥)o class, since ¢ and @ of Prop.3.1 are not satisfied by the same tuple of sets.
In fact we can give an example of a (V)o,3 -formula for which such a property does not hold. Thus finite
s-satisfiability reflection over HF for the class (V)g,2 is the best we can hope for.

The example makes use of the following formula @, ~(a,b), which is in (V)o,2, presented in [PP88b]:

_ afbAadbAbgan
(Vzea)(Vuez)(uecd) A (Vzebd)(Vuez)(uea) A (Yz€a)(z gb)A
ﬁ (Vz,yca)(Vz,web)(z€Ez Az €W AwWEY = z2E€EY)A
(Ve,yeb)(Vz,wE€alz€EzAzEWAWEY — 2€Y)

e
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Consider the following formula 3(z, w):
zFEVFXw A wCz Aw#tz A (YVo,z5,23€2) (2 ¢z — za=2, V T3 ==22) A

(Y21, 22 € 2){purwn (21, 22) V Purw (T2, 21) V 2y = 23)

It is straightforward to check that the only possible pairs of elements satisfying ¢3(z, w) are such that
Mz = {A,B} , Mw = {A} or Mz = {A,B}, Mw = {B} with A, B satisfying . .~(a,b) (and

therefore infinite).

PROPOSITION 2.8 Given ¢(z,...z,) € (V)o,2 , if ¢ is satisfied by finite sets, then it is salisfied
by hereditarily finite sets as well.

Proof. Let a;,...,a, be n finite sets satisfying ¢ .

Let us consider the following procedure that, from now on, we will call simplifying procedure:

let Ay = {a1,...,an}.

Let Ar*® = {a|a € Ao A (VYb € Ag)(rkd < rka)}, in general, given a set B we will indicate by
B™az the set of elements of B having maximal rank.

The simplifying procedure will define a sequence of finite sets Ao, A1,..., 4p in the following way: let

pi be the rank of the elements in A™%" and consider the following two cases:
a) p; is a successor ordinal;
b) p; is a limit ordinal.

In case a) if AP"* = {ai,...,a} }, for any pair of the form < a},a}, > such that 1 <£# m < ki,
we consider an element z¢,, € af \ a¥, if such an element exists (that is if a} \ai, # 0 ).
Then we define
D! = {zim |1<t#m< ki A ab\al, #0}.

Moreover we put
Fi = U{G | a € A" A Finite(z)} U {ci(a) | a € 47"},

where c; is a choice function for A™** having as images elements of maximal rank on sets having rank
which is a successor ordinal (such as the sets in A% ),
Finally we put
Aipr = (A,' \ Af"“z) U D,-l U F;.

Case b). Let D} be defined asin case a) , then let y} be an element in af for 1 < £ < k; , satisfying
the following property:
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i) the rank of y} is greater than the rank of any of the elements in (4;\ A™*) U D} .
Note that yi's having the previous property clearly exist, since (4;\ A™**) U D} is finite and that p;
is limit.

Moreover it is also the case that no y{ belongs to any of the elements of Ap, since none of them,

“being finite, can be one of the al 's (since p; is a limit ordinal).

Let us define
D} = {yi |1t ki},

and
Aigy = (A,'\A‘!"a:) U ,D.l

We claim that afier a finite number of steps the simplifying procedure will produce an empty A;: this
simply follows from the fact that p; > piy1 and any descending chain of ordinals must be finite.

Let p be the first natural number such that 4, =0.

We will use the A;’s and the D? s to build a graph G such that one of its set-theoretic realizations
will be the model we are seeking.

The nodes in the graph will be the following:
AuvuDuL?

where 4 = Upgicpdi » D* = U{D? | limit(pi) A 1 < i < p} and L? is a set such that
I? n (AUD?) = 0 and |L?| = |D?.

It is useful to think of the set of nodes called L? as a set of labels to be attached to the nodesin D?.

According to this view we will indicate the elements in L? as e} assuming that e} is the node
associated (is the label attached) to yi. -

The edges in G will be divided into two groups:

1. for a,be AU D?
a— b ifand only if e € b;

2. for 1<i<p—1 and limit(p;)

ey — Y-

At this point let us define the following set-theoretic realization of G in HF : let us suppose that R

is 2 natural number sufficiently large to satisfy the following two conditions:
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A) R is greater than the number of nodes in G plus one;
B) there are at least |D?| distinct singletons (that we will indicate by s} ) having rank R.

The set associated to a node e will be indicated by a* and it is inductively defined as follow:
ot = st if a is e}
T {#*|b—a} otherwise

For any a,b€ AU D? the following two properties hold:

)

a=b +— a*=0b"

B8)
a€Eb — a*eb*.

This can be proved by induction on the maximum rank of a and b as follows:

Notice that the only thing to provefor a) is a # b — a* # b*, and for 8) is a* €b* —a€b.

Case 1. a and b are of the form €.
In this case a* and b* are of the form s; and therefore «) follows from the fact that distinct e 's
have associated distinct s} 's.

B) follows from the fact that all the s}’s have the same rank.

Case 2. a is of the form e} and b is not.

a): in this case it is enough to observe that b* may only have rank strictly smaller-than R+ 1 (in
case it does not contain an e} in its transitive closure) or strictly greater than R+ 1 {otherwise).

B) : the claim follows from the inductive hypothesis since if a € b and @* € b*, then it would follow

that a* = c* € b* with a # c contradicting «) on the pair a,c.

Case 3. b is of the form ei and a is not.
a): entirely analogous to case 2 above.
B) : follows from the fact that the e;' ’s are singletons and their only element has renk equal to

tk(ei) ~ 1, whereas a* must have rank strictly greater or strictly less than rk(ei) — 1.

Case 4. a and b are not of the form e} and have the same rank.
a): since @ # b, we have that in A there must be a ¢ such that c€a and ¢ # b (or vice versa),

hence the claim follows by induction hypothesis that allows us to conclude that ¢* € a* and c* ¢ b*.
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B) : by inductive hypothesis.

Case 5. a and b are not of the form e; and they have different ranks..

a): let us suppose, without loss of generality, that rank(a) < rank(b). It is straightforward to check
that in any of the possible cases (depending upon whether or not rank(a) and rank(b) are limit) we
have that there exists a ¢ € A such that ¢ € b and rank(c) > renk(a).

Therefore ¢ € a and hence, by inductiye hypothesis, c* & a*, which allows us to conclude that b* £ a*.

B) : by inductive hypothesis.

It is immediate to verify that a},...,a% (as well as a* for any a € A ) are in HF . Let us verify
that af,...,a% satisfy p: ‘

by way of contradiction, let us suppose that af,...,a% satisfy - ; in this case one of the disjuncts
in -~y must be satisfied by af,...,ak.

From a) and ) it follows that the disjunct satisfied in —~¢ cannot be unquantified, otherwise also
ay,...,a, would satisfy it, contradicting the hypothesis that a;,...,a, satisfy ¢.

Therefore the disjunct satisfied in -~ must be of the form

*) (304 € %) ... (32}, € 4, )l

with =M conjunction of literals of the form a =b,a #b,a €b,a € b and a and b variables.

In this case let us notice that since the level of nesting of ¢ is 2, and since no y} is an element of an
a; (remember that this was a consequence of property i) above), a tuple of elements satisfying (*) will
be entirely formed of sets of type b* for some b€ A (i.e. no si will be involved).

Therefore it is immediate to verify using properties a) and g), that the inverse images of the elements
in this tuple would still satisfy (*), contradicting the fact that ay,...,a, satisfy .

n

Note that the above proof makes use of the axiom of choice.However its use can be eliminated by
building, rather than a sequence Ag,..., 4,, a tree which takés into account all the possible choices, since
there is only a set of them at any given stage.All the paths in the resulting tree will be finite and each

one will produce hereditarily finite sets satisfying the original formula.

Even though the simplifying procedure presented in the previous proof is guarantee to stop in a finite
number of steps, we have no way to say in how many steps this will happen.
The possibility to give a bound to the number of steps necessary to the simplifying procedure to stop,

would permit us to put a bound to the size of the set A and therefore to the size of the transitive closures
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of a¥,...,a% . That in turn would give us a decidability result.

In the following we present various generalizations of the previous result, even involving classes for
which the finite s-satisfiability problem is known to be undecidable, and hence no bound on the number
of steps used by the simplifying procedure can be placed.

Let us consider the following functional operators:

e Pouw: that to a set a associates the set of its subsets denoted by Pow(a).

o |J: that to a set a associates the set of the clements of elements of a, denoted by { j(a).

e x: that to a pair of sets a,b, associates its cartesian product a x b, i. e. the set of ordered pairs

with first component in a and second component in &.
Consider the binary relational operator R defined by
R(a,b) «— rank(a) < rank(d).
Let us denote by (¥)p,2 + Pow + {J+ x +R the class of formulae which are in the form
Avi
i
where. ¢; is either a (V)o -formula or a literal of the form
R(z,y) , Pow(z)=1y, U:c:y, TXy=1z,
for z,y,z variables.

PROPOSITION 2.7 If ¢ € (V)o,2 + Pow + {J+ x +R is satisfied by finite sets then it is satisfied by
hereditarily finite sets.

Proof. It is easy to see that the property necessary to generalize proposition 3.5 to the class (V) +

Pow is the following:
(Pow(a;))* = Pow(a}) ($))

for 1<i<n.

Let us suppose that a; = Pow(a;).
First notice that

a} ={Pow(a;))* C Pow(a}),
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in fact if z* € a} then z € ¢; from which z C a; and therefore z* C a*.

Vice versa consider y* C a¥ and notice that
y={z]z"€y'} C a

Therefore y € a; and since a; C A because a; is finite , we have y* € aj .
That is

Pow(a}) C a}.

A completely analogous proof will apply to the case of the functional operators |J and x .

To deal with the case of the relational operator R it is enough to be more careful in choosing the
clements of the form sf .

Instead of choosing all the s at the same rank, we will associate si having the same rank only to
having the same i.

Clearly this will force us to chose several (but & finite number of) levels playing the role of R in
the proof of proposition 3.5, and we shall need a-gap of at least n between two levels to guarantee the

injectivity of the realization. ]

Let us observe that the previous result extends the one presented in [CFO88] and proved with a
different technique, and that the finite s-satisfiability problem for a subclass of the class involved in the
previous proposition has been proved undecidable in [CCP89).

Another strengthening is still possible.

Let D be the class of Ag-formulae having level of nesting 2 on the universal quantifiers and level of

nesting 1 on the existential quantifiers.

PROPOSITION 2.8 If ¢ € D + Pow+ |J+ x +R is salisfied by finite sets then it is satisfied by
hereditarily finite sets.

Proof. It is enough to check that the simplifying procedure produces sets which are sufficiently rich,
and this is the case since the existential quantifiers have level of nesting 1 and since all the elements of
the a;'s are in A (because they are finite).

The previous observation can be easily formalized in a proof by contradiction generalizing the one

given at the end of proposition 3.5. [ ]
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3 The role of urelements

Let ZFU be ZF formalized in the language including an additional unary predicate symbol U(z)
intended to mean that x is an urelement (or atom), with the appropriate formulation of the axiom of
extensionality and foundation and an additional axiom stéting that there are infinitely many urelements.
A system equivalent to ZF can then be obtained from ZFU by replacing the last axiom with the
assumption that there are no urelements at all. ZFU~ is ZFU without foundation.

The class (¥)§ is obtained from (¥)o by relativizing free variables and quantifiers to the complement
U of U.

The decidability of the set-satisfiability problem for (V)g with respect to well founded universes with

infinitely many urelements is ensured by the following proposition.
PROPOSITION 3.1 ZFU 1is complete with respect to the ezistential closure of formulae in (V)g .-

Proof. Suppose that given ¢(zi,...,z.) € (V)g there exists a model M having domain Dy and

interpreting the membership relation € by €4, such that there exist a?,...,ai! € Doy for which
ME=p(aM, ..., aM).

., For any pair of different elements ag"‘,a}-"' 1< i,j < n by extensionality we can chose another element

; M M A M M M M M M
a,f’}- such that (a.,-‘j €mai Aail Emaf ) or (”'-’.j Eam ait Aalt €y af ).

Consider now the following graph Gy = (N1, E;) where:
Ni={a",..,ay}ufaif [1<ii<n}
Ei={<a,b> |a,be N Aacy b}

Let A be a set of nodes having the same cardinality of the set {a;t; | 1 €14, <n} and such that
ANN; =49, .
“Then let G = (N, E) be such that:
N=N U4
E=E uU{<a, fla)> |a€ 4},
where f is a fixed bijection‘between Aand {af |1<4,5<n} . ‘
Because of the definition of the graph G we have that for any pair of nodes a,b € Ny such that a # b,

there exists a node z € N such that

(<z,a>€EA <z,b>¢E) V (<2,a>F EA <2,b>€ E).
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In other words the graph G is eztensional on the elements of N .
Now given any model U; of ZFU~ since U, has sufficiently many atoms, it is very easy to see that
in U, there is a set Ny, satisfying the following properties:
1) there is a function x: N — Nj,, which is a bijection and,
il) for any pair a,b of elements in N we have
a) a=b — ag* =b*?
b) agubd — a* €y b*.

The set Ny, can be found, for example, in the following way: suppose * associates atoms to the

elements of A in a one-to-one fashion. Then define inductively
e ={y" | <y,z>€E}

forany s € N\ 4.
Finally take Ny, = N* ={z* |z € N}.

(at)*,. .., (a)* are n setsin U satisfying @. In fact, let us suppose, by way of contradiction, that
(af)*, ..., (a1)* satisfy ~¢. If this is the case they must satisfy the negation of one of the conjuncts
in ¢, say p;. Hence {(ai')*,...,(a)* satisfy the formula —; which is of the form

(3= eyl)... (33‘;‘ € y}_.)(—xl'; A AL

Therefore there exist elements df,...,d* in the transitive closure of (ai!)*,...,(a;!)* -that satisfy the
matrix of —~y; (i.e. a conjunction of literals) when substituted for the existentially quantified variables.

At this point it is straightforward o check using a) and b) above, that the elements di,...,d,
together with (a)*,...,(e)* would satisfy the matrix of —; , contradicting the hypothesis that
(at)*, ..., (a')* satisfy ¢. ]

Notice that the previous (inductive) definition makes sense just because E is well founded.

From the proof it follows that a method to check if a formulain (V)§ is set-satisfiable in any (equiv-
alently every) well founded universe with infinitely many atoms, is provided by an exhaustive search for
a suitable graph, among a finite number of possibilities, quadratically bounded in the number of free

variables in ¢ .

?We will denote by, a* the image of a with respect to .
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When the axiom of foundation is dropped we still have a positive solution to Problem 1.

PROPOSITION 3.2 For any ¢ € (V)§ it is decidable whether or not there ezists an M such that
MEZFU- and MEp3.

Proof.We proceed as in the proof of the previous proposition. However now the graph G may
contain cycles and we cannot define * by induction as before. This case is treated by using the so-called
permutalions of the universe (see [Kri69].

Consider the case in which only one cycle is present. If we delete one edge in the cycle we are back in
the previous case and we can define Ny, ag before.

Let us suppose that < z,y > is the ;dge that has been deleted. Consider the model U; defined
starting from U, and using the permutation of the universe that swaps z* with z* U {y*}.

In other words the model U, is obtained by taking Dy, as universe, defining the bijection p from

Dy, to Dy, that is the identity on all the elements different from z* and z* U {y*}, whereas
p(z") =z u{y'},
and
p(e*U{y'}) = ="
and then letting the membership relation €, be defined by the following equation:
a€y, b = a€y pk).

exit exit The two models U, and U, have the same domain and therefore N* C Dy, ; moreover the

n sets in N* will satisfy properties a) and b) above with respect to €, , therefore

Us = (o), - {ad ).

The general case with, say, m cycles is treated by defining a sequence of m models U,,..., U, as

before. )

The previous property immediately yields that the derivability problem, for the universal closures of

negations of formulae in ¢ € (V)g, with respect to ZFU~, is decidable. Furthermore the proof suggests an

3by convention, M = ¢ stands for M is a model of the ezistential closure of v.
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alternative way to strength our set theore.tic assumption, so that the set-satisfiability problem for ¢ € (V)7
becomes decidable as well. In fact if we assume that for any graph G it is always possible to find elements
set-realizing G, mantaining properties a) and b) in the proof of Prop.3.1, the set-satisfiability problem for
¢ € (V)] becomes decidable and the theory becomes complete with respect to to the existential closures
of formulae in this class. Furthermore the proof shows that a reflection property over the hereditarily
finite sets holds in such a rich universe for formulae in ¢ € (V)7 , provided the notion of hereditarily finite

set in conveniently formulated. That can be done by saying that a set z is hereditarily finite if it is one

of zy,...,z, satisfying a conjunction of the form:
zi={211,. s Ztm, } A oo A Ty ={Z1ny-- ), Tam, }
where z,,...,2, are distinct variables and each z;; is drawn from zi,...,2,. Thus, for example a set

z such that z = {z} is counted as hereditarily finite.
That brings to evidence the crucial role that is played by the assumption that variables range only
over sets in the above result. In fact if we discard that assumption we can produce a formula in (¥)o

which is satisfiable in the above universe, but it is not finitely satisfiable there.
PROPOSITION 3.3 If the following formula ¢|(y, w) :
(nENMREN) R eV AYEDAIZY A YY) A (Yur € w)(w, = w) A

VMnen(wey) A Ve et =w) Aygy

where Y(y) stands for:
My B EV W ER A R EYs — Y1 € 1)

is satisfied with y interpreted as S, then S must conlain an infinile descending chain.

Moreover the sets Y and W such that:
1. Y ={",1,Y;,...}u{W};
2 Yi={Y;jlw>ji>iju{Ww} w>i>0;
3. Yi#Y; w>i>3>0;
4ow={w},

satisfy ¢ .

Proof. Let us rewrite the formula by using some self-explanatory abbreviation:

Trans(y) A y#08 A 8 ¢€y A c-is-transitive-on-y A w={w} A
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(V91 € y)}{(w € y1) A w-is-the_only_element-in-y-such-that-wew A y¢ y.

It is straightforward to check that ¥ and W satisfy o) (y,w).

Vice versa let us consider Y', W’ satisfying o;(y, w).

First of all notice that ¥’ must be different from W' because W' satisfies w = {w} whereas Y’
satisfies y ¢ y.

We will prove by induction that there exist sets
Y,,Y,, Y,
such that,if w>j7>¢>0:
L YeY';
2. Y e, Y] 3Y/;
3V #Y
4. W2y, , wey .

]

Since Y' # W' = {W'}, there must be an element Z €Y' such that Z # W' .
Let Y, = Z. Notice that W' € Y, since the conjunct (Yy1 € y)(w € y1) in ¢, is satisfied by Y.

Let us suppose that we already established the existence of

having properties 1 2 3 4 above.
Since Y,: =W = {W‘} , there must be an element Z € YP' such that Z # W', Since Y’ is transitive,

ZeY', moreover 2 # Yk' for p> k > 0, since otherwise we would have a cycle of the form:
ZeY,e...eV, ez

from which we could conclude that (for example) Y,: € Y,,' using the transitivity of € over ¥', and this
would contradict the fact that W' is the only element in Y’ that belongs to itself.

At this point we can put Y},'_H = Z and proceed in this way to determine the infinite descending chain
inY'. u

Let us conclude this section by summarizing the situation about possible formulation of the axiom of

infinity in the class (¥)o.
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The formula @, (a,b), see Sec.2, provides a (Y)o formulation of the infinity axiom with respect
to a set theory which assumes the existence of no atoms. Another formulation of the infinity axiom by a
(¥)o -formula is given in [PP90¢), and the conjunction of these two formulations works also in absence of
the axiom of foundation [PP90b].

In the case in which the axiom of foundation in not assumed the formula | can be seen to express
the existence of infinite sets even if we assume the existence of atoms, provided that quantifiers range on
atoms as well as on sets, however the satisfiability of ¢, violates the axiom of foundation.

In case the quantifiers are assumed to range only over sets, by Prop. 3.2, the infinity axiom is not

expressible in (V)o (see the proof of proposition 2.1).

4 A semidecidability result assuming Boffa’s axiom

We return now to set theory without urelements to show that if a suitable antifoundation axiom is
assumed then, although the set-satisfiability problem for a very restricted subclass of the ‘Ao formulae
is not semidecidable ({PP90d}), its complement is semidecidable even with respect to the full class of the
Ap formulae.

The form of antifoundation axiom we consider is the following:
Every eztensional graph is isomorphic to a transitive set,

The axiom is a weaker form of an axiom introduced by Boffe; it is denoted by BA; and it is discussed

in [Ac288] .

PROPOSITION 4.1 If the universe of sets satisfies BA,, then the complement of the set-satisfiabilily

problem for the class of Ag -formulae is semidecidable.

Proof. Let @(z(,...,2n) € A¢ and let us assume, without loss of generality, that there are no
existential quantifiers that are not in the scope of a universal quantifier (this amounts only to possibly
increasing the number of free variables in ¢ ).

Let us suppose that there are sets ay,...,a, satisfying ¢ and let us start eliminating all the existential
quantifiers by introducing appropriate Skolem functions fy,...f, .

Notice that since the formulais Ag, it is not restrictive to consider fi,...,f, as having domain and
range included in trel({a,...,aa}).

First of all let us give an idea of what we are seeking:

start with a graph Gy having n nodes associated to ar,...,a, and (as u;ua]) having an edge going

from node a to node b if and only if the set associated to node a belongs to the set associated to b.
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Go might be not extensional, moreover there might be sets in Go whose images with respect to some
of the Skolem functions fi,...,f, lies outside Gy . Therefore we build G, by adding enough nodes to
guarantee extensionality among nodes of Gy and by adding the images with respect to fi,...,f. of
nodesin Gy .

Now G; might be non extensional and some of the images with respect to fi,..., f, might be missing,
for example on nodes in Gi \ Gg.

This forces us to continue this way and to build a, possibly infinite, sequence of graphs
Go, Gy, Gy et

Let G=|Ji, G-

A compactness argument shows that G is extensional and that the images of any node a with respect
to fi,...,f, isin G.

Now the image of ay,...,a, in a transitive set isomorphic to G, which exists because of BA;, is an

n -tuple of sets satisfying ¢ .

Now we will give an argument to show the semidecidability of the existence of G, from which we can
conclude the semidecidability of the class of Ag-formulae.

Notice that this very same argument for the construction of G would apply also in the well-founded
case. In that case however, we should look for a graph not containing infinite descending chains and we
would not need any axiom to conclude the set-realizability of such a graph since Mostowski’s theorem
would guarantee it.

Consider a tree T, that we will call try-tree, in which all the possibilities for the comnstruction of the

sequence
Gy, Gy, Gy et
are taken into account.
T can be built as follows: we will always consider graphs G; with n distinguished nodesb,,... b, .
We will also assume that s functions FJ,...,F} having a set of tuples in G; as domain and range

included in G; are associated to G;.

Then we will say that G; satisfies ¢(z),...,z,) with respect to N if and only if:

1. N isasetofnodesof G; , by,...,b;€ N , different nodes in N have different sets of predecessors

in G; (i.e. G; is extensional on N} ;

2. considering any set realization r; of G; such that:
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(a) =i is one-to-one ;
(b) ri(z) ={ri(y) | = and y are connected in G;}; .

the sets ri(b;),...,mi(ba) together with the functions induced by the F},..., F{ on the realizations

of nodes in G; , satisfy the formula
<M = (Yyy, ., m € n[N)) (™)
where (Vyi,...,u)(¢") is the Skolem prenex normal form of ¢ .

Let k be the maximum among the arities of the Skolem functions f),..., f,.

We will start defining the root of T as the empty graph. Then all the children of the root will be the
graphs G; with at most n + s -n* + (]) nodes satisfying ¢ with respect to {by,...,5,} . Notice that
the bound on the number of nodes guarantees that all the possible variants of such graphs are taken into
account.

In general the children of a graph Gi = (N;, E;) will be all possible graphs G; with less than
[N+ [N + (ll\z"l) nodes, satisfying ¢ with respect to N; and such that the functions associated to

G are extensions of the functions associated to G;.

At this point it is straightforward to see that T is finite if and only if ¢ is unsatisfiable. [ ]
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