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INTRODUCTION

The main aim of this first paper is to give the necessary background for
the second paper, henceforth denoted [II]. In section 3 we also give a self-
contained proof of new undecidability results for certain term algebras.
Unless otherwise specified, all references are listed at the end of [II].
Algebraic calculus is the first example of a situation that is now frequent
in computer science. Linguistic items become the data on which calculations
take place. Syntactical structures in which the objects are terms originate in
Herbrand’s work and play a central role in mathematical logic. Such struc-
tures have become the principal support of information in the last generation
of programming languages. Terms play the double role of linguistic elements
and of objects to make computations. When this second feature is empha-
sized, terms are described as finite trees. The operations of unification and
matching, the rewriting calculus oriented by strategies require the solution of
certain first-order formulas in the algebra of finite trees. Infinite trees were
introduced and studied by the French school in the late seventies to provide
algebraic semantics of programming languages. The symbolic execution of
flowchart schemes and of recursive program schemes gives rise, in a natural
way, to rational and infinite trees respectively ( see [Co85]). Furthermore,
rational trees provide the right algebraic framework for the study of unifica-
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tion without occur check. Then we may say that the investigation of term
algebras has been fruitful for the analysis of programs.

Finite trees are essentially absolutely free algebras. The first-order theory
of such algebras, which we shall denote by 7z¢, was axiomatized and inves-
tigated by Mal’cev [Mal61] who proved the decidability of Tpp by carrying
out an analysis of its models. Mal'cev’s axioms were used by Clark [C178]
in order to assign to the negation as failure rule, shortly NAF, a declarative
model theoretic meaning. Later Fitting [Fi85], Kunen [Ku87] and Colmer-
auer [Col84] have used the theory 7 to provide semantics of the NAF
rule and of rules which return computed answers more general than variable
substitutions.

Recently, Maher [Mah88] has investigated a theory for infinite and and
rational trees.!

Such theory that we denote by 777 has properties analogous to the theory
Trp. Maher [Mah88] proves the decidability of the theory of infinite and ra-
tional trees in a signature with at least two symbols. Marongiu and Tulipani
IMT89] complete Maher’s results for every signature and give a description
of the complete exstensions of the theory 7;r. Such a description, analogous
to Mal’cev’s for 7pp, is made possible by the introduction of special expres-
sions, called terms with pointers, that can be interpreted in every model of
Trr

The decidability of first-order sentences by transformation to a canonical
form has been studied by Comon-Lescanne [CL89] both for finite and infinite
terms. Model theoretic results concerning stability have been given for the
theory 7pp by Bouscaren-Poizat? and Belegradek®, for the theory 774 by
Toffalori?.

The first-order theories obtained by 7p¢ and 777 by adjoining the subterm
relation are both undecidable provided the signature has operations of arity
greater than 1. This was observed for finite terms by McCarthy [McC77].

'The axioms were firstly given in J. Jaffar, J.L. Lassez and M.J. Mabher, Prolog II
as an Instance of the Logic Programming Language Scheme, in: “Formal Descriptions of
Programming Concepts III”, M. Wirsing (ed.), North-Holland 1987, pp. 275-299.

2E. Bouscaren and B. Poizat, Des Belles Paires auz Beauz Uples, J. Symb. Logic 53
(2) (1988), pp. 434-442.

30.V. Belegradek, Theory of Models of Locally free Algebras, Trudy Instituta, Matem-
atiki Sibirskogo Otdelenija Akademii Nauk SSSP 8 (1988), pp. 3-25.

4C. Toffalori Model theoretic questions for infinite terms,submitted to Boll. UMI (1991).

Later, Venkataraman [Ven87] proves the decidability of the existential theory
of finite terms with subterm relation in every signature and proved, on the
other hand, that in certain signatures the 3V fragment is undecidable. We
denote by dV< the fragment of sentences in prenex form with a prefix of exis-
tential quantifiers followed by universal quantifiers bounded by the predicate
<. Treinen [Tre90] has extended the undecidability results to any algebra of
terms. On the other hand, Tulipani [II] proves that in any finite signature
the existential fragments of rational and infinite trees with subterm relation
coincide and are a decidable theory.

In first section of this paper we briefly review the results of Mal’'cev
[Mal71}, Maher [Mah88] and Marongiu-Tulipani [MT89]. In particular we
present the formalism and the main facts about terms with pointers. In
second section, we consider the theories of finite, rational and infinite terms
with the subterm relation with a short introduction to the decidability results
of Venkataraman [Ven87] and Tulipani [II]. In third section, we give unde-
cidability results by a method which proves that the structure of natural
numbers is definable into any algebra of terms with subterm relation using
V< formulas. Then, we may apply Matijasevié’s theorem to get undecid-
ability results for every term algebra with subterm relation in any signature
with some constant and at least a symbol of arity greater than 1. Using
this technique we also prove a novel result which states that, in presence of
the subterm relation and in signatures with symbols of arity greater than 1,
the 31 theory of rational trees and the ¥y theory of infinite trees are quite
different. In fact, the first is r.e. and the second has degree not less than X}
in the analytical hierarchy. Here, in analogy with the arithmetical hierarchy,
we call A the prenex formulas, whose quantifiers are bounded by the pred-
icate <, and we call ¥; the formulas which are existential quantification of
Ay formulas.



1 Decidability for finite and infinite terms

1.1 Fundamental notions

In order to make this paper self-contained we repeat here, almost verbatim,
part of the content of section 1 of [II].

Let S be an algebraic signature. The rank of a function symbol f € S is
called the arity of f. We assume that the set Sy of constant symbols is non
empty and, unless otherwise stated, that S is finite. We often assume that S
contains a symbol of arity greater than 1. Let us now describe the structures
we are interested in.

Let N be the free monoid of words on the alphabet of positive integers
N,; € denotes the empty word. If p, ¢ € N7 then |p| is the length of p, p < ¢
means that p is an initial segment of ¢, p < ¢ if p < ¢ and p # ¢ and p.q is
the concatenation of p with g. A non empty D C N7 is a tree domain if it
is closed under initial segments and if i.p € D, for i € N, then j.p € D for
every j <. A functiont: D — S is called a term (or a tree in the signature
S) if for every p € D, t(p) = s iff the arity of s is equal to the number
of successors of p in D. We denote by IT the set of all terms in our fixed
signature S. Any element p € D is called an occurrence, or position in t; the
domain D of the function ¢ will be denoted by Occ(t).

Let V' be any set of new elements such that V N I7T = (). We define
IT[V] as before by adding the set V to the signature, where any element
of V is considered of arity 0. The elements of V are called variables or
indeterminates. So we have that IT = IT[(].

Assume s,t € IT[V]. Then s is a subterm of t, denoted s < t, if there is
some p € Occ(t) such that Oce(s) = {q : p.g € Occ(t)} and s(q) = t(p.q) for
every ¢ € Occ(s). The term s is denoted by ¢/p. The set IT[V] is an algebraic
structure of signature S with respect to the syntactical operations of term
formation that can be described in the following way. The interpretation of
any n-ary f in I'T[V] is such that: f(t,...,%,) = ¢ iff Occ(t) = {g,i.p:p €
Occ(t;) forsome 1l <i < n}and t(e) = f, t/i =t; for every 1 <i < n.
FT[V] is the substructure of all finite terms, i.e. the terms of IT[V] whose
domain is finite; F"T" denotes F'T'[()] and is a substructure of IT. We denote by
RT'[V] the substructure of IT[V] of terms having a finite number of subterms;
the elements of RT[V] are called rational terms and RT will denote RT[()].

When the elements of FT[V] play the role of syntactical expressions of a

first-order language, we think of them as words in a certain alphabet defined
in the usual inductive way.

We denote by £ the first-order language in signature S whose only pred-
icate symbol is identity.

We consider now first-order theories in the language £ whose models are
structures of terms.

1.2 Theories of finite and infinite terms

Let Tpr be the first-order theory in language £ whose non logical axioms are
the universal closure of the following sets of formulas

(F1) Flor, s ong) # g, wn,)

for f, g distinct function symbols in S of arity n¢, ng, respectively;
(F'2) flor, oo on,) = flw, ooy wn,) — v = w1 A v, = Wy,
for f function symbol of arity ny;

(F'3) L# v

for t term which contains the variable v and is different from v.
The axiom (F'3), which is a schema, in the computer science terminology
is named Occur-check Axiom.
It is immediate to verify that for any set X of indeterminates, F'T[X] is
a model of Tpp. On the other hand, the structures RT[X], IT[X] satisfy
axioms (F'1), (F'2) but do not schema (F'3). In fact, it is a characteristic
property of these structures that of having elements which are solution of an
equation v = f(v,v) in the unknown v, or of a system {v; = f(vy,v9),v9 =
g(v1,v9,v1)} in the unknowns vy, ve. More precisely, let us consider a system
of equations
V1 = tl(ﬁ, ’LU)
D= :
U, = 1, (U, W)
to be read as follows. We denote by ¢ the sequence of distinct variables
V1,...,U,; by W a sequence of variables distinct from the variables ¢ and by
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t;(, W) a term (finite!) whose variables are among the variables ¥, @. A
system is said to be in rational solved form if it does not contain a circular
set of equations, that is to say a set of equations of the form v;, = v;,, .
Vip_y, = Vs, Vs, = vy, Consider now the axioms ([Mah88] [Com90])

ey

(F3) Va3l \ D

for every system D in rational solved form. We denote by 77 the theory
in the language £ whose non logical axioms are (F'1), (F2) and (F'3'). We
can easily see that for any set of indeterminates X, the structures RT[X] e
IT[X] are models of T;7.

In each of the structures FT[X], RT[X], IT[X], the elements of X can
be characterized as the elements which satisfy the first-order formula Ind(v)
defined as follows

Ind(v) = /\ -E]Z(U - f(zla s 7an))
fes

where Z'is a sequence of m variables with m the maximum arity of functions
in S, and ny is the arity of f. An element in a model of Ty or Ty wich
satisfies the formula Ind(v), is called indecomposable, so every indeterminate
in X is an indecomposable element of FT[X], RT[X], and IT[X]. Define

now

IND™ ={3I" vInd(v)}
IND® = {3%*yInd(v) for every k € w}

fornew

where 31" and 32* are to be interpreted as “There exist exactly n” and

“There exist at least k” respectively. If v € w + 1 the theories 7%, , 7} are

defined as follows
T =T +IND.

It is now immediate to verify that:
FT[X] is a model of T2 iff | X| =n,
RT[X] and IT[X] are models of 7% iff | X| = n,

FT[X] is a model of 7% iff X is infinite,

RT[X] and IT[X] are models of 7% iff X is infinite.

The axiom —JvInd(v), needed to form 72, 7% from Tpr, Ti7 respectively,
in logic programming is called Domain Closure Axiom, shortly DCA. The
theories T were introduced and studied by Mal’cev [Mal61] [Mal71] whose
results can be resumed in the following theorem.

Theorem 1.1 (Mal’cev 1962 [Mal71]) Let S be a finite signature. Then
the models of Tpr are exactly the locally free algebras. The theories Tk, for

v € w+1 are all the complete extensions of the theory Tpr. Hence the theory
Trr is decidable.

Completely analogous results, proved in [Mah88] and [MT89], hold for the
theories 7. In particular we have:

Theorem 1.2 (Maher 1988 [Mah88]) Let S be a finite signature with at
least two elements. Then T is complete. If S is infinite Trp is complete.
Hence the structures RT and IT are elementarily equivalent.

From Maher’s results it is almost immediate to derive that the structures
RT[X] and IT[X] are elementarily equivalent for any set X of indetermi-
nates.

Theorem 1.3 (Marongiu-Tulipani 1989 [MT89]) Let S be any finite sig-
nature. Then every sentence in L s effectively equivalent modulo Trr to a
Boolean combination of sentences 3%y Ind(v). Hence Trr is decidable and
the theories Tjy for v € w+ 1 are all its complete extensions.

1.3 Quantifier elimination

We now discuss the quantifier elimination techniques used for the proofs
of the above results. The key idea is that every sentence of theory 7 is
provably equivalent in 7 to a Boolean combination of formulas that can be
algorithmically handled in 7.

1.3.1

Mal’cev proves that every sentence of L is equivalent modulo 7zr to a
Boolean combination of sentences of the form 32*vInd(v); from this all the
results for the the theories 7} with v € w + 1 are deduced.
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1.3.2

Kunen [Ku87] considers the theory 7p7 in infinite signature and proceeds as
follows. Let Inv.S be the collection of all unary function symbols inv} for
each function symbol f in S of positive arity ny and each 7, 1 < i < ny;
let S* be the new signature S U InvS. T, is the theory in signature S+
obtained by adding to 77 the axioms which are the universal closure of the
following formulas, for every function symbol f of S and every ¢, 1 < i < ;.

(INV1) flor, . om,) = w — v (w) = v

(INV2) —~30(f(v) = w) — invi(w) = w
Then, the following results are obtained.

Theorem 1.4 (Kunen 1987 [Ku87]) FEvery formula of Ty is equivalent
modulo T, to an open formula. Ouwing to the fact that every open sen-
tence can be evaluated in Ty which is a conservative extension of Tpr, the
completeness and decidability of Tpr follow.

1.3.3
Here is the method used by Maher [Mah88].

e He proves that every sentence of the theory 7;r is equivalent to a
Boolean combination of basic formulas which express the fact that cer-
tain systems of equations have a solution.

e Then he proves that:
(i) if signature S is infinite, any basic formula can be evaluated in
Trr; the completeness of 777 follows;

(ii) if signature is finite and contains at least two function symbols,
any basic formula can be evaluated in 7;%; so, the completeness
of T is obtained.

This method can also be applied to the finite case to get analogous results
for the theories 7Trr and 72,

1.3.4

In [MT89] an alternative approach to quantifier elimination for infinite terms
is proposed. The main tool used consists of new syntactical expressions called

terms with pointers that we want now briefly describe (for further details,
see [IT]).

1.4 Terms with pointers

Consider the algebra of finite terms FT[V U N,] in signature S where N, is
the set of positive integers. We may suppose the sets S, V', N, to be pairwise
disjoint. Then, the set R[V] of terms with pointers is

RVl ={t:te FT[V U N4] and ¢(p) € N, implies t(p) < |p| }

So, the terms f(1,v) e f(f(2,v),1) are terms with pointers, but f(2,v) is
not because the natural number 2 is in the occurrence p = 1 and |p| = 1.
Any term with pointers can be thought of as an expression which represents
a rational term. The terms with pointers f(1,w) and f(f(2,w),1) represent
the rational terms that are solutions of the equations v = f(v,w) and v =
F(f(v,w),v) respectively, for the unknown v with parameter w. It is possible
to define a function
ey : R[V] — RT[V]

which maps any term with pointers ¢ into the rational term ¢ represented
by t. Given a term with pointers ¢ and p € Occ(t) it may happen that ¢/p,
which is an element of FT[V U N, ], is not an element of R[V]; however, it is
possible to define and calculate a term with pointers ¢//p which satisfies the

condition )
ev(t/p) =1t/p

and so represents a subterm of the rational term represented by ¢. We can
verify that every subterm of £ is represented by some term with pointers in
the set {t//p: p € Oce(t)}.

We can now briefly describe the quantifier elimination method for infinite
terms proposed in [MT89]. The language L is extended in two ways. On the
one hand, terms with pointers are used in the role of first-order terms. This
makes sense owing to the two facts:



s
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(i) it is possible to define what means that an equation or a formula which
contains terms with pointers is satisfied in a model of Trr (see [I]
Propositionl.1);

(ii) the syntactical transformations, which usually are applied to sets of firs-
order equations, can also be applied to sets of equations with pointers
(see [II] Lemma3.1).

On the other hand, signature S is expanded to ST = SUInvS, in analogy to
Kunen’s approach, and the theory SY, obtained from 7% by adding axioms
(INV1) and (INV2), is considered. Moreover terms with pointers in signature
S UInvS are included.

At this point it is possible to define what means that a sentence with
pointers in signature S is a theorem of the theory S%.. Then, the following
result is obtained.

Theorem 1.5 Any sentence with pointers in signature St is effectively e-
quivalent in S¥ to an open sentence with pointers in signature S.

An open sentence with pointers can now be evaluated by elementarization
procedure (see [II] Lemma 3.1).

The completeness of 7} is now deduced and from this also the complete-
ness of 77 for v € w easily follows. An analogous argument gives the same
result for the theory 7j.

2 Decidability of theories with subterm re-
lation

We consider now the structures (FT'[X], <), (RT[X], <) and (IT[X], <) ob-
tained by expanding the algebraic structures of terms by the binary subterm
relation <. This relation is a partial order on FT[X] and a preorder on the
structures of infinite terms RT[X| and IT[X]. Denote by L< the language
obtained by adding to £ a new binary relation symbol which we still denote
<. As we shall see in section 3, the structures of terms with subterm re-
lation are undecidable. Nevertheless, for some applications, the existential
fragments of these theories deserve attention.
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2.1 Existential theories

We denote by E the set of existential first-order sentences in the language
L< and by The(FT[X], <), Thg(RT[X], <) and Thg(IT[X], <), the sets of
sentences in E which are true in the indicated structures. Concerning such
theories the following results hold.

Theorem 2.6 ([Ven87]) The theory Thg(FT[X], <) is decidable.

Theorem 2.7 ( [II]) Let X = {zy,...} be a non empty set of indetermi-
nates. Then,

Thg(RT(1], <) = The(RT(X), <) = The(IT[X], <).

Moreover this set of sentences is decidable. If the signature has more than
one element of positive arity, then

The(RT[z1],<) = Thg(RT,<) = Thg(IT, <).
When the signature has only one element of positive arily we have
Thg(RT[z1],<) # Thp(RT,<) =Thg(IT, <).

These results are obtained by studying the solvability of certain systems of
atomic formulas with pointers. We refer the interested reader to [II] where
signature is supposed to have at least a symbol of arity greater than 1; the
case of a signature whose symbols are all of arity < 1 is much simpler.

2.2 Axiomatizations of subterm relation
Consider now the following axioms in the language L<.

(O1) Reflexive and transitive property for <
(02) Antisymmetric property for <

(03) Yooy ...Vu, (’U < flor,..vn) = (V= f(v1,...,00) VVigi<n ¥ < vz)>

for all f € S; if the arity n is 0, then V,;<, (v < v;) disappears.

11



(0O4) VoVz (z <t (VpEOcc(t) z=tp V Voevart) 2 < ’0)

where ¢ ranges on R[V], V is countably infinite , and 7 is a list of
the variables in var(t).

Then, we define the theories in the language £<
Orr with axioms T7p, (01), (0O4) ;
Opr with axioms 7rp, (O1), (02), (03) .

Observe that axioms (O4) are stated using terms with pointers. However,
it is possible (see [II] Definition2.1) to transform axioms (O4) in first-order
sentences of L<. Now, we have that, for any set X of indeterminates,

IT[X] and RT[X] are models of O;r, while
FT[X] is model of Opr.

The theories Orr and Opr prove that the transformations and the procedures
used to decide the existential theories of RT[X] and FT[X], respectively are
correct (see sections 3—-6-7 of [I1]).

3 Undecidability

It was observed by McCarthy [McC77] that the theory Th(FT[X],<) is
undecidable if signature S contains symbols of arity greater than 1. The
same holds for the theories Th(RT[X], <) and Th(IT[X], <). Venkataraman
[Ven87] has proved, for some signature, the undecidability of the fragment
V< of Th(FT, <). The method he used consists in codifying Post’s problem
on strings into the named fragment. Treinen [Tre90] generalized Venkatara-
man’s method and succeeded in proving that the 3V fragment of rational and
infinite trees as well as various other fragments of other algebraic structures
are undecidable.

We assume our signature contains at least a constant symbol that we
denote A and a symbol of arity greater than 1 that we denote f. We assume
f binary to simplify notation, but we can get the same results, in case of
arity greater than 2, by using the binary term f(u,v,...,v). We shall show
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that the structure of natural numbers is definable into any algebra of terms
(FT[X],<), (RT[X],<), (IT[X], <) by means of I¥< formulas. In this way
we can extend the well known undecidability results to any signature con-
taining at least a constant and a function symbol of arity greater than 1;
moreover we can establish that the theories Th(RT, <), Th(IT, <) are quite
different, as already stated in introduction (see Propositions 3.11 e 3.12 ).

3.1 Interpretations

In analogy with arithmetical hierarchy we say that a formula o of L< is
A if every quantifier which occurs in « is bounded by the symbol <. A
formula o of L< is a ¥y formula if it is an existential quantification of a A
formula. A V< formula is a formula logically equivalent to a prenex formula
with universal quantifiers bounded by <. Finally we shall denote by 3V< the
subset of ¥; of the formulas which are existential quantifications of formulas
in V<.

Let us consider the following V< formulas in the language L<. Denote by
m the maximum arity of operations in signature S, by n, the arity of the
generic operation g and by S’ the set S\ {A, f}. We stipulate, as usual, that
the conjunction of the empty set of formulas is true or, alternatively, A = A.

natg(v) = (Vy <v)(Vzy,..., 2, <v) (/\gegl(y # g(x1,...,Ty,))A
Ay = F(21,35) = 1 = A) A (v # A))
nat(v) = naty(v) A f(A,v) #v
funct(h) = (Va1,22,23,Y1,Y2,Ys < h)(( Ni<i<s(zi = f(A, u:))
Af(z1,29) <h A floy,23) <h) = 29 = a:3>

To increase readability, in what follows we shall denote the term f(A,z) by

succ(z). For any natural number n € N we denote by n its codification in
FT defined inductively by

0=f(AA), n+1=succ(n).

Denote by NAT the set {n : n € N}; it will play the role of the natural
numbers. Observe also that the subterm relation on N AT codifies the usual
order relation on natural numbers.

Then, the following proposition can be easily proved.

13



Proposition 3.8 Let (Term, <) be any substructure of (IT[X], <) for some
X. Then,

(i) nato(v) defines NAT in (FT,<);
(ii) nat(v) defines NAT in (Term, <);
(iii) (Term, <) = funct(h) implies that the set
{(a,b) : a,b € NAT, f(a,b) < h} is a function.

We can now describe two ¥; formulas which codify addition and multi-
plication in NAT.

Proposition 3.9 In L< there exist two V< formulas, which we denote by
add(h,z,y, z) and mult(h,z,vy, z), such that, for every m,n,r € N,

(Term, <) = Fhadd(h, m,n,r) iff m+n=r
(Term, <) = hmult(h,m,n,r) iff m-n=r.

Proof. We can take as add(h,z,y, z) the formula which has quantification

prefix (Vzi, 2o < 2)(Vz1, 22 < z) and whose matrix is the conjunction of the
following formulas

y<z

fz,z) <h

fz1,21) Sh— (z1=00 21 =1y)

(z1 = succ(zz) A 21 = succ(ze) A f(21,21) < h) = f(z2,22) < h

Assume now that h,m,n,r satisfy such formula in a term algebra. Then,
n < r by the first line. The set {(a,b) : a,b € N, f(a,b) < h} contains a
subset of pairs of the form

(m,r),(m—=1,7—=1),...,(m —k,n—k)

and so it must exist a k such that m —k = 0 or r — k = n, by the second and
the fourth line. Hence, by the third line we have necessarily m — k = 0 and
r —k =mn. So, r =m + k. Viceversa, given m,n and r = m + n the term h

14
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Fiag. 1

satisfies add(h,m,n,r).
We can argue similarly to get the formula mult(h, z,y, z); the idea is that

when m > 0,n > 0,7 > 0 the term h has to contain the natural bijection
between the sets

{m,m—-1,...,1} x{n,n—1,...,1} and {r,...,1}

where we think of the pairs in the first set to be ordered by the lexicographic
order induced by the usual order on the natural numbers. We can take
as mult(h,z,y,z) the formula which has as bounded quantification prefix

(V1,29 < 2)(Vy1,y2 < y)(V21,22 < 2z) and whose matrix is the conjunction
of the following formulas

z2=0<(z=0Vy=0)

f(f(z,y),2) < h

f(f@Ly),z) Sh= (m1=1Az=1) < 2z =1)

(1 # LA o = 21 Ayp = succ(ya) Az = succ(22) A F(f(21,91),21) < )
= f(f(@2,92),22) < h

(y1 = LAys =y Az = succ(za) A 21 = suce(z) A f(f(z1,11), 21) < h)
= f(f(z2,92),22) < h

15



Corollary 3.10 Assume that our signature has at least a constant and a
symbol of arity greater than 1 and that (Term, <) is any substructure of
(IT[X], <) for some X. Then we have

(1

) (Term, <) is strongly undecidable.
(2) The theories Opr and Orr are essentially undecidable.
)

(3) The fragment Thay_(Term, <) of the sentences in IV< which are true
in (Term, <) is undecidable.

Proof. (1) are (2) easy consequences of the fact that the structure of the
natural numbers ' = (N, +,-,0,1,<) is definable in (Term, <). For (3)
remember that nat(z), add(h, ,y, z), mult(h,z,y, z) are V< formulas. Then,
for any purely existential sentence « in the language of arithmetic a sentence
o' in the fragment 3V< of the language L< can be constructed in order that
a is true in AV if and only if o is true in (Term, <). Now, (3) is obtained
from Matijasevi¢’s theorem.
Consider now *; fragments.

Proposition 3.11 Thy, (RT, <) is recursively enumerable. More precisely,
the ¥1 sentences of L< which are true in (RT, <) are exactly the Xy sentences
deducible from the theory Opr.

Proof. Observe that every model of O;p is end-extension of (RT,<); A
end-extension means that A is extension and b € A and b < a € RT imply
b € RT. So, conclude that a ¥, sentence which is true in RT is also true in
any model of Oyrp.

In section 1 we have seen that the first-order theories of RT and I7T in
language L are equal and decidable. This does not happen for ¥; theories
as the following proposition states.

Proposition 3.12 Thy, (IT, <) is not recursively enumerable; actually it is
at least 1.

Proof. Let us show that Thy, (IT, <) is at least in position ¥} in the ana-
lytical hierarchy. To obtain this, it is sufficient to prove that

16

For any ¥ sentence of the arithmetic o, a ¥ sentence a* of L
can be constructed such that

(1) N = aif and only if (IT,<) | o*

where N is the structure of natural numbers.
Consider the formulation of second-order arithmetic which uses variables
for unary functions and whose atomic formulas are of the form

(a) utv=w
(b) w-v=w
(¢) Hi(u)=v

where u,v,w are numerical variables or numerals and H; is a variable for
unary function. We can suppose « to be of the form

(2) dHy - dH Q1zy - - - Qi

where Hj, ..., H, are variables for unary functions, Q;z; are first-oder quan-
tifiers possibly bounded and ¢ is a quantifier free formula whose atomic sub-
formulas are of the form (a), (b), (c).

Let now v be a numerical variable or a numeral and let ¥ be the term of
L< defined by

P v if v is a numerical variable
m if v is the numeral ™

where 77 denotes the numeral corresponding to the natural number m in the
language of arithmetic.

Suppose now we are given « as in (2); let us construct 6+ by replacing
every subformula of § of the form (a), (b), (c), respectively, with

(3p < Q)add(p, @, 9, )
(Fg < Q)ymult(q, @, v, )
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where p, ¢, Q, hi,...,h, are new distinct variables of L< and < is the usual
predicate of L<. Define now the formula o™ as follows

3Q3hy - 3RQFzr - Qrze( )\ funct(hs) A 6%)

1<i<k

where the quantifier Qfz; is obtained by relativizing the quantifier @); to the
predicate z; < 0 A nat(z;). We give now a sketch of a proof of (1). Assume
N = a. Let Hy,..., H, be numerical functions which satisfy a (we denote
the functions as the corresponding variables). Using (iii) of Proposition 3.8
it is easy to define, for any H;,¢s = 1,...,r a term, possibly infinite, which
we denote by h; such that, for every a,b € N,

Hi(a)=1b ifandonlyif f(a,b) <h

and such that h; satisfies funct(h;) in (IT, <) (the construction is similar
to that of term in figure F1a. 1). Besides, we construct an infinite term €2
which has as its subterms all the elements of NAT, all the f(a,b) such that
the pairs (a,b) determine the natural bijection between

{m,...,0} and {r,...,r—n} forevery m,n,r € N such that m+n =r

and all the terms f(a,b) which determine the natural bijection between
{m,..., 1} x{n,...,1} and {r,...,1} for every m,n,r > 1.

Using now Propositions 3.8 e 3.9 we get that (IT, <) |= «*. The converse can

be proved straightforwardly by using the same propositions and the definition
of §+.
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Infinite Terms with subterm Relation
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Abstract

We examine the problem of solving equations, disequations and
atomic formulas built on the subterm relation in algebras of rational
and infinite terms (trees). We prove that this problem is decidable for
any such algebra in a finite signature S with possible new free con-
stants. Moreover, even in presence of subterm relation, the existential
theory of rational trees is the same as the existential theory of infinite
trees. We leave out the easier case where S has no symbols of arity
greater than one. When S has only a symbol of arity greater than one,
the decision procedure is different in case that the algebra of rational
or infinite trees contains new free constants or not.
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