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Reasoning about knowledge is a central issue for theories that aim to consider
both the behaviour of people as social agents being part of a group, and the behaviour
of artificial systems, such as computer systems. There is a strong relationship
between knowledge, communication and action: what we want to study is-how the
action of a single agent (which is supported by his own knowledge) takes place, as a



consequence of communication with other agents.

The logic of knowledge of a group of individuals is a subject of increasing
interest, due on the one hand to its theoretical aspects, and on the other hand to its
possible application to artificial intelligence systems, databases, distributed
processing, cryptography. There are interesting combinatorial questions that arise in
the case of several individuals, and do not arise in the case of one or two individuals.

The study of reasoning about knowledge motivates the following problems:
how do we formalize knowledge ? how do we account for shared knowledge ? how
do we account for acquisition of knowledge through communication ? how do we
understand the knowledge required to perform certain actions?

Theoretical Aspects of Reasoning about Knowledge ([Hal86], [Var88],
[Par90], [Mos92]) is the standard reference for discussion and comparison among
researchers in this field.

1 The logic of knowledge

As will become clearer through these lecture notes, a satisfactory theoretical
setting for the development of a logic of knowledge must fulfil at least three

req uirements:

1) Modality

For reasoning about knowledge in our formal system, we want to be able to
represent not only facts (that is, propositions about reality), but also the knowledge
each individual has about those facts, and the knowledge about the other individuals’
knowledge. Modal operators can help in this respect.

2) Non-monotonicity
Deducing things from what cannot be proved leads to non-monotonicity. Let us
consider the following dialogue between i and j:

Phase 1
i . «Guess two numbers, x and y. Itell youthat x is greaterthan 1 and that
y is greater than x. Their product is 12»

j:«ldon’tknow what x and y are»

Phase 2
i : «Now I give you the additional information that x is odd»
Jj:«Nowlknow: x is 3».

What happened in this dialogue is that the statement «I don’t know what x and
y are», that was true in phase 1, does not hold any more when the additional piece of
information «x isodd» isaddedto j’s knowledge. Now x=2 can be discarded by

agent j. Any logic representing the above reasoning should be non-monotonic.

3) Vagueness

Since there is a limit to our power of discrimination, and our language is full of
vague words whose meaning can be defined only by observation, it follows that we are
a linguistic community only in a loose sense. In fact, most of the times there is only a
rough correspondence between what somebody says and what his interlocutor
understands. The notion of meaning we want to formalize should allow for this
roughness.

Epistemology—the study of knowledge—has a long tradition in philosophy,
dating back to the Greeks. The first attempt to formalize reasoning about knowledge,
though, can be ascribed to Von Wright [Wr51]. Hintikka [Hi62] devoted to epistemic
logic the first treatment in book form.

1.1 An axiomatization

To set up the language for the logic of knowledge, we will consider a set of
finitely many agents (individuals) 7 = {1,...,n}. We assume these individuals to be
interested not only in the objective reality, but also in each other’s knowledge.
Accordingly, our language will be the language of propositional calculus, augmented
by modal operators K;, foreach i€ I, as follows:

a) Primitive formulae:

P={pi, ..., pm ...} is a set of variables of the propositional calculus; they are to be
interpreted as “primitive” facts.



b) Connectives:
C={~ A} U{K; : ie 1} is the set of connectives.
The K;‘s are modal operators; K;@ intuitively means: «agent i knows ¢ »

¢) Well formed formulae:
WFF is the set of well formed formulae defined as follows:

1)If pje P, thenp; e WEF;
2)If ¢, ye WFF, then —@eWFF and (pay) € WFF;
) peWFF andie I, then K;(¢p)e WFF.

Let us define the following abbreviations:

1) @ v v is equivalent to —(—@ A —=y) (according to De Morgan’s law)
2) L; (@) is equivalent to —K; (—¢) .
Lip intuitively means: «agent i thinks ¢ possible»

The notion of knowledge we want to capture is conveniently axiomatized by the
following set, called LKS, of axioms:

Al. All tautologies of propositional logic
A2.Kip AK(9p—= W) = Ky
A3 Kip = ¢

Ad. K9 — KK;p
AS. Lo = KiLip

RIl. ufi (modus ponens)

R2.

(necessitation).

Kip

Al and R1 respectively are the axioms and the modus ponens rule of
propositional logic. A2 states that an agent’s knowledge is closed under implication,
that is, if an agent i knows a formula, then he also knows all its logical consequences.
A3 states that agents know only things that are true. A4 and A5 state that agents are

introspective: if an agent knows a formula, then he knows of knowing it.
There is no universal consensus on assuming the introspection axioms A4 and AS.

A2 together with R2 raise the so-called problem of “logical omniscience”. They
force a view of agents as “ideal knowers”: adding a theorem & implies that K;¢ also
becomes a theorem, and hence it is impossible to have & A —K;& . All agents, then, know
all valid formulas and also all their logical consequences. This view may be traced back
to Socrates, who, in his maieutic method, had un-educated people (like slaves) discover
theorems of geometry. Nevertheless, it does not seem to be a realistic model for
dealing with everyday reasoning. Indeed, even if £ is valid, we may fail to know &
because of its computational intractability, or because we happen not to think of the -
justification for &, or just because we are not interested in & The logical omniscience
assumption has some drawbacks in data base management systems, where the available
knowledge depends on computation time and space. Logical omniscience also fails in
public key cryptography, where the cypher text contains the same information as the
plain text, but, without knowing the key, the computation of the plain text from the
cypher text is intractable. The complexity of deducing logical conclusions stems in
part from the difficulty of putting together two distinct known facts—the
premises—in order to draw a conclusion: computational expenses are mainly due to
the binary rules of inference. This is, perhaps, the reason why we don’t know as much as
we should. See [Var89] for further information.

For a survey of the different approaches to the problem of logical omniscience,
we refer to [Par87b], [Hal86].

Suppose we drop R2 from the above axiomatization, and add the axiom for logical
omniscience:
A6. if & then |-Ki,
if ¢i-& then K;ol-Ki
and also add the axiom scheme:
A7.if y isanaxiom accordingto Al - A6, thensois K;w foreach i.

Then in the new system all the old theorems are preserved, but now & A —K;&
is consistent. This is so because the new system still preserves the necessitation rule,
but it states that necessitation is reasonable only for those formulae ¢’s which are
logically true, or at least true on the whole model. That is, not necessarily from ¢ I—
&it follows that ¢ - K&

The above axiomatization parallels modal logic. 1In fact, upon reading K; as the
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necessity operator, and L; as the possibility operator,‘ we obtain the axiom system S5
of C.Lewis [LeLa32]. This is the reason why our logic of knowledge has been called
LKS5. The parallel with modal logic can go further, if we observe that upon dropping
axiom scheme A5, the resulting logic (called LK4) corresponds to S4. Finally,
taking out also axiom scheme A4, we obtain a system (called LK) that corresponds
exactly to the system T. Other possible cases (which can be located between S4 and
S5) are related to temporal logic. For more details, see [Par87a].

As will be proved below, this axiomatization can be given a sound and
complete semantics.

1.2 Kripke semantics

We can interpret the above logical system using models with possible worlds.
Intuitively, the semantics says that beside the current state of affairs, there are other
possible states of affairs (i. e., other possible worlds) for any given agent i; agents
may be unable to distinguish the true world among all possible worlds. An agent is
said to know a formula y if v is true in all the worlds that are possible for him.
Nested modal operators are allowed, and, intuitively, the meaning of KiKj...¢ is:
«agent i knows that agent j knows that ... that ¢ is true». In order to give a
semantics to the logic of knowledge, we need a formal way of representing worlds and
possibility relations (one for each agent) defined between them. Kripke structures
[Kr63] are a good formal tool.

A Kripke structure M is an (n+2)-tuple <S, 7, Ry, ... .R>, where:
a) S isasetofstates (also called possible worlds);

b) 7 is an assignment of truth values to the primitive propositions for each state
seS.
7 (s, p; ) € {true, false} for each state s and primitive proposition p; € P.
¢)Foreach iel, R; isanequivalence relation defined over S. R; iscalled
the possibility or accessibility relation of agent i. (s,f) € R; isread «tis
accessible from s for agent i», or « is i-accessible from s». (s,f) € R; holds
iff agent ¢ cannot distinguish the state of affairs s from the state of affairs ¢.
In other words, if s is the actual state of the world, then agent i would
consider ¢ as a possible state of the world.

The satisfaction relation = for a Kripke model M  is defined as follows (where
M,s l=y isread «y istrue or satisfied in state s of model M»):

a) M, s |=p; foraprimitive proposition p;eP iff m(p;, s) = true
b) M, s l==@ iff M,s =@
c) Msl=oAy iff Mslk=¢ and M,s =y
d) M,s =Ko iff Mt l=¢ forall r suchthat (s,;)e R

It follows that:
e) M,s |=L;p iffthereexistsa r suchthat (s,)e R, and Mt = ¢
f) Msl=ovy iff Misl=¢ or M,s =y

In particular, in light of condition d), we say that agent i knows fact ¢ in
state s if ¢ istrue atall r-accessible states—that is, all states indistinguishable
from s from agent i’s point of view. Moreover, the fact that each R; is an
equivalence relation ensures that everything known by i is true, and that i knows his
own internal knowledge. According to condition e), we say that agent i thinks @
possible in state s if there is at least one state, say f, which is accessible from s,
where ¢ is true.

Kripke structures can be represented by labelled graphs, whose nodes are the
statesin S, andtwonodes s and ¢ areconnected by an arc labelled i iff (s,7) €
R;.

Despite their elegance and simplicity, there are two problems with Kripke
models. First, the notion of possible world includes the psychological states of the
agents. Two worlds s and ¢ can agree on all facts, and yet they may differ only
because some agent knows different things in them. This complicates the notion of
possible world, and needs to be analyzed in more detail. The second problem is that,
while Kripke semantics often yields a finite model property, it is true (as shown in
[FHVI1]) that the state of total ignorance, where nobody knows anything, can only
be represented by an infinite Kripke model. For this reason, another semantics for the
logic of knowledge has been proposed by [FHV88] and [MeZa85], which is equivalent
to Kripke semantics, but where a possible world is represented as a tower of levels. In

this model, the first level contains facts, the second contains knowledge of agents
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about the facts of the previous level, the k-th level contains the knowledge about the
knowledge of the previous level, etc.

There is little agreement on what the possible worlds might look like. One of the
problems is the so-called problem of identity. (For a wider perspective on this topic,
we refer to [HuC68]). The law of substitution of equals defined as a=b —(P(a)

—P(b)) is afundamental principle governing identity. However, as Quine pointed -

out [Qui6bl], this law no longer holds in contexts involving modalities, knowledge or
belief. These contexts are said to be “referentially opaque” in opposition to the
“referentially transparent” ones, for which it holds. Here is an example of
referentially opaque context: Ann knows that 9 > 7. It is true that the number of
planets is 9. But, Ann does not know that the number of planets is greater than 7.

1.3 Soundness and completeness

Theorem (soundness). The axiomatization of LK5 is sound.

Proof. A model M satisfies all axioms of LK5 if the R;s are all
equivalence relations. The proof follows the patterns of the usual one-agent
logic of knowledge. We are only giving here the proof for axiom scheme A4 and
necessitation rule R2.

a) The formula K;¢ — K;K;j¢ holds at every state s.

In fact, suppose K;¢ holdsinsome M atstate s. Then, for all states ¢ such
that (s,f)e R; , ¢ holds at r. Now the succedent K;K;¢ says that for all #;’s such
that (s,77)e R°R;, 1; satisfies ¢ . Since R; is transitive and R; SR, °R;, the
t’s are included among the #’s, and the succedent is true at s.

b) Closure under necessitation.

Suppose ¢ is true at all states of M. Then, for any sand ¢, if (s,/)eR;, thent
satisfies ¢ . Therefore, for all s, K;¢ holds.

It follows that all provable formulae of LK5 are true at all states of models
where the R;’s are equivalence relations.

In order to prove completeness, it is sufficient to show that every consistent
formula has a model of the appropriate kind. We will in fact construct a finite model.

Definition. Given a consistent formula @, let c(¢) denote the number of
occurrences of logical symbols and atomic predicates in ¢. Moreover, let F be the
set of all the subformulae of @, and W be the set of all maximal consistent

conjunctions of elements of F and their negations. Then the size of F <c(¢) and so
the size of W is no more than 2°(®)_ Let a, b, ... denote elements of W. In our
model we define w and R; as follows:

a) For any atomic formula A, we let T(a, A) = true iff A is a conjunct occurring in
28

b) For each individual i, let R;= {(s,/)|forall B, K;B isins iff K;B isint}.

Lemma I. Each R; is an equivalence relation.

Proof. Obvious, from the definition.

Lemma 2. Forallsin Wandall { inF, M, |={ iff Bisaconjunctofs.

Proof. By induction on the complexity of {.

a) If ¢ is atomic, the lemma holds by definition. ‘

b) The truth-functional cases are quite easy. For example, let {=¢& Ay
If {isin F,soare & and y. Therefore, M,s l=& Ay iff M, s |= & and
M,s l=y iff £ isinsand y isins. Now, s contains either & A w or
—(& Ay), andis consistent. Therefore, s contains & Ay iff it contains
both & and . Thus, M,s I=& Ay iff s contains & Ay

c)Let § =Ki&
If s contains K;£, then by definition of R;, it follows that, for all ¢ such that
(s,H)e R;, t contains K;&, and hence, by the consistency of r, contains &.
Therefore, forallsuch ¢’s, M, I=¢& Dby induction hypothesis. Thus, M,s =
K;£. Onthe other hand, if s does not contain K;&, then it contains —(K;&).
Arguing now by contradiction, we obtain that the set X= {y| K;y isin s} is
consistent with —&.  As a matter of fact, if X is inconsistent with —&, then
X implies & Using R2, A2 and A4, wegetthat X implies K;& But X
isasubsetof s, andhence s is not consistent with —(K;£ ), a contradiction.
Thus, X w{=&} is consistent, and extends to some element # of W. Then

(s,Ne R;. By induction hypothesis, ¢ satisfies —&, and hence s does not satisfy
K.

Theorem (Completeness). The axiomatization of LK5 is complete.
Proof. By Lemmas 2 and 3.

Recalling the parallel between LK and modal logic, we can make the following
observations. We have just proved that the property of the R;’s of being equivalence



relations guarantees soundness and completeness for LKS5. It can also be proved that if
we only allow the R;’s to be reflexive and transitive, they still guarantee soundness

and completeness for LK4. Moreover, if the R;’s are only assumed reflexive, then they
guarantee soundness and completeness for LK. The proofs for these assertions are based
on two observations. First, the property of the accessibility relation that is missing
for the considered axiomatic system LKj (h=4,3,0) isonly used to guarantee the
validity of the axiom that has been dropped. Conversely, the accessibility relation that
is missing for the considered axiomatic system LKy, is the only content of the axiom
that has been dropped. For detailed proofs, see [Par84], [Par91b].

1.4 Decidability

~ The Jogic LK5 is decidable, i.e., there is an algorithm that, given a formula ¢, tells
whether it is valid or not.

Decidability is a consequence of the fact that if a formula @ is satisfiable in some
model, it is also satisfiable in a model with at most 2" states, where n is the length
of ¢ viewed as a string of symbols.

However, deciding the validity of a formula is not an easy task. For two or more
agents, any algorithm that decides the validity of a formula, requires space polynomial
in the size of the formula [HaMo85]. Since it is believed that polynomial space
corresponds to exponential time, the decision algorithm would require an execution
time exponential in the length of the formula—which is quite unreasonable in
practice. We know something more about the case of one agent: the decision procedure
is NP-complete, since in this case a satisfiable formula ¢ of length n can always be
satisfied in a model with at most n states [Lad77]. Because of this, an open research
area concerns models for resource-bounded reasoning. In [Par84] a map between LKS
and PDL- is defined. For a survey of complexity results for logics of knowledge, see
[HaV89].

1.5 Common knowledge

Common knowledge is a crucial issue for disciplines having knowledge as their
subject of investigation.  The first investigations on common knowledge are due to
D. Lewis [Lew69] and Schiffer [Sch72]. In particular, Lewis observed that in order
for something to be a convention in a group of people, this has to be common
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knowledge among them. They both pointed out that co-ordinated action and proper
communication require infinitely many levels of knowledge.
Although there are many approaches to common knowledge, for our purposes it

is convenient to say that a group of agents has common knowledge of a formula @ if:

a) everyone in the group knows that ¢ is true (i. e., K;@ for all ie I), and

b) everyone in the group knows that everyone knows that ¢ is true (i. e., K;K;o
for all i je I), and

c) everyone in the group knows that everyone knows that everyone knows that ¢
is true (i. ., K;K;K;¢ for all i,je I),
and so on.

We can express  «everybody knows @ » by writing E@ as an abbreviation of
K19 AKop A.A Ky forall ije I However, in order to convey the intuitive
meaning of common knowledge, we can no longer rely on an abbreviation. We must
therefore expand the language by adding a new modal operator C, where C¢ means
«@ is common knowledge». We can then add the following axiom schemes to LKS5,
and call CKS5 the resulting axiomatization :

AG6. Cp — K@
A7.Cp = CCo

We can also define a Kripke semantics for C:

M,s l=Co iff M,s l=E‘¢ for each k=1,2,...,
where E'gp =E@, and E*!p =EE¢@ .

Common knowledge can also be defined in terms of the transitive closure of the
union of all the R; ’s. Barwise and others [Bar88] have a different view of common
knowledge which we cannot go into here.

Common knowledge has become an interesting subject also in the field of
economics. Aumann showed [Aum76] that if two people have the same a priori
probabilities, and if their a posteriori probabilities for a given event are common
knowledge, then their a posteriori probability must be equal. This implies that people
with the same a priori knowledge cannot agree to disagree, and an agreement between
them will always take place. Common knowledge in economics has received a
complete axiomatization [Mil81]. For further information, see Section 3.

i1
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As far as distributed systems are concerned, common knowledge is an important
tool in analyzing protocols for agreement. Distributedly agreed action has to rely on
common knowledge: agent i sends a message to agent j, but he will know that agent j
has received his message only when he receives an acknowledgement from agent j. On
the other hand, agent j knows that agent / has received his acknowledgement message
only when he receives an acknowledgement message from agent i, and so on. Since in
systems where communication is not guaranteed common knowledge is not attainable,
there are some variants of common knowledge that are attainable under more
reasonable assumptions, and they are, in certain cases, indistinguishable from true
common knowledge (see [HaM84], [NeT87]). For further information see Section 4.

1.6 Non-monotonicity.

Let us consider some issues about non-monotonicity, which are still under
discussion among logicians (for an exhaustive discussion of what follows, see [Par84],
[Par91b]. Let us go back to the dialogue mentioned in the introduction: ignorance of j
in phase 1 cannot be proved in a monotonic logic, since it does not survive when a new
piece of consistent information is added to the system. In fact, ignorance is due to the
implicit assumption that all j knows about x and y is just what he has been told. In
order to account for this fact, McCarthy proposed the following non-monotonic rule
of inference to be added to LKS5:

not (I' - K; A)

—= (non-monotonicity)
I'——(K;A)

Intuitively, the rule says that if I" contains all the knowledge of agent i and the
formula K;A cannot be proved from I”, then agent i does not know A.

However, there seem to be two main difficulties with McCarthy’s rule.
a) Let us consider I" = [ KA v KJB]

I"does not imply KjA, nor K;B. By McCarthy’s rule, I implies their negations,
which, together, imply the negation of I".  In fact, from KA v K;B we have
that —(I' — K;A ) and —(I" |— K;B) both hold.  Another application of
McCarthy’s rule yields:
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not (I" =K;A) ot (I" 1K B)

al

[ == (K;A) [ == (K; B)

whence
I'l——(KjA) n —(K;B),

and, by De Morgan’s rule, I'l——I"

b) Let us consider the following more subtle argument.

Let I'=0, and C=(KA)v Ki(—K;jA ), whichis a valid formula. C

doesn’t imply K;A and doesn’t imply Kj(—=K;A ). Then, by McCarthy’s
rule, C implies both —KjA and —Kj(—KjA), whence Cimplies its own
negation.  Since the deduction has been obtained from the empty set, this

implies the inconsistency of the empty set. Applying McCarthy’s rule, we
get:

not (M k=K;A) ot (I" b—K; (= K; A))
- A
== (K;A) I——K; (= K;A)

which leads to  I'l— —C, and hence & is inconsistent, because C is valid.

Despite these problems, the non-monotonicity rule is intuitively a natural one.
We can define some restrictions under which to apply it, in order to avoid the
mentioned inconsistencies. One result is that for formulae A  which have largest
models, A implies B iff B has a normal proof from A using McCarthy’s rule.
Define a normal deduction of I" to be one where the McCarthy rule is applied to a
formula only after all subformulae of A, to which the rule might apply, have been
first decided. Define also a largest model (of a specific height) of A to be one which
contains a copy of any other model of A. Then we have the following completeness
theorem: for those formulaec A which do have a largest model M, we can deduce B

from A by anormal deduction iff B is true (at the root node) of M. See [Par91b]
for details.

13



1.7 Utility based approach to semantics

We often deal with words that can be defined only by observation and whose
meaning is vague. Let us call these words ov-words. The judgment of an ov-word
generally differs from person to person. As an example, let us consider the experiment
that was done in the Acireale School: students were asked ten questions and were
allowed to give a fuzzy answer (i.e., areal number € [0, 1]). All students agreed on
the fact that a butterfly is an animal, but disagreement on borderline cases such as “is
Sonia Gandhi an Indian?” or “is a belt an item of clothing?” still persisted. (For a
detailed discussion see [Par91d]).

The fuzzy solution to the problem, proposed by Zadeh [Zad75] and others,
introduces truth values between 0 and 1 and insists that there is no abrupt passage from
a non-heap to a heap, but there is an infinity of possible degrees of being a heap. A bunch
of grains of sand can be a heap with degree 0.8.

But the problem seems to be still there: for, we lack consensus on exactly when
it is right to say that something is a heap at degree 0.8. If we can learn the truth values
of “being a heap” as a fuzzy predicate, then could we speak more precisely, with a sort
of fuzzy precision ? This is not easy.

However, partial social consensus on the use of many words is often adequate in
order to guide actions, and people evaluate actions in terms of their utility. When ov-
words are used to construct compound actions that have a higher utility value than
their single components, this utility is often sturdy, and exact agreement on the use of
the words is not necessary.

Let us consider the following figure:

e N
X Y

(predicate P holds) (— P holds)

. J

Figure 1a.
The probability space W: the probability of subspace X is p, and the probability of subspace Yis 1 —p.
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Let us suppose we have a probability space W, divided into two parts, X and Y. X is
the part of W on which some predicate P (for example, P = «the customer is
mature») holds, and Y is the part on which it does not hold. The respective
probabilities of these two parts are p and 1-p. Suppose there are two actions, a and
b, where a is: «refuse a glass of wine», and b is: «serve a glass of wine». Suppose
the utility of a is 10 on X and 20 on Y. Stated otherwise, if the situation is
such that P applies, then action « has a utility value of 10, butif P does not
apply, thenaction «a has a utility value of 20. Suppose the utility of action b is 10
on Y and 20 on X

The expected utility of @ on the whole space W is givenby A = 10p + 20
(1-p) = 20— 10p, and the expected vtility of b is B=20p+ 10 (1 —p) =10+ 10p.
If p=04, thenA =16, and B =14. The expected utility of the compound action
<If P then b, else a> will instead be given by

20p +20 (1 -p) =20,

which is greater than the utility of actions ¢ and b considered alone.

X

(predicate Q holds)

Y
(= Q holds)

- /

Figure 1b

Suppose now that some predicate Q (for example, O = «the customer is over
18») roughly coincides with P, and suppose that the action associated to this
partition is  <if Q then b, else a>.
Suppose, for instance, that:
a) prob (P | Q) = prob (=P | —-0)=0.9, and
b) prob (=P 1 Q) = prob (P 1 =0) =0.1.

Then the expected utility of <if Q then b, else a> willbe 0.9 %20 +0.1 =10 =19,
which is greater than the probability of a and b considered alone.
In this case, if someone confuses P with Q, and does <if Q then b, else a>

15



instead of <if P then b, else a>, then there is not a big difference.

However, let us consider the case when the utilities for @ and 5 are -200
and 20 (instead of 10 and 20) fora, and 20 and -200 for b (instead of 20 and
10). The action <if P then b, else a> still has an expected utility value of 20, but
now the action  <if Q then b, else a> has utility value —2. In this context Q isno
longer a good approximation of P.

The above discussion shows that, in general, when using ov-words, we have to
increase or decrease our tolerance, depending on the risks and benefits involved. How
people use ov-words is not that important. What matters is that the use people make of
these words, when applied to practical situétions, be sufficiently similar.

For a wider set of utility functions arising from practical situations, and for a
more detailed discussion, see [Par91c]. For a discussion from the viewpoint of
information theory, see [KrPaN90].

2 Learning from dialogues

Dialogues are necessary in order to acquire knowledge. How do we learn from
conversations ?
Considering a game between two players, we will discuss the following issues:

D conventional proofs of the existence of knowledge correspond to optimal,
complete strategies;

2) sometimes, complete strategies need to be transfinite;

3) if justified risk is preferred over absolute knowledge, then dialogues can

terminate after a finite number of rounds (i. e., when, after a certain number of
rounds, someone will take the risk of guessing). In this case learning can proceed
faster.

We will illustrate the topic using games as examples.

Suppose we are given an arbitrary function g : N — N. Let us consider the
following game, whose players are A and B (for example, Ann and Bob): some positive
number 7 is chosen. One of n and g(n) is written on A’s forehead, the other one on B’s.
Each player can see the other player’s number, but not her/his own. Then they are
repeatedly asked if they know their own number. They can answer «I don't knows, or
answer with the right number.

A formalization of the problem in terms of knowledge has to take into account
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that each player's reasoning involves consideration about the other player’s thinking
and knowledge, including what the other player does not know. A’s reasoning is
justified if B thinks exactly as A believes B to think, and B’s reasoning is

justified if A thinks exactly as B believes A to think. Moreover, each player can
acquire new knowledge about the situation through the dialogue.

Definition. A stage corresponds to a single question. A round consists of two
stages, that correspond to one question posed to each player. The situation where
A has been given number « and B has been given number b will be denoted by (a,
b). The game will always start by asking A:«what is your number?», hence
stages corresponding to A’s turn will be odd integers, the ones corresponding to
B’s turn will be even integers.

2.1 Finite dialogues
Let us first consider Game 1, where g(n) = n+1.  In this case, if the knowledge
situation is (a, b), then la —bl = 1. We will show by induction on the number of stages
that the dialogue will always terminate with one of the players guessing her/his own
number. The proof makes the assumption that each player is logically omniscient, and,
moreover, that this fact is common knowledge.

Theorem 1. The following holds:

1. The player who sees the smaller number will win the game,

2.If A has the even number, then the response at the n-th stage will be «my

number is n+1», and if A has the odd number, then the response at the (n+1)th

stage will be «my number is n+1».

Proof. (By induction on » = min (a, b)).

Dn=1.
la) Consider the situation (1, 2), where A has number 1 and B has number
2. At the beginning of the game, A sees number 2 on B’s forehead. Her
number must then be 1 or 3. She doesn’t know which one, so she answers
«[don’t know». Now B is asked. He can see on A’s forehead the number 1.
Since 0 is not a positive number, then B can guess «my number is 2».
In conclusion, B sees the smaller number, and B guesses at stage n=2 that his
number is 2 (i. e., n+1).
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Ib) Consider the situation (2, 1), where A has number 2 and B has number 1.
At the beginning of the game, A sees number | on B’s forehead. Since 0 is not a
positive number, then A can guess «my number is 2» at the very first stage, i.e., at
stage n=1. In conclusion, A has the even number, and A guesses at stage n=1 that
her number s 2 (i. e., n+1).
2) Again, let n=min (a, b). We consider the following four cases:
Case 2a,, .
niseven, A hasn, ie., the situationis (n, n+1) = 2k, 2k+1).
We are at stage n (B’s turn). In this case, B sees n on A’s forehead, and
concludes that his own number is n-1 or n+1. If his number were n-1, then we
are in case 2b,.1, and by induction hypothesis, if B’s number is n-1, then A
should have guessed her number at stage n-1. Since A said «I don’t know my
number», then B realizes that his number is not n-1, and hence it must be n+1.
He then answers «my number is n+1» at stage n.
Case 2b, . )
nis odd, B has n, i. e., the situation is (n+1, n) = (2k, 2k-1). We are at stage n+1
(A’s turn). If n=1, then Ann would have answered at the very first stage (see
1b). If n>1, then A knows that she is either in case 2b,, or in case 2a,,_1. In the
later case, B would have guessed at stage n —1. Since he did not, case 2a,_j is
ruled out and A knows her number is n+1.
Case 2c¢,, .
nis even, B has n, i. e., the situation is (n+1, n) = (2k+1, 2k)
We are at stage n +1 (A’s turn). Seeing number n on B’s forehead, A knows
that her number is n-1 or n+1.  If it were n-1, then we are in case 2d,,.1, and by
induction hypothesis, if A’s number is n-1, then B should have guessed his
number at stage n. Since he did not, case 2d,,_1 is ruled out and A knows her
number is n+1.
Case 2d,, .
n is odd, A has n, 1. e., the situation is (n, n+1) = (2k-1, 2k)
We are at stage n +1 (A’s turn). If n = 1, then B would have guessed at stage 2
(see case la). If n>1, then an argument similar to those above applies.

The psychological arguments used in the above proof can be made rigorous by making
use of suitable notions of strategies.
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Definition. A Kripke model M for Game 1 consists of a space state S and two
equivalence relations, R; and R. We have M = <S§, R|,Ry>, where:
a) each state s of the state space S corresponds to a situétion s=(a, b) as
previously defined. Stated otherwise,
S={mnlmneN and Im-nl=1}
b) state ¢ is accessible from state s for agent i € {1, 2} iff when the dialogue
begins, s and 7 are indistinguishable for agenti. Formally, (s, 1) e R; iff (s);
=(1); where j=3-i and (s); isthe j-thcomponentof s.

Definition. A subset X of S isi-closed iff whenever se€X and (s,7)eR;
thenreX. X isclosed iff itis I-closed and 2-closed. The corresponding
topologies will be denoted by T, T, and T. (A topology will be identified with
the family of its closed sets). T is the intersection of Ty and T> .

Definition. Given a Kripke model M, asubset X of the state space S, anda
state s inX, wesaythat i{knowsXats iffall reS thatare accessible from s
are in X. This means that the i-closure of {s} is contained in X. X is common
knowledge at s iff there is aclosed set Y such thats € X and X oV.

Definition. A dialogue system DS for a Kripke model M is a map:
firSXNt— {«no»} U S

describing the players’ responses at the various stages of the game. An answer

«no» means «I don’t know my number», whereas knowing one’s number is

equivalent to knowing the full state. We refer to the answer «no» as the trivial

answer. All the remaining answers will be non-trivial. Formally, f satisfies

the following conditions:

—for each odd number n, f(s,n) (i.e., A’sresponse at stage n) depends only on
the Ry equivalence classof s andon f(s,m) for m<n;

—for each even number n, f(s, n) depends only onthe R; equivalence class of
s andon f(s,m) for m<n.

Definition. A dialogue system [ is sound iff forall seS, if f(s,n)#

«no», then f(s,n)=s. Intuitively, a sound dialogue system requires that all

non-trivial responses be correct.
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B ———

Definition. The index ofs, insymbols, ir(s), is the first occurrence in
which a player gives a non-trivial answer.  In other words, if(s) = least n
such that f(s,n) # «no»;  ir(s) =co if nosuch nexists. When it is clear from
context, the subscript f will be omitted. = We denote by p(s) the currently
acting player. Then we have: p(s) = 1 if ir(s) is odd, and p(s) =2 if ir(s) is
even.

Definition. A dialogue system f is complete iff ir(s)<oo foralls.

For a sound dialogue system, ir(s) denotes the first stage when s is |
discovered, and p(s) denotes the person who discovers it. j

Definition. A sound dialogue system f is optimal iff for any other sound
dialogue system s, we have ir(s) <ij(s), foralls.

It should be noted that since a DS consists of a pair of strategies, one for each
player, a strategy is not sound per se, but only in conjunction with another strategy.
Now we want to characterize sound and optimal strategies. For example, the strategy
of always saying «no» is sound, but not optimal.

Lemma 1. Letfbe asound DS. Lets and r be two distinct states, with ¢
accessible (indistinguishable) from s for agent i. Let i(s) = k < oo, and p(s) = i.
Then i(f) <k and p(t) #1. :

Proof. By definition, at stage i(s) player i has enough information to distinguish
between states s and . Moreover, since all previous answers associated with s
have been «no», then some previous utterance associated with # must have been
non-trivial. Formally, since fis sound, thenf (s, i(s)) = s #f(t, i(s)). But (s, 1)

€ R. Hence, there exists an integer m < i (s) such that f (s, m) #f (¢, m). Since m<

i (s), then f (s, m) = «no», and since f (s, m) = f (t, m), then f (¢, m) # «no». This
implies that i(f) <m < i(s). Suppose now that p(f)=i. Then by a symmetric
argument, we could also prove that i(s) < i(f). But this is impossible. Hence, p(f)
#1.

ra—

We can represent comimon knowledge as a chain.  For player 1, the chain will be given
by s=5 R s Rys3 Ry sy..., while for player 1, the chain will be of the form s
=51 Ry 52 Ry s3 Ry s4... . Elimination of a state from a chain amounts to pruning the
chain after the considered state. Figure 2 describes the Kripke model for Game 1.
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6.7) (7,6)

(6, 5) 3.6) Kripke model for game 1.

“,5) G, 4 Relation R, is represented by: []
(4,3) (3,4) Relation Ry, is represented by: ]
2,3) (3! 2)

(2! )} (1,2)

Figure 2a. Kripke model for Game 1

T T T T T T TTTT -

Figure 2b. The model represented on the cartesian plane

Corollary 1. Suppose p(s) =i, andlet s=5,R| s Ry s3...... R, 5, be achain
such that no two consecutive elements are equal. Then i(s) = m.

Proof. By definition, i(s,;,) =2 1. Then, by induction on &, and using Lemma 1, we
have that i(s,, ) 2 k+ 1. Infact, by induction hypothesis, we have i(s,, ) >
(S k1) = (S -k-1y) 2 k. Taking k=m -1, we get i(s;) =m.
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Corollary 2. Suppose that there is a cyclic chain s=s5, R 52 Ry 53 ... R| 5,, Ry 5
withm > 1, any two consecutive elements being distinct. Then i(s,,) = for
allk <m.

Proof. Assume that p(s) = 1. If i(s;) = k < oo, then we would get i(s1) > i(s2) >
... > i(sy) > i(sy), which is a contradiction. On the other hand, if we assume p(s)
= 2, then we can use the chain backwards, to get the same conclusion.

As a consequence of Corollary 2, if there are cycles in chains, no complete
strategy exists.  From Theorem 1 we get the soundness of the following dialogue
system f:

a) A’s strategy:
- if you see an odd number 2n+1 on B’s forehead, say «no» for n rounds, and then, if B
hasn’t said his number, say number «2n+2»;
- if you see an even number 2n on B’s forehead, say «no» for n rounds, and then, if B
hasn’t said his number, say number «2n+1».
b) B’s strategy:
- if you see an odd number 2n+1 on A’s forehead, say «no» for n rounds, and then, if A
hasn’t said her number, say number «2n+2»;
- if you see an even number 21 on A’s forehead, say «no» for n —1 rounds, and then; if
A hasn’t said her number, say number «2n+15».

Theorem 1 amounts to saying that the above strategies yield a sound and complete
dialogue system with: i(s) = min (a, b) if A’s number is even, and i(s) = max (a, b)
if A’s number is odd.

Theorem 2. The above dialogue system = (which is the same as that of Theorem
1) is optimal.
Proof. Let fbe the given strategy, and & any other strategy. The proof is by
cases. Suppose A has been given an even number, and consider the knowledge
situation s =(2n, 2n—1). Then, according to the strategy, we have that ir(s) =
2n~-1. Suppose now thatin 4, B is the one who first notices the state. Then we
have the following chain (2n,2n- 1) Ry 2n,2n+ 1) R; 2n+2,2n+3) ...,
and, by Corollary 1, i;, (s) cannot be finite. Suppose that in h, it is A who first
discovers state s. In this way we have:
4 @n2n-1)R 2n-2,2n-1DHR, 2n-2,2n-3) ... R, (2, ).
So, by Lemma 1, i;(s) = 2n— 1. The other cases are similar.

As a second example of finite dialogues, let us consider the popular Mrs. Sum
and Mr. Product puzzle [Pla89]:

Mr. Puzzle: 1 choose two natural numbers > 1. 1 will tell the sum of the numbers
only to Mrs. Sum, and their product only to Mr. Product.

Myr. Puzzle proceeds to inform Mrs. Sum and Mr. Product.

1— Mr. Product: : «I don’t know the numbers.»

2— Mrs. Sum: : «I knew you didn’t.»

3— Mr. Product: . «But now I know! »

4— Mrs. Sum: : «Sodo1!»

Now, what can be the numbers, if they both are < 100 ? Let us sketch the
analysis of the puzzle in terms of Kripke semantics. Our models are subsets of
W={(x, y)!x, yare natural numbers and 2<x<y }.

The two equivalence relations Rgy, and Rppoguer are given by:
(x, ) Ryym (2, w) iff x+y=z+w, and
(*, ) Rproduct (2, w) it xsy =zw.

According to our definitions, we say that a point (x, y) is Sum-isolated iff it
isnot Rgyn—equivalent to any other point except itself, and analogously we say that a
point (x,y) is Product-isolated iff itis not Rpyquc—equivalent to any other point
except itself.

The first two statements of Mrs. Sum and Mr. Product allow us to remove all
Product-isolated points and all points which are Rg,y, equivalent to a Product-isolated
one. From the resulting model, according to the third and fourth statements, we then
remove all points which are not Product-isolated and then all points which are not
Sum-isolated. Each of the remaining points can be Mr. Puzzle’s choice.

An interesting related number-theoretic problem is the determination of the
transitive closure of the relation Rgym U Rproquer Over W, or, which amounts to the
same, the determination of Mrs. Sum and Mr. Product’s common knowledge
immediately after Mr. Puzzle’s communication. This problem has recently been
solved by Giovanni Panti [Pan92], a student attending the Acireale School.  His
result implies that the set  { (x,y) e Wlx+y =7} isanequivalence class of the
transitive closure of Rgym U Rproquer:  Equivalently, if the sum of x and y is greater
than or equal to 7, then the only fact which is common knowledge is: “The sum of
Mr. Puzzle’s numbers is greater than or equal to 7. Figure 3 sketches the Kripke
model for this puzzle. Worlds are lattke points inside the area limited by the line x =
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2and x =y. Sum-equivalence classes are segments of lines of slope —1. Product-
equivalence classes are segments of hyperbolas.

y A

Figure 3
Kripke models for Mrs. Sum and Mr. Product represented on the cartesian plane

Rg,m-equivalence classes are represented by lines. Rpyoquct-equivalence classes are represented by
hyperbolas.  There is no state below line x=y andbelow line y=2 and on the left of line x=2,
since the condition of the game is: 2<x<y.

2.2 Transfinite dialogues
Going back to the initial example mentioned at the beginning of Section 2, let us
consider the following Game 2 with a more complicated function g(n):
1 if n=2*% for sonme k >0

gn) = n+2 if nis odd

n-2 otherwise
Note that the numbers 2, 6, 14, ... of the form 2k —2, n>2, cannot be values of g.

Graphically, the Kripke model corresponding to Game 2 can be represented as a forest
composed of two trees (see Fig. 4, in which one of the trees is shown). If two states
are connected by a link labelled by A, then the two values of b are the same (they are
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indistinguishable for A), and if they are labelled by B, then the two values of a are the

same (they are indistinguishable for B). Eventhough A and B may not know their
own numbers, they do know which of the two subtrees they are in. The particular tree
they are in is common knowledge. 1In this graphical representation, g(n) is

represented by the node just above n.

Kripke model for game 2.

O, 7
Relation R, is represented by: []
5,7
Relation R; is represented by: [
(5,3
(1,3)
(1,2) (1,4 (41,8 (1, 16) womemes
6.4 (10,8)
(10, 12)
(14, 12)
Figure 4.

Proceeding as we did for the finite dialogue case (see Theorem 1), it can be
shown by induction that:

1- If the knowledge state (n, g(n)) or (g(n), n) is below the point (1,3) in the tree and is
at a distance m from a leaf, then the person whose number is of the form g(n) will
realize, by stage m+2 at most, that his/her number is g(n). In particular, in state (1,
2%), A realizes by stage 25! + 1 that her number must be 1.

2- If the knowledge state is (1,3), B will realize, after 25! + 1 stages, that his number
is not 2%. As a consequence, after m stages (@ being the smallest infinite ordinal),
when A hasn’t guessed her number yet, then B will realize that his own number is
not a power of 2, and that it is therefore the number 3. That is, at the transfinite
stage w+ 1, one of the two players realizes his/her number.

3- If the knowledge state is above point (1,3), then A (or B) will realize his/her own
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number at stage @ +n, where n corresponds to the steps climbed up from state (1, 3) Definition. Let O be the set of countable ordinals, and let M be a Kripke

in the Kripke structure. structure. A transfinite dialogue system (TDS) for M is a pair of maps

Intuitively, what happens is that every time player [ answers «I don’t
know my number», then it becomes common knowledge between the players that p:0 = {12}, and f: §XO = {a@or} S
they are not in a state where i would have known his/her number. Such a state is such that for each s € S and o€ O, f(s, o) depends only on the Ry(q)
always a leaf of the tree, and the trivial answer removes that leaf, yielding a shorter equivalence class of s andon fis, B) for f<c. Intuitively, p(c) denotes
tree. Moreover, by stage @, when A answers «I don’t know my number», the entire
portion of the tree below (1,3) has been pruned, and state (1, 3) becomes a leaf. At
this stage, no state s is equivalent to (1, 3) for B, and, at his turn (i. e., at stage w+1),

B guesses his number to be 3.

the person who answers at stage o, and f{(s,&) is his/her response at stage o

Definition. A transfinite dialogue system (p, f) is sound iff when f(s, o) #
«no», then f (s, o) = s, forall s € S.

Definition. A function g is well founded iff there is no infinite chain x|, x,,...

C . Definition. As for finite dialogue systems, the index ir(s) of s is the first
such that g(x,1) =x, foralln. - We say that g is finite-one iffforall n the occurrence in which a player gives a non-trivial answer. Thus, if(s) is the
set gl(m)={ml gtm)=n} is finite.

smallest o suchthat f(s, 0) # «no»; ip(s)=co if f(s, &) is always «no».

By abuse of language, and consistently with our notation of Section 2.1, we write
Definition. A Kripke model M for a two agents knowledge situation consists p(s) instead of p(i(s)). We assume that A’s turn occurs at all even ordinals (all
of a space state S and two equivalence relations, R; and R,. We have M = <S, Jimit ordinals being considered even).

R, R>, where:
—the space S coincides with  graph(g)Jgraph(g)™. It follows that for Game 2 there is no sound and complete strategy over n.  But there
—state ¢ is accessible from state s foragent ie {1,2} iff, when the is an optimal sound and complete strategy over the ordinals less than 2.
dialogue begins, s and ¢t are indistinguishable for agent i. Thus, (s,) € R; For other g, g is well founded iff the dialogue between A and B is guaranteed to
iff (s);j=(r); where j=3-i and (s); isthe jth componentofs. terminate (with the 7DS given above). (See [Par91a]).

Definition. We define i-closed and closed sets as we did in Section 2.1. Note that

topology T} corresponds to A’s knowledge, T, corresponds to B’s knowledge, 2.3 The probabilistic case
and Tcorresponds to common knowledge. Also, the smallest topology T Let us now consider the following Game 3. A number 7 is chosen in accordance with
containing T; and T,, corresponds to shared knowledge, which is not some probability distribution t(n), for example, u;(n) = 1/(n(n+1)). Then one
necessarily possessed by either player individually. player is assigned n, or g(n), with probability 1/2, and the other player is assigned
g(n) or n, respectively. Butnow, instead of answering «my numberis ...» only
Definition. Given a closed subspace X of S andapoint peX, we saythat p if the answer is correct, each player takes a risk of $1,000. This means that, when a
is i-isolated in X iff X-{p} isi-closed. Wealsosaythat p isisolated player answers «my number is k», then if he is right, he will gain one dollar, and if
iff it is i-isolated for some i. X is said to be perfecr iff it is nonempty, he is wrong, he will lose 1000 dollars. ; induces a probability measure u on S
closed, and has no isolated points. ‘given by: t(n, g(n)) = w(g(n), n) = 1/2 = wy(n).
| Given now
a) a well-founded function g,

b) a probability distribution strictly positive on all the states,
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. . . o k
c) a bet with fixed positive payoff for any correct guess, and fixed negative payoff it follows that after m stages in which B has ruled out numbers of the form 2
for any incorrect guess up to 2", he can profitably bet on number 3 and confidently answer «my number is

3.

assume that

a) each player guesses a number if and only if it is profitable for him,
b) each player answers «I don’t know» when a guess is not profitable,
c) conditions a) and b) are common knowledge between the players, i. e., each

one will make a guess as soon as the expected gain is greater than 0.

It follows that one of the players will always take a justified risk after a finite
number of rounds, since the expected payoff will be positive for him ([Par91a]). We
sketch an informal proof. Suppose g is the same as in Game 2. Suppose there are cases
where there is no justification in taking the risk, and nobody takes the risk. Then there
is an x of lowest rank in the tree of g such that the bet is never profitable for either side.
The player who sees x knows that his number is either g(x), or else it is in X = { ylg®
=x}. However, by minimality of x, all these y are finitely bettable, whence it is
reasonable to bet on them at some finite stage.

Therefore, as time passes, and elements of X which should have been guessed are
not guessed, the set X approaches the empty set, and its probability approaches 0.
Hence after some finite stage, the probability of X will be as small as needed. At this
point, it will make sense to take the risk. This is a tontradiction, showing that
somebody is justified in taking the risk.

As an example, suppose that g is the same as in Game 2. Assume that the
knowledge state is (1,3). B does not know whether his number is of the form 2 or
itis equal to 3. The probability of state (1, 3) is equal to 1/4, since: u(1) = 1/2, and
the probability of g(1) being assigned to B is also 1/2. On the other hand, the
probability of state (1, 2%) is given by:

L 1 = |
20k k1) 2k 1 k4

z 1

P 2k+ 1 (2k+1)

The series

is convergent, and since thereisanm (e. g., m=25) such that

1 <1
2k+1 (2k +1 4000

k>m
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For our subsequent discussion, we need the following notions.

Definition. Let M be a Kripke structure, (& a probability measure on S, and
£>0. Adialogue system f forthe pair M,u issaidtobe ggood iff f
satisfies the following conditions: (i) forall seS, anontrivial answer will
be eventually given at some finite stage, and (ii) if the answer given at stage
n is s, then the probability that it is correct is at least 1 —¢&. In other words,
there is a least natural number »n such that f(s,n) =s, and, for this n,

uish

u{ dfie,n)=s})
Definition. A probability measure [y iS computable iff it is a computable
function whose domain is the set of rational numbers.

Theorem. let My, be a Kripke structure arising from a well founded
computable g. Suppose that () is a computable probability measure on N+
assigning positive probability to all n e N*, andlet £>0. Then, there is an &-
good computable dialogue system f for M, u.

Proof. See [Par91a].

Theorem. g is well-founded iff for all u, and £ there exists an € -good
dialogue system for M.
Proof. See [Par91a].

3 Reaching consensus through communication

How can agents in the real world reach consensus on their decisions if they rely
on different pieces of information coming from different sources ? In their
communication, agents exchange pieces of information that we will represent by a
function f. The domain of f is the power set of W, which is the set of possible
worlds, and takes values in an arbitrary set D. In many cases, agents base their
decisions whether to trade or not on the expected probability of a given fixed event—
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in this case, they exchange probabilities about the event (f is a probability
distribution). Or, as in the stock market case, agents exchange just their decisions (f
has values «yes», «no»: agents just declare if they are willing to trade. For a detailed
discussion of this case, see [Kra90], [PaKr90]).
Assuming agents to behave in a rational way and to communicate according to
some fair protocol, how does learning take place, and how is consensus reached ?
Depending on the properties of f (see below for definitions), three main results
will be discussed, namely:
1- If the function f satisfies the union consistency (sure thing) property, then consensus
on the values of f can be reached in case of two participants in the conversation;
2- If the function f is weakly convex, then consensus can be reached in case of at most
three participants;
3 - If the function f'is (strongly) convex, then consensus can be reached in case of any
number n of participants, where the communication is pairwise and the protocol of
communication is fair.

Moreover, in these cases 1-3, consensus is always reached even in the absence of
common knowledge ([PaKr90]). This result is very important, since in most real cases
and applications we would like to use consensus (which is a “low level” kind of
knowledge) without demanding common knowledge (which is a very “high level”
kind of knowledge).

Definition. Let I = {1, ... n} be a set of individual agents. Let Wbe a state space
and R, ... R, be the accessibility relations for agents 1,...n. Let Py, ..., P, be
n partitions of W, each P; corresponding to individual i €/ . Two states of W, p
and ¢, belong to the same element P; iff (p,q)eR; (where the P;’s are
equivalence classes of W). P+ denotes the coarsest common refinement (join) of
the P;’s. P- denotes the meet of the P;’s. We then have, forall iel. P-<P;< P+

Deﬁniﬁon. A subset X of Wissaid to be i-closed iff peX and (p,9)e R;
imply ¢ € X. In other words, an i—closed set is a union of elements of P;).

X is weakly closed iff itis a union of equivalence classes of P*. An i-closed
set is also weakly closed, but the converse is not always true.

Definition. A protocol Pr is a pair of functions specifying, at each discrete
point in time, the sender and the receiver of the communication. Formally, Pr =
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(s(D), r(t)), where s(f) and r(r) have the set of natural numbers N as their
domain, and the set N* of positive integers as their codomain. As usual, ¢ stands
for time.

Definition. A protocol Pr is fair iff every agent is a recipient and a sender
infinitely many times, and each agent receives information from every other
agent (possibly in an indirect way) infinitely many times. This means that
everybody participating in the communication will have access to the pieces of

information being exchanged.

More formally, consider a directed graph E whose nodes are agents i €/ and such
that there is an edge (i, j) connecting node i tonode j iff forinfinitely many times
t wehave s(f)=1i and r(t) =j. Then the protocol is fair if the graph is strongly
connected: from every node there is a path to every other node of the graph.

An example of fair protocol is “round-robin”, in which the first participant
sends a piece of information to the second one, who in turn sends a piece of information
to the third participant, and so on, until the last agent sends a piece of information to
the first one, and the cycle is repeated indefinitely. Formally, the round robin
protocol can be defined in the following way.

Let7={0, ... n— 1} be the set of participants in the protocol. Then $(0) = 0, (0)
=1, andforr =2 1, s(t) =r(t-=1) =t mod n. We stipulate that the pieces of
information that are exchanged during the conversation are represented by a function f

whose domain is the power set of W, and taking values in an arbitrary set D.

Definition. We denote by m(f) the message sent at time 7, and by C(x, i,7) the
set of possible states of the world for agent i at time 7, given that the real state
isxeW. Wedefine m(f) and C(x,i,f) byinductionon ¢ as follows:

m(t)  =fCx, 50), 1)),
Cxi,0) = P = {ylxyeR },

Clx, i, ) " Newlnf if i = Hf), where NewlInf = {y I m(y,t) = m(x,0}
cer iy t+1) = { .
Clx, i, 1) otherwise
This definition also gives an updating procedure for each agent’s state of mind: when

new pieces of information are given, the recipient agent can eliminate possibilities
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from his state of mind. We denote by C(x,i, =) the limit value of C(x,i, 1),
whenever it exists. If thereisan x suchthat p=fC(x,i, )) then we willcall p
a possible limiting value for i.

3.1 Union consistency property

Definition. The function f satisfies the sure thing principle (also known as the
union consistency property) iff for all disjoint subsets X and Y of W

with fAX)=AY), wehave fIXUY)=fX)= AY).

Theorem. If f satisfies union consistency, then consensus is reached if there
are only two agents.
Proof. See [GePo82], [Cav83], [Bac85].

As an example, let us consider the situation where W is the set of possible
results of an experiment, and there are two agents interested in computing the
probability p of some fixed event E, in order to make their decisions. Each agent
receives information about the experiment by being told one of the elements of his
partition P; of W. We assume that the P;’s are common knowledge among agents, and
agents always receive true information (i. e., if the real state of the world is x, then x
€ P; (x) for all i). The function f is a conditional probability on a set of events (the
codomain D of fis the set of real numbers). Agents communicate values of f.

Without additional information, every agent would have the same value p(E).

Let us instead consider the following procedure:

a) one agent (the sender) learns that the result x is in P; (x), computes a new (a-
posteriori) probability of E, p(EIP; (x)), and sends it to the other agent;

b) the other agent (the receiver) in turn computes his new probability eliminating
from his set of possible worlds all the worlds in which the first agent would have
sent a different value, and sends the new computed value to the first agent,

and so on.

In this case, since the conditional probability function satisfies the sure thing
principle, and the a posteriori probabilities are common knowledge, then they must
coincide. This can be interpreted by saying that like-minded agents cannot agree to
disagree. For the original setting of the problem see [Aum?76]; for further discussion,
see [GePo82], and for its reformulation using the sure thing principle see [Cav83] and
[Bac85].

The same result holds with more than two agents, in broadcast modality, in the
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sense that everyone can hear any agent communicating his own value of f. But the
result no longer holds if participants in the conversation are more than two and the
communication of fis not public. (For three agents, a counter-example can be found in
[PaKr90]). Most real situations correspond to this case, where agents communicate by
pairwise private interaction. As we will see in 3.2, the property of weak convexity
of f guarantees consensus if the agents are at most three. We will also show in 3.3
that the stronger property of (strong) convexity of f guarantees consensus for any
number of agents.

3.2 Weak convexity

Definition. The function f is weakly convex iff for all closed disjoint
subsets X and Y of W, there are two numbers, a, b 20, suchthat a+b=1

and f(XOY) = axf(X) + b+A(Y).

This definition implies that, if X, ..., X are closed and pairwise disjoint sets,
then there exist reals aj,...,a; such that: a;+... + =1 and AXU... UX}) =
apfiXy) + ... + apsf(Xy).  Clearly, weak convexity implies union consistency.

Theorem. Suppose f is weakly convex, the protocol Pr is fair, and three
participants communicate values of f according to Pr. Then consensus on the
value of f must be reached.

Proof. See [PaKr90].

This result does not hold for n > 3 agents. A counter example (where n = 4) can
be found in [PaKa90].

3.3 Convexity

Definition. A function f is convex iff for all closed disjoint subsets X and
Y of W, thereare a,b > 0, suchthata+b=1 and AXUY)=a *A(X)+ b =AY).

Convexity implies the union consistency property (the proof is the same as for
weak convexity), and it also implies weak convexity. In fact, convexity is a stronger
property: everything that lies in the open interval between f{X) and f{Y) also lies in the
closed interval. '
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Theorem. If f isconvex, consensus is reached for any number # of participants
in the conversation, provided that communication is pairwise, and the protocol
of communication is fair.  More precisely, there is an integer fy such that
forall xeP;, iel, andall 1,1t >t wemust have Cx,i,0)=C(x,i,¢). In
particular, for all x and i the limiting value f(C(x, i, o)) exists.
Moreover, if f isconvex and the protocol is fair, then this limiting value does
not depend on i.

Proof. Forall x and i, C(x,i,1) isadecreasing function of r. Further, C (x, i,

f) is anonempty union of P*-equivalence classes. Since P is finite, f(C(x, i, 1))
is eventually constant. Let ¢(x, i) betheleast 7 suchthatforevery ¢ >t the
value of  C(x,i, 1) isconstant. Then 1 (x,i) depends only on the P*—
equivalence classes of x. Since P+ has a finite number of equivalence classes, and
there are finitely many i, thenthereisa # such that C(x,i, ") isconstant for
all >t regardlessof x and i. Clearly, g depends on the choice of
protocol Pr = (s(r), #(t)). It follows that for all ¢’ > # the value f(C(x, s(2),

1)) depends only on x and s(f). Assume for simplicity that 3 agents
communicate according to a round robin protocol. Let:

p1<p2<...<p; be the possible limiting values for participant 1,
q1<qa<...<gq, be the possible limiting values for participant 2,
ri<rp<...<r, be the possible limiting values for participant 3.

We have to show that for all x, the limiting values generated by x do not
dependoni. Let p; be apossible limiting value for agent 1,and E(p;) be the
setofall x suchthat f{C(x, 1,0)) =p;. Then E(p;) is a disjoint union of sets
C(x, 1, 0), namely, those sets for which C(x, 1,e0) =p;. Ifye C(x, 1, o), then
y is compatible with all the information received by agent 1 when the real
world is x.  This implies that y and x are equally informative for agent 1,
whence C(y, 1, ) = C(x, 1, 00). Therefore, by the union consistency principle,
which is in turn implied by convexity, we have f (E(p;)) = p;. Letus say that p;
and g; are compatible iff there exists an x such that f(C(x, 1, e)) =p; and f
(Clx, 2,0)) = gj. This means that, for suchanx, agent1 sendsthe value p; to
agent 2.  After many iterations of the protocol we have

' Clx,2,t+1) = Cx, 2,0 N If(Cy, 1,0))=pi} =Cx,2,1) = Cx, 2, 00).
Therefore, the set {y|f(C(y, 1, ) =p;} mustcontain C(x, 2, «). Thus E(p;)
contains C(x,2,e0). This implies that E(p;) is a union of sets of the form C(x, 2,
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) whence, by the assumed convexity of f; p; mustbe an average of those g;
which are compatible with it. Let p; be the smallest of the p;’s. The set of
values  ¢; compatible with p; must contain at least one element, less than or
equalto p;. Itfollows that ¢y <p;. Bysymmetry, r1<gq; and p;<r;.
Then p; =¢; =r;. Butonly g canbe compatible with pj, since the remaining
g; are strictly greater than p;, and the average of g withany other ¢; -is
strictly greater than ¢;. Similarly, only r; can be compatible with ¢, and
only p; can be compatible with r;. Thus, after time fo, either all or none of
agents 1,2,3 will be sending p;. Thus in particular, p; can be compatible
only with ¢g; for j = 2, ¢ canbe compatible only with r, for h 22, and
r, can be compatible only with p; for i >2. Repeating the argument, we see
that po=¢qo =7 Byinduction weget py = qq = rq Tforalld Now, our
argument is independent of n  and of the particular protocol. In fact, the only
property we used is that we can find a chain <t <...<t, withall 7 greater
than 1y and such that () s(z;) =1, (b) the sender at time ¢f is the
recipient at time #, and (c) the chain passes through all participants, finally
returning to 1.  Now ‘observe that conditions  (a)-(c) are automatically
satisfied by any fair protocol.
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