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Introduction, whose (intended) effect is likely to be that of 
bewildering and confusing the reader, according to a Socratic 
maxim: first  realise that you don’t know, contrary to the lazily 
received wisdom, then proceed to untangle the wool  
  
In a logic course the completeness theorem is a point of no return; 
you cross it, as Caesar crossed the Rubicon, and you cannot go 
back to the lost innocence. But the pristine innocence was made up 
of a lot of sinful biases and misconceptions. After the theorem, you 
cannot cheat any more; logic changes the way it is used and 
conceived (hence its status).  
 
The completeness theorem is the first, sometimes the only theorem 
one meets in an introductory course - so it must be important . 
Before it, there are a lot of proofs, but no theorem (some say  there 
is a sequence of lemmata, paving the way for the theorem). The 
proofs are very tiresomely detailed inductive proofs of properties 
of the languages and of the interpretations, which parallel the 
inductive definitions of the syntactic and semantic notions 
(assignments, satisfaction and so on); for example the property 
that A[x/y][y/x] is A if y is free for x in A and it is not free in A; or 
the property that if σ satisfies A and σ’ is such that σ’(y) = σ(x), 
again with a lot of strange conditions on variables, then σ’ satisfies 
A[x/y], and so on and so forth. The completeness theorem on the 
contrary is a real theorem, though ironically sometimes it is not 
proved at all, especially in computer science or philosophy classes 
(when in math classes the maximal ideal theorem is used, no 
mention is done of their equivalence). What is the use of a proof 
after all? Part of the innocence is that logic is a technique. In a 
logic course you spend your time improving your natural abilities 
by mastering new techniques, through formalisation and 
derivation exercises, but you do not prove theorems - that is a 
mathematicians’ affair (but for those painstaking and 
uninformative proofs of the lemmata, of course).  Perhaps proving 
the theorem might lead you astray with mathematical spells (or 
might really teach you something). 
 
The completeness theorem opens the Pandora’s box of the 
distinction between syntax and semantics; but Pandora’s box is full 
of riches as well as of sorrows. Our previous experience with 
natural language or mathematics is of no use to understand the 
theorem, because such distinction is not to be found in the use or 
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in the study of any language. When learning a language beginners 
certainly do grammatical analysis, which is useful from many 
points of view, for example to disambiguate ambiguous sentences, 
or even to grasp the meaning conveyed by a sentence. If a sentence 
is not grammatically correct it has no sense, though it can 
sometimes be understood from the context, or thanks to extra 
linguistic circumstances; the parsing of the grammatical form is 
essential to understanding, as far as the sense is compositional, in 
its simplest and most intuitive sense - that is corresponding to the 
syntactic construction.  However in the study of a language one 
does only grammatical analysis, without meeting an independent 
semantics, even if one learns to grasp, through correct use, the 
sense and meaning of discourse.   
 
In the first part of the logic course, students learn the syntax of 
predicative (first-order) languages, which is very much akin to 
grammar, as well as the rules of correct speech: alphabets, 
formation rules for terms and formulae, deduction rules and their 
chaining in inferences (derivations). Formulae are viewed as 
painstaking and absolutely rigorous regimentation of phrases. The 
aim is that of learning the action of the formation rules which give 
origin to schemata. In this way one can recognise all phrases with 
the same form, that is constructed with the same sequence of 
applications of the grammatical formation rules.   
 
The use of (variable) letters to express form, which goes back at 
least to Aristotle, is on a par with the primitive use of variables to 
be found at the beginning of modern arithmetic, when people 
began to use  n  for a generic number, in order to write down 
formulae or relations valid for all numbers. Sometimes people used 
instead a particular (albeit small) number, stating at the same time 
(without proof) that calculations and reasoning had however a 
general validity.  If true, the effect was the same that with the 
generic n, the more so since the use of n  wasn’t accompanied by a 
real general, say inductive, proof. 
 
History repeats itself with logical formulae. The use of letters in 
itself does not mark a novelty with respect to a rigorous, albeit 
informal study of language. The problem is to explain the why and 
wherefore of the quest for generality. The explanations are often 
off the mark and perversely twisted. The answer usually found in 
the introductions to logic textbooks is that a logical reasoning valid 
in a domain should be valid also in other domains. Aristotle had 
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already remarked that some inferences are valid by virtue of form 
alone, hence if valid in a domain they are valid also in others. But 
it is not often that one explicitly notes that a certain kind of 
inference can be found also in other circumstances; this happens 
only with very special arguments, e.g. proofs by contradiction 
(which deservedly have a widely known name). Here, however, the 
reference to the form of inferences is a loose one, only the very 
general strategy and structure of the proof is actually pointed out.  
What happens in truth with logical inferences is that instead of 
exporting generality one imports it; the appeal to the formal 
validity serves the purpose of justifying a particular inference in 
terms of general formal laws. Reasoning becomes the application of 
general laws to particular cases.   
 
The whole machinery of formal logic thus acquires an ambiguous  
status; when in action, it represents with its pedantic proceedings 
the famous chains which Poincaré contrasted to the wings of 
thought; as a theory, it carries along a debatable thesis on the 
nature of reasoning, namely that correct reasoning in each 
particular domain is just the application of universally valid 
(possibly innate, mental) rules.   
 
Those who study reasoning - knowledge engineers, psychologists - 
maintain on the contrary that domain specific inferences, those 
where the speaker knows what he is talking about, are not  logical 
inferences; though the reasoner may say: A, if A then B, hence B, 
actually what is at work is some kind of intuition  (lat. intuere), or 
of pattern-matching, appropriate to the domain; one really means 
something like: “if you see A then you see (you can see, you should 
see) B”, or “pattern A goes into pattern B” or the like.   
 
Elementary mathematics as is learned at school is not different 
from any other knowledge domain. It is far from formal: it has a 
content (germ. Inhalt). The same is true of higher mathematics; 
professional mathematicians see structures and mathematical 
entities; they see them because they have learned at school to see 
the Lockian general triangle in pictures on the blackboard. To 
explain how this can happen is not an easy matter; Kant has built 
his whole transcendental system to tune together sensible intuition 
and logical abstraction, but he can hardly be said to have 
succeeded. It is a fact that mathematics begins with sensibility, and 
this is the hard problem, both for foundations and for teaching. In 
algebra, formal practice is accompanied by a contentual (but 
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loosely related) description of what is being done; the justification 
is a realistic one, inherited from the material (in Carnap’s sense) 
way of talking of the first numerical experiences.  Hence the 
widespread dissatisfaction and malaise among students and 
teachers, but also a crack where one can put a wedge to upset 
established habits of (non-)thought.  If everything were clear and 
satisfactory, there would be nothing to reflect upon.   
 
Logic as a (theory describing thought as a) formal game cannot 
present itself as the solution of the riddle. Insistence on formal 
logic  to celebrate the triumph of reason has the opposite effect of 
making a caricature of the thinking (wo)man. For example Richard 
P. Feynman claimed that «mathematics is language plus reasoning, 
a language plus logic, that is a tool to reason». But at the same time 
according to Feynman  mathematicians cannot properly (be said 
to) reason.  They «deal only with the structure of the reasoning, 
and are not interested in what they are talking about. They do not 
even need to know what they are talking about, or, as they say, if 
what they are saying is true [...] Logical deduction can be applied 
even if one doesn’t know the meaning of those words [in the 
axioms]. If the statements of the axioms are carefully worded and 
sufficiently complete it is not necessary that he who makes the 
inferences has any knowledge of the meaning of the words in order 
to deduce new conclusions in the same language». Then the poor  
mathematician who works with the equations into which a 
phenomenon has been translated, since the symbols tell him 
nothing at all has no guide line for his reasoning, but the precision 
of mathematical rigour. The physicist on the contrary, more or less 
knowing the results he is expecting, can try a guess and so 
proceeds rather directly to the heart of the problem. (Feynman 
probably thought that mathematics is a tool for reasoning only if it 
is a language plus logic plus a physicist as a user.) 
     
The teaching of mathematics pushes towards the mastering of the 
formal, which reaches its highest with logic. At the beginning of 
the logic courses students are informed, probably for the first time, 
that there is a distinction between syntax and semantics; 
grammatical correctness and meaning part their ways. This is the 
loss of innocence: numbers disappear -  whatever we seemed to be 
talking about, also disappears. It really looks as if the final goal 
were that of becoming Feynman’s cripple, or a monster, as far as 
reasoning is concerned. The semantic notions are used to show 
that the formal rules have general validity; thereafter rules can 
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play the formal and apparently impossible game. But at the same 
time this is not the policy pursued in the parallel mathematical 
courses, where discourse continues to be an apparently meaningful 
one, concerning various types of entities. To fill the gap, reference 
and meaning are (said to be) the concern of another part of logic, 
namely semantics; semantics takes on the task of describing, or 
defining the strange things one seems to talk about in 
mathematics. The completeness theorem connects the two aspects 
in quite a satisfactory way - so it is said. Paradise is thus 
immediately regained after the loss of innocence. Is it so easy?  Can 
the promises be fulfilled?  
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Enter the dramatis personae  
 
The completeness theorem is actually a family of theorems. Not 
only has each logic - classical, intuitionistic, modal and so on - a 
completeness theorem, but moreover every logic has a family of 
completeness theorems, one for each particular pair of poles that 
are connected by the theorem. On the one hand there is a calculus,  
a rule system that generates derivations, viz. sequences of 
(correspondents of) phrases, or (representations of) reasonings; on 
the other hand there is a notion of logical truth, and 
correspondingly of logical consequence, logical validity, logical 
satisfaction - all related and interdefinable.  
 
Although the notion of logical truth can also be conceived in many  
different ways, nowadays it is usually presented as truth under all 
interpretations, under a great variety of notions of 
“interpretation”. The latter becomes then the crucial notion. 
“Logic” is actually an ambiguous term, usually meant to denote 
both a system of (axioms and) rules of derivation and a semantics - 
viz., a class of interpretations for the languages of a certain kind.   
To stress the first aspect it is preferable to talk of a logical calculus,  
while by “logic” it is usually (but not necessarily) meant that also 
semantic notions are involved. But the latter need not be uniquely 
determined by the name of the logic. Intuitionistic logic, for 
example, has Kripke semantics as well as the semantics given by 
infinite matrices, topological spaces and so on.   
 
Each completeness theorem states, for a given pair <calculus, 
semantics>, that the two notions of derivability and of logical 
consequence are (extensionally) the same relation on the set of 
sentences, and give rise to the same set of theorems (derivable 
sentences, logically valid sentences). When completeness holds, the 
calculus is said to be complete with respect to the semantics. The 
usual schematic notations for these concepts are well known; one 
writes   

 
|=  A  if and only if  |- A,  

 
to state that A is logically true if and only if A is derivable from the 
empty set of assumptions. More generally, for every sentence A 
and every set of sentences T one writes   

  
T |= A if and only if  T |- A, 
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(strong completeness) where T |= A means that A is a logical 
consequence of  T, and T |- A  means that A is derivable in the 
calculus from the (sentences of the) set T.  |= A and |- A are a 
particular case of T |= A and T |- A when T is the empty set  ∅, and 
the completeness property is a particular case of strong 
completeness.  As for T |- A, we assume that the reader is 
acquainted with one of the usual calculi presented in any 
introductory textbook, a Hilbert calculus, or natural deduction, the 
sequent calculus or the tableaux  method, so that we know what it 
means  T |- A with reference to this calculus.    
 
The big deception begins when one describes several calculi and 
just one semantics, tacitly the semantics. As a corollary of the 
different completeness theorems for the different calculi and the 
same semantics one has the equivalence of the calculi with respect 
to. derivability: the same theorems can be derived in any two of 
them. Giving one official semantics  is easier for classical logic than 
for intuitionistic logic, where it is more difficult to ignore the 
several semantic possibilities.  But we will try to unveil the 
deception sticking to the classical logic. (Boolean valued semantics 
is not a real alternative, owing to the representation theorem, but 
it should at least be mentioned.) 
 
As remarked above, semantic notions are mutually interdefinable.  
They all depend on a basic one, namely the following: given an 
interpretation  M and a sentence A, by M |= A one asserts the fact 
that A is true in M;  M is then also said to be a model of A.   If A is 
not true in M, A is said to be false, and one writes  M |≠ A.   
 
Warning   “A is true in M” is not defined by the notation  M |= A, 
which for now is only an abbreviation. The definition of  M |= A 
depends on the languages and above all on the notion of 
interpretation for a language. We’ll come back to this main issue 
after recalling some related notions.    
 
For any set T of sentences, we let  M |= T be an abbreviation of the 
statement that for every A ∈ T   M |= A.   Then M is said to be a 
model of T. M |≠ T mean that there is at least one A ∈ T  such that 
M |≠ A. If T = {A1,..., An},  M |= T if and only if  M |= A1 ∧ ... ∧ An, 
where ∧  is the conjunction symbol.   
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A sentence A is said to be logically true, or logically valid, if M |= A  
for every interpretation M of the language; one writes then |= A. A 
sentence A is said to be satisfiable, or semantically consistent, if 
there is at least one  M such that M |=A; A is said to be 
unsatisfiable, or semantically inconsistent, if there is no  M  which 
is a model of A. A sentence is unsatisfiable if and only if its 
negation is logically true. A set T is said to be satisfiable if and only 
if there is an M such that M |= T, otherwise it is unsatisfiable. 
 
A sentence A is a logical consequence of the sentence B, in symbols 
B |= A, if for every M, whenever M |= B then M |= A. One also says  
that B logically implies A.  In classical logic, A is a logical 
consequence of B if and only if |= B → A, where →  is the 
implication symbol. A sentence A is a logical consequence of the 
set of sentences T, written T |= A, if for all M, if M |= T then M |= A.  
If T = {A1,..., An}, T |= A  if and only if A1 ∧ ... ∧ An |= A if and only 
if  |= A1 ∧ ... ∧ An → A.    
 
The rules of a calculus have by definition a very special character; 
they might be called mechanical, with reference to the 
effectiveness of their application and of the recognition of their 
applicability; they might be called syntactical, with reference to the 
fact that they are  tuned on the syntactic structure of the formulae. 
They are usually finite in number, or in any case they form an 
effective set, to ensure that all possible derivations can be 
effectively generated. The decidability of the notion of proof and 
the semidecidability, also called partial effectiveness, of the notion 
of theoremhood, follow as corollaries.  The fact that theoremhood 
is only semidecidable appears to be well suited to the limited 
means of any finite agent, as human beings, as well as machines, 
are supposed to be.  Semantic notions on the contrary do not 
usually have an effective character, they are defined more or less 
at the same level of abstraction as mathematical infinity (e.g. the 
set-theoretic semantics).  This may explain why logicians regard 
completeness as a prerequisite for a logic to be acceptable. As a 
matter of fact, the requirement has a double import: according to 
some people, it is debatable whether a logic can be considered 
such if there is no complete calculus for it. On the other hand it is 
doubtful that a logic can be given by a calculus which is not 
complete with respect to some (even weird) semantics.    
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Approaching the problem, which doesn’t seem to be a problem of  
every-day experience, but at variance with it; it appears that is not 
a case of saving the phenomena, but of exploding them  
 
Any educated person who is logically naïve (that is, who hasn’t  
entered a logic course) does not see a clear cut distinction between 
derivation and logical consequence; these notions must be severed 
one from the other before being again unified at a higher 
conceptual level.  Usually the non-technical term “deduction” is 
used to denote a chain of inferences. Prima facie, or before the Fall, 
deductions and inferences partake of both sides: they have to do 
with intuitive logical consequence, but at the same time they’d  
better be done in small steps. Students might remember the 
impression of their first geometric proofs, with the (small) step by 
(small) step structuring of the reasoning; each statement had to 
depend from previous ones, to be dutifully mentioned (the 
statements, not the way and the why of the dependence).  But 
students and teachers are seldom aware of the existence of fixed 
systems of rules; of such rules, they have at best a practical and 
casual experience, no explicit presentation. Rules were never 
mentioned to them.  Perhaps that is the right thing to do, for you 
cannot mention rules without entering in the kind of global 
discussion on which we are embarking.   
 
A logical calculus explicitly contains all its rules of transformation. 
It is often said that a completeness theorem proves that the rules 
of the calculus are sufficient. This may be reassuring but it is by no 
means clear. Sufficient for what? What is the nature of the rules?  
what is the effect of following them? What if we had forgotten 
some? But is it possible, and how and where could we have 
forgotten a rule? If rules are in our mind, their working should be  
familiar. There is an empirical proof that they are sufficient in the 
fact that looking through all the reasonings registered through the 
history up to now (à la Peano) one doesn’t find any other. One 
cannot say that one needs a new rule to make a reasoning which 
has already been done. One could speculate that with the 
evolutionary growth of the dimension of the brain some new 
capacity to do (now) inconceivable inferences could emerge; then 
the completeness theorem would falsify the speculation, unless 
also new notions of logical consequence should be invented (this 
type of shaky speculations on evolution may be found also in some 
debates on Church’s thesis).  
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It is true that mathematical proof have not always been the same, 
but when a recalcitrant proposition has at last been proved (e.g. 
Fermat’s last theorem) the success has not been due to a newly 
invented rule, but to the intelligent use of new definitions.  An 
example of an inference that at a certain time has appeared to be 
new and revolutionary is Saccheri’s consequentia mirabilis, but  
later it was found that the rule had been already used by Euclid. Of 
course, there is always a first time for everything, but for logical 
inferences this first time seems to be always a rather ancient one, 
in a very limited period of the development of civilisation (as far 
as the western world is concerned). An important example of a 
demonstrative technique which has appeared later, in a relatively 
recent historical period, is the induction principle (disguised as 
infinite descent in Euclid and Fermat). Indeed, it took a great  
labour to clarify the issue of induction, but the difficulties 
concerned the concept of natural number, not purely logical 
questions.   
 
Besides geometrical proofs, students meet another kind of proof in 
algebra, i.e. manipulations of equations. Although these are  still 
stepwise procedures, they look different: prima facie  they don’t 
have the form of a sequence of statements, which makes  it  even 
more difficult to understand what is logical reasoning. As a 
justification of the steps, some properties of numbers are 
perfunctorily mentioned, but again the rules are hidden. In fact, 
they are even stranger that inference rules for plain sentences (in 
equational manipulations, such rules as the substitution of equal 
distinct terms is imposed as obvious by the prevailing teaching 
philosophy).  Proofs, through a purported logical reasoning, are 
meant to establish the validity of a mathematical formula in a 
numerical system (let us say for convenience the real numbers R, 
though students do not have any idea of what it is, a fact that 
could ultimately  prove a blessing for them).   
 
To fix ideas, a typical and extremely simple example of reasoning 
is the following method to establish the identity 
   

  (x + 1)(x - 1) = (x2 - 1).  
Starting from 

 (x + 1)(x - 1) = x(x - 1) + 1(x - 1),  
and obtains 

(x + 1)(x - 1) = x2 - x + x - 1,  
whence  
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(x + 1)(x - 1) = x2 - 1. 
 
For the purpose of justifying the algebraic transformations - and 
not just applying them - people on both sides of the table (students 
and teachers) refer to certain facts true for R.  I have said  “true 
for R”, and not “in R”, as a logician or a structuralist 
mathematician would say, because the  idea of a sentence “true in 
a domain” is not natural at all; the common wisdom is that a 
sentence may refer to a domain, and be true (or false). The 
distinction will appear meaningful later on.  Explicit reference to 
truth may be avoided by saying that one uses certain “properties” 
of the real numbers (meaning of course some properties which 
hold for the real numbers).  Every step of the proof gives a true 
statement, and of the properties used there is no trace, but their 
effect.  The properties one makes (tacit) reference to are simply 
items in the general common background knowledge; one similarly 
knows that France is a presidential republic and has a certain well 
defined electoral system.   
 
These reasonings, as they are called, are descriptions of facts, as in 
normal speech; if they use (implicitly) the notion of “truth”, it is 
not that of “logical truth”; on the contrary, logical truth appears 
entirely off the mark; one is talking of precise things and 
(hopefully) telling the truth, without qualification.  But then it is 
difficult to conceive that the truth of one fact depends on the truth 
of another (in what sense in real life do we make appeal to an 
intuitive causation?) and that one uses a rule, instead of cunning 
attention, to pass from one fact to another; this is one reason for 
our reluctance to mention rules. If the teacher talks of logical truth 
and of logical consequence, it is likely that the adjective is 
construed in an intensional sense. The sense of “intensional sense” 
is not clear at all, but to philosophers. To normal beings it is only a 
kind of rhetorical emphasis: “logical” evokes necessity, a state of 
affairs which imposes itself with irresistible force and a conclusion 
one cannot refute (perhaps for the sake of our common 
rationality).   
 
To say that the single steps are particular instances of general 
logical laws is not much help, or it is worse, because then one does 
not see the logical (argumentative) development. It is only the 
specialist who can see the effect of the delicate substitution rule 
(which by the way is not logical at all, but a property of equality,  
and only in a devious way can be replaced by modus ponens on 
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axioms).  Thus, any appeal to logic are at best confusing; its effect 
is at most to force the mention of the relevant properties, but 
without seeing how they work, and the link between the steps. 
What remains is the yearning for precision, verging on pedantry; 
the received message is that of excluding intuition, in a broad 
sense. This in fact is the traditional role assigned to formalisation. 
But why should one want to bar intuition, if correct and useful?  A 
straightforward geometric proof of the above algebraic identity 
(going back at least to Euclid) consists in drawing a square with 
side x, and superimposed to it a rectangle with sides  x - 1 and x + 
1; then one immediately sees that the difference of the areas is 1. 
History teaches that intuition was banned when it began to lead 
people astray by not  allowing them to see - but this is another 
long and tangled story.    
 
It is by no means easy to justify the notion of truth involved here 
(“for numbers it is true that...”). As a matter of fact, both at high 
school and at college level, one encounters no precise definition of  
numbers and truth. One works with systems of notations, 
representations without reference, and some rules of thumb 
learned by heart and accepted, often to please the teacher, 
according to Russell, or on empirically inductive grounds. Some 
other rules are obtained via the kind of reasonings described 
above.   
 
As is well known to logicians, in order to proceed according to the 
book, one should explain that the aim of the above reasoning, as 
well as the aim of any proof, is not to show that the formula is 
valid in R,  but that it has a logical generality whose boundaries 
are fixed only by the axioms. Certainly, it is not easy to explain 
that one is doing logic when appearances (as conveyed by 
language, side comments, motivations)  point to the contrary. The 
question arises  of the relationship between one particular 
concrete argument and  its logical counterpart lurking behind. Is it 
a case of instantiation, inclusion, paradigm, generalisation? Is it the 
Hegelian spirit becoming flesh? Teachers have a tough job here and 
deserve all our sympathy.   
 
The high road to the logical and axiomatic point of view should 
probably begin with the assertion that the given argument contains 
some hidden facts, or unspoken assumptions. That would come as 
no surprise to the students, but let us chase the hidden 
assumptions, as in a game. It would be easier to highlight them, if 
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more stress were put on  talking, instead of blind manipulation. 
The use of incomplete mathematical formalism and jargon has this 
paradoxical negative consequence, that the various formulae 
appear as snapshots of situations; one forgets that one is building a 
discourse. Making ourselves understood requires a minimum 
respect for grammaticality; one should not indulge in leaving 
truncated phrases hanging in the air, and other such sloppiness.    
 
From careful inspection of the proof (warning: this is misleading, 
there is no proof to inspect, but only a proof to build) the 
following assumptions emerge: distributivity, 0 as neutral element 
of addition,  x + 0 = 0 + x = x, the inverse property, either both x + 
(-x) = 0, and (-x) + x  = 0  or one of them and the commutativity of 
addition, and 1 as neutral element of multiplication, 1x = x = x1.  If 
we call A the conjunction of these assumptions (the above 
mentioned “properties”) then the conclusion of our reasoning is    

 
A implies  (x + 1)(x - 1) = (x2 - 1).  

 
This doesn’t mean that if you believe A then you (have to) believe 
the identity, or that A has some long-distance effect on the 
formula, or other fancy versions of “implication”. It means that A 
logically implies the identity, or that  

 
[A→ (x + 1)(x - 1) = (x2 - 1)]  is logically valid, 

 
according to the previous definitions - that is, in every 
interpretation in which A is true also the identity is true. Using the 
preferred terminology, A can be said also valid as an open formula, 
in the sense that the universal closure ∀x A(x) is true (same for the 
identity).  The reasoning is a logical one in that it allows us to state 
the following kind of conclusion: that something is true in all 
possible interpretations.  How the result can actually be achieved 
we will see later (in fact, A produces the above identity, via a 
number of manipulations of its components; this is why all 
components of A must be mentioned, but this is a discovery 
embodied in the completeness theorem). Now the first problem is: 
how to present to the students the idea of (all possible) different 
interpretations?  
  
While variables range over numbers, operation symbols denote 
fixed operations. School algebra still pertains to a pre-Hilbertian 
epoch, in that the symbols + and × have a fixed, not a variable 
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meaning. Hilbert in the twenties was the first one who explained 
that in mathematical logic every part of the alphabet should be 
construed as a variable (over objects of suitable kind).  
 
Different interpretations could mean different algebraic structures; 
for instance, the above identity is also valid in the natural 
numbers, though one usually does not consider it when doing 
arithmetic. The identity is proved only after the development of 
methods of calculations involving numerical variables, as is 
systematically done in college algebra -  with almost exclusive 
reference to rational or real numbers. Anyhow the other numerical 
structures that could be known to students are substructures of the 
encompassing one given by the reals; the operations on these 
substructures are not essentially different - they are mere 
restrictions of the original ones. It might be useful, though by no 
means easy, to consider also some non-numerical structure, thus 
opening the way to the study of (hints of) abstract algebra.  
Different interpretations might well involve such artificial and 
provoking examples as the tables, plates and glasses invented by 
d’Alembert and Hilbert for geometry. Too far-fetched at a first 
stage. A little bit of qualitative, non-numerical mathematics, like 
graphs and discrete structures could serve as a good introduction; 
they are representations of fragments of reality, and 
interpretations are introduced in mathematics through the many 
different systems of representations; the more we have, the better.  
 
Talking of a whole class of interpretations of a language is not easy 
when, to be honest, the audience is not even acquainted with one. 
If one tries to define the reals one ends in a bees’ nest. But the 
situation could be positively exploited, in a first stage: ignorance of 
the details of any interpretation could help in talking of the 
generic one, whose details do not matter, but only some very 
general features, which turn out to be common to all. This is what 
the set-theoretical notion of structure will achieve.  
 
We are faced anyway with the problem of saying what an 
interpretation is. We must refer interpretations to languages, 
although no language per se is singled out in college algebra. 
Thinking of the above identity as relative to one or another type of 
numbers changes the interpretation, but only by slight corrections, 
refinements, not really changes.  We didn’t have an interpretation, 
but only some knowledge, though vague, and difficult to talk about 
- which is not surprising, because knowledge comes with and 
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within the spoken language. The situation for mathematics is the 
one inherited from our natural language; linguists say that natural 
language is descriptive, to be taken at face value. There is no need 
to look for interpretations of the language as such, as a global 
structure, and we do not know what it could mean. When speaking, 
we are at most concerned with precision, with the elimination of 
vagueness and ambiguity of single special terms and constructions; 
this is the meaning of “interpretation”. At least in principle, 
refinements are introduced in scientific languages thorough 
careful definitions (although there is a certain indecision about 
scientific languages; they are either fragments of the natural 
language, polished as said, or else they are full-fledged formal 
languages of the kind treated in logic).   
 
The descriptive nature of language is unproblematic, as far as talk 
does not involve mysterious things, the arcana and  invisibilia, 
from which hermeneutics takes its origins; but the latter is the 
effort to interpret God’s verbum. Facts and stories of the Holy Bible 
are pointers to spiritual realities, or to a divine project whose 
working and code remains in the hands of God, whatever the 
interpretative efforts from the hearer.  In their struggle to 
understand God’s word men have learnt much about language, 
especially about how to talk also through enigmatic sayings, which 
according to St. Augustin are made of things that do not exist; they 
have learnt perhaps more than about mathematics.  
 
In naïve mathematics there seems to be the same kind of talk  
which is literally descriptive, as is natural language. Interpretations 
are not needed and not  looked for, they simply are there, along 
with the stream of discourse.  When one raises the problems of the 
denotation of terms (proper and common names, descriptions) and 
of the truth of statements, these problems look artificial and 
unnatural. But there are some differences which should be a 
warning; in normal speech one sometimes explains what one is 
talking about by reducing it to more familiar things. This is not the 
case with mathematical terms. Moreover, in mathematics meanings 
are not conveyed by the words as such, but by their rules of use, 
by the algorithms to which they are subjected.   
 
Think of the way rational numbers are introduced, with a  blend of 
practical intuitions about dividing a cake (fractions as operators) 
and numbers in decimal notation, obtained by the algorithm of 
division with quotient and remainder, all mixed and  interrelated. 
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Knowledge contained in a set of algorithms on these disparate 
notations is acquired before the question “what are the rational 
numbers” comes to the fore of consciousness. This is an important 
fact, one that in a sense shall be saved by the completeness 
theorem, albeit through a devious route.  For the present, we 
introduce a confusing complication if we ask the student to go and 
look for other interpretations. The invitation has no sense, if the 
interpretation is in the notations and in the rules for handling 
them.   
 
Let us compare mathematics with the stories about non-existent 
beings, literature characters, or impossible animals of children’s 
tales, such as the winged horse or the chimera. We often know 
everything there is to know of them, as if we had daily dealings 
with them. Could it be the same with numbers? If we are asked 
what imaginary beings are, the answer is a piece of information 
about theirs deeds, and when and where they have been living. 
This information is actually false, if our truth criteria depend on 
witnesses and certified documents. Sometimes one can also prove 
that they are false, but falsity is an extrinsic matter, the stories are 
consistent, and verisimilar. And when the information is true, as in 
the case of existing persons, the information has the same nature - 
it is expressed by statements of the same form. If you ask whether 
(or what it means that) John loves Mary, the answer will be a 
description of certain inner states and actions of someone who is 
in love: sighs, thoughts focused on the beloved object. However, 
the question and answer apply indifferently whether John and 
Mary are existing persons you are acquainted with, or they are 
from the pages of a novel.   
 
Staying within the use of language has the effect that the 
explanation of the sense of a discourse (through synonyms) is 
unavoidably circular; a certain circularity is absolutely 
unavoidable with fundamental concepts. For example, in some 
definitions of life  the condition of reproduction is included, i.e. of 
giving life to some new being. The same holds with the definition 
of consciousness. To break the circle one has to change level, or 
language. For example, in the case of love it can be informative to 
pass from the psychological or behavioural language to the 
physiological one; this is what is meant by a reductionist 
explanation. It is debatable whether this kind of explanation, 
though undoubtedly useful, is a source of meaning.    
 



 19 

Mathematics is probably in the same predicament as the products 
of fantasy. If you have an interest in fantastic beings, that are the 
product of a fancy and coarse genetic engineering, you are not 
really interested in how it is possible that two eagle wings connect 
on the back of a horse; you are interested in the fact that the horse 
can fly and whether it will fly to the moon. If asked what it means 
that 0 < 1, it is not sensible to answer recalling the set-theoretical 
(reductionist) construction of Dedekind cuts and of the order 
relation on them; an answer more useful and to the point will 
probably recall and explain some related facts, like x < x + 1, the 
notion of positive numbers and  the like.  What do we know about 
the objects and beings we talk about? Is it the stuff they are made 
of, or else it is the set of statements we can consistently utter about 
them?   
 
These are just a few of the reflections we can make on the basis of 
every-day (including school) experience concerning the sense and 
meaning, or lack thereof, of the mathematical statements we use 
and produce in a naïve way: a lot of questions and doubts and few 
certainties. Let us pass now to the theorem and its proof, to see if 
some new light can be obtained, as promised. Science introduces 
distinctions which are not grasped by the naked eye, and of which 
one does not feel the need - to split the atom for example.  The 
completeness theorem could help towards a better understanding 
of this  muddle of problems; not to simplify it, but at least to have 
a more complete vision of all sides of the issue.  
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First tentative plunge into the proof, which comes to nothing 
because the two horns to be connected turn out to be one and the 
same, so there is nothing to prove    
 
There are many proofs of the theorem, each to be recommended 
for one feature or another, each throwing light on a different 
corner; but the lesson we are interested in will emerge from any 
one of these proofs. First, one has to choose the two horns of the 
question: a system of rules and a notion of interpretation. Since we 
still do not have an inkling of the latter, we will choose for now a 
calculus and we will see how far we can go without committing 
ourselves in a precise way to what is to be an interpretation. Rules 
are man-made, while interpretations are tricky and slippery. As we 
have said, we do not have any experience of the latter through our 
usage of natural language. It is possible, however, to begin to talk 
of them by stipulating some conditions that any notion of 
interpretation must satisfy. This is the typical way of mathematics: 
in every field one has same partial information, coded by suitable 
axioms or by accepted assumptions. Building on its basis, one 
begins to say something and thus goes on increasing the 
knowledge. For example, we don’t know whether (it is right to say 
that) points are - as we find in Euclid - entities with no dimension, 
and lines are entities with one dimension. We know that two points 
determine one line, and two incident lines meet in one point, and 
some other things of this kind, independently of a definition of 
dimension. By developing geometry on the basis of this knowledge 
we’ll eventually meet with the problem of a metric, dimension and 
so on. By pursuing our study, we are confronted with new 
problems, acquire new knowledge and new wisdom, and sometimes 
it may happen that what was temporarily accepted as a necessary 
condition becomes also a sufficient, or a defining, one.  
 
We know two or three things about interpretations, even if we still 
don’t know what they are. Using our knowledge, and without 
saying what they are, we can already prove the correctness (or 
validity) of the rules - to fix ideas, let us refer to the rules of 
natural deduction.  A rule such as “from A ∧ B infer A”  is correct, 
because in any interpretation - whichever it be and whatever they 
be, and whatever it means to hold in an interpretation - if A ∧ Β 
holds in the given interpretation then also A holds. Similarly, the 
rule “infer A ∧ B from A and B” is correct, because in any 
interpretation in which the premises A and B are separately true 
then also A ∧ B is true. The other logical particles are treated in a 
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similar way. To find a situation, or an example of a meaningful 
speech in which the particle called “conjunction” does not behave 
in this way is not an easy matter, which we can forget for the 
moment.  The case is different for a particle like negation, where it 
is rather easy to find alternative, non-classical, uses. It turns out 
that such alternative uses give rise in a rather natural way to 
alternative logics, but if you are a teacher you can cheat a little 
and with some rhetorical performance you can be convincing 
about the contrary. When  experience is limited, the available 
examples are of a classical kind, and people are always ready to 
believe that their experience is general and valid for anybody 
(anyway, we shall only consider classical logic).   
 
We are determined not to accept a notion of interpretation that 
does not satisfy the above conditions for conjunction, as well as 
the other usual conditions for the other logical particles. So our 
calculi will be correct by definition. Somebody claims that those 
conditions are a definition of the logical particles, but it seems 
more sensible to say that they are (also, at the same time) a partial 
definition of interpretation.   
 
If we want our rules to be correct, interpretations must satisfy  
certain conditions; on the other hand, we accept the rules because 
we tacitly believe that a semantic justification must be formulated 
along those lines. But the belief is not so neutral; in assuming it we 
believe in fact that semantic valuations depend on the grammatical 
structure. Stated otherwise, we accept compositionality, and this is 
a first inkling that semantics tends to be identified with grammar, 
as in natural language.   
 
One can anticipate an objection: when we introduced truth tables 
for connectives we used interpretations, so we know what they are. 
Could it be then that difficulties arise only with quantifiers?  While 
it is true that interpretations for predicative languages pose 
peculiar problems, and that their presentation is apparently 
different from that of propositional interpretations, it is a fact that 
the differences are inessential. Indeed, when interpretations are 
used for truth tables, their scope never goes beyond what is 
necessary to prove the correctness property. An interpretation  
amounts to assigning “true” and “false” values to the propositional 
letters, and to uniquely extending these truth value assignments to 
all propositions, according to (truth-functionality) principles of the 
following type: if A and B have value “true” then also A ∧ B has 
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value “true”, and so on. We use abstract finite functions. We have 
written “true” in quotation marks because we do not want to 
consider the assignment of the value as the attribution of a well 
defined property; we have no right to do so since we have not 
anticipated any analysis of the notion of truth. For our 
assignments we are not using names (truth, falsity), or their 
corresponding adjectives, but labels. In effect other labels, such as 
1 and 0, or T and F,  or T and ⊥ are also used as an alternative to 
“true” and “false”.   
 
Truth tables actually are nothing more than the conditions we 
want the “true” and “false” of the real interpretations to satisfy, 
independently of what they will turn out to be. It is a new 
corroboration of the chosen axiomatic treatment of this notion. 
Acceptance of the truth table for conjunction is equivalent to 
saying that the elimination and introduction rules for conjunction 
are correct. Since everything works smoothly for propositional 
logic on this skin-and-bone basis, the suspicion arises that this is 
all that matters, and we don’t need to know anything more. Notice 
that the same is true for interpretations of predicative languages, 
though they are a little bit more rich and complicated. If it is so, 
however, it is curious that some people (e.g. in Artificial 
Intelligence) claim that describing a structure for a language is 
tantamount to giving an ontology, or a description of the world.   
 
As a calculus, we choose now the method of the tableaux, also 
known as semantic or analytic tableaux. The motive for the choice 
will become clear later; the name itself is a challenge. There is no  
misunderstanding here: we choose the semantic tableaux as our 
syntactic calculus. This method has the advantage of extreme 
ambiguity, consistently with the situation of ambiguity we are 
rejoicing in. The method is presented as a set of precise, syntactic, 
mechanical rules, as in any other deductive system, and the 
adjective “semantic” is a thorn in the back that need to be 
explained.   
   
In order to describe this method, let us suppose we want to 
establish whether the sentence  A1 ∧ ... ∧ An → B1 ∨ ... ∨ Bm is a 
theorem (a logical theorem; this word, just like “deduction”, is 
often used informally to denote without distinctions both a logical 
truth and the conclusion of a sequence of deductive steps).  This is 
the concept we are interested in, and if it possible to get it without 
the syntax-semantics dichotomy so much the better. We open a 
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table with two entries, two columns labelled I and II; at the initial 
stage we insert A1,..., An in I and B1,..., Bm in II. The cases that n = 
0 or m = 0 are allowed. Both these initial sentences and those to be 
inserted later must be ordered in some way; the order is not 
essential for the global properties but only for the implementation 
of the procedure. By “the first sentence in a table” we mean the 
first sentence in this order, and when we speak of inserting new 
sentences at the end of a column we mean that the new sentences  
are assigned an ordinal number greater than those already used in 
the table. When a sentence is selected for consideration according 
to one of the rules stated below, it will be marked - say by a star - 
to prevent it from being considered more than once. For technical 
reasons, our tables will only contain sentences (i.e. variable-free,  
formulae) and open formulae will not be allowed. 
 
At stage n, we first check that some sentence does not occur, 
starred or not, in both columns; if so, the table is (said to be) 
closed and the work is terminated. Otherwise, we take the first 
unstarred sentence in the table; if there aren’t any, we are done, 
and the table is said to be terminated; if A is chosen sentence, we 
apply one of the following rules, according to the form of A and 
whether A is in column I or in column II:   
 
- if A is atomic, mark it and go to the new stage;   
- if A has the form ¬B and is in I, mark it and add B at the end of 
column II;   
- if A has the form ¬B and is in II, mark it and add B at the end of 
column I;   
- if A has the form C ∧ D  and is in I, mark it and add both C and D 
at the end of column I;   
- if A has the form C ∨ D  and is in II, mark it and add both C and D 
at the end of column II;   
- if A has the form C → D and is in II, mark it and add C at the end 
of column I and D at the end of column II;   
- if A has the form C ∧ D and is in II, mark it and divide the table 
into two subtables, each of which has the same sentences as the 
given one, in the same columns and with the same order and the 
same marks, and moreover one of them has C added at the end of 
its column II and the other has D added at the end of its column II.   
 
Warning If a table splits into two subtables, under the action of the 
above rule or of the others we are going to mention next, from that 
point on it is meant that both subtables are to be developed in 
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parallel. Each subtable is a table on its own, when one works on it, 
and is called a table; it can divide into subtables, which are called 
also subtables of the original one (rather than being called 
subsubtables); the table generated by the procedure is the set of all 
subtables thus generated, some of them closed, some other not; 
there is a certain ambiguity, but from the context it should be clear 
whether by “table” one means a single two columns (sub)table or 
the set of all subtables.   
 
Here are the remaining rules:   
 
- if A has the form C ∨ D and is in I, mark it and divide the table 
into two subtables, each of which has the same sentences as the 
given one, in the same columns and with the same order and the 
same marks, and moreover one of them has C added at the end of 
its column I and the other has D added at the end of its column I;   
- if A has the form C → D and is in I, mark it and divide the table 
into two subtables, each of which has the same sentences as the 
given one, in the same columns and with the same order and the 
same marks, and moreover one of them has C added at the end of 
its column II and the other has D added at the end of its column I;  
- if A has the form ∃x B and is in I, introduce in the language a new 
constant c not belonging to the original alphabet and not already 
introduced in the course of the procedure, mark A and add B[x/c]  
at the end of I;  
- if A has the form ∀x B and is in II, introduce in the language a 
new constant c not belonging to the original alphabet and not 
already introduced in the course of the procedure, mark A and add 
B[x/c]  at the end of II; 
- if A has the form  ∀x B(x) and is in I, the rule is more complicated 
to state: one wants to introduce in I all sentences B[x/t] for every 
closed term t that comes to appear in the (sentences in the 
columns of the) table, also at later stages; then at stage n one 
begins to do all possible substitutions of the closed terms already 
present in the table, and adds sentences  B[x/ti]  at the end of I, 
unless they are already in I; then mark ∀x B(x)  but reintroduce it 
at the end of I, so that at some future stage, after having worked on 
the other sentences and possibly introduced in the table new 
closed terms thorough the application of other rules, you will come 
back to it and do the new substitutions and insertions. If there are 
no closed terms t such that B[x/t] is not already in I, and there are 
no unstarred sentences in the table, then ∀x B  is not added at the 
end. The rule is long to state, but it should be rather obvious 
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(there are possible refinements to minimise the number of 
substitutions); 
- if A has the form  ∃x B(x) and is in II, introduce at the end of II all 
sentences B[x/ti] for every closed term occurring in the table; mark 
∃x B(x)  and introduce it at the end of II, with the same proviso as 
in the preceding rule.   
After applying one, and only one of these rules go to stage n + 1.   
 
A (two columns) subtable is closed if the same sentence occur in 
both columns; a table is closed if all its subtables are closed; the 
initial table is said to close if its development according to the 
described procedure leads at some finite stage to a closed table.  A 
subtable is terminated but not closed if all sentences occurring in 
it  are starred and it is not closed. A table is said to be terminated 
if all its subtable are terminated, whether closed or not closed. It is 
terminated but not closed if at least one of its subtables is 
terminated but not closed.   
 
When the procedure is started on an initial table, three cases are 
possible: (i) after a finite number of steps the table is closed; (ii) 
after a finite number of steps the table is terminated but not 
closed; (iii) the procedure does not halt.   
 
Propositional logic corresponds to the fragment of the above 
construction in which no rule for quantifiers applies. The method 
then always halts after a finite number of steps (we do not prove it, 
though the proof is easy and instructive, since it is a case where for 
a rather simple and intuitive property one needs transfinite 
induction). Hence there are only two cases: after a finite number of 
steps, when the procedure halts, either the table is closed or it is 
terminated and some of its subtables are not closed.  
 
For a predicative language the procedure need not halt in general 
(however, it always halts for monadic languages). In case of 
nontermination, looking from the limit through König’s spectacles, 
it is easy to see that there must be at least one subtable (one made 
of two columns) that is infinite and not closed, and in which every 
sentence is starred.  Hence also in this case, the possible 
alternatives reduce to two, albeit in a non-effective way. Either the 
table closes down in a finite number of steps, or there is at least 
one subtable, either finite and terminated or infinite, which is not 
closed.  In the first case we say that A1 ∧ ... ∧ An → B1 ∨ ... ∨ Bm is a 
theorem and in the other case that it is not.   
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Here is an example where we have an algorithm, which is quite 
easy to learn to use (or if you like, to implement), while it is less 
trivial to understand what it does and why it gives certain answers. 
By the above definition, we say that in the first case we have a 
theorem, but why? What does the algorithm say? Nothing, except 
that the table closes. The implementation could be such that when 
the table closes you see on your monitor the statement “A1 ∧ ... ∧ 
An → B1 ∨ ... ∨ Bm is a theorem”. Or, we could modify the output so 
that on the monitor there appears the statement “A1 ∧ ... ∧ An → B1 
∨ ... ∨ Bm  is derivable by means of the tableaux method”, but that 
wouldn’t be very informative. It would be the same as “the method 
say: YES”, but yes to what? If we let the algorithm say “theorem”, it 
looks like a definition of theoremhood, but not a very transparent 
and convincing one, since such an apparently logical notion turns 
out to depend on the method.    
 
It is easier to see what is going on if we change the labels of the  
entries and instead of I and II we use T and F, respectively. T and 
F stand obviously for “true” and “false”. Moreover, in the light of 
our technical definitions, let us reformulate the problem as that of 
determining whether A1 ∧ ... ∧ An → B1 ∨ ... ∨ Bm  is logically true, 
or B1 ∨ ... ∨ Bm  is a logical consequence of A1 ∧ ... ∧ An.  Then the 
method works as a search for counterexamples: the statement to be 
proved is a universal one, stating that for all interpretations 
(whatever they are) if all Ai are true then some Bj is true. Let us 
then investigate the converse problem - whether an interpretation 
exists in which all of the Ai are true and all of the  Bj are false.   
 
Though we don’t know yet what an interpretations is, we can begin 
our search on the basis of the little we know about the (semantic) 
relations among sentences that are in a certain compositional 
(syntactic) relation. We know, or we want it to be so, that if in a 
hypothetical interpretation C ∧ D turns out to be true then also C 
and D separately must be true; we similarly know that if C ∧ D 
turns out to be false then the interpretation must have the 
property that C be false or else that D is false (different 
interpretations yielding different alternatives regarding C and D), 
and so on. By initially assigning T labels to the Ai ’s and F labels to 
the  Bj ’s, we are just stating a hypothesis, namely that the 
counterexample exists: it is the interpretation that, if existent, 
would falsify the consequence relation. The existential hypothesis 
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does not describe how the interpretation is, but how it has to 
behave with respect to the Ai and Bj if it has to falsify the 
consequence relation (or, equivalently, how the Ai and Bj have to 
behave with respect to the interpretation).  One can see here also a 
proof by contradiction of the fact that  B1 ∨ ... ∨ Bm  is a logical 
consequence of  A1 ∧ ... ∧ An. Now in the development of the table, 
each subtable is a different  search line, and at the same time an 
attempt - if not to build the interpretation - to increase by 
successive approximations the amount of information we have on 
the supposed interpretation. In the hypothetical interpretation, all 
sentences put into T up to any given stage should be true, and all 
the sentences put into F should be false.   
 
It is quite easy to accept that if a subtable closes then there is an 
overt contradiction in the information concerning the tentative 
interpretation, so that search road is blocked. If all the subtables 
close, then an interpretation satisfying the initial conditions does 
not exist, whence one is entitled to conclude that B1 ∨ ... ∨ Bm  
logically follows from A1 ∧ ... ∧ An, still knowing nothing about 
interpretations, except their compositional behaviour with respect 
to the logical particles embodied in the (motivations of the) rules. 
In particular, we assume that a sentence cannot be at the same 
time true and false in the same interpretation. (From now on for 
simplicity we will consider just one A and one B.)  
 
Students are ready to accept this line of reasoning without 
perceiving that it is not wholly justified: while it is true that all 
explored roads lead to nothing, it is not so obvious that we have 
tried all possibilities. We have tried all the roads opened by the 
method, but it is conceivable that there are others. So there is still 
something to prove.   
 
But this additional proof can still be done without a more precise 
definition of interpretation. The usual proof is as follows. We 
suppose to have an interpretation satisfying the initial conditions, 
and we show that at each stage there is at least one subtable such 
that all sentences in its column T are true in the given 
interpretation, and all sentences in its column F are false. Let us 
abbreviate this long stipulation by saying that the interpretation 
respects the subtable. It follows that this subtable is not closed at 
that stage, hence the table never closes. The proof is by induction 
on stages. The inductive hypothesis is that at stage n there is a 
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subtable such that the original hypothetical interpretation respects 
this subtable; let us work on this subtable.  If we apply the rule  for 
C ∧ D in T, then we add in T both C and D, which are true in the 
interpretation if C ∧ D is true, hence the interpretation respects the 
new subtable at stage n + 1. If we apply the rule for  C ∨ D in T, we 
get two subtables, one with C in T and the other with D in T; but if   
C ∨ D is true in the interpretation, then either C is true in it or D is 
true - say it is D; then the interpretation respects that of the new 
subtables at stage n + 1 which contains D. The same applies for the 
other rules and logical particles, using only the partial information 
we have accepted on the notion of interpretation.   
 
If when the table closes there is no interpretation satisfying the 
initial conditions, that means that after trying all possible roads 
available from the tableaux method, we have failed; in this sense 
the method is a complete one, as far as the search is concerned. To 
avoid any misunderstanding, for the moment let us forget this 
notion of completeness; we will come back to it later, when 
comparing it with the logical one. Notice that the completeness of 
the search does not follow from the interpretations being finite in 
number - as far as  we know, there might be infinitely many of 
them. However, the completeness of the tableaux search shows  
that it is enough to examine a finite number of (types of) them.    
 
The other case is more delicate: what happens if the table does not 
close? Since this is the opposite of the first case, students again 
tend to think that there is nothing to prove: when the answer is of 
one type it is correct - therefore, when it is of the other type the 
opposite must hold, hence B is a consequence of A. But this again is 
a case of putting the cart before the horse; the underlying 
assumption here is that the algorithm is always correct, that what 
it does is always right. Students tend to assume for laziness that all 
algorithms are correct, just as physicists tend to assume that all 
series are convergent. To their justification, one must say that 
algorithms are usually presented accompanied by an intuitive 
motivation which is a kind of correctness proof. The usual 
presentation of an algorithm, as opposed to a formal program, is a 
mixture of syntax and intuitive semantics. Moreover, algorithms 
correspond to a well considered idea which embodies the solution 
of a problem (as series are representations of natural phenomena) 
so they must be right, unless some stupid error has inadvertently 
slipped in.  But it could well be that the algorithm is entirely crazy, 
with no rational correspondence with our problem; it could thus be 
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that in the second case no relationship holds between the answer 
and the fact that logical implication has been falsified - whence the 
method would of course be radically wrong.   
 
Actually, the method is correct; but then, whenever a table is not 
closed there must exist an interpretation in which A is true and B is 
false; if such interpretation exists, we should be able to see it, grasp 
it, define it. Moreover, as a precondition to the proof of 
correctness, our construction should be independent of the 
method, since the latter only gives YES or  NO answers.  The 
method in fact allows us to see the interpretation. It has been so 
conceived in order to reach this goal - but we have a long way to 
go before we can see it, working out the rationale of the algorithm. 
It will turn out that going through the algorithm is the only way to 
see the interpretation, so the correctness proof is actually on shaky 
grounds, a kind of bootstrapping. What we have to prove is that 
for every subtable which is finite, terminated and not closed, or 
infinite, there is an interpretation which respects it, hence in 
particular the interpretation satisfies the initial conditions.  Now 
such a strong existential statement cannot possibly be sustained 
without clearly saying what is an interpretation. We have delayed 
the answer up to now, but it should no more be possible to be 
evasive. We could say that the  real proof is only now to begin; 
meanwhile, through the application of the tableaux method the 
problem has found the following reformulation: given a non-closed 
table, find an interpretation that respects the table. The 
completeness theorem can be newly stated in this form: for every 
non-closed (wholly developed) table there is an interpretation 
which respects it.   
 
There are some clues for the proof; as it happens, the very 
description of the algorithm contains (a sketch of) the informal 
correctness proof. The rules were plausible as rules for the 
behaviour of sentences in interpretations. So convincing were the 
comments to the algorithm that one may have had the faint 
impression that the method did all the work to be done - and there 
is no need of the present appendix of the completeness theorem in 
the above reformulation. The reason was that  in changing our  
labels from I and II to T and F, a meaning was given to our 
operations (as already noted, this often happens with commented 
algorithms). When we had labels I and II and didn’t know what 
they were meant for, we built only sets of sentences; the formation 
rules for these sets were effective, but not transparent in their aim 
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and effect. After re-labelling, we obtained a method for the 
determination of the truth and falsity of sentences (just as truth 
tables are such a method in the propositional case). It really looked 
like we were building an interpretation, evaluating all sentences 
down to the atomic ones.  But if the method is a semantic one, as 
the very name suggested from the beginning, where is the gap that 
only the completeness theorem could fill? Perhaps it is better to 
start anew with more sharply defined distinctions.   
  
Some technicalities; since the method is not restricted to a 
particular initialisation of the table, it is useful to learn how to 
read the possible answers form a logical point of view, according to 
the form of the initial data. We can have A in T and B in F, or only 
A (possibly a finite conjunction) in T and nothing in F or only B 
(possibly a finite disjunction) in F and nothing in T. The idea is 
always the same: if the table closes, there is no interpretation 
satisfying the initial conditions, which means in the three different 
case: (i) there is no interpretation in which A is true and B is false, 
hence B is a logical consequence of A; (ii) there in no 
interpretation in which A is true, if there was only A in T, hence A 
is unsatisfiable; (iii) there is no interpretation in which B is false, if 
there was only B in F, hence B is logically true.  It the table does 
not close, there should be an interpretation satisfying the initial 
conditions, if we  are able to prove it in a convincing way; hence in 
this case we have respectively: (i) B is not a logical consequence of 
A, (ii) A is satisfiable, (iii) B is not logically true.  We do not discuss 
the case of an infinite initial set of sentences, which if effectively 
given can be inserted in chunks; the conclusions are the same, with 
the extra bonus of compactness. 
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Second start, with a new calculus, while the ambiguous one is 
reduced to a technique   
 
Let us then take as a system of syntactic rules some (deductively) 
unambiguous calculus, such as a natural deduction calculus. We 
can still use the tableaux method for a preliminary investigation of 
the possibility to arrive at semantic notions.   
 
As an immediate consequence of the basic definitions, we have that 
T |= A if and only if  T ∪ {¬A} is unsatisfiable, or semantically 
inconsistent; for the natural deduction calculus, as well as for the 
other usual calculi, there is a formally analogous relation for 
derivability: T |- A  if and only if  T ∪ {¬A} is syntactically 
inconsistent. A set is said to be syntactically inconsistent if a 
contradiction X ∧ ¬X is derivable from the set (otherwise it is said 
to be syntactically consistent). The completeness problem is then 
equivalent to the following: if a sentence, or a set of sentences, is 
syntactically consistent then there is an interpretation of the 
language which is a model of the given sentence, or set of 
sentences. In this form the completeness theorem is also known as 
the model existence theorem.   
 
Let us suppose that the given finite set T = {A1,..., An} is 
syntactically consistent; let us put A1∧... ∧ An = A in T and let us 
show that under the consistency hypothesis the table does not 
close. This is a preparatory lemma. To prove it, we take inspiration 
for a previous proof to show that at each stage there is something 
which  is transmitted down and which obstructs closure. For a 
fixed subtable, let us denote by  Tn the set of sentences that at 
stage n are in the T column, and by Fn the set of the negations of 
the sentences that are in the F column.  T0 = {A}, F0 = ∅ and T0 ∪ 
F0 is syntactically consistent. If at stage n a subtable closes, then its 
Tn ∪ Fn is syntactically inconsistent, because for a certain sentence 
E it contains both E and  ¬E.  By induction on n we prove that at 
each stage at least one of the subtables generated up to that stage 
has the property that Tn ∪ Fn is syntactically consistent, whence 
the subtable does not close. It follows that at no stage all subtables 
are closed, and the initial table does not close.   
 
The proof of the inductive step splits according to which rule is 
supposed to be applied at that stage. Let us consider at stage n a 
subtable for which the inductive hypothesis holds, that is Tn ∪ Fn 
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is syntactically consistent. It the rule applied is that for the 
conjunction in T, then in T there is a sentence  C ∧ D and at stage 
n + 1 in the augmented subtable there are also C and D, while the 
rest is the same. Then  Tn+1 ∪ Fn+1 = Tn ∪ Fn ∪ {C, D}.  (To be 
pedantic, the   Tn+1  is that of the new subtable, while Tn is that of 
the subtable of stage n, but there is an obvious embedding; we 
don’t want to be pedantic.) If this set were inconsistent, then  Tn ∪ 
Fn ∪ {C, D} |- X ∧ ¬X.  But  C ∧ D |- C and  C ∧ D |- D, and  C ∧ D is in 
Tn,  hence Tn ∪ Fn |- X ∧ ¬X, contrary to the inductive hypothesis.   
 
Let us consider one more propositional case: given the described 
situation, let us suppose that the applied rule is that for the 
disjunction in T; then in T there is a sentence  C ∨ D; the table 
splits into two subtables, one with C in T and the other with D in T, 
the rest being the same; let us suppose that the (Tn+1 ∪ Fn+1 of 
the) first of the two subtables is syntactically inconsistent, 
otherwise we are done; then Tn ∪ Fn ∪ {C} |- X ∧ ¬X; with some 
admissible derivation steps, Tn ∪ Fn  |- C → X ∧ ¬X, hence  Tn ∪ Fn 
 |- ¬(X ∧ ¬X) →  ¬C, hence Tn ∪ Fn  |- ¬C,  since  |- ¬(X ∧ ¬X); but C ∨ D 
is in Tn, hence for the rule of elimination of disjunction Tn ∪ Fn |- 
D.  Granted this, let us consider the second subtable, the one with 
D in T; here  Tn+1 ∪ Fn+1 = Tn ∪ Fn ∪ {D}, but since D is derivable 
from  Tn ∪ Fn, and this set is syntactically consistent, then so is 
Tn+1 ∪ Fn+1.   
 
If the rule is that for the existential quantifier in T, then in T there 
is a sentence ∃x B such that  Tn+1 ∪ Fn+1 = Tn ∪ Fn ∪ {B[x/c]}, 
where c does not occur in Tn ∪ Fn;  if  Tn+1 ∪ Fn+1  |-  X ∧ ¬X  then 
Tn ∪ Fn  |- B[x/c] → X ∧ ¬X; an easy and purely syntactic lemma 
assures us that if z is a variable not occurring anywhere in the 
derivation then  Tn ∪ Fn  |- B[x/z] → X ∧ ¬X, from which Tn ∪ Fn  |- 
∃z B[x/z] → X ∧ ¬X; but ∃x B |- ∃z B[x/z], whence Tn ∪ Fn  |-  X ∧ ¬X. 
The lemma means that if a letter c does not occur in the 
assumptions (or anywhere else, but this further condition serves to 
other transformations, such as the renaming of x by z), hence 
nothing is said about (what is denoted by) c in the  assumptions, 
then c  is in effect a variable parameter, independently of how it is 
classified in the alphabet.   
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If the rule is that of the universal quantifier in T, then  Tn+1 ∪ 
Fn+1 = Tn ∪ Fn ∪ {B[x/t1],..., B[x/tm]}, with  ∀x B ∈ Tn; if Tn+1 ∪ 
Fn+1  |-  X ∧ ¬X  then  Tn ∪ Fn ∪ {B[x/t1],..., B[x/tm]} |-  X ∧ ¬X, and 
Tn ∪ Fn |− B[x/t1] ∧... ∧ B[x/tm] → X ∧ ¬X; but the antecedent of the 
implication is derivable from Tn,  whence again Tn ∪ Fn  |-  X ∧ ¬X.   
The other cases are treated in a similar way, and we conclude that 
if A is syntactically consistent then the table initialised with A in T 
does not close.   
 
Where does this leave us? Apparently at the same point as before, 
with the only difference that distinct things are now kept separate. 
On the one side we have the rules of natural deduction, and the 
related notion of syntactical consistency; on the other side we have 
the interpretations, which however we haven’t handled yet. Still 
missing is the lemma that if a table does not close then there in an 
interpretation respecting it.  The search for interpretations has  
been prepared with the method of semantic tableaux, but this time 
we don’t want and there shouldn’t be the danger of confusing the 
tool with the goal.  
   
Still, the borderline is very thin; in the above proof the various 
cases were easily handled because there is a strong tie between the 
rules of natural deduction and the rules of the tableaux method: 
same number, same grouping in pairs. A certain attention is 
required not to get confused and to be sure that no vicious circle is 
involved. The analogy is so strong that one can take a closed table 
initialised with A in T and B in F, reverse it and with few 
adjustment get what is also considered a derivation  of A → B, this 
sentence at the bottom instead of at the top. The reversed table 
would be a derivation in the so called sequent calculus, whose 
derivations are isomorphic in this way to closed tables, to the 
extent that the two methods cannot be really considered two 
different calculi.  This is the reason why in our first attempt we 
could forget about natural deduction and use only the tableaux 
method. As a result however we ended in confusion, with the 
suspicion not to be able to extract an independent notion of 
interpretation. But couldn’t the same situation reproduce itself in 
the new setting? 
 
Without a definition of interpretation we were able to proof the 
completeness of the search, that is the fact that all possible (ways 
to construct) interpretations were taken in consideration through 
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the tableaux. This circumstance should mean that interpretations 
are not something radically different from what this method 
affords,  that they are not “totally other”. It means at least that the 
information gathered in the course of the development of the 
method is sufficient to establish an interpretation. It is not only the 
case that the answer is right, but that the interpretation should 
arise as a bonus from the method itself. On the other hand, from 
natural experience we know that interpretations are not something 
extrinsic to be added to the discourse, but emerge from and in the 
discourse, and they tend to identify themselves with the discourse.    
   
Since the method of semantic tableaux which generates sentences 
from sentences according to their form is a purely syntactic one, it 
seems proper to use it for a preliminary processing of  sentences 
on which only derivability conditions are known.  The difference 
between its rules and those of natural deduction are practically 
negligible, but for labels attached to the generated sentences.   The 
natural deduction rules better correspond to the natural discourse, 
since in the stream of phrases there are just phrases without labels, 
not meta-statements about the truth of what one is saying - unless 
one is swearing or rhetorically engaged. The thesis that since 
natural discourse is meaningful, then it develops at a semantic 
level is a misleading one; language is directly meaningful in itself 
but the discourse develops at a syntactic level, not through a series 
of semantic statements. The word “true” is never used, except for 
questions (“is it true that...”), or to stress a point (“I tell you it is 
true that...”), or similar. The word marks the passage to the meta-
language.  You can of course take a normal discourse and insert 
therein a lot of “it is true that...” and of “it is false that...”, when 
there is a negation, but the effect is the same, and the two 
utterances have (a kind of) isomorphic meaning. 
 
So we see why one is prepared to accept without questioning the 
positive answer of the table - if the table does not close there is an 
interpretation - but doesn’t feel it necessary to look for the 
interpretation in a separate manner; the reason is the confidence 
in the correctness of the underlying algorithm, but it is also the 
analogy with normal speech.   
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Solution with a cut of the Gordian knot: what we were trying to 
explain becomes a definition   
 
Let us pause for a moment and try to extract what an 
interpretation could be from all we have said so far. If when the 
table is not closed we (want to) have an interpretation, then the 
interpretation could be the table itself. But what is the table?  It is 
just a pair of sets of sentences T and F that are (separately and 
mutually) closed with respect to the following syntactic downward 
operations (and are, moreover, disjoint if the table is not closed):   
 
- if ¬A  is in T, then A is in F;   
- if ¬A  is in F, then A is in T;   
- if B ∧ C is in T, the both B and C are in T;   
- if B ∨ C is in F, then both B and C are in F;   
- if B ∨ C is in T, then either B is in T or C is in T;   
- if B ∧ C is in F, then either B is in F, or C is in F;   
- if B → C is in T, then either C is in T or B is in F;   
- if B → C is in F, then B is in T and C is in F;    
- if ∃x B  is in T, then there is a closed term t such that  B[x/t] is in 
T;   
- if ∀x B  is in F, then there is a closed term t  such that  B[x/t] is in 
F;   
- if ∀x B  is in T, then for every closed term t occurring in 
sentences of T ∪ F,  B[x/t] is in T; 
- if ∃x B  is in F, then for every closed term t occurring in sentences 
of  T ∪ F,  B[x/t] is in F. 
 
Sets of sentences satisfying the above closure properties, possibly 
with inessential variants, are also known as Hintikka sets, or with 
other names, in the literature. Let us call them interpretations. The 
closure properties of a tableau follow from the fact that when a 
sentence is marked (and each sentence is eventually marked, 
because all sentences in a terminated or infinite table are starred) 
then other connected sentences are put into the table. Actually, for 
the universal quantifier in T, or the existential quantifier in F, the 
closure property is not so evident, without a closer look at the 
procedure. The intuition is as follows: when ∀x B in T begins to be 
considered, its unstarred occurrence keeps being repeated, unless 
at some stage all substitutions with closed terms are already done, 
and all other sentences are already starred; if t is a term which for 
the first time occur in the table at stage m, then when ∀x B is again 
considered at a stage greater then m then B[x/t] is inserted in T.  If 
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this is true, as it was our original aim, then the formulation of the 
rule was right.  
 
If we assume the above definition of interpretation (as a pair of 
suitable closed sets) we are finished, the completeness theorem is 
proved with perfect satisfaction, and nothing is left out. The proof 
of the lemma on (the existence of interpretations respecting) 
terminated or infinite tables has been replaced by a definition.   
 
When dealing with truth tables for propositional logic, our 
procedure was not much different; there we went on assigning the 
values “true” and “false” to propositions, while respecting 
compositionality - that is, we formed the sets of true and false 
propositions, satisfying the above closure properties. But we never 
explained what it is meant to be true or to be false. Interpretations 
were defined as assignments of values respecting compositionality 
according to the truth tables.  We (said that we) did semantics, but 
we didn’t define truth (or denotation), we just divided the 
sentences into two classes. Interpretations for predicative 
languages are analogous (along these lines, one could also further 
pursue a reduction of predicative to propositional logic, thorough 
the Skolem-Herbrand theorem).  With reference to semantic 
notations,  M  would now be the pair <T, F> and M |= A would just 
mean A ∈ (M)1 = T, the first component of the pair M.   
 
This however looks really like cheating, a perverse and typically 
mathematical trick: assume as axiom a theorem you are not able to 
prove, take as primitive a concept you are not able to define. What 
is lacking, and is a source of uneasiness, is the sense of the 
statements. If we want to say that the sense is in the discourse, 
when consistent, well, we would like to grasp it, to feel it, while we 
have only in T ∪ F a set of artificial signs (they are not even 
hieroglyphics, otherwise there would be a sense); where is the 
discourse?    
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Second ending, where a discourse is a discourse   
 
Let us then replace the formal schemata of sentences by authentic 
statements, as given by some meaningful discourse. This is quite 
feasible: one can substitute the atomic sentences in T ∪ F  with 
statements of the English language (in a consistent way, i.e., taking 
care that the same statements replace occurrences of the same 
atomic sentences, and - for additional safety - also taking care that 
different statements correspond to different atomic sentences). 
Upon reading all statements thus obtained from column T, and 
reading the negations of all statements in column F, we then 
obtain a meaningful discourse (except possibly for the order of 
statements).  For example, suppose at the beginning we were given 
in column T the conjunction  of A → B and ¬B, with A and B 
atomic. Applying the above procedure, our table splits into two 
subtables, one of which closes, while the other contains the initial 
sentences plus A in column F. The resulting schema of discourse is 
given by {A → B, ¬B, ¬A}; if A is replaced by “the sun shines” and B 
by “it is warm”, then we can read: “if the sun shines then it is 
warm, it isn’t warm, the sun does not shine”, which makes perfect 
sense.   
 
We have thus come across another notion of interpretation, the so 
called substitutional one: an interpretation is a (consistent and 
systematic) replacement as described above of meaningful 
statements of a real language to the  schemata represented by the 
formal sentences.  The mapping must also respect 
compositionality, but this automatically follows from our policy of 
replacing only atomic sentences, and letting the already developed 
tableau take care of the rest.  With reference to the semantic 
notations, let M be the mapping into the English language, or into 
the fragment of meteorological forecasting, sending A to “the sun 
shines” and sending B to “it is warm”. Let  M  be the extension of M 
obtained by respecting compositionality as above. Then M would 
be a model of  A → B. By writing  M |= A → B  we now mean that if 
the sun shines then it is warm; similarly,  M |= (A → B) ∧ ¬B → ¬A  
may state today’s gloomy forecast;  M |= (A → B) stays for “M(A → 
B)  is true”, in the sense of the English language. A rather devious 
but correct way of talking.  
  
Under this notion of interpretation, a sentence is logically true if 
every substitution with meaningful statements transforms it in a 
true statement. Different interpretations can be thought of as 
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different application of the formal schema to different knowledge 
domains.   
 
The substitutional notion of interpretation is perhaps the oldest 
one. This notion had a fundamental role in the axiomatic thought 
at the end of the nineteenth century (Pasch, Peano, Enriques, 
Hilbert): people began to say then that theorems were invariant 
with respect to variations of the sense of the concepts involved in 
the axioms. As we shall soon see, although old and respectable, this 
notion has some drawbacks.   
 
If we are not just content with examples, but we want to establish 
general facts, we have to be more precise with the notion of 
arbitrary substitution. We cannot simply say: replace arbitrary 
statements. The vagueness and undecidability of natural language 
must be taken into account.  If a table is initialised with an atomic 
sentence A in T, the table is terminated and it is not closed; but if 
we replace now A with an inconsistent statement, such as for 
example “the sentence in T is false” - the liar paradox - it is no 
more true that we get a meaningful statement.  It’s no use to 
require to substitute only atomic statements to atomic sentences, 
since what counts as atomic in natural language is relative - “it is 
warm” could be a highly complex statement. The fault is with the 
natural language, which is all but consistent. Its inconsistency 
comes precisely from the use of the untrustworthy concept of 
truth.   
 
We want to replace the atomic sentences in T with true statements,  
but - as we know from Tarski - it is impossible to define true 
statements in natural language. In order to avoid semantic 
paradoxes, we may try to resort to fragments of the natural 
language.  Upon restriction, the notion of truth may become less 
naïve, and we may have more control on it  - possibly scientific 
control, well beyond  sensorial evidence (could our forms of truth-
control be different for different knowledge domains?). Again the 
question arises: by putting such restrictions, do we still have a 
sensible notion of logical truth? Undoubtedly, restrictions are 
necessary: for instance, statements about statements should be 
avoided, to dodge self-reference.  
 
Since we have to put restrictions, we could make a bold decision 
and make replacements in such a way as to always obtain 
discourses referring to the same subject, for example meteorology. 
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Then we wouldn’t have to continuously change the notion of truth. 
There is still a potentially infinite variety of statements (for 
example, by use of temporal and geographical indexicals as in “the 
sun shines in the South”). We can choose to talk about the weather, 
atoms, particles, or numbers. If the latter are chosen, prima facie 
this is only for technical reason: indeed we cannot exclude the 
possibility that the table is infinite. If the table contains infinitely 
many terms, then our discourse shall have to implicitly refer to an 
infinite domain - to which purpose there is nothing better than the 
natural numbers. Moreover, if we want to deal with real proofs, we 
have to consider a domain whose appropriate notion of truth is 
sufficiently precise to be treated mathematically.  
 
The completeness theorem we arrive at along this route reads as 
follows: a sentence F is derivable in the natural deduction calculus 
if and only if all arithmetic statements which result from F by 
substituting in all possible ways all relational and functional 
symbols of F with arithmetic relations and functions, turn out to be 
true. Mutatis mutandis, and with a contrafactual rewording 
anticipating the (arithmetic) model existence theorem, this is the 
statement of the theorem first proved by Gödel. 
  
The layman will hardly find immediately convincing this reduction 
only to discourses about natural numbers; their generality is 
evident only to mathematicians, who (after Pythagoras) know that 
numbers are a sort of universal universe, in which every entity is 
representable by suitable codings. But each coding is a filtering 
process, and this already poses some obstacles to complete 
generality: for instance, how can we be sure that codes respect 
truth? Actually, the choice of the arithmetic language is the residue 
of a time when people believed that all of mathematics is reducible 
to arithmetic, and that natural numbers -  as a direct emanation of 
the spirit, or creation of the mind - are not further reducible to 
anything else. The same kind of irreducibility would also apply to 
arithmetic truth.  
 
The proof of the completeness theorem based on arithmetic 
substitutions still has some gaps to be filled, in order to become 
fully convincing, and fully corresponding to our initial intuition of 
logical generality. Given a non-closed table, the constants c1, c2,...  
occurring in it are identified with the numbers 1, 2,... We thus 
obtain an arithmetic interpretation upon defining, for every r-ary 
relation symbol R, an arithmetical relation R' as follows: R' holds 
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exactly for those r-tuples   <n1, ..., nr>  such that  Rn1, ..., nr  
occurs in the T column. If we know what it means for a relation to 
hold or not to hold for numbers, we have an interpretation.   
 
Before generalising this idea, let us pause for a moment to point 
out a lesson it teaches. In order to get the meaning out of symbols, 
we had to see the constants c1, c2,... as numbers. We wanted the 
interpretation, or the meaning, to be conveyed by formal 
sentences. The completeness theorem should teach - and in fact 
does teach - that we have a meaningful discourse as soon as we 
have a syntactically consistent set of formal sentences. The 
completeness theorem is Saccheri vindicatus, the very Saccheri 
who developed his geometry with the negation of the fifth 
postulate, formally looking for a contradiction he could not find, 
and all the time he was building in fact the description of a non-
Euclidean geometry.  His description was indeed a geometrical one, 
not an arithmetical one; people who later read it as meaningful 
didn’t have to pass through the arithmetical interpretation; they 
would see points and lines, or rather see circles were the 
description talked of lines. In order that our syntactically 
consistent phrases are able to generate a meaningful discourse 
about certain objects, we first have to specify the objects we are 
talking about, we must be able to see a model; in the same way, 
when we talk of the flying horse or of the chimera, we see them.   
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Third ending, where again the discourse disappears, leaving only 
the phantoms of the things we want to talk about    
 
When we talk, we talk of something. We can also step aside and 
describe what we are talking about. This shift is a meta-theoretical 
move, though it can be hidden by the fact that the meta-language 
coincides with the language.   
 
As already noted, when we are just talking, telling a story, the 
interpretation is implicit and participated in by the hearers. When 
we embark on talking of the interpretation, again there is an 
interpretation of what we are saying - and it usually refers to a 
richer language.   
 
If I am telling that John loves Mary, and somebody ask me what I 
am talking of, it is likely that I begin to explain that I am talking of 
two persons, whose names are respectively “John” and “Mary”, and 
then go on with further details. The first answer isolates the type 
of objects, which in this case are human beings instead of, say, 
molecules; this answer is itself a discourse, referring to several 
types of entities, individuals and their names.  If I say “John loves 
Mary”, I am talking of two individuals whose names are “John” and 
Mary”; if I say “I am talking of a man named ‘John’ who loves a 
woman named ‘Mary’”, I am talking of some individuals - myself 
included - of their names and of the attribution of names to 
individuals. All of these entities are (to be construed as) real, since 
one normally talks about them; some of them, e.g., names and  
attribution functions, have an abstract character.  If pressed to go 
on, I will probably illustrate a particular relation between these 
individuals, a relation also possessing a name represented by the 
verb “to love”, and so on.  This part of my speech will probably use 
the word “relation”, or something synonymous, so that new 
entities enter the stage, to constitute what is called the “ontology”.  
 
In the statement “I am talking of two individuals named 
respectively ‘John’ and ‘Mary’ between which a relation holds such 
that...”, I am pointing out the existence of a link between 
individuals and relations, on the one hand, and linguistic elements 
on the other. I could also phrase my explanation in this way: “I am 
talking of two individuals named respectively ‘John’ and ‘Mary’ 
and between John and Mary there is a relation such that when 
such a relation holds...” and go on describing the effects of love; in 
this case John is the value of the assignment of a denotation to the 
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name “John”, in symbols, John =  σ(“John”). But such an 
assignment to linguistic items of parts of the non-linguistic reality 
does not exhaust the content of my statement; one must consider 
the implication that “John loves Mary” is true, either explicitly (“I 
am saying that...  and ‘John loves Mary’ is true”), or implicitly, 
because “saying that...” is stronger that just “uttering”, and it 
implicitly conveys the intended truth of what is said.  All these 
levels and aspects, which will be carefully separated in our 
discussion below, are mixed in the natural language (and they are 
also mixed in the semantic meta-language, as soon as the latter is 
activated).   
 
In short, through the analysis sketched above we arrive at a new 
notion of interpretation, pertaining to denotational semantics, or 
to set-theoretical semantics. An interpretation is now a pair formed 
by a structure and a function from the language to the structure. A 
structure is what is meant by such a term in mathematics: a non 
empty set with relations and functions. The set is the universe of 
discourse, having the conceptual riches and possibilities afforded 
by the functions and relations. On the other hand we have the 
linguistic elements, which come to be connected to the structure 
by means of a function, which is also called interpretation: proper 
names (which in formal languages are represented by individual 
constants) are made to correspond to, or are interpreted on special 
individuals - deserving a name; verbs (represented by relational 
symbols) are interpreted on relations; common names are usually 
interpreted on properties, i.e., one place relations; descriptions 
(represented by functional symbols) are interpreted on functions.  
 
Now to be more precise; if the language has an alphabet containing 
a set of individual constants {ci : i ∈ I}, a set of relational symbols  
{Rj: j ∈ J}, each with an a-arity (number of arguments) nj,  a set of 
functional symbols {Fh : h ∈ H), each with an a-arity nh, then an 
interpretation adequate for the language is a structure   
 

M = < M, {RjM}j ∈ J, {FhM}h ∈ H, {ciM}i ∈ I > 

 
where M is a non empty set,  RjM  is an nj-ary relation on M,  FhM is 
a function from   Mnh in M, and ciM  is an element of M. 
 
This is the definition of structure as given in mathematics; the 
usual numerical systems in algebra are structures according to 
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such definition; for example  Z = <Z, +, ×, 0, 1> is a presentation of 
the integers as a structure with two binary operations and two 
special elements, while <Z, < , +, ×, 0, 1> is another presentation of 
the integers as an algebraic ordered structure.  Teachers have 
learnt at college the structuralist language, but they tend to forget 
it when teaching; they haven’t obviously seen the reason for it. The 
presence of 0 and 1 in the presentation of the structure does not 
mean that there are only these elements in the universe; rather,  
these are the only elements with a proper name in the language. 
According to this presentation, the element “two” doesn’t have a 
proper name, but only the indirect description 1 + 1.  In the usual 
expositions one does not distinguish between relations and 
relational symbols, functions and functional symbols, special 
elements and constants; it would be more correct to keep the 
distinction active; thus if 0, 1, + and so on are symbols of the 
language, then the structure should be more correctly presented as  
<Z, +Z, ×Z, 0Z, 1Z>. Of course, 2 may become a new constant symbol 
added to the alphabet to abbreviate the composite term 1 + 1, 
whose value in the structure is the element  1Z+Z1Z.   
 
A good reason to avoid superscripts is of course that when 
considering the ring structure of the rationals, Q = <Q, +, ×, 0, 1>, 
one  never introduces new symbols for zero, one, addition and 
multiplication. Accordingly, instead of viewing the integers as 
embedded or embeddable in the rationals, one sees them as a 
subring of the rationals.  Dropping the superscripts is here 
tantamount to the transformation of the embedding in the identity 
function.   
 
But another reason is that one tends to identify the name and the 
thing named; now this is strange, since nobody would identify 
John with the name of John; the fact is that in the natural language 
there is no straightforward way of expressing the difference. 
Rather recently, logicians have introduced quotation marks, but 
they are uncomfortable and silent - that’s why we are 
systematically ignoring them in this paper, even if it looks kind of 
snobbish.   One doesn’t talk of names, except when saying, e.g., 
that one prefers “Mary” to “Ann”, but in that case one usually 
takes care that the context makes the quotation marks clearly 
audible. This amounts to using the construct  “the name of”.   
 
As already remarked, <Z, +Z, ×Z, 0Z, 1Z>  and   <Q, +Q, ×Q, 0Q, 1Q>  
are different structures for the same language; even if one 



 44 

identifies the first with a substructure of the second, one must still 
maintain the difference between the entities in these structures 
and their linguistic counterparts. So the usual symbols (of the 
pseudo-natural language) are reserved for the entities, and new 
signs are introduced for the linguistic counterparts; thus, e.g., if 0 
and 1 are the elements, then 0 and 1 are the corresponding 
constants.   
 
In mathematics, relations and functions are sets of ordered pairs, 
or n-tuples. The definition conforms to the extensional notion of 
relation. There would be a lot to say on the matter, but suffice to 
remark that a different notion - the so called intensional one, 
which was harboured by the first modern logicians - would not 
make much difference with respect to the problems we are 
discussing. It is commonly accepted that to any relation (whatever 
that be) there corresponds its extension - the set of n-tuples in the 
relation.  Although not necessarily equivalent, the extension can to 
all practical purposes replace the relation in most considerations. 
Try to spot a place in the following pages where this ceases to be 
true.  
 
An interpretation does not however ends with the presentation of a 
structure for the language; this is just the interpretation of the 
alphabet; then one has to interpret, or to transport the 
interpretation to the more complex parts of the language, such as 
terms, formulae, sentences. We say for example that  <Z, +, ×, 0, 1> 
is a ring, while <Q, +, ×, 0, 1>  can be considered both a ring and a 
field.  These further characterisations of structures of the same 
type (for the same language) depend on the sentences of the 
language that are true or false in the structure.   
 
Every closed term will denote an element in the same sense in 
which c denotes  cM; every sentence will be true or false according 
to a suitable inductive definition; the inductive step compels us to 
take into consideration also formulae with free variables (since for 
example descent from  ∃x A(x) to A(x) leads from a sentence to a 
formula). An exception is represented by certain special 
interpretations to be discussed later on.  This technical point 
drives us to define a more general notion than truth, i.e., 
satisfaction of a formula by elements of the structure. The notion 
of truth for sentences will be obtained from the particular case of 
formulae with no free variables. The technical point is actually also 
a practical one, corresponding to a common informal terminology: 
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to decide whether an equation as  x2 - 2 = 0  has solutions in  <Q, 
+, ×, 0, 1>, that is whether  ∃x (x2 - 2 = 0) is true in  <Q, +, ×, 0, 1>, 
one looks for elements which satisfy the formula   x2 - 2 = 0. 
 
A formula with free variables cannot have a definite truth value, 
because variables have a generic, indeterminate denotation, while 
each constant c denotes just and always the fixed element cM. 
Strictly speaking, according to our standing definition of 
interpretation, variables have been left without any denotation at 
all; in order to give variables a definite (temporary) denotation, 
one has to fix the elements they (temporarily) denote. To this 
purpose, a function σ from the set of individual variables into the 
universe M is called an assignment in M. Any assignment σ can be 
uniquely extended to all terms - including nonclosed terms - in the 
natural way, by inductively defining the element tσ  assigned by σ 
to t  in M as follows: 
 
xσ = σ(x) 
cσ = cM 

(Ft1...tn)σ = FM(t1σ,..., tnσ). 
 
The value tσ depends only on the variables occurring in t; if t is 
closed, all assignments give t the same value, which is written as  
tM. Let x be any variable; then an  assignment which differs from σ 
at most for the value assigned to x is called an x-variant of σ. 
 
At last we can define the notion of satisfaction; one talks of 
satisfaction in M of a formula A by (or under) an assignment σ, a 
relation usually denoted by  M, σ |= A. Let us suppose for 
simplicity that the language has only one binary relational symbol 
R; the definition of satisfaction for atomic formulae is then  
 

M, σ |= Rt1t2   if and only if   <t1σ, t2σ >∈ RM;    
 
then by induction,  
 
M, σ |= A ∧ B  if and only if M, σ |= A and M, σ |= B, 
M, σ |= A ∨ B  if and only if M, σ |= A or M, σ |= B,  
M, σ |=  ¬A  if and only if it is not the case that M, σ |= A (written 
also  M, σ |≠ A) , 
M, σ |= A → B   if and only if it is not the case that  M, σ |= A and M, 
σ |≠  B,  
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M, σ |= ∀x A(x)   if and only if  M, σ’ |= A for all x-variants  σ’ of  σ,  
M, σ |= ∃x A(x)  if and only if M, σ’ |= A for at least an x-variant  σ’ 
of σ.  
  
It is easy to see (with the help of one of those tiresome proofs 
mentioned at the beginning) that the satisfaction of a formula A by 
an assignment σ depends only on the values assigned by σ to the 
free variables of A. If A is a sentence, then either all assignments 
satisfy A or none; in the first case we say that A is true in  M, and 
we write as anticipated  M |= A.  
 
A special interest have those structures whose universe is in a one 
to one correspondence with the closed terms (briefly: each element 
has exactly one name) and in which the functions  FM are defined 
in such a way that FM(t1M,..., tnM) = (Ft1...tn)M (the sophisticated 
reader will certainly perceive here some categorical niceties). 
These interpretations are called Skolem-Herbrand interpretations. 
In Skolem-Herbrand interpretations one can work only with 
sentences, by defining truth directly for sentences in this way: for 
atomic sentences,   M |= Rt1t2   if and only if <t1M, t2M>∈ RM; 
clauses for connectives are the same; then  M |= ∀x A(x)   if and 
only if for all closed terms t, M |= A[x/t], and M |= ∃x A(x)   if and 
only if there is at least a closed term t for which  M |= A[x/t].  
 
A simple example of a Skolem-Herbrand structure is <N, SN, 0N>, 
where N is the set of natural numbers, SN is the successor function, 
0N the only element which is not a successor, 0N ∉ range(SN); the 
elements n ∈ N are in a one to one correspondence with the 
numerals n of the language of the structure, i.e., with terms of the 
form  S ... S0, with n occurrences of S.   
 
Instead of considering a set in one to one correspondence with the 
closed terms, one can take as universe the very set of closed terms. 
These are in fact the structures that are called Skolem-Herbrand 
structures, with functions defined by FM(t1,..., tn) = Ft1... tn.  The 
simplification is a common one in mathematics - any set is just the 
same as any other isomorphic to it. Then each tM coincides witht, 
and one says that every closed term denotes itself. In Skolem-
Herbrand structures, assignments have now closed terms as values, 
and an interesting consequence is that M, σ |= A if and only if M |= 
A[x/σ(x)].   
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Here one can see a rationale for the students’ way of talking, when 
they claim to (be able to) substitute a number for a variable in an 
equation; they do not grasp the possibility of talking of the 
satisfaction of an equation by a number without literally substitute 
the number in the equation (which is impossible, because the 
result of such a substitution would no longer be a formula). 
Satisfaction  is an abstract notion, in contrast with the material 
operation of writing. Students tend to talk as if they were only 
handling Skolem-Herbrand structures (which is not really so; even 
when every element has a name, the correspondence need not be 
one to one). For them, every number has a name, which is 
certainly false, but the truth is difficult to accept; if a number does 
have a name, or a description, how do we know its existence, and 
how can we say anything about it?  Students are natural born 
Skolem-Herbrand structuralists; for them quantifier elimination, 
reduction to propositional logic and the like come entirely natural. 
If every number has a name, then checking satisfaction amounts to 
performing certain substitutions, and then applying standard 
normal form techniques and basic identities.  The quite reasonable 
simplification afforded by Skolem-Herbrand structures can be 
proved to give sufficient elbow room for semantics, but it poses 
new disturbing problems.   
 
Let us go back to the set-theoretical definition of interpretation, to 
see what it means for the completeness theorem. Starting from a 
consistent set of sentences, we had  constructed a nonclosed table,  
and we were looking for an interpretation. We had also seen that 
starting with a spoken language with which we communicate 
meanings, it is also possible - by reflecting on the language itself - 
to describe the kind of things we are talking about, i.e., to define 
the universe, the associated structure, and a mapping of the 
language in the structure. This mapping is a counterpart of our  
intended meaning. By contrast, in the case of set-theoretical 
structures we have to reverse the direction; we start with a morass 
of artificial symbols which do not speak of anything; our symbols 
have only a grammatical correct form, but no meaning or 
reference; the latter must be imposed on them ex novo.  The 
structure must be created from nothing, not from meanings, as was 
the case with natural language. No meaningful discourse is acting 
here as a mediator, but there is to be a direct link between formal 
expressions and structure.  The latter might be the reference, but 
meaning is still missing. Even the substitutional version of 
interpretation is of no help - rather, as already noted, we would be 
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led to an unsatisfactory situation: as a matter of fact, when pressed 
for precision, the substitutional arithmetic version tended to be 
formally the same as the definition of an arithmetic structure.   
 
So again we lean on the usual strategy; if we had a true meaningful 
(but precise) language, we could have an associated structure, and 
in it some sentences would be true and some sentences would be 
false, according to the definition of satisfaction in a structure. Now 
the closure properties of the sets of sentences in a table are quite  
similar to the properties of two sets of sentences respectively 
coinciding with the sets of  true and false sentences in a given 
structure. We must go in the opposite direction, defining the 
structure in such a way that the sets of its true and false sentences 
in it actually coincide with the sets we have in the table.  We define 
a structure, and  then we show that its true and false sentences are 
exactly those in the table. We can define a structure directly, 
without passing thorough a meaningful discourse, because we 
already have the sets of true and false sentences notably the 
atomic sentences,  which make it possible for us to define functions 
and relations.   
 
First,  the universe: the closure conditions on the sets T and F of 
the table suggest a Skolem-Herbrand interpretation; this is what we 
will actually be doing, also for economy reasons, putting in the 
strictly minimum amount of elements (we are supposing that there 
is no equality sign in the language; thus there are no equality 
axioms to impose identifications of different names).   So let M be 
the set of closed terms occurring in the table, with the natural 
definition of functions. As for relations, supposing for simplicity 
that the language only consists of one relational binary symbol R, 
we define   
 

<t1, t2 >  ∈ RM     if and only if   Rt1t2   is in column T. 
 
For complex sentences, we straightforwardly apply the clauses of 
the truth definition. Having thus defined the interpretation, one 
may reasonably ask which sentences are true. Not surprisingly, it 
turns out that the interpretation respects the table, whence the 
conclusion follows: the original consistent sentences has a model.    
 
The proof is easy, by induction on the complexity of sentences; if 
¬B is in T, then B is in F; by induction hypothesis,  M |= B  if and 
only if B ∈ T, whence   M |≠ B,  that is  M |= ¬B.  If B ∧ C is in T, 
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then also B and C are in T, and by induction hypothesis  M |= B 
and M |= C, whence M |= B ∧ C. The other cases are  similar way. 
Since we are in a Skolem-Herbrand interpretation, for quantifiers it 
is enough to observe that if, say,  ∀x B  is in T, then for every 
closed term t (viz., for every element of the structure) B[x/t] is in 
T, and by induction hypothesis M |= B[x/t]; it follows that for 
every σ, M |= B[x/σ(x)], i.e.,  M, σ |= B(x), which is  the same as M |= 
∀x B.  Same argument for the existential quantifier. 
 
Now that the proof is complete,  it wouldn’t be honest not to ask 
whether it isn’t just a trick.  On the one hand, the interpretation 
whose search has given us so much trouble is there, as a well 
defined mathematical structure. On the other hand, it is by no 
means clear whether we have made any progress: the 
interpretation doesn’t encode any more information than is 
contained in the two sets of sentences T and F, satisfying certain 
closure properties that - only a posteriori - will be gratified with 
such names as satisfaction, or truth.  What seemed to be the more 
interesting and promising notion of interpretation (once we agree 
that the substitutional notion is elusive and unstable as a carrier of 
meaning) is in a sense squeezed and thorn apart between 
structures and formal sentences;  it impinges both on syntax and 
on semantics.   
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A seemingly idle digression on algorithms and their correctness 
and completeness, where one is in trouble to distinguish which is 
which, i.e., which is the syntax and which is the semantics 
 
Notice the paradoxical fate of semantic tableaux, and their 
metamorphosis. When they first made their appearance, they were 
a method to manipulate formulae, an effective mechanical method 
whose rules were form-driven; it was legitimate to think of it as a 
syntactic method. However, one can use it as well as a self 
contained method, whose output answers a semantic question: 
depending to the initial data, the method allows us to determine 
whether a sentence is a logical consequence of another, whether a 
sentence is satisfiable, or whether it is logically true.  When we use 
the method as we did in the proof of the completeness theorem for 
natural deduction, semantic tableaux loose their independent 
meaning: they reduce to an auxiliary pre-processing technique 
yielding suitably closed sets of sentences.   But, with a final twist, 
tableaux take their revenge: if those suitably closes sets are all that 
matters, this means that the method is by itself sufficient for the 
original purpose, it is the beginning and the end of the story, as it 
embodies both semantic answers and syntactic effectiveness.  The 
fact that such a method must exist could be the corollary of the 
completeness theorem - the provably true coincidence of the two 
notions. But the (possibility of proving the) theorem follows, in 
turn, from the invention an application of such an encompassing 
method as tableaux; if we had used some other technique, e.g.,  
maximally consistent sets, the remark would  still hold, up to 
questions of effectiveness of the proof.   
 
At the beginning of our discussion we observed that the tableaux 
method could be said to be complete with respect to search, in that 
all roads were essentially explored during the development of a 
table. This search completeness of the procedure is a counterpart 
of  the correctness of tableaux as a logical method - indeed, the 
property of  search completeness has the following effect: 
whenever a table initialised with A in T and B in F closes, an 
essentially syntactic event, then we have |= A → B, an essentially 
semantic conclusion. Logical completeness is the converse fact: if 
we have |= A → B, then the table must close. Both these logical 
properties depend on what is called correctness of the algorithm. 
Let us try to put some order in these notions.   
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When one looks for an algorithm to solve a problem, the problem 
involves an infinite class of instances of the same question; a 
property is given, and what is wanted is a method to decide, for 
each of infinitely many possible candidates, whether or not the 
property holds for the candidate. One can always reduce the 
problem to that of deciding membership in an infinite set - for, if 
there is a finite number of candidates it is always possible to 
enumerate them.  A typical example, let us consider the  primality 
property: here we have to decide whether a natural number is 
prime or composite; the associated set is the set of prime numbers; 
the set of candidates is the set of all natural numbers.   
 
An algorithm is said to be correct if it always gives the right answer 
for any instance of the problem. As soon as an algorithm is 
presented, the first question is whether it is correct; the problem 
predates the algorithm, and the algorithm is invented in order to 
solve the problem.  From the very beginning, problem and  
algorithm are kept quite distinct, and the problem (meaning) 
comes before the algorithm (syntax). Any algorithm is a syntactic 
method - recall the tableaux with anonymous labels I and II; its 
answers have to be right, that is, they have to respect the 
semantics.  While the interest of the syntactic method lies in its 
effectiveness, its justification is that it gives right answers. This is 
not always evident: as a rule, the execution steps of the (efficient) 
algorithm do not parallel the problem’s steps. A primality checking 
algorithm is not a straightforward application of the relevant 
arithmetical definitions, but relies on hidden and seemingly 
unrelated properties. If the algorithm were only an application of 
the definition, we wouldn’t require a correctness proof. The proof 
often tries to show that the definition - also called specification - is 
satisfied. 
 
When giving an algorithm to solve a problem, it is not enough to 
give the algorithm, we must carefully explain that what we are 
saying is right; there is here a meta-theoretical shift, which goes 
hand in hand with the objectification of discourse (the program) 
and its relationship to the domain problem. It is not easy to say 
why it should be so, or why has such duplication proved so 
effective: perhaps this has to do with the fact that the problems we 
are talking about are mathematical problems; they do not refer to 
real things, they are formulated in a language which seems 
meaningful (to those who understand the problem), but which on 
deeper analysis is just hanging on a flatus vocis; so one looks for 
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equivalents, until one finds an equivalent version in another 
language that has the sturdiness of a machine.   
 
With logic (and logics, in general) the situation is reversed, with 
respect to mathematical problem solving: there is a syntactic 
method in search of its semantic justification. It is true that the 
effective syntactic method of generation of chains of inferences is 
not an invented artefact; rather, it is modelled on our common 
practice of discourse - with a little polish. Still, what is lacking is 
the semantic counterpart. This is so because crude speech is not 
meant to solve any specific problem, but it is used to communicate; 
upon this mysterious function of speech there comes to be 
superimposed the distinction between problem and solution. In the 
case of pure reasoning, formalisation (that is, exclusive attention to 
syntactic constraints) transforms the discourse - its skeleton - in an 
algorithm. One may now wonder where is the problem to be 
solved.  We will say more on this later. Suffice to say that logical 
reasoning is not involved with the solution of any specific problem, 
but with the solution of a whole class of formally similar problems; 
this follows from the established relationship between derivations 
and logical consequence. 
 
A decision algorithm gives always one of two answers, YES or NO. 
Correctness can then be divided into two directions, correctness 
with respect to. YES and correctness with respect to. NO. These two 
can be called correctness and completeness, respectively. The 
reason for the terminology is as follows. To be specific, assume the 
problem to be represented by the set X, and suppose the algorithm 
to be correct:  thus, if the algorithm answers YES for input x, then x 
∈ X; if the answer is NO then  x ∉ X;  so the answer is YES if and 
only if n ∈ X. The equivalence has two directions, one leading from 
the answer YES to the membership in X, the other from 
membership in X to the answer YES; the former goes from the 
answer of the algorithm to the facts, the latter goes from the 
factual reality to the answer of the algorithm. In general, one can 
call correctness the direction from syntax to semantics, and 
completeness the opposite direction from semantics to the syntax.    
 
Although the choice of terminology may seem arbitrary, it is 
justified when there is a certain asymmetry between YES-
candidates and NO-candidates.  Asymmetry can arise from several 
sources. It may happen that there are sharp procedural differences 
in elaborating the answer for the two cases.   



 53 

 
For instance, suppose the answer depends on searching over some 
infinite space, as it is often the case: then one type of answer could  
be the result of actual finding some witness - in which case, it is 
not just the answer that is positive but the very character of the 
method; the negative answer can come from (or with) a sort of 
proof that no witness was found.  If the negative answer includes a 
statement on the exhaustiveness of the search that was carried 
over,  then this justifies the name of completeness. As a matter of 
fact, if the negative answer comes when one is looking for 
something and doesn’t find it, then we can always suspect that the 
search method could be an incomplete one, and sometimes is 
unable to find what actually exists. The completeness property (of 
the algorithm) precisely denies such an allegation.  
 
A different, though related, type of asymmetry arises when for YES-
candidates the  procedure always halts in a finite number of steps, 
while for NO-candidates may loop forever without terminating. (It 
is usual to distinguish between algorithms, which always terminate, 
and procedures, which do not necessarily terminate; we do not 
stick consistently to the prevailing terminology, since the non-
terminating case for tableaux is subsumed, for logical reasons, 
under the existence of an interpretation.)  
 
Still it is a fact that a certain arbitrariness holds in deciding which 
of the two directions should be called call correctness and which 
one completeness. The arbitrariness, however, is not wholly 
conventional, but depends on what we require from the algorithm. 
Great care must be put in distinguishing the purely syntactic 
answer of the algorithm from the information we want to decode 
from it; otherwise we risk endowing the algorithm with the 
capacity to create meaning. We do attribute meaning to the 
algorithm when (and only when) we decode its output.  
 
Thus, for instance, in a Turing machine working with an alphabet 
{*, |}, and computing a numerical algorithm, as a prerequisite to 
recognising correctness of a result, we must first verify whether the 
output is a number; then, assuming the output to be written as a 
sequence of strokes, say |||…|,  we still must transform this output  
in some base greater than 1, so as to be able to be read and 
communicate it.  Was the meaning already there in |||…|, before 
decoding?   
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As another example, the output of an algorithm might well have, 
instead of the YES-NO answer, some other content, in which that 
YES-NO dichotomy is only implicit, or deducible from it; thus a 
primality algorithm could just give the list of all factors of the 
input n, and leave to us to conclude whether or not n is prime, by 
counting or inspecting these factors.   
 
Now suppose we use the tableaux method as an algorithm to look 
for interpretations (satisfying the initial conditions); the question 
is whether there is an interpretation or not; if the table does not 
close,  then, after some supplementary reasoning, we conclude that 
the interpretation exists. In this case, a syntactic phenomenon has 
a semantic counterpart; since the original problem to which the 
algorithm gives YES-answer is the existence problem for 
interpretations, we are led to say the algorithm is correct. Vice 
versa, as we have seen, if an interpretation exists then the answer 
is YES, and this direction from the problem to the YES-answer is the 
completeness of the algorithm.  
 
Notice that the logical problem is an asymmetric one, with the 
asymmetry hidden by the passage to the limit; in the case where an 
interpretation is drawn from an infinite table, since the answer is 
never YES at any finite stage, we might be tempted to say that the 
method is incomplete; but in another sense, it behaves rightly so, 
in order not to say YES to the question about logical consequence.   
 
Suppose in fact that we take tableaux as an algorithm to answer 
questions of the form |= A → B. The procedure is exactly the same. 
But now the proof that if the table closes then (there in no 
interpretation, whence) |= A → B,  goes in the syntax-to-semantics 
direction. We are thus led to regard this implication as expressing 
the correctness of the algorithm - with the converse implication 
expressing its completeness.  You might object that this is a case of 
much ado about nothing; it is only the trick of switching YES and 
NO labels. But  deeper issues are involved. 
 
We should not confuse semantics for logical languages with 
semantics in the sense of the problem the algorithm is intended to 
solve. If we expect the algorithm to produce a closed table, 
whenever our problem  |= A → B has a positive solution, then our 
original aim is to find a closed table. The same aim confronts our 
algorithm, precisely as other calculi aim at finding a derivation. 
The problem for which the algorithm has been devised, its 
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semantics, is now the search for a derivation. Are we looking for 
derivations or for interpretations?  
 
The answer of the algorithm is meant to give us insights into 
logical semantics; but the decoding of the answer depends on what 
we mean by semantics; the latter is influenced and refined, among 
other things, by our use of tableaux. Such considerations are 
another way of signifying our ambiguous feelings towards the 
syntactic/semantic character of the method of semantic tableaux, 
as well as towards any other logical calculus.   
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Conclusion, where again everything gets mixed up, because if you 
persevere with splitting hairs you end up with nothing in your 
hands  
 
The interpretations given by the completeness theorem (in the 
form of the model existence theorem) are completely determined 
by the set of linguistic specifications arising from the development 
of the table; the latter provides us with sufficient information to 
single out the domain and the structure of the discourse. Skolem-
Herbrand structures go a step further in this direction, since they 
are a way of saying that everything arises from and ends in the 
language. This does not mean - as in the old argument with Bishop 
Berkeley - that solid things are not there as obstacles to crash 
against. Rather, this means that words cannot prove that there are 
things that aren’t words; briefly, uttering words produces words, 
not things. Recall the primitive wisdom of students who identify 
numbers and numerals; in our sophistication we try to convince 
them that the two are different, as they are, but only to conclude 
that the distinction lives up in the lightness of naming: numbers 
are different from numerals, but they are numerals in another 
notation, as far as we can name or exhibit them.   
 
Which of the two is better suited to  clarifying the nature of 
mathematics, the set-theoretical structure or the syntactic 
consistent set of  sentences?  
 
The interpretation-as-structure idea arose from a meta-linguistic 
reflection on what we are talking about when talking in a 
meaningful language; in the completeness proof the meaningful 
language  is still missing, there is only the universe of discourse 
and the form of the discourse (the form we would also have if we 
had a meaningful discourse). Words do not create things; still, they 
are powerful enough to create meanings, as it is clear with the 
interpretation-as-substitution version, which however is a point of 
unstable equilibrium which still evades us. The meaning associated 
to a model must be the meaning of a whole class of formally 
similar discourses, or what is common to all the meanings of all 
interpretations. The set-theoretical structure takes care of that.  
 
Warning  The model existence version of the completeness 
theorem is somewhat deceptive, in that it suggests that a consistent 
set of sentences has just one interpretation (up to inessential 
variations, of a rather technical mathematical nature, such as 
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cardinality - as if the universe for “John loves Mary” could be 
indifferently chosen to be the set of their acquaintances, or their 
fellow-citizens, or humankind). To avoid such a misunderstanding, 
attention must be paid to the special nature of set-theoretical 
language. 
 
Here comes the “third man” at last, the meaningful language - the  
set-theoretical language (relativized to the structure at hand). Set-
theoretical language has replaced in our times the arithmetic 
language of the early substitutional completeness. It is a great 
improvement from many points of view: sets are a more logical 
notion than numbers, and they are also well suited as an interface  
with common discourse.   
 
Let us go back to John and Mary. The structure M serving as 
background for their love can be thought of as formed by a certain 
set of persons (living humankind, or the persons we are acquainted 
with, or other); there is a relation corresponding to the verb “to 
love”, a relation we can suppose to be reflexive, not symmetric and 
not transitive, and that we have specified rather well in 
psychological or physiological terms in order to be able to decide, 
for every pair of individuals, whether one element of the pair loves 
the other or not.  We call this relation love, and we write  c1lovec2 
(instead of  <c1, c2>  ∈ love) if the pair  <c1, c2> belongs to the 
relation. There are possibly also other relations and functions (e.g., 
for relatives and friends), but that depends on the kind of gossip 
we want to spread on our characters. For the interpretation of the 
statement “John loves Mary” we say that there are two individuals 
c1 and c2  whose name are “John” and “Mary” and such that  
“c1lovec2”. There isn’t a great difference between “John loves 
Mary” and “c1lovec2” - after stipulating that “John”M = c1 and 
“Mary”M = c2;  this is even more evident if we consider more 
complex statements. “There is someone whom Mary loves and 
whom John, who loves Mary, does not love” becomes “there is an x 
such that c2lovex and c1lovec2 and not c1lovex”. Once the 
substitution of the atomic statements has been done, the form is 
the same, as is well known.   
 
Here we have adopted a notation different from the usual set-
theoretical one, and more akin to the spoken one (and also to 
informal mathematics). Let us now consider another example from 
arithmetic, where the set-theoretical language is preserved. Let S 



 58 

be the functional symbol for successor, and SN be the successor 
function in the structure  N = <N, SN, 0N> of the natural numbers; 
let further 0 be the constant symbol for the  first element 0N, and 
let E be the equality symbol, to be interpreted by the relation =. 
Then the following two statements are equivalent:   
 
(i)    N |=  ∀x ∃y (¬Ex 0   → Ex Sy)   
 
(ii)   for all a in N there is a b in N such that if a ≠0N then a = SN(b 
). 
 
Suppose we use special symbols for quantifiers also in the meta-
language, taking care that these symbols are different from those 
in the language, for example  ∧  and  ∨  for the universal and for 
the existential quantifier, respectively. Further, let us use the 
symbol    ⇒  to denote implication in the meta-language. Then we 
have the equivalent statements:    
  
(i)   N |=  ∀x ∃y (¬Ex 0   → Ex Sy)   
(ii')  ∧a ∈ N  ∨b ∈ N (a ≠  0N  ⇒ a =  SN(b)). 
 
We are now left with an evident identity of form between the 
arithmetic formula and its interpretation (the identity of form 
would be even more evident if we had used the same sign for E and 
=, as usual).  
 
Here are some consequences of this identity.  The first is that the 
meaningful language is there - the language with which we talk of  
what is happening in the structure. Of structures, of their elements 
and relations we are talking. Linguistic elements are also found on  
our sheet of paper: “love” is the name of a relation, SN is the name 
of a function, and  c1 and c2  still are names - though not to be 
found in the registers - which we use to describe the structures in 
the meta-language, not in the language. Between a language and 
the structures in which it is interpreted there is always the filter of 
another language, which is a meaningful language, conveying a 
direct meaning. To explain the above transformation (i)-(ii') we use 
this latter language by showing, even without mentioning, the new 
statements.  This is the semantic meta-language, by means of 
which we not only describe the structures and the interpretation 
functions, but we also translate formulae into statements - of the 
same form. This is done by passing through the definition of |=, 
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expounding it along its the inductive clauses. The result is that of 
saying true and meaningful things by translating formulae into 
statements talking of structures.   
 
The second remark, already mentioned, but worth repeating, is 
that  formulae such as (i) and their associated meaningful 
statements (ii') have the same form, up to inessential variations; 
certainly, the grammatical form is the same.   
 
Again, we are left with a substitutional interpretation, which is 
made possible by a uniform and precise language, the language of 
structures. Since the latter is rightly considered a mathematical 
language, it follows that, in order to explain the mathematical 
language, passing through the formalisation, we end up with a 
mathematical informal language. We might embark on formalizing 
the latter, too, as it is often done, but to no evident purpose.   
 
The proof that the language of structures is an informal one is 
given by the fact that in front of (ii') there is no |= (no assertion 
sign, as Frege would have it).  (i) is a meta-theoretical statement 
about the formal statement  ∀x ∃y (¬Ex 0   → Ex Sy), and (ii') is the 
same expressed in the meta-language.  
 
The conclusion is that the meaning of a sentence is the sentence 
itself, just as at the global level, an interpretation of a set of 
sentences is the set of sentences itself.  Saying that the meaning of 
a sentence coincides with the sentence is equivalent to saying that 
meaning is undefinable: whenever we try to define the meaning, 
also for (fragments of) the natural language, and we go through 
formalisation - possibly thinking of it simply as regimentation - we 
are forced to conclude that we need another meaningful language,  
one that is able to talk of more abstract entities than the original 
language. If we do not want to define the meaning, but only to 
show it, or to communicate it, then it is enough to talk.   
 
Let us again consider the equivalence between   
 
 (i)     N |=  ∀x ∃y (¬Ex 0   → Ex Sy)   
 (ii')    ∧a ∈ N  ∨b ∈ N (a ≠  0N  ⇒ a =  SN(b)).  
 
On the one hand we have a meaningful statement (ii'), and on 
other  hand, a statement (i) saying that the formal structure of 
(ii'), its name, is true in an interpretation. As remarked above, in 
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the natural language one seldom uses the term “true”: one usually 
prefers uttering statements, as is done in (ii'), avoiding meta-
statements on the truth of statements. Nevertheless, (i) and (ii') are  
equivalent; the corresponding phenomenon for our formal 
languages and calculi is that the syntactic rules reproduce the 
relation of logical consequence.   
 
Upon reading the above equivalence in the suitable direction we 
also learn that it is possible to think in formal terms, i.e., by 
manipulating uninterpreted symbols and building derivations. 
However, also in this case, it is as if we were talking of something; 
not only machines can make purely formal manipulations, though 
only machines can make only formal manipulations.   
  
 
The things one is talking about when doing formal manipulations 
are the structures. The language of structures is used according to 
the same rules one finds in the formal calculi; the language of 
structures can coincide with the language it interprets. Skolem-
Herbrand structures are the medium and fusion between syntactic 
form and structures; here all distinctions disappear, and also the 
meta-language is eliminated. So is semantics.   
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New conclusion, where one sees that  the findings of sophisticated 
logical theorems correspond to the naïve experience: the discovery 
of hot water   
 
The meaningful statement (ii') corresponding to the formal 
sentence (i)  is a mere typographical variant of it. Therefore, it 
comes as no surprise that the student - however oriented to 
became a mathematician - and the accomplished mathematician he 
has become, both are unwilling to duplicate the language.  
  
We have already observed that students are by nature Skolem-
Herbrand animals. It may be useful to recall the experience gained 
by extending number systems, e.g., passing from natural numbers 
to integers.  
 
We are given an operation n - m, the difference, which is 
recursively defined as the iterated predecessor, though it is only 
defined, in a natural way, for n greater than or equal to m.   Then 
one intuitively introduces the idea of counting backwards from 0, 
as when one is  going down a stair, so that -n could be the number 
from which one has to count n to reach 0; stated otherwise, n + (-
n) = 0. Then  n - m is defined also for   n < m, by stipulating that it 
is equal to  -(m - n). But this definition is merely an operative one; 
one  always tries to reduce oneself to the difference, in the old 
sense, where 1 is repeatedly subtracted from a larger number;  
since n - m   must be the same as (n-1) - (m-1), one obtains n - m =  
0 - (m - n). For example 3 - 4 equals 0 - 1, written -1. 
 
From the set-theoretical viewpoint, the integers are defined as the 
equivalence classes of pairs <p, q> with respect to the following 
equivalence relation:  <p, q>  ~ <r, s>  if and only if  p + s = q + r.  
The addition operation is defined pointwise:  <p, q> +Z <r, s> = <p 
+ r, q + s>. There is a sort of isomorphism between the set-
theoretical construction and the algebraic formulae that have 
inspired the construction:  <3, 0> +Z <0, 4> = <3, 4> = <0, 1> is the 
structural fact that allows us to say that the sentence 3 + (-4) = 3 - 
4 = -1 comes true. Our guide is precisely given by the set of 
sentences (equations) we want to be true.  
 
As noted above, more complicated is the situation with rational 
numbers, where - in our teaching experience - we have the 
superimposition of several historical phases: fractions as (cake 
slicing) operators, numbers resulting from the division operation, 



 62 

and - finally - numbers in decimal notation. What such numbers 
denote (but themselves) is hard to say: one cannot say that each of 
them denotes a fraction, because one first needs some simple 
fractions, with numerator less than denominator, to justify the 
notation.  
 
This confusing plurality of notations invites to reflect a bit more on 
the notion of Skolem-Herbrand structure. Up to now we have been 
a bit sloppy; to say that each term denotes itself has been a means 
to say that it doesn’t denote  anything non-linguistic; in particular, 
different terms have different denotations. Such structures are 
rare. As soon as the arithmetic language includes other functional 
symbols, besides the successor, a Skolem-Herbrand structure for 
the language cannot be isomorphic to the natural numbers. The 
same applies to integers and rationals.  So, according to the strict 
sense of the definition, it is not right to say that students are 
naturaliter Skolem-Herbrand (SH) animals. Still, there is an 
intuition here to be cultivated; one wonders whether it wouldn’t be  
preferable to encourage students towards the SH disposition; 
instead of imposing platonistic number systems why not teach 
them to directly work on notation systems, in a steady, free, easy 
way, that also appears to be more correct from the formal 
viewpoint.   
 
Remarkably enough, what students actually do in high school (in 
some countries) is called algebra of expressions, rather than 
numerical calculus or algebra of numbers. The ordered chain of 
integers stands alone in one compartment. In another 
compartment one finds a profusion of expressions, sometimes to 
be evaluated to numbers, sometimes to be transformed into other 
expressions, without any explicit purpose. This is the compartment 
where student labour.  The two terms 1/2 e 0.5 are conceived as 
different; they transform  each into the other, but they express 
different concepts.  The same with expressions; the sign = has to be 
read in the only sensible way, as a meta-theoretical sign of 
reduction of one term to another.   
   
When decimal (including rational) numbers with infinitely many 
digits are introduced, a new phenomenon shows up, the limit,  
only to be generally disregarded. Curiously enough, students are 
quite happy to accept it: their intuition is that, if a generation 
principle looks reasonable, then it is convergent. This credo is at 
the basis of all infinite procedures; it is the same thing as the 
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belief-principle that if a discourse looks consistent then it is so.  
The same bold idea was at the origin of modern abstract 
mathematics. At the beginning it took a great courage - witness 
Cantor’s hesitation: he too began with (ordinals as) notations, such 
as ∞,  ∞ + 1,..., but then he had the cheek to announce that 
behind the notations there lurked a thought, and the notation 
expressed the idea of infinite numbers. We have only our words to 
communicate, we have to do with them. Human thought translates 
in rules and axioms for symbols.    
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Final conclusion, where it is explained that hot water is better than 
cold water 
 
We don’t want to suggest that we gain nothing by the completeness 
theorem. To critically revise what one does unconsciously is always 
useful.  To sum up, we have the confirmation that it is the same to 
consider a form empty of all content, or else all contents.  Saying 
that something works not only for all interpretations, but, 
moreover, for whatever notion of interpretations, is a nice way of 
expressing logical generality. Everybody has the freedom to 
concoct concrete suitable definitions and applications of the 
interpretations.   
 
But what of semantics, of this doppelgänger, or reflecting looking 
glass we counted so much on, and that seems to disappear with the 
proof?  Our predicament is not without hope.  A duplicate is always 
more than the single, and an isomorphism is not perfect identity, it 
is always an interpretation. To pass from    
 
∀x ∃y (¬Ex 0   → Ex Sy)    
 
to  
∧a ∈ N  ∨b ∈ N (a ≠  0N  ⇒ a =  SN(b))   
 
means to change the language, and changing the language entails 
also a change of the theories one can refer to.  The set-theoretical 
sentence ∧a ∈ N  ∨b ∈ N (a ≠  0N  ⇒ a =  SN(b))  is just a fragment 
that can be inserted in a wider context without discontinuity or 
jumps; for instance, in the set-theoretic context SN becomes an 
object of the same type as a and b.  The set-theoretical language 
allows one to tell much more about SN than one can tell in 
arithmetical language using the functional symbol S. Indeed, by 
definition of first-order logic, S can never be the subject of a 
proposition. The logical isomorphism is not also a grammatical 
isomorphism. The set-theoretical meta-language is just like the 
natural language, with its compression of types (which are kept 
apart in such specialistic languages as arithmetic), and thus offers  
amazing elbow room for richer thoughts. The fruitful development 
of set-theoretical semantics, and its usefulness for  understanding 
the relationship between languages and interpretations - as 
witnessed by the achievements of model theory - is the practical 
proof that interpretations, even when squashed on syntax, have a 
multiplicative effect of meaning modulations.   
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The arithmetic meta-language, too, has the same function, using 
different means, and resorting to different solutions. Here, instead 
of blurring types, one makes great use of codings; instead of using 
arbitrary functions, one uses, e.g., recursive functions, together 
with numbers to code their programs. As a counterpart to these  
restrictions, one usually obtains results of greater complexity and 
finesse. 
 
Another benefit of the completeness theorem is that, starting from 
the proof, one can take inspiration for generalisations and 
extensions.  First of all, one can investigate much more complex 
situations, where a completeness theorem exists for different 
systems of rules, for example the rules of certain non-classical 
logics. Let us mention just one example: suppose we receive data 
from a network of observation points, whose nodes send us 
possibly conflicting results. Accordingly, contradictions may arise 
in our discourse based on these pieces of information. 
Nevertheless, these contradictions may look acceptable to us, in 
the sense that we can make a reason of them, and we don’t want to 
eliminate them. In such a context it may be natural to attach more 
than two truth-values to a proposition P, say four, according to the 
following possible alternatives:  “P was received”, “notP was 
received”, “both P and notP were received”, “neither P nor notP 
were received”. Rules complete wit respect to this kind of 
semantics have been found, and the proof of the completeness 
theorem is exactly the same as in the classical case - sentences 
being now partitioned in four classes. One may wonder now about 
the underlying intuition.   In classical logic, if our data include 
both P and  ¬P, then (we say that) we are not able to imagine 
anything, and no interpretation  can possibly exist. Well, people 
who can reason with a four-valued logic are perfectly able to 
imagine an interpretation. What kind of intuition do they have?   
 
It is only by looking at the language that we are able to understand  
and to explain what we are talking of; but a language can be looked 
at in several ways, corresponding to its many practical uses. When 
reflecting upon a language, we are burdened with a lot of 
knowledge, decisions and  prejudgements which flow together in 
the imagination by which we form an interpretation, and fix the 
logic. A further complication is due to the fact that language is 
never looked at in private. Rather, we become interested in 



 66 

language when using it in a dialogue with other people: how do we 
know the logic of the opponent?   
 
For some non-classical logics and semantics, the translation into 
the meta-language is not an isomorphism, not even a local one - 
although here also the proof of the completeness theorem 
generalises that of classical logic. Think for example of logics with 
possible world semantics, and their much more complex 
translations of sentences. Here the interpreting sentence contains 
fragments of the (translation of the) interpreted sentence, mixed 
with other information on the structure of the worlds of the model.  
 
Finally, the equivalence between syntax and semantics suggests the 
possibility of reversing the procedure, thus taking seriously the 
symmetry property of equivalence. This is not only reasonable 
from the logical, but also from the psychological point of view.  
Starting, for historical reasons, with systems of rules  that could be 
thought of as coming from an analysis of discursive practice, we 
embarked on the search  of (notions of) interpretations that could 
justify the assumed logical character of the rules. Conversely, we 
might start from (discourses about) interpretations, and look for 
the rules.   
 
This is common practice in mathematics: for simplicity, let us focus  
attention on single concepts instead of languages. Concepts are 
introduced via some kind of definition. To fix ideas, let us take the 
concept of “group”: we must then ask about the existence of 
axioms (and possibly, the existence of logics) which are complete 
with respect to the concept.   In this way, completeness amounts to  
searching, not for interpretations, but for the effectiveness of 
semantic notions. There are cases when this search is doomed to 
failure, i.e., no system of effective rules is available for a concept.   
 
Let us stick to the groups and suppose for the moment that groups 
are our interpretations. Let us correspondingly relativize all 
semantic notions: thus, |= A means that A is true in all groups. To 
avoid ambiguities, and to remind the restriction, let us write |=gr A 
for validity in all interpretations, given that our interpretations are 
the groups; more generally, for any given class i of interpretations, 
let us write |=i A for the corresponding notion of validity.  We have 
already encountered one such restricted class, the Skolem-
Herbrand structures, but that proved in a sense equivalent to the 
total class. Nowadays, all mathematical definitions can be cast in 
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set-theoretical terms, every concept corresponds to a class of 
structures, and so there are many interesting classes of structures 
different from the total one.  Every mathematical theory can be  
viewed as the study of a class of structures.   
 
A class j of structures is said to be elementary if its definition is 
given by a set T of sentences of a first order language; stated 
otherwise, j is the class of models of T. The class of groups is 
elementary, because there is a set of sentences T such that for 
every structure  G  (equipped with a distinguished element, a 
unary operation, and a binary operation),  G  is a group if and 
only if  G |= T. With the help of T, the resulting new notion of 
logical validity is reducible to the usual one: as a matter of fact, for 
every A,  |=gr A  if and only if  T |= A if and only if |= ∧T → A.  The 
set T is  said to be a set of axioms of the theory of groups.   
 
The strong completeness theorem includes the special theorem for 
all elementary classes i of structures: if T is a set of axioms for i, 
then  |- i A if and only if   T |=  A  if and only if  T |- A,  where |-  is 
derivability in a complete calculus.  
 
A class of structures is said to be axiomatizable if there a set of 
rules  (and axioms, to be thought of as rules with zero premises, in 
order not to have to treat them separately), not necessarily in a 
first order language, which is complete with respect to the class 
(i.e., is complete with respect to the new validity notion).  The logic 
of a class of structures is the set of sentences true in all the 
structures of the class, or logically true with respect to this notion 
of interpretation. If a logic is not axiomatizable, then it is also 
improperly said to be incomplete (meaning that no set of rules for 
deriving its valid sentences is complete). 
 
A more general, or precise, definition of axiomatizability for a 
particular notion of interpretation i is the following: i  is 
axiomatizable if the associated notion of logical validity |=i  is at 
least semidecidable. In this case, we also say that the logic 
associated or defined by the notion of interpretation i  is 
axiomatizable, or that the logic defined by the semidecision 
method is complete with respect to i.  Semidecidability can be 
obtained either by means of (search for) derivations in an 
extension of a usual logic, or else by any partial effective method.   
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The direction here is the opposite with respect to when we have a 
calculus in search of a semantics (as is also the case for computer  
languages and systems). We have argued that the search is, in a 
sense, hopeless.   Here we have a semantics in search for a calculus 
- any calculus. This explicit formulation in terms of effective 
methods throws some further light on the issue of syntax and 
semantics, namely: the difference is not of substance, but of 
procedure. In one case there is the systematic exploration of all 
possibilities, in the other case, we are looking for (or, we are trying 
to construct) just one witness, namely a computation, or a  proof. 
Only in this sense syntax and semantics remain essentially 
different.   
   
Validity is a universal statement ∀x (I(x) → V(x, A)), to be read: for  
every interpretation, A is true in the interpretation. By contrast, 
syntactic validation is an existential statement ∃x D(x, A): there 
exists a positive answer for A (i.e., in the usual calculi, there exists 
a derivation of A).  If both D(x, A) and I(x) → V(x, A) were 
decidable, the fact that ∃ x D(x, A) and ∀x (I(x) → V(x, A)) are 
equivalent (when they are so, thanks to the completeness 
theorem), would imply that validity is Δ1, that is decidable, 
recursive in a generalized sense. A Δ1 set is recursive because both 
it and its complement are  existentially expressible. To decide 
membership, one activates both search procedures for the set and 
for its complement,  knowing that one of them will successfully 
find the answer. In case I(x) → V(x, A) is decidable, as for 
propositional logic, validity becomes decidable; but this is only 
possible if V(x, A) is decidable. In the case of propositional logic, 
interpretations are finite in number, so the universal quantifier is 
actually a fake, but in general it is not finiteness that is important. 
For predicative languages, it is V(x, A) that is not decidable, by 
Tarski’s results, so validity is not Δ1, notwithstanding the 
completeness theorem; thanks to it, validity is however at least 
(only) Σ1, hence semidecidable. Ironically, it is the notion of truth 
that undermines the full-fledged import of the completeness 
theorem.  
 
An important restriction of the usual notion of interpretation is 
represented by normal interpretations for languages with equality 
(i.e., structures where the interpretation of a special relational 
binary symbol E is the equality relation - the diagonal - in the 
structure).  For normal interpretations,  |=n is axiomatizable 
through the addition of the equality axioms, or by means of (some 
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of them and) new rules such as paramodulation (in the context of 
resolution) or substitution and replacement (in the equational 
calculus). Hence equality is (said to be) axiomatizable. Notice that 
the proof of this fact is nontrivial, it is not just an adaptation of the 
usual completeness proof, because the class of normal 
interpretations is not elementary. As a matter of fact, the proof 
requires the algebraic construction of the quotient structure.  
 
In order to ensure completeness, it is not enough to require that 
the notion of interpretation is a restriction of the classical one. 
Completeness depends on the definition of interpretation: a 
nonaxiomatizable mathematical concept is for example that of 
torsion groups; a notion for which there is no completeness 
theorem is the notorious second order logic.  Here we find new 
mysteries, witnessing that, luckily, we have not reached the end of 
the story.   It is only when a property does not always hold that it 
becomes interesting, and one understands it better through 
counterexamples.   
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Reopening of the case, with a supplementary investigation on the 
incompleteness of certain logics, in particular of the notorious 
second order one 
 
To find examples of logics which are semantically defined through 
a class of structures, and which turn out to be incomplete, it is not 
necessary to change the language (as would be the case for second 
order logic). However, some preliminaries from the mathematics of 
infinity are required. First of all, it is useful to bear in mind some 
consequences of the completeness theorem, as is always the case 
when one wants to understand a mathematical result. One such 
consequence is the so called Löwenheim-Skolem theorem, LS for 
short: if a sentence has a model, it has also a finite or denumerable 
one (i.e., one whose universe has finite or denumerably infinite 
cardinality).  In fact, if a sentence F has a model at all, then it is 
syntactically consistent; recalling now the model existence 
theorem,  from its proof we get a finite or denumerable model M of 
F (recall that the universe of M is the set of closed terms built from 
the original constant and functional symbols of F, plus a possibly 
denumerable list of new constants). The same is true for a 
denumerable set of sentences.    
 
The construction of the model existence theorem can be modified 
and made more abstract, to the point that “construction” becomes 
only a metaphor:  we can add as many constants to the alphabet as 
we like, and with the construction of the proof we get a model of 
any cardinality (it is better to use a proof which lends itself easily 
to transfinite extensions, such as a proof using maximal consistent 
sets). In particular, there is a model which is exactly denumerable. 
There exist more refined versions of LS referring to the cardinality 
of the language, but we will not consider them; as a matter of fact,  
all our languages in this paper shall always be denumerable; they 
have a finite number of extra-logical symbols, with the (possible) 
exception of constants, and of course denumerably many variables. 
Although this is a restrictive assumption, let it pass as a technical 
tool. Moreover, unless explicitly stated, we never include equality 
in our languages - nor we consider the related subject matter of 
normal models.  
 
LS has, in turn, the following consequence; let us suppose we 
define as interpretations only structures which are finite or 
denumerable - perhaps because we are not able to conceive of 
anything else, and talking of higher infinities is incomprehensible 
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to us. But we live in a world where people - our colleagues - 
understand them, and perhaps our Best Friend assures us that they 
are useful.  Then, we can re-interpret LS in the following way: if a 
sentence A is true in all our interpretations, then it is true in all the 
interpretations of our Best Friend; for otherwise, in one of them 
the negation ¬A would be true, whence, by his LS, A would be false 
in one of our interpretations. Now, by our Best Friend’s 
completeness theorem, the sentence is derivable (in his favourite 
complete calculus). His derivation is also good for us. We conclude 
that our restriction to finite or denumerable structures is an 
admissible one, like the restriction to Skolem-Herbrand structures. 
We knew that already, since the completeness theorem is still valid 
for our interpretations by its very proof (while LS reduces to the 
following senseless tautology: if a sentence has a model then it has 
a model).  But also our Best Friend must acknowledge it.   
 
Eve if we only accept infinite denumerable interpretations, the 
above conclusion is still true, thanks to the refined version of LS 
yielding a truly denumerable structure, possibly by forced 
introduction of dummy constants. But suppose now that we decide 
to restrict to the class of finite structures. Then we obtain an 
incomplete logic: subtraction of a semidecidable set from a 
semidecidable set need not give a semidecidable set. In effect, if a 
sentence is true in all finite structures it is not necessarily true in 
all (the denumerable ones, which are sufficient to get all).  Take for 
example the conjunction I of the following assertions about a 
binary relation R:  
 

∀x ¬Rxx,    ∀x∃yRxy,    ∀x,y,z (Rxy ∧ Ryz → Rxz).    
 
The interpretations are structures of the type M = <M, RM>, where 
RM is a binary relation on M. M is a model of I if every element of 
M is in the relation RM with some other element, and there are no 
cycles, because of transitivity and antireflexivity.  If M |= I, then M 
must be infinite, hence if M is finite  then M |= ¬I. Assuming now 
the existence of at least an infinite set, it follows that there is a 
model of I.  By the completeness theorem, the fact that  ¬I is not 
universally valid with respect to the usual semantics means that it 
is not derivable in the usual calculi. This doesn’t imply yet that the 
logic of finite structures is not axiomatizable: there might well exist 
other systems of rules, other partial effective methods yielding the 
sentences valid in all the finite structures.  
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However, this is not the case, and no such rules can exist. To see 
this, let us consider the notion of satisfiability in finite structures;  
fix a language, having only one binary relational symbol for 
simplicity. For every natural number n, up to isomorphism there 
are only a finite number m of structures for that language with 
universe of cardinality n.  Specifically, m is the number of possible 
binary relations on a set with n elements.  In order to verify 
whether a sentence B is satisfiable, i.e., whether it has a finite 
model, it is enough to inspect all possible interpretations, for 
increasing n.  In each structure E of cardinality n, B is equivalent to 
a quantifier free sentence in some enriched language obtained by 
adding n new constant symbols for the elements of E, and by 
replacing the universal quantifier by an obvious conjunction 
indexed by the elements of E, and the existential quantifier by a 
disjunction. Verification of satisfiability of B in E  reduces then to a 
propositional task that can be carried over in a finite number of 
steps. This procedure is a semidecision method for satisfiability in 
finite structures: if a sentence is satisfiable, a model will eventually 
be found; if not, the procedure in general will not halt.   
 
So much for satisfiability; now, if also the validity problem were 
semidecidable, then we would actually have a decision method. To 
this purpose, we would exploit a well known technique of recursion 
theory: given a sentence A, we would start simultaneously and in 
parallel the semidecision method for validity on input A, and the 
semidecision method for satisfiability on input ¬A; since validity of 
A is equivalent to unsatisfiability of ¬A, precisely one of the two 
procedures will certainly halt; thus giving us the required decision 
method. (If the procedures are three-valued, with YES, NO and 
UNDEFINED values, both could halt, but then their answers would 
be consistent and both right, by the assumed correctness of the 
algorithms; we can take as answer that which comes first.) We 
know however that neither validity nor satisfiability in finite 
structures are decidable; therefore, there cannot be even a 
semidecision method for the logic of finite structures.   
 
The above argument was implicit in what we said before on the Δ1 
character of logical validity (assuming completeness); in case of 
finite structures, the semantical definition of validity would have 
its universal quantifier ranging over (finite interpretations, hence, 
under suitable coding, over) natural numbers; it would be a 
genuine Π1 arithmetical predicate and, if equivalent to a Σ1 
predicate given by a system of rules, it would be decidable.  
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To complete the proof and finally see that the notion of 
satisfiability in finite structures is undecidable, one can use the 
following argument, which we shall only sketch here, because a full 
proof would require too many details on arithmetic codings. One 
classical problem known to be undecidable is the halting problem 
for Turing machines.  When a Turing machine T halts, T and its 
tape are in a particular configuration, only depending on the 
instructions of T, the input and the particular operating 
conventions  for the halting of T.  It turns out that the sequence of 
configurations leading T to a halting state can be fully described 
by a sentence H. The environment of T, its various tape 
configurations, the history of states of T leading to the  present 
state of affairs, all of this amounts to assuming the existence of a 
certain a finite structure in which sentence H is satisfied. If there 
were a method to decide satisfiability in finite structures, then the 
method could be used to decide whether there is a halting 
configuration for a Turing machine over a certain input, thus 
making the halting problem decidable, a contradiction.  This 
concludes our proof sketch that the logic of finite structures is 
incomplete.  
 
Any infinite cardinality k can be used to impose the following kind 
of restriction on the class of admissible structures: take only 
structures of cardinality k. By an application of (the appropriate 
refinement of) LS, one sees that the resulting logic is axiomatizable, 
with the usual calculi. This fact has found some interesting 
applications in algebra, e.g., in the theory of fields. 
Axiomatizability of (the logics of) these classes does not depend on 
the classes being elementary, which in fact they are not. As 
another application of LS (or by an equivalent axiomatizability 
argument), for any two infinite cardinals k and k’, any 
denumerable set of sentences which is satisfied in the class of all 
structures of cardinality k is also satisfied in all structures of 
cardinality k’.   
 
Also the class of all finite structures is not elementary, as a 
consequence of another corollary of the completeness theorem, the 
so called compactness theorem. The latter states that a set of 
sentences is satisfiable if and only if every finite subset of the set is 
satisfiable. To immediately derive the compactness theorem from 
the completeness theorem, it is sufficient to note that in any 
derivation there only occur a finite number of assumptions; this 
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observation is known as the syntactic compactness theorem. There 
are also different direct proofs of the compactness theorem, e.g., 
proofs using algebraic methods. From compactness it follows that, 
if a sentence has arbitrarily large finite normal models, then it has 
also an infinite normal model.  These results show that the 
completeness property has delicate and intricate consequences on 
definability.   
 
For any fixed finite cardinal n, restricting to structures of 
cardinality n gives rise to complete logics - as implicit in the above 
mentioned reduction to propositional logic. It is only the concept 
of arbitrary unbounded finite set that produces an incomplete 
logic. An obviously related notion is that of natural number, the 
latter being a well known source of other kinds of incompleteness.  
Even assuming that the structure of natural numbers is a neat and 
uniquely specified concept (a neat interpretation of the arithmetic  
symbols +, ×), there is a strong noncompleteness result, which is 
different but related to the incompleteness phenomenon, and 
which can be stated as follows: the set of true sentences is not 
semidecidable, and is in fact not even arithmetical.  Here we have 
no contradiction with substitutional arithmetic completeness, 
where one considers (not one but) many different interpretations 
on the universe of numbers; substitutional arithmetic 
completeness is more akin to the completeness of the logic 
obtained by restriction to denumerable structures.   
 
Finally, to introduce second order logic we have to go back to the 
fundamentals, namely to the very definition of formal languages,  
and to the analysis of discourses from which alphabets and logics 
are extracted. In some statements, people use the so-called 
quantification of properties (or quantification of relations or 
functions). The simplest example that may cross one’s mind is the 
ontological argument: the perfect being is a being that possesses all 
(good?) properties; admittedly, this is not to be heard every day 
discourse, still it is heard of. Formally, one can write ∀X Xg,  where 
Xg  is to be read “g has property X”, just as in predicative 
languages one writes Pg  for “g has property P”.   
 
Apart from theology, mathematics is the only other place one 
encounters the ontological proof - I mean, the quantification of 
properties. This is customary, for example, when giving such 
impredicative definitions as for natural numbers (every non empty 
set has a least element), or when stating the completeness of the 
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reals (every bounded set has a sup). It is not by chance that these 
are the fundamental structures of classical mathematics.  Instead 
of the quantification of properties, one talks here of the set of all 
subsets of an infinite set.   
 
In the new definition of the language, we shall then introduce 
predicative, relational and functional variables, together with 
constants of the same type. The latter coincide with the old 
relational and functional symbols. In this new language, 
individuals and relations are thus treated more symmetrically than 
in first order languages. The old variables of first order languages 
will now be called individual variables. The new variables, for 
functions and relations, will have each a number attached, 
specifying the number of arguments; predicative variables are the 
same as one-place relational variables.  Variables, when they are 
present, whatever their type, are there to be quantified; the 
sentence ∀X Xg  is now a correct one, once the definition of atomic 
formulae has been so extended as to include relational variables 
followed by the right number of terms - and the definition of terms 
now includes functional variables followed by the right number of 
terms.   
 
When we presented the structures for predicative languages as 
 

M = < M, {RjM}j ∈ J, {FhM}h ∈ H, {ciM}i ∈ I >, 
 
the individual constants denoted some special elements deserving 
a proper name; now, more symmetrically, also the relational and 
functional constants will denote special relations (including 
properties) and functions, those exhibited in the presentation of 
the structure. To stress the symmetry, we will adopt italics for 
them as for individual constants; as before with individuals, these 
higher-order elements will not exhaust those to which reference 
can be made by the discourse, and which must be in the structure. 
In fact, the universe M is replaced by a set  M ∪ U  where U is a set 
of subsets, relations and functions on M. Thanks to the possibility 
of coding relations and functions by sets, and without bothering 
with  details, from now on we will take for simplicity U to only 
consist of subsets of M. We shall thus avoid the recurring necessity 
of triple specification. A structure will then be presented as   

 
 M = < M ∪ U, {RjM}j ∈ J, {FhM}h ∈ H, {ciM}i ∈ I >, 
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where U ⊆℘(M),  ℘(M) = the power set of M, or the set of all 
subsets of M.  On the alphabet’s side, we will talk of set variables,  
also called predicative variables, though in some examples it will 
be handier to actually display relational variables. As for notation, 
we will use the predicative one, Xt, to avoid the membership sign 
(actually Xt could stand both for the result a silent operator of 
application, or for t  ∈ X, for a relational symbol  ∈  linking terms t 
and X ). Set variables are also called second order variables, the 
language is called second order language, and so will be called the 
logic (whatever it may be). The terminology gives some 
justification to the name of first order logic used for predicative 
logic, although, historically, second order and higher logics came 
first, tentatively, at least in modern times. 
 
The definitions of satisfaction and truth are wholly analogous to 
the first order case, except for the following type condition to be  
satisfied by assignments:   σ(x) ∈ M for individual variables, and 
σ(X) ∈ U for set variables; we denote the semantic relation of 
satisfaction by |= as before.   
 
The first problem is which sets should be in U. Structures for which  
U =  ℘(M) are said to be full.  One wonders whether U must satisfy 
some closure condition in order that M can be accepted as an 
interpretation. Some sets (and relations and functions) must 
certainly be in U, for example those which are singled out as 
denotation of symbols in the alphabet; each RM and each FM  must 
belong to U,  just as each  cM  belongs to M; accordingly, M 
contained also all the elements tM denoted by closed terms t. In 
first order languages, terms had the same logical type as variables: 
both terms and variables served the purpose of denoting 
individuals; variables had a generic denotation, so that terms could 
be substituted to variables. The problem  of defining the right 
counterpart of terms in the new setting is relevant to the purpose 
of extending certain logical rules that in the first order case only 
involved variables. For example, the rule of elimination of the 
universal quantifier will allow the step from ∀X A(X) to A[X/Y] 
whenever Y is a variable free for X in A, and will certainly allow to 
proceed to A[X/P], for every predicative constant P of the language; 
what else? Fixing the exact scope of this rule will critically depend 
on what we want or deem reasonable to obtain from it.   
 
If, for example, we wish to be able to conclude that  ∃Y Yx  follows 
from ∀x (Xx ∨ ¬Xx), that is, tertium non datur implies that the man 
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without qualities does not exist, then we need among other things 
the step from  ¬Xx to ∃ Y Yx,  thus viewing  ¬X  as a possible 
substitute of Y. In semantic terms, it is required that in any 
interpretation U be closed with respect to complement. In a similar 
way, we can easily convince ourselves that we want U to be closed 
with respect to other logical operations.  
 
In this sense, formulae are seen to provide the appropriate second 
order counterpart of first order terms. On the other hand, 
substitution of second order variables with second order variables 
or constants, as in A[X/Y]  or A[X/P], transforms atomic 
subformulae of A in different atomic subformulae; a natural 
generalisation is that of allowing replacement of atomic 
subformulae with non-atomic formulae. Accordingly, the definition 
of substitution must be so phrased as to make it legitimate to 
replace a variable X with a formula B in A. The result will be  
written as A[X/B]; details are omitted. The intended effect, which 
inspires the inductive definition of substitution, is that every 
subformula, of the context given by A, in which X occurs, say for 
instance Xt, must be transformed into the subformula B[x/t]. There 
are problems if X occurs in a term t  which in turn occurs in a 
subformula like Xt; these problems will be taken care later on, 
when considering the comprehension principle. For the moment, 
we may limit ourselves to conceiving a descriptive operator 
transforming formulae into terms denoting sets.  
 
Granted the technical feasibility of the above definition, we must 
decide which formulae to allow for instantiation in the elimination  
rule, and consider the impact of our decision on the closure 
properties of the family of subsets U in the interpretations. Any 
restricted choice, not involving the totality of formulae, is a priori 
admissible, though unnatural and almost always a bit twisted. For 
instance, one might quite reasonably decide to allow only first 
order formulae; after all, connectives and first order quantifiers 
correspond to such (historically [?]) natural set-theoretical 
operations as the Boolean operations and projection. On the other 
hand, the (re)proposition of first order machinery in the new 
context seems far-fetched, and probably suggested only by 
acquired habits; in the new context, individuals and sets should be 
treated on a par, and the first order criterion looks an unstable 
discriminant; it would probably be more reasonable to put a 
stronger restriction, such as limiting ourselves to quantifier free 
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formulae; we will not pursue this endless dispute, and only 
consider  substitutivity of all formulae.  
 
The only real difference in the formulation of the deduction rules 
for second order language is to be found in the rule for the 
elimination of the universal quantifier (and in the dual one of the 
introduction of the existential quantifier). Instead of labouring on  
painful definitions of the substitution rule and descriptive 
operators, we shall formulate the rule in a simplified version, 
allowing only the step from ∀X A(X) to A[X/Y], with Y a variable 
free for X in A, and adding a logical axiom called the 
comprehension principle (or axiom) for set existence, as follows: 
for all formulae  A(x),  

 
∃ X ∀ x (Xx  ↔ A(x)). 

 
The calculus thus obtained from a first order complete calculus 
will be called second order calculus, and the notion of derivability 
will be denoted by  |-2. 
 
The comprehension axiom is actually an axiom schema, one 
instance for each formula A. The above formula is not wholly 
precise, in that A might contain parameters for individuals or sets. 
We could write  A(x,...) or alternatively write it A(x, α) and write 
the axiom as  
 

∀α ∃ X ∀ x (Xx  ↔ A(x, α)) 
 
where α denotes a finite list of individual and set-theoretical 
variables (different from X, for technical reasons). 
 
From the semantic point of view, the effects of the comprehension 
principle amount to require that in every second order structure, U 
must contain all the definable subsets of M. To explain what a 
definable subset is, let σ(x/a) denote, for an assignment σ and an 
element a ∈ M, the assignment that coincides with σ but for the  
assignment of a to x.. Then a subset X of M is definable is there 
exists a formula A with a free individual variable x and an 
assignment σ such that  X = { a :  M, σ(x/a) |= A }. We will not go 
into details about the effect of possible parameters (from M ∪ U) in 
A, since this apparently innocuous question is rather complicated 
(as are all the inductive definitions involved above). Parameters 
will play an important role for our later discussion, but they will 
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not belong to M ∪ U, and will pose another kind of problems. 
Another way of stating the closure condition for U of course is to 
say that in the structure all instances of the comprehension 
principle must be true.  
 
Completeness holds for the second order logical calculus with 
respect to this notion of interpretation and of satisfaction. The 
proof follows, mutatis mutandis, the same lines as for first order 
logic. For any restriction of (the formulae allowed in) the 
comprehension axiom and of the corresponding closure properties 
of interpretations, there is a similar completeness theorem. Where 
is the problem, then?  
 
The problem is with the full structures; let us write  |=2 A  to say 
that sentence A is true in all the full second order structures. Let us 
call full second order logic the logic semantically defined by the 
class of full second order structures.   
 
The difficulties are usually ascribed to the fact that the idea of all 
the subsets of M (hence, the idea of a full structure) is a vague one; 
Cantor’s theorem tells us that the power set of a set has cardinality 
greater than the set, hence it is an higher infinity if the set is 
denumerable; there is no hope to cover it with definable subsets,  
even with parametrically definable sets, so long as the language is 
denumerable (the conclusion is perhaps a bit too hasty, though 
right, in that - as noted above - the effect of set-theoretical 
parameters is not so easy to unravel). 
 
The amount of set theory required for first order semantics is 
rather weak in its existential assumptions; one needs no strong 
axiom such as the power set or replacement axiom. The resulting 
truncated theory  Z- (Zermelo’s theory without the power set 
axiom) is more or less equivalent to an arithmetic theory (whence 
the option of the arithmetic completeness). For general second 
order structures, where U is the set of definable subsets of M, a 
similar possibility holds; the definable subsets are given by the 
axiom of separation, whatever the kind of (non-)restriction on 
formulae. By contrast, for the treatment of the notion of all subsets  
on an infinite set, one needs a full and mature set-theoretical  
intuition whose reliability is only apparent, and whose associated 
theory shows worrying relativity phenomena.   
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To convince oneself of the insurmountable difficulties, recall that 
the set of all subsets of an infinite set is not effectively generable.  
This is however just an intuition, not a conclusive proof of the 
incompleteness, nor a hint of where to look for the proof.  
Structures for first order logic are not necessarily effectively 
generated. Effectively generated structures however suffice, in the 
sense that the completeness theorem is proved using only Skolem-
Herbrand interpretations. Couldn’t there be anything similar in the 
new case? After all - inevitably - any completeness theorem for the 
second order calculus is proved only with reference to structures 
with definable subsets. But the situation is different for full second 
order logic in that definable (nonfull) structures are disjoint from  
full structures.  Still, the remark is not conclusive.   
 
To spot the stumbling block one must first investigate some 
properties of full second order logic.  A first important property is 
the  existence of a sentence I without non-logical constant symbols 
such that for all M,   M |=2 I if and only if M is infinite (here M is 
the universe M ∪ ℘(M), without additional structure). The 
sentence I is essentially the same as before, except for replacing 
the relational symbol R by a variable, and putting an existential 
quantifier in front:    
 

∃R (∀x ¬Rxx ∧ ∀x ∃y Rxy ∧ ∀x,y,z (Rxy ∧ Ryz → Rxz)). 
 
As a second property of full second order logic, one easily sees that 
any two models of full second order arithmetic are isomorphic. A 
third property, which can be obtained from the first, is that the 
satisfiability problem for first order logic is reducible to the 
validity problem for full second order logic: as a matter of fact, for 
any first order sentence A, denote by  ∃2A'  the “second order 
transform” of A. ∃2A' is the second order sentence without 
constant symbols, given by the following effective construction: let 
A' be obtained by   replacing all relational and functional symbols 
by variables of the same type and number of places; now pre-pend 
an existential quantifier for each of these variables.   
 
We now claim that 
 

 A has an infinite model if and only if  |=2 I → ∃2A'.   
 

Proof (sketch): if  |=2 I → ∃2A', then given any infinite set M, ∃2A' is 
true in M = <M ∪ ℘(M)>, hence there are relations and functions 



 81 

on M as dictated by the second order existential quantifiers; 
adding these to M one gets an infinite first order structure which is 
a model of A. Conversely, given an infinite model of A, by LS there 
is a model of A in any infinite cardinality; given now a model of I - 
that is, an infinite set - transfer on it isomorphically the structure 
of a model of A of the same cardinality.   
 
If now |=2 were semidecidable, then also first order satisfiability for 
infinite structures would be so, whence first order satisfiability 
would be decidable (because, as we have seen, first order 
satisfiability for finite structures is semidecidable - or by LS). Now 
the complement of first order satisfiability is semidecidable, since 
a sentence is unsatisfiable is and only if its negation is valid, and 
validity is semidecidable. We then conclude that first order 
satisfiability is decidable, thus contradicting the Turing-Church 
theorem on the undecidability of first order logic.   
 
The above mentioned properties of full second order logic are well 
established, but they are so only in a meta-theory talking of full 
second order structures under the hypothesis that they exist (and 
that they are different from the definable ones). Saying that M |=2 I 
if and only if M is infinite implies that, if there exists an infinite set 
M, then also ℘(M) exists. However, this is not sufficient for our 
logical conclusions; we must also make sure that  
 
(i)  ℘(M) is different from the set of definable subsets of M, and 
this follows from Cantor’s theorem and other cardinality 
arguments,   
 
(ii)  an infinite M  need not satisfy I, if  M is not full.   
 
If M is infinite, there exists an injection r of M in itself, which is not 
surjective. I essentially establishes the existence of such a function 
r, or of the binary relation RM representing its graph. If r is not in 
U, then I is not true; in general, we cannot be sure that r actually is 
in U, unless U = ℘(M), because no uniform definition D is able to  
isolate an infinite proper subset in an arbitrary infinite set. Given 
any proposed candidate D, by the methods of non-standard 
analysis (which, in this case, essentially reduce to compactness) 
one can build a structure in which the subset defined by D is finite.   
 
If one is ready to accept the undefinability of the infinite, the 
above argument clearly points out the impossibility of applying the 
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comprehension axiom to single out an element such as RM, in view 
of the possible undefinability of this element. This is what  
prevents us from using the tools of |-2 to carry out the proof. The 
distinguishing feature of the proof of the categoricity of full second 
order arithmetic is more subtle. Here one has to apply the 
induction axiom - a universal statement - and one needs a 
particular instantiation of it. Given two models of arithmetic N' 
and N", assume we are trying to define an isomorphism between 
them. This is done with the help of a certain recursively defined 
function g from N' to N" - roughly, g(S'x) = S"(g(x)), where S' and 
S" are the successor functions in the two structures. To define g, 
and to prove that it is an isomorphism, induction is applied to 
subsets of N' and N". Whenever a subset X' of N' is considered, we 
must also consider  X" corresponding to X' in N", and conversely. 
The construction is intuitively clear, and X" would thus appear to 
be definable in terms of X' and g. It turns out that, although 
definable, X" is not definable within the structure N", but only 
outside it, i.e., with parameters not belonging to N". Accordingly, 
when in the definition of full structures one mentions “the totality” 
of subsets, a crucial specification to be added is “included those 
definable using also external parameters”. This specification 
however is not available in the formulation of the comprehension 
axiom.  
 
Since parameters play an essential role in the above proofs, they   
obviously need to be mentioned and linguistically characterised, 
otherwise we couldn’t formulate our arguments. Their existence, 
however, is proved in a wider theory, namely in set theory. To 
prove that a certain subset X of N exists, one first has to state the 
desiderata for X, describe X in the language of set theory, check 
that  the theory indeed guarantees the existence of X.  Finally one 
can asks whether X is also definable within N.  The set-theoretic 
machinery needed in the cases under consideration here is not 
exceedingly strong (weak replacement suffices to get the Cartesian 
product, then one works with separation). However, the essential 
fact is that one goes outside the original structure N, and these 
(sets depending on external) parameters may not be definable in 
the structure.   Undefinability is ascertained only indirectly, by 
way of contradiction, upon noting that definability would entail 
contradiction with some rather cherished theory or result.    
 
The choice of full second order structures thus appears to be not 
so much a restriction of the class of admissible interpretations, but 
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rather, the assumption of a different notion of interpretation. 
When saying that in the (full) structure there positively must be 
included sets which are only externally definable, we are using - 
already in the definition of the structure - a notion of satisfiability 
that depends on the universe of sets, or at any rate, depends on a 
fragment of it which is substantially wider than the universe of the 
structure itself. When dealing with first order semantics, it is 
enough to give the universe of discourse W, equipped with some 
extra structure (i.e., some specified relations and functions in W). 
We then automatically obtain an internal and compositional notion 
of truth in the structure. In the case of second order semantics, we 
have a weird example of an impredicative circularity of the worst 
kind: in order to define the structure, we must have and use a 
truth notion which does not coincide with any built-in notion in 
the structure itself (internal notions are only able to produce 
definable subsets). We rather hopelessly try to capture a notion of 
“truth in itself”, or “truth in the universe”.   
 
The moral is that the only interpretations under our control are 
those which do not depend on a preliminary notion of truth - but 
only depend on (what else?) syntax. This was clear from our 
positive treatment of first order completeness. When the notion of 
truth is a prerequisite for the very definition of full structures, our 
attempts to master these structures are doomed to failure: failure 
of completeness is a confirmation that anchorage to something 
more steady than language is an illusion.  
  
On the other hand, the plot thickens, because in the set-theoretical 
universe, no notion of truth is available, as we know from the 
Gödel-Tarski undefinability theorem.  It we really relied on such 
notion, then we should reach much more than the non-
effectiveness of second order logic, we should reach a 
contradiction. And yet we do talk about such topics as truth, full 
structures; we even prove(d) meta-theorems on them. This is so 
because we have been talking and arguing in a first order logic 
with the set-theoretical language.  Actually, when defining sets, we 
do not use the notion of truth in the set-theoretical universe; it is 
only a way of talking (as usual with truth), a way of saying that the 
existence of the sets we are interest in is demonstrated in the (first 
order) theory of sets. Luckily, our meta-theoretical arguments are 
still subjected to effective generation rules. So in the end the 
picture is as follows: there is a consequence relation  |=2, which is 
perfectly and correctly defined in set theory; we would like to find 
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generation rules appropriate to it, by formulating these rules in a 
language restricted to special sets only: sets as universe of a 
structure, their subsets, and nothing else. Thus viewed, 
incompleteness does not come as a surprise; we are familiar with 
many other examples of  incompleteness arising from restricting 
rules from larger to smaller languages -  the simplest being 
perhaps given by the equational calculus, which allows us to define 
in the structure of numbers only the recursive functions, while 
much larger is the class of functions which are definable in 
arithmetic, already in the first order language.    
 
A lingering doubt could be represented by the fact that in the end, 
notwithstanding all the many and varied arguments, the key to the 
proof of the incompleteness of full second order logic lies in the 
contradiction one would get with the (albeit indisputable) 
undecidability of first order logic. But further reflection shows 
some common elements of the two phenomena.  Recall that the 
completeness proof has shown the necessity of (cases of) non-
termination, and related disturbing consequences, like the 
undefinability of finiteness.   The latter depended on the fact that 
if a sentence has arbitrary large finite models then it has an 
infinite model. But this very fact is at the basis of the proof of 
König’s lemma. The latter is an essential ingredient of - in fact, it is 
essentially equivalent to - the completeness proof, when we finally 
single out an infinite subtable from a nonterminating table. We 
conclude that the completeness of first order logic is equivalent to 
the undefinability of finiteness.   
 
If full second order logic were semidecidable, and the first order  
satisfiability problem could be reduced (not to logical truth but) to 
full second order derivability, say in the form: A is satisfiable if 
and only if  |-2 I → ∃2A',  then first order logic would be decidable. 
As a matter of fact, according to the machinery of tableaux, A is 
satisfiable if and only if the table initialised with A in T does not 
close; but the developed table can be, and in some case is, an 
infinite one; under our standing (absurdum) hypothesis, this non-
termination would be matched by the termination of the 
semidecision algorithm searching for a |-2-derivation.  The infinity 
of the first nonterminating process would be revealed by a finite 
message.  This argument is far not conclusive, since the infinite 
allows a finite definition, otherwise we could not even to talk of it. 
True, the definition of “infinite” in a finite set-theoretic formula - 
but the verification that a set is infinite is another matter. 
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Our definitions are finite in space, but they do not afford a clear 
cut definition of finite (hence by negation of infinite); they are 
deceptive in their apparent precision, because they have always a  
tail which is hard to define and which shows in their applications. 
This tail tends to infinity, though it is always finite. The right 
measure might be given by some dynamical measure, including not 
only space, but also time of verification.   
  
When the table is infinite, we would like to discover it from the 
inside of the process, hence at a finite stage, but there is not always 
a finitely recognisable loop responsible for non-termination. Upon 
transferring these considerations to second order structures, it 
would follow that the infinity of M should be revealed by the inner 
satisfiability in M of some sentence. It is plausible therefore that 
the injection of M into itself should not be definable in M.   
 
These may look wild speculations, without head or tail. However,  
analogies may be useful to go into the deeper reasons, and to 
explore the uncertain borders between finite and infinite, and the 
no man land of the arbitrary large in between. Indeed, the crucial 
notion is precisely that of “arbitrary large”, or “eventually”.  One 
would altogether say that precisely this very fuzziness allows one 
to prove that a logic is complete: the finiteness of the syntax can 
express the intuitive infinite of the semantics. Our leading analogy, 
between the infinite process of tableaux and definability in 
structures, is more akin to the distinction between inner and outer 
than it is with the finite/infinite dichotomy.  What looks finite 
from within (a process, a definition) may look infinite from 
without, and conversely; this is also the lesson of non-standard 
methods. What is syntax from within is the semantics from 
without.   
 
 



The strange case of Dr. Skolem and Mr. Gödel

The completeness theorem has a history; such is the destiny of the important
theorems, those for which for a long time one does not know (whether there
is anything to prove and) what to prove. In its history, one can distinguish at
least two main paths; the first one covers the slow and difficult comprehension
of the problem in (what historians consider) the traditional development of
mathematical logic canon, up to Gödel’s proof in 1930; the second path
follows the Löwenheim-Skolem theorem. Although at certain points the two
paths crossed each other, they started and continued with their own aims and
problems. A classical topos of the history of mathematical logic concerns the
how and the why Löwenheim, Skolem and Herbrand did not discover the
completeness theorem, though they proved it, or whether they really proved,
or perhaps they actually discovered, completeness. In following these two
paths, we will not always respect strict chronology, keeping the two stories
quite separate, until the crossing becomes decisive.

In modern pre-mathematical logic, the notion of completeness does not
appear. There are some interesting speculations in Kant which, by some
stretching, could be realized as bearing some relation with the problem;
Kant’s remarks, however, are probably more related with incompleteness, in
connection with his thoughts on the derivability of transcendental ideas (or
concepts of reason) from categories (the intellect’s concepts) through a pas-
sage to the limit; thus, for instance, the causa prima, or the idea of causality,
is the limit of implication, or God is the limit of disjunction, viz., the catego-
ry of “comunance”. The striving for completeness leads to antinomies. Also
Kant’s transcendental deduction of categories could be compared to what is
now called functional completeness of sets of connectives. Altogether, such
a reading of old works is always a bit forced.

A first inkling of the completeness problem is often said to be retracea-
ble in Bernhard Bolzano. In his 1837 Wissenschaftlehre1 Bolzano gave the
first neat formulation of the notion of logical consequence in substitutio-
nal version. He had clearly seen that all non-logical parts of the statements,
constants and predicates, must be thought of as variables in the logical treat-
ment. Some scholars have reservations on his achievement, since Bolzano did
not consider a variable domain; but it is only fair to say that he is in good

1B. Bolzano, Wissenschaftslehre, 4 voll., Seidel, Sulzbach, 1837.
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company here, because also Tarski in his first enquires on semantics did not
let the universe vary; the universe of logic, in the twenties, tended to coincide
with that of the natural numbers.

Owing to their peculiarity, Bolzano’s problems are difficult to translate
in modern terminology. His main idea was that of a proposition in seed ,
also called are also propositions in thought, or statement of judgements. We
could probably say that Bolzano’s propositions are the sense of sentences. A
proposition in se has a reality, different from that of any written sentence. A
proposition in se is made of representations and concepts that might happen
to have a reality only in our minds; hence, a proposition can be without an
object; nevertheless, we can talk of propositions and consider relations among
them such as, for example, inclusion. Among these relations, Bolzano also
considers those that arise from the fact that propositions contain variable
elements. Hence the definition of logical consequence: “In a more restric-
ted sense [with respect to the case in which there is compatibility between
antecedent and consequent] – and in this sense I will use from now on this
expression – a proposition M is deducible from propositions A,B,C, . . . with
respect to variables i, j, . . ., when any particular representation substituted
to i, j, . . . which makes true all the propositions A,B,C, . . . makes true also
proposition M”2. In this definition there is no reference to a restricted do-
main for variables (while in other places this restrinction is imposed to avoid
infinite possibilities), nor to a compatibility condition among A,B,C, . . . and
M , a condition to which the proviso on “restricted sense” alludes. Variable
parts are essential to make sense of representations without an object, such
as the representation of “nihil”, or of

√
−1; these interact with the others

only in so much as “we conceive of certain elements i, j, . . . as variable and we
compare the infinitely many new representations that emerge by substituting
to i, j, . . . different representations, whenever these representations have an
object”.

A completeness problem could only arise from the comparison of the
consequence relation with another relation; in fact Bolzano considers a new
relation among propositions, based on a notion of structure, and having some
resemblance with the much later patterns of derivation of natural deduction.
In his Wissenschaftslehre, he introduces a relation of Abfolge, also called

2B. Bolzano, Von der mathematischen Lehrart (1840-42).
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relation of consequence-foundation; in contrast to plain consequence, this
new relation concerns truth in itself and not knowledge. Bolzano distin-
guishes between objective foundations and epistemological foundations, and
between objective proof and subjective proof. The former goes backwards
from a consequence to its foundations; premises are called subsidiary truths
of the conclusion; proceeding in this way, one eventually finds out the basic
truths. The underlying structure is a tree, and the subsidiary truth for a
proposition P is the set of truths occurring in the tree. The actual descrip-
tion of the tree does not amount to a full-fledged inductive definition, of the
sort: the set of truths grows at each level, and in the nodes there are only
concepts included in the conclusion. Some people have seen here an analo-
gy with normal Gentzen derivations and cut elimination. While Bolzano’s
two notions of consequence do ask for comparison, one cannot find here any
formulation of the completeness problem as comparison between syntax and
semantics.

Let us consider now the proper tradition of mathematical logic. Peano
was only interested in showing that all logical identities normally used in ma-
thematical arguments could be retrieved from a very small set of identities.
Boole felt at least the need for completeness, though in the context of a very
traditional conception of the axiomatic organization of a discipline3: “All
sciences consist of general truths, but of those truths some only are primary
and fundamental, others are secondary and derived. The laws of elliptic mo-
tion, discovered by Kepler, are general truths in astronomy, but they are not
its fundamental truths. And it is so also in the purely mathematical sciences
. . . Let us define as fundamental those laws and principles from which all
other general truths of science may be deduced, and into which they may all
be again resolved4. Shall we then err in regarding that as the true science
of Logic which, laying down certain elementary laws, confirmed by the very
testimony of the mind, permits us thence to deduce, by uniform processes,
the entire chain of its secondary consequences, and furnishes, for its practi-
cal applications, methods of perfect generality? Let it be considered whether
in any science, viewed either as a system of truth or as the foundation of

3G. Boole, An Investigation of the Laws of Thought (1854), Dover , New York, p. 5.
4“It may be added, that they are truths which to an intelligence sufficently refined

would shine forth in their own unborrowed light, without the need of those connecting
links of thoughts, those steps of wearisome and often painful deduction, by which the
knowledge of them is actually acquired”, ibidem.
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a practical art, there can properly be any other test of the completeness
and the fundamental character of its laws, then the completeness of its sy-
stem of derived truths, and the generality of the methods which it serves to
establish”.

As for Russell, in Principia Mathematica he did not go beyond the state-
ment of an empirical completeness of the logical system. Actually, empirical
completeness is realized in PM, despite completeness is not explicitly formu-
lated as an hypothesis – Hilbert would do in 1928. Neither our distinctions
nor our terminology can be found in PM. Discussing the content of the first
part of PM, where deductions of logical truth are expounded, the authors
explain that such content can be seen in two ways, “either as a deductive
chain based on primitive ideas, or as a formal calculus”. By formal calculus
they mean a kind of algebraic treatment, alternative to the logical format,
but patently equivalent – the choice among them is a matter of taste. In the
absence the necessary distinctions, completeness could be conjectured only à
la Peano. The authors also say that the subject to be treated “is not quite
properly described as the theory of propositions. It is in fact the theory of
how one proposition can be inferred from another. Now in order that one
proposition may be inferred from another, it is necessary that the two should
have that relation which makes the one a consequence of the other. When
a proposition q is a consequence of a proposition p, we say that p implies q.
Thus deduction depends upon the relation of implication, and every deduc-
tive system must contain among its premises as many of the properties of
implication as are necessary to legitimate the ordinary procedure of deduc-
tion. In the present section, certain propositions will be stated as premises,
and it will be shown that they are sufficient for all common forms of inferen-
ce. It will not be shown that they are all necessary, and it is possible that
the number of them might be diminished. All that is affirmed concerning
the premises is (1) that they are true, (2) that they are sufficient for the
theory of deduction, (3) that we do not know how to diminish their number.
But with regard to (2), there must always be some element of doubt, since
it is hard to be sure that one never uses some principle unconsciously. The
habit of being rigidly guided by formal symbolic rules is a safeguard against
unconscious assumptions; but even this safeguard is not always adequate”5.

5A. N. Whitehead, B. Russell, Principia Mathematica, Cambridge University Press,
Cambridge, 1910-13, Part I, “Mathematical Logic”, Section A, The Theory of Deduction;
quotation from A. N. Whitehead, B. Russell, PM to *56 , Cambridge University Press,
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Russell had his reasons not to be too sure of completeness, considering the
complications and ad hoc restrictions introduced in his theory of types; he
had made experiments with alternatives and variants, always in the setting
of higher order logics, and he was well aware of the many decisions and
choices to be made in building a logical system, and of their non-equivalence.
He probably believed that, to avoid contradictions, what was excluded in
his system would have to be left out in any other system; but he might
well have some doubts, at least if we read with attention: “It should be
observed that the whole effect of the doctrine of types is negative: it forbids
certain inferences which would otherwise be valid, but does not permit any
which would otherwise be invalid. Hence we may reasonably expect that the
inferences which the doctrine of types permit would remain valid even if the
doctrine should be found to be invalid”6.

Frege had no such doubts, to him logic was one, necessarily ideographic.
Frege’s formalization was not a tool to abstract from meaning; on the con-
trary, only when expressed in his Begriffsschrift sentences could be properly
understood and analysed. Frege’s worries were of another type: the inhal-
thich reasoning could be maimed and suffer an Inhaltsentleerung in such
systems as Boole’s calculistic logic, Jevons’ machine or formal arithmetic:
“Boole’s formulistic language reproduces only a part of our thought; in its
entirety it could never be done by a machine or substituted by a purely me-
chanical procedure. Syllogism can certainly be presented under the form of a
calculus, which of course will never be executed by a machine, but thanks to
the few schematic and intuitive forms in which such a calculus is organized
it guarantees great certainty. But the true gain is got when the content is
not only shown, but constructed from its component parts through the very
logical signs used to calculate”7.

According to Poincaré, complete formalization, as achieved by Hilbert for
geometry, was a step toward mechanical theorem proving. He was pushing
in this direction for polemical reasons, a kind of practical reductio ad absur-
dum. Couturat had remarked8 that Peano, in translating all mathematical

Cambridge, 1964, p. 90.
6Ivi, Preface of 1910, p. vii.
7G. Frege, “Booles rechnende Logik und die Begriffschrift”, in G. Frege, Nachgelassene

Schriften, Felix Meiner Verlag, 1969.
8L. Couturat, “For Logistics”, Monist 22 (1912), pp. 481-523.
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expressions in symbols, did not aim at excluding thought from logistics, first
of all because there was on the background the operation of translation, and
moreover because the task of building derivations was not of the nature of
blind mechanism. The discussion on formalization was really a discussion on
axiomatic method: on the one hand, formalization applied it to axiomatic
theories; on the other hand, as was fully understood only later, by the very
nature of axiomatization, to axiomatize was virtually the same thing as to
formalize – whether or not resorting to logistics. for the very nature of axio-
matization (as was later fully understood). Frege was, consistently, a strong
opponent of the axiomatic method. The debate on axiomatization involved
completeness, specifically, the completeness problem for theories. As we shall
see, the difficulties to separate the notions of completeness for theories and
completeness for logic, were a source of long lived misunderstandings.

The modern axiomatic method begins with the idea to deprive primiti-
ve concepts of their meaning. For our purposes we do not need a detailed
analysis of the evolution of this idea. One quotation will be enough, to re-
call the background. According to Pasch, “in order that geometry becomes
a truly deductive science it is necessary that the entailing of consequences
be everywhere independent from the sense of the geometrical concepts, as
it must be from the pictures; one must take in consideration only the rela-
tions between geometrical concepts, as determined by the propositions and
definitions employed. In the course of a deduction, it is allowed, and useful,
to think of the meaning of intervening geometrical concepts, but it is not
necessary; when it is necessary, this is a sign of the defective character of
deductions and . . . of the inadequacy of the propositions invoked to support
the proof. When one deduces . . . a theorem from a group of propositions
– which we’ll call generators – the value of the deduction goes beyond the
initial aim. In fact, if one derives from generators correct propositions, then
by changing the geometrical concepts with others. . . one gets without repro-
ducing the proof a proposition which is a consequence of the thus modified
generators”9. In the reasoning process, sensible images are not allowed, nor
mental representations of images; the words themselves used to frame geo-
metrical concepts exert an influence from which science must get free. The
right synthesis, according to Pasch, was to be found in Peano’s school, where
not only the axiomatization of theories was pursued but a sterilized language

9M. Pasch, Vorlesungen über neuere Geometrie, Teubner, Leipzig, 1882, p. 98.
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was also made ready for the purpose.

Frege’s opposition the axiomatic method was motivated by the lack of de-
termination of the objects described by a set of axioms. Axioms were seen by
mathematicians as a new kind of definition; the peculiar nature of this kind
of definition was recognized, and accepted. The terminology varied: descrip-
tive definitions vs the traditional real and nominal ones, implicit definitions10

vs the explicit ones, definitions by postulates vs direct definitions. Poincaré
didn’t see any problem in accepting the axioms as masquered definitions11.
Following Couturat’s terminology, Poincaré talked of definitions by postula-
tes: “Stuart Mill claimed that any definition implies an axiom, that which
asserts the existence of the defined object . . . The definition would thus be
an axiom in disguise . . . Stuart Mill construed existence in a material and
empirical sense; he meant that in defining the circle one says that in nature
there are round things. In this form, his idea in not admissible. Mathema-
tics is independent from the existence of material things, here existence can
have only one meaning, namely freedom from contradictions. Thus modified,
Stuart Mill’s idea is right: in defining an object, one claims that the defi-
nition implies no contradiction. If we have thus a system of postulates and
we can show that these postulates do not imply any contradiction we’ll be
entitled to consider them as the definition of one of the notions occurring in
them”12.

To Frege, axioms are not definitions, since they realize neither of the
necessary conditions of existence and uniqueness of the defined object. Ac-
cording to Frege13 definitions (conceived as assignments of meaning to signs)
are to be kept distinct from all other sentences of a science, such as axioms,
principles, theorems, explanations. Frege objects to Hilbert that his axioms
for the “between” relation do not define a relation at all; the definition should
be framed as “‘between’ is a relation with the following characteristic notes

10At the beginning, talk of implicit definitions was inspired by the mathematical ter-
minology of implicit functions, and it referred to single terms included in propositions
together with other already known terms; later on, “the implicit definition of systems
of concepts by means of propositions has become essential for mathematical logic”, F.
Enriques, Per la storia della logica, Zanichelli, Bologna, 1922, 19872, p. 134.

11H. Poincaré, La Science et l’hypothèse, Flammarion, Paris, 1902, p. 67.
12H. Poincaré, Science et méthode, Flammarion, Paris, 1908, p. 161.
13G. Frege, Wissenschaftlicher Briefwechsel , Felix Meiner, Hamburg, 1976, letters to

and from Hilbert.
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. . . ”; Hilbert is willing to change terminology, but “I have to be entirely
free also in the statements of the characteristic notes. In fact, as soon as
I have posed an axiom, it exists and is ‘true’ . . . You write: ‘The fact that
the axioms are true assures us that they do contradict one another’. I have
been intrigued in reading this statement in your letter because, since when I
began to think and write and lecture on this subject, I have always said the
very opposite: if axioms arbitrarily posed are not in contradiction, together
with all their consequences, then they are true, then there exist the entities
defined by means of those axioms. This is for me the criterion of truth and
existence”14.

Notice that also a few formalists, Couturat among them, were opposed to
the idea that a mere consistency proof could guarantee existence. The same
opposition is to be found in early intuitionism, with its absolute mistrust for
the “linguistic buildings, sequences of sentences connected by logic rules . . . If
also it were apparent that such constructions can never exhibit the linguistic
pattern of a contradiction, they are mathematical only in so far as they
are linguistic constructions and they have nothing to do with mathematics,
which is outside the building”15. Brouwer rejects the existence of models
for consistent sets of sentences: “The question is in the following terms: let
us suppose we have somehow proved, without thinking of a mathematical
interpretation, that a system logically built on the basis of a few linguistic
axioms is non-contradictory, i.e., that at no stage of the development of the
system we can meet with two contradictory theorems; if then we should also
find a mathematical interpretation of the axioms. . . , does it follow then that
such mathematical construction exists? Nothing of the kind has ever been
proved by the axiomatizers”16.

Brouwer’s negative position stems from his conception of mathematical
construction, which has nothing to gain by a consistency proof. But Frege
does not dismiss the significance of consistency proofs; rather, he questions
their feasibility: “Which means do we have to prove that certain properties,
or certain requirements (or whatever else they are called) are not mutually

14D. Hilbert in G. Frege, Wissenschafticher Briefwechsel , cit.
15L.E.J. Brouwer, Over de grondslagen der wiskunde, Dissertation, Maas & van Such-

telen, Amsterdam, 1907, pp. 183, p. 132, in L.E.J. Brouwer, Collected Works I , North
Holland, Amsterdam, 1975, pp. 11-101.

16ivi, p. 141.
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contradictory? The only way I know is that of presenting an object which
possesses all those properties, or of mentioning a case in which all those
requirements are satisfied. It should not be possible to prove consistency
in any other way”17. Also according to Poincaré “Usually to prove that a
definition does not imply a contradiction, one proceeds with an example; one
looks for an example of an object which satisfies the definition . . . But such a
proof is not always possible”18. Frege’s statement is of December 1899; soon
Hilbert would have – if he didn’t already have – another idea. An alternative
to examples is that of considering all the propositions one can deduce from
the postulates and showing that there are not among them two which are
mutually contradictory. This idea pleased Poincaré, because starting from it
he was able to argue for the impossibility of a consistency proof for arithmetic;
such a proof as envisaged by Hilbert would need, circularily, induction; hence
the synthetic character of induction was established. Also Mario Pieri, in
1906, had an inkling that for consistency proofs “one will have to reason
by induction on the infinite sequence of derived propositions”; he doubted
the feasibility of the procedure for a queer reason, because “we could not
decide whether [the set of derivable propositions] will be a denumerable series,
to which such a principle could be applied”19. Pieri was not sure of this
because probably he had not grasped the meaning of the (albeit hypothetical)
completeness of a set of mechanical logical rules.

Besides the existence problem for definitions (also called the solvability
problem, as Frege preferred to say by analogy with equations), there is the
uniqueness problem. Non-uniqueness is, to the axiomatizers, a positive fea-
ture of definitions by postulates: “It might happen that there are several
interpretations pf the undefined symbols which satisfy teh system of unro-
ved propositions. The system of undefined symbols can then be considered
as an abstraction obtained from all interpretations”20. It is not by chan-
ce that there are several interpretations: “The most important property of
the primitives of a hypothetical-deductive system is that of being capable of

17G. Frege, Wissenschafticher Briefwechsel , cit.
18H. Poincaré, Science et méthode, cit., pp. 161-63.
19M. Pieri, “Sur la compatibilité des axiomes de l’arithmétique”, Revue de Métaphysique

et de Morale, 13 (1906), pp. 196-207, p. 199.
20A. Padoa, “Essai d’une théorie algébrique des nombres entieres, prédédeé d’une in-

troduction logique à une théorie déductive quelconque”, in Bibl. du Congrès Intern. de
Philos., Paris, 1900, A. Colin, Paris, 1900, vol. 3, pp. 309-65.
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arbitrary interpretations, within the boundaries fixed by the primitive propo-
sitions . . . or, in different terms, the meaning of words and symbols denoting
a primitive object whatsoever is not uniquely determined by the primitive
propositions concerning it, and the reader has the faculty to attribute a mea-
ning to these words and signs as he likes, with the only condition that it be
compatible with the general properties imposed on objects by the primitive
propositions”21. If meaning can be attributed in several different ways, then
none of the attributions is in a sense complete. As Beppo Levi remarked,
with reference to the indeterminacy of primitive ideas: “it is true that a given
system of postulates can give a primitive idea (in relations to the other ones)
a determination less strong than that associated to the name in the common
speech; but the true and complete determination of a primitive idea in not
possible, however complex the system of marks (contrassegni) used for it;
we will never be able to identify ideas, but only to state some relations for
them22.

Hilbert was clearly well aware of the possibility of multiple interpreta-
tions; in some of his first pronouncements, he seems to construe the indeter-
mination only up to isomorphism; at the same time, he claims that the very
indetermination is a great gain. He wrote to Frege: “You observe that my
concepts, e.g., ‘point’ and ‘between’ are not uniquely determined . . . But it is
obvious that any theory is just a framework, a schema of concepts with their
mutual relations, while the basic elements can be thought of in an arbitrary
manner. If with my points I want to refer to any system whatsoever, say the
system composed of love, law, chimney-sweepers . . . , then it will be enough
that I construe my axioms as relations among these entities, and all my pro-
positions, e.g., the Phytagorean theorem, will hold for them. In other words:
any theory can be applied to infinitely many systems of basic elements. It is
enough to apply a one to one transformation and to convene that the axioms
for the transformed objects be the same as for the corresponding ones. Such
a possibility can never be imputed as a defect of a theory, on the contrary,
it is a very great advantage, and at any rate it is inevitable”23. It is quite
possible that this restriction to one-to-one correspondences had to do with

21M. Pieri,“I principii della geometria di posizione composti in sistema logico deduttivo”,
Mem. R. Accad. Sci. Torino, (2a) 48 (1899), pp. 1-62, p. 60.

22B. Levi, “Antinomie logiche?”, Annali di Matematica, (3) 15 (1908), pp. 187-216,
footnote (*), p. 188.

23D. Hilbert, in G. Frege, Wissenschaftlicher Briefwechsel , cit.
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his ideas on completeness, which at that time were not so clear, as we shall
see.

At the beginning of the modern axiomatic method, mathematicians used
to give a somewhat greater emphasis than it is done today, to the fact that
isomorphic interpretations are nonetheless different; for example Fraenkel in
1928 observed that when “for a particular concrete (inhalthichen) meaning
of the primitive concepts, e. g. intuitive ‘point’ and ‘line’, a proposition
is richtig , that is deducible from the axioms, then the proposition cannot
be false with respect to another meaning, compatible with the axioms (for
example ‘point’ as ‘pair of numbers’), or we would have a contradiction with
the proved isomorphism. But this does not mean that the sense, the essential
content of primitive concepts, can ever be determined by the axioms, because
to any interpretation there is another one, isomorphic but with a different
sense”24. This can be read as an indirect answer to Levi: sense is not invariant
under isomorphism.

Poincaré had no difficulty in accepting the necessity of an axiomatic pre-
sentation of geometrical systems; and he was aware that the eventual goal
of axiomatization was that of a formal presentation of the theory. “One is
struck in the new mathematics by its formal character, that is so explained
by Hilbert: ‘let us think of three species of things we’ll call points, lines
and planes, and let us convene that a line will be determined by two points;
instead of saying that this line is determined, let us say that it passes for
the two points, or that these two points lie on the line’. What these things
actually are we not only do not know, but we must not try to know. We
do not need it, and a person who had never seen points, lines and planes
could do geometry as well as ourselves. Words like to pass , or to lie must
not generate in us any image, they are simply synonyms for, respectively, to
be determined and to determine. So it is clear that to prove a theorem is
not necessary nor useful to know what one means. One could replace the
geometer with the piano à raisonner imagined by Stanley Jevons; or if you
prefer one could think of a machine where from an entry one could introduce
the axioms and on the other end to collect theorems, as the famous Chicago
machine where pigs enter alive and come out as ham and sausages. No more
than these machines, the mathematician needs not to understand what he is

24A. A. Fraenkel, Einleitung in die Mengenlhere, Springer, Berlin, 19283, p. 353.
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doing. This formal character of geometry I do not impute to Hilbert, this was
necessarily his goal, given the problem he had set to himself. He wanted to
reduce to a minimum the fundamental axioms and make a complete enume-
ration of them; now in reasonings where our spirit is alive, in which intuition
plays a role, in live reasonings, so to speak, it is difficult not to introduce
some unobserved axiom or postulate. Only after reducing all geometrical
reasonings to a mechanical form he could be sure to have succeeded in his
project and reached his goal”25.

Hilbert’s aim in fact, stated at the beginning of his 1899 Grundlagen der
Geometrie, was that of obtaining for geometry an axiom system “complete
and as simple as possible”. What he meant by “complete” can be recovered
from his letters to Frege. Hilbert explains to Frege that a complete definition
is given only by the whole set of axioms; every axiom contributes to the
definition, hence every new axiom modifies the concept. “Adding any new
axiom once a concept has been determined in a unique and complete way
is absolutely forbidden and non-logical”26. In the case of real numbers and
geometry, however, Hilbert also discusses the notion of a structure being full
– being impossible to further extend it. This notion and that of deductive
closure do not exactly coincide. The Vollständigkeitsaxiom for geometry
states the impossibility of extending the universe of points, lines and planes
and still keeping the validity of all the axioms (for real numbers, he replaces
the continuity axiom by the completeness and Archimedean axioms). At the
same time he looks for a system of axioms so closed that no other axioms
can be consistently added, and no proposition can be considered correct
unless it is derivable from the axioms. When comparing the genetic and
the axiomatic method, he observes that with the latter there is no need to
think of the generation laws for reals, but only of “a system of things whose
relations are given by means of the finite and closed system of axions I.IV,
about which new assertions hold only if they can be derived from those xions
by means of a finite number of logical steps”’27.

Here Hilbert seems to consider categoricity a consequence of complete-
ness, though in 1901 he apparently was no more convinced of the identity of
the two notions. According to Edmund Husserl, after a lecture in which this

25H. Poincaré, Science et Méthode, cit., pp. 156-8.
26D. Hilbert, in G. Frege, Wissenschaftlicher Briefwechsel , cit.
27D. Hilbert, “Über den Zahlbegriff”, Jahresbericht DMV , 8 (1900), pp. 180-4.

97



very subject had been discussed, Hilbert remarked that one should carefully
consider the logic by which the consequences of the axioms are derived; in
Husserl’s words: “When we suppose that a proposition be decided on the
basis of the axioms of a domain, what can we use besides the axioms? Alles
Logische. Was ist das? All the propositions that are free from any particula-
rity of a knowledge domain, what is independent from all particular axioms,
from all matter of knowledge”. But here one has a spectrum of possibilities:
“the algorithmic logic domain, that on numbers, of combinatorics, of the
general theory of ordinals. And at last the most general set theory is not in
itself pure logic?28”. Combinatory logic for example is sufficient to derive the
Schnittpunktsatz from Pascal theorem (Hilbert had proved that there was no
need of continuity for this derivation); the logic of numbers comes in when the
Archimedean axiom is used, and to use the Vollständigkeitsaxiom one has to
resort to the logic of sets, the allgemeinste Mannigfaltigkeitslehre29. In 1909
Hilbert again remarks that “in certain investigations of modern mathematics
the problem is not that of establishing a specific fact or the validity of a
proposition, it is that of carrying on the proof with the restriction to given
methods or to prove the impossibility of such a demonstrative process”30.

In the same years, completeness and categoricity where being discussed
also in USA; one of the merits of the discussion was that of forging the definite
terminology. Initially, Huntington31 calls “complete” a supposedly categori-
cal theory; in 1902 he proposes a set of six postulates for continuous magni-

28E. Husserl, Philosophie der Arithmetik , Martinus Nijhoff, The Hague, 1969, p. 445,
quoted by J. C. Webb, Mechanism, Mentalism and Metamathematics, Reidel, Dordrecht,
1980, p. 85.

29According to Otto Blumenthal, already in 1904 Hilbert was convinced that “without
a complete and perspicuous formalization of logical inferences no progress could be done
in the direction he had indicated”, O. Blumenthal, “Lebensgeschichte”, in D. Hilbert,
Gesammelte Abhandlungen, Dritter Band, Springer, Berlin, 1935, pp. 388-429, p. 422.
The 1904 paper to which Blumenthal refers is D. Hilbert, “Über die Grundlagen der Logik
und der Arithmetik”, Verhandlungen des Dritten Internationale Mathematiker Kongresses
in Heidelberg vom 8. bis 17. August 1904 , Teubner, Leipzig, 1905, pp. 174-85.

30D. Hilbert, “Wesen und Ziele einer Analysis der unendlichvielen unabhängigen varia-
blen”, 1909, in D. Hilbert, Gesammelte Abhandlungen, Dritten Band, cit., pp. 56-72, p.
72.

31E. V. Huntington, “A Complete Set of Postulates for the Theory of Absolute Conti-
nuous Magnitude”, Trans. AMS , 3 (1902), pp. 264-79. Huntington uses assemblage for
“set”, mentioning also “Menge” and “ensemble”; while it is curious that he uses set for
the set of postulates.
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tudes and he claims that it is complete, meaning that the axioms are non-
contradictory, sufficient and mutually independent; here “non-contradictory”
means that “there is at least one assemblage in which the chosen rule of com-
bination satisfies all six requirements”; the meaning of “sufficient” is that
“there is essentially only one such assemblage possible” (modulo correspon-
dences which we now call isomorphisms). This use of “complete” will remain
for a while also after the spreading of “categorical”; according to Enriques,
in 1922, “a system of postulates is said to be complete when two systems of
entities forced to satisfy the system can be put in a one to one correspon-
dence, in such a way that the properties of the one translate in perfectly
homologous properties of the other, so that they appear abstractly the same,
as far as the ideas in question are concerned”32.

Also Veblen is interested in categoricity33: since his terms point and order
are undefined, he claims he has the right to apply those terms to whatever
class of objects for which the axioms are valid. “It is part of our purpose
hoèıwever to show that there is essentially only one class in which the twelve
axioms are valid”34. It will follow that any proposition expressed in terms of
point and order either is in contradiction with the axioms, or is equally true
of all classes which verify the axioms. This means that the validity of every
possible proposition expressed in these terms is completely determined by
the axioms. Such a system is called by Veblen categorical, while a system to
which it is possible to add some new axiom (possibly in many different ways)
is called disjunctive. In a footnote, he ascribes these terms to John Dewey; he
recalls also Hilbert’s terminology of Axiom der Vollständigkeit , translated as
Axiom of Completeness , and Huntington’s use of the adjective complete for
the corresponding definition of the structure (where Veblen prefers to speak
of determination, instead of definition).

After 1905, Huntington dismisses the term “sufficient” and following Ve-
blen adopts “categorical”; however, initially, categoricity is understood by
him in the sense that every proposition expressed with the primitive terms
either is deducible from the postulates or else it is in contradiction with

32F. Enriques, Per la storia della logica, cit.
33O. Veblen, “A System of Axioms for Geometry”, Trans. AMS , 5 (1904), pp. 343-84.
34Again, modulo correspondences we call isomorphisms, though Veblen does not use

this term.
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them35. Actually, in Veblen’s terminology, one does not require that every
consistent proposition is derivable, but only that it was valid in all models.
Following a suggestion of H. N. Davis, Huntington soon corrects himself: “in
the case of any categorical set of postulates one is tempted to state the theo-
rem that if a proposition can be stated in terms of the fundamental concepts,
either it is itself deducible from the postulates or else its contradictory is so
deducible; it must be admitted however that our mastery of the processes of
logical deduction is not yet, and possibly never can be, sufficiently complete
to justify this assertion”36.

A thorough discussion of the problem is finally given by Edwin Wilson37,
in a contribution on the axiom of choice. He starts with the remark that it
is not always desirable to have a categorical system, because the cardinality
of different models can be an interesting feature, for example in group theo-
ry; he concedes that from categoricity it follows that any proposition built
from the primitive terms (thus, with the exclusion of propositions dealing
with such non-mathematical features as, e.g., colour) is either compatible or
incompatible, and he asks whether it can also be said that it must be either
deducible or in contradiction with the axioms. “This question, this sugge-
stion that compatibility and deducibility may not be the same when applied
to categorically determined systems is vital in logic and requires careful di-
scussion . . . What, however, does the word deducible mean? The meaning
is entirely relative to the system of logic which is available for drawing con-
clusions from the set of primitive propositions. Some may consider that the
human mind has instinctively at its disposal all valid methods of deduction.
This is a tremendous postulate, and one entirely devoid of other than sen-
timental value. In fact, it leads to the abandoning of the research for valid
methods of deduction, it is dangerous and worse than useless. It is essential
of the modern attitude in logic that the deducer should state distinctly his
form of inference”. The efforts to relate and equate compatibility and de-
ducibility can be useful and produce advancement in logic. “It appears to
me, however, that it may be a distinct gain in precision and hence a con-
siderable advantage to admit the following orienting propositions, namely:

35E. V. Huntington, “A Set of Postulates for Real Algebra”, Trans AMS , 6 (1905), pp.
17-41, footnote §, p. 17.

36E. V. Huntington, “A Set of Postulates for Ordinary Complex Algebra”, Trans. AMS ,
6 (1905), pp. 209-29, footnote †, p. 210.

37E. B. Wilson, “Logic and the Continuum”, Bull. AMS , 14 (1908), pp. 432-43.
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so long as there is an unsolved problem of pure mathematics the solution
may be lacking 1◦ because the class of objects to which the problem belongs
is not sufficiently determined or 2◦ because the available logical methods of
deduction are insufficient; but in case the class of objects is categorically
determined, 2◦ alone applies”. In a subsequent discussion on the contrast
between Peano and Zermelo, with reference to the axiom of choice, Wilson
observes that for Peano and Zermelo “deducible” has different meanings. As
for the well-ordering theorem, it seems to Wilson that the relevant definitions
can be given without introducing new concepts with respect to Huntington’s
axiomatisation, hence Zermelo’s axiom cannot be a new postulate on the con-
tinuum, given the completeness of latter – a remark which was often heard
in those times. “As a matter of fact, the postulate that he does add concerns
classes in general and the usage he makes of it and his own statements show
that what he has done is to demand a new postulate or principle of logic. In
view of the fact that it may be doubted whether our logic is yet complete and
that Zermelo’s postulate is apparently not in contradiction with the other lo-
gical postulates, it is difficult to see how any one can deny him the right to
proceed as he does”. Wilson is so appalled by the complications arising in
the theory of well-orderings, that he doubts whether Zermelo’s decision is a
sensible one; but Zermelo has the right to do it: “to deny him that privilege
would be to put an embargo on the development of logic and to assume a
completeness of our logical system wùıhich is quite unwarranted in view of
past developments and future possibilities”.

In the following years, the problem of undertanding the meaning of a
complete axiomatisation and of giving one, as well as the related problem
of determining the Alle logisches were dealt with in a theory which was
perhaps too difficult to handle in a simple-minded way, namely set theory. An
additional difficulty here was represented by questions of inner definability,
starting from Zermelo’s notion of Definitheit . A lot of new knowledge and
logical wisdom is acquired in the process, including the formulation of a
restriction axiom – a symmetric counterpart of completeness axioms on the
fullness of the universe – and the discussion between Skolem and Zermelo
on finite methods and impredicativity38; but when the set-theorist Abraham
Fraenkel, in 192839, summarizes the state of the art of the axiomatisation

38See G. Lolli, “Da Zermelo a Zermelo”, in Le ragioni fisiche e le dimostrazioni
matematiche, il Mulino, Bologna, 1985, cap. VII, pp. 175-239.

39A. A. Fraenkel, Einleitung in die Mengenlhere, Springer, Berlin, 19283, in particular
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problem, there are not many novelties with respect to the first years of the
century. Fraenkel acknowledges that there are fewer results on completeness
than on independence (on which he himself laboured) and, moreover,one still
has the impression that the completeness notion is not always intended in a
unique way. Fraenkel’s own discussion is a complete mess, though we’ll try
to be fair in the following summary.

According to a first version, completeness of a set of axioms means that
any question stated in primitive terms can have an answer, one way or the
other, by means of deductive inferences from the axioms. Such a property
would entail that no new axiom can be added without altering the primitive
concepts; every proposition P that is not contradictory with the axioms
would actually be a provable consequence, hence P is not independent. This
property is to Fraenkel clearly different from Hilbert’s axiom of completeness:
the latter requires the non-extendibility of the domain, not of the axioms –
though he admits that not all is clear. Completeness has to do with the
decidability of all mathematical questions40, and since in the last years the
faith in a positive solution has been shattered, or, to say the least, a positive
solution was no longer considered obvious, Fraenkel is not surprised that the
completeness (e.g., of set theory) is so difficult to achieve.

The second version of completeness is rather difficult to distinguish from
the first, but the way Fraenkel tries to clarify the issue – first of all to himself
– is quite instructive: according to this version, we talk of incompleteness
when several mutually contradictory assumptions are not derivable from a
given axiom system, but are all compatible with it. The difference with the
first notion seems to emerge in a remark in which Fraenkel says that an
incomplete – in this second sense – axiom system does not allow to decide
which of the assumptions to accept, not because of some feebleness of present
deducibility methods, but rather in an absolute sense, relative to all present
or future methods. As an example of a stubborn problem of this kind he
considers the continuum problem. In a further, rather confusing, remark
he says that in order to have completeness one does not require that the
decidability of any proposition be determined, but only assured by a kind
of inner determination of the domain, so that only the Richtigkeit or the

§18.4, pp. 347-54.
40We will come back later to Hilbert’ 1900 axiom of the decidability of all mathematical

problems.
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Falschigkeit of a proposition be compatible, if not deducible from the axioms.
Geometry without the parallel axiom is incomplete in the second sense, while
arithmetic is not.

The third sense of completeness discussed by Fraenkel is (to him) a wider
one, and he calls it categoricity, according to Veblen, or monomorphicity,
in a sense attributed to Carnap and Feigl: between any two realizations it
must be possible to establish a one-to-one isomorphic correspondence. The
term “isomorphism” has at last found its way, according to Fraenkel, as a
generalisation of that used for algebraic structures such as groups and fields
– a generalisation in that it applies to any relation.

To illustrate all three cases, Fraenkel uses the same example, namely Fer-
mat’s last theorem; it is a way of stressing that the notions are tentative
and not yet well-defined. If one should prove that Fermat’s theorem cannot
be solved with the methods of number theory (first type of incompleteness),
than there would be two possibilities: either by its own nature the problem
transcends the capabilities of the human mind, or else it transcends only
our present capabilities. In the first case, the way should be open to the
addition of new axioms, a situation similar to that of geometry; one such
axiom could be given by Fermat’s proposition itself. But when discussing
the second type of incompleteness, Fraenkel denies that such situation can
obtain for arithmetic; in the case of Fermat’s theorem, the hypothesis that its
negation is compatible is expressed by the possibility to think [Denkbarkeit ]
that a certain relation holds for four numbers; Fraenkel seems to be saying
that the very nature of this Denkbarkeit lends compatibility to the negation
of Fermet’s theorem, whence it contradicts the Richtigkeit of Fermat’s hypo-
thesis; in a footnote he mentions the categoricity of the number system, as if
it had some bearing on the issue, though he confesses that all is dark. Since
the number system is monomorphic, Fermat’s theorem should be decided,
and for arithmetic and all its open problems there will never occur the situa-
tion of geometry. In another footnote, he mentions the possible difference
between provability and truth, but he adds that talking of “unprovable but
true” for a proposition like Fermat’s has so little mathematical sense that it
is impossible to discuss it.

To sum up, in Fraenkel’s words, the first sense of completeness is akin
to that of Entscheidungsdefinitheit used in Hilbert’s school; Fraenkel quotes
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Husserl as one of the first to conceive of a Mannigfaltigkeit such that any
proposition stated in terms of its concepts, either is a formal consequence of
the axioms or else is a formal contradiction with the axioms. In this case,
for Fraenkel, truth and formal consequence are the same. The second sense
seems to have to do with the distinction between what is actually provable
and the possibility of a decision in principle. A system could be such that for
no proposition, both the proposition itself and its negation are compatible
with the axioms, but a decision method could not exist. The third sense –
categoricity – is realized for natural numbers, real numbers and geometry;
while categoricity implies completeness in the second sense, Fraenkel does not
know whether the converse implication is true41. As a conclusion, Fraenkel
admits that in order to make a progress in these matters, where almost
nothing is really proved, a lot of work is still to be done to delimit both
the proof methods, and the concept itself of completeness; symbolic logic is
the most promising tool; some light could be thrown by the investigation of
the completeness of the very logical system, along the lines of Emile Post’s
pioneering work, which was known to Fraenkel.

In his attempt to clarify various notions of completeness Fraenkel is not
alone; in Felix Kaufmann’s 1930 book on the infinite, where Husserl’s in-
fluence is strongly felt42, there is a chapter on the categoricity of arithmetic;
significantly, its title refers to the “complete decidability” of arithmetic que-
stions. Here Fraenkel’s alternatives are presented as follows: the first notion
is that of categoricity; the second one is non-ramification of a theory, in the
sense that no proposition P we have compatibility pf P together with its
negation; the third one is decidability, in the sense that “any question which
refers to [the theory] can be decided”. Kaufmann does not venture to say-
ing whether the three concepts are different or not, but he says that they
point to the same criterion, that is, to (the necessity) of a determination of
a theory requiring no further specifications. This is the case of arithmetic,
according to Kaufmann, since “the definition we have given of the numerical

41The underlying hypothesis of categoricity is perhaps responsible for the frequent iden-
tification of domains and theories, as in “Mengenbereich” and “Mengenlehre” which are
synonyms in the twenties – a curious linguistic phenomenon that should be better inve-
stigated. Notice also that one talked of the real numbers, but of Euclidean geometry as
domains where one got categoricity.

42F. Kaufmann, Das Unendliche in der Mathematik und seine Ausschaltung , Franz
Deuticke, Wien, 1930.
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series, as Peano’s logical system, describes the cognitive object number and
determines it as a logical singularity; this means that nothing logical con-
cerning the natural numbers is left open”; the opposite is true for geometry.
To Kaufmann, the system of arithmetic axioms is thus monomorphic. But
with Fraenkel we have reached the year 1928, when Hilbert officially posed
the problem of completeness; and Fraenkel mentions researches began with
Post’s 1921 paper, the only paper (on completeness) then known and quoted
in the logical literature. So it is time to see what was happening in this field.

Meta-mathematical research had had a slow start, at first with reference
to Principia Mathematica; the choice of a meta-mathematical level of analysis
is found for the first time in Post, who however acknowledges Lewis’ influen-
ce. Lewis had stressed the purely formal definition of mathematical systems,
and the content-free character of the logical rules43; Post views PM as a pure-
ly formal construction, and considers himself entitled to use any logical and
mathematical instrument to study the system. He restricts to propositional
logic, where the existence of truth tables suggests the possibility of a compa-
rison between two different methods. Post’s 1921 paper44 is his 1920 disser-
tation; here Post introduces the definitions of completeness and consistency
that bear his name45. Post-consistency requires that at least one propositio-
nal letter is not derivable, in the system; Post-completeness is the property
that if one adds one non-derivable formula one gets a Post-inconsistent sy-
stem (the definitions are so phrased in order to apply to systems without
negation). Let us remark that this is not Post’s own terminology; he uses
“completeness” for the functional completeness of a set of connectives, and
“closed system” for Post-complete systems.

Post considers rules for the assertion of propositions, denoted by `, as
well as truth tables. The completeness of propositional logic is expressed
by the “Fundamental theorem: A necessary and sufficient condition that a
function of F be asserted as a result of the postulates II, III, IV is that all
its truth values be +”. (F is the set of connectives.) Post pays his debt

43C. I. Lewis, A Survey of Formal Logic, Univ. of California Press, Berkeley, 1918.
44E. Post, “Introduction to a general theory of elementary propositions”, Amer. J.

Math., 43 (1921), 163-85, also in J. van Heijenoort, From Frege to Gödel , Harvard Univ.
Press, Cambridg Mass., 1967, pp. 264-83, see introduction of J. van Heijenoort, ivi, pp.
264-65.

45See A. Church, Introduction to Mathematical Logic, Princeton Univ. Press, Princeton,
1956, § 17 and 18.
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to Schröder, who had in part anticipated some of his considerations, but
observes with Lewis that “formal and informal logic are inextricably bound
together in Schröder’s development to an extent that prevents the system
as a whole to be completely determined”. In particular, in the investigation
of completeness one finds “all the theoretical difficulties met with in pas-
sing from the theory of classes to that of propositions when the development
is not strictly formal”. Again, the relevant distinction here is between for-
mal and informal, rather than between syntax and semantics; the latter can
barely be recognized beneath the distinction between a proposition and its
interpretation as a class. The theorem proved by Post “gives us an actual
method for immediately writing down a formal derivation of its assertion [of
a proposition always true] by means of the postulates of Principia”. This is
what Post is interested in, namely a finite method of decision, which he will
later try without success to extend to all PM.

In the meantime, first order logic was being singled out of the whole logical
system of PM. Hermann Weyl seems to have been the first to define first order
languages, in his dissertation written in 1910 under Hilbert’s supervision and
dedicated to an analysis of Zermelo’s notion of definit . Weyl considered of
“the utmost importance that the logic had furnished the list of defining
principles (if we are not wrong in considering it complete)”; actually, he
himself had given such a list. Here “completeness” seems to refer to the
expressive power of first order constructs. Weyl had been much impressed by
a lecture Poincaré had given in Göttingen in 1909, upon Hilbert’s invitation;
he became convinced of the importance of linguistic antinomies, hence of the
necessity of a mathematical treatment of definability. Later, the importance
of first order restrictions became clear in the formulation of the separation
and replacement axioms in set theory.

In Hilbert and Ackermann’s 1928 book46, first order logic is called re-
stricted functional calculus. One can find there a completeness proof for
propositional logic along the following lines: (i) every proposition has a lo-
gically equivalent conjunctive normal form, (ii) the transformations to get
normal forms can be done deductively, and (iii) a final step consisting in the
remark that a clause is a tautology if and only if it contains a complemen-
tary pair (a literal and its complement). The original semantic argument is

46D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik , Springer, Berlin, 1928.
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repeated in deductive form and gives completeness. The proof is due to Ber-
nays47, in his 1918 dissertation; Bernays didn’t publish it until 1926, because
(he said that) logic research was at the time held in low esteem.

As for predicate languages, Hilbert and Ackermann first discuss a strong
completeness property, requiring that all statements true in some structure
be provable, and dismiss it; then they consider the weaker requirement, that
the logical system be complete at least in the sense that all logical formulae
which are richtig for all domains be derivable; they admit that the problem
is still open. “One can only state on an empirical basis that in all applica-
tions this system of axioms has always succeeded”48. Next they consider the
Entscheidungsproblem, the decision problem for any theory, which through
formalization is reduced to the decision problem for logic. They quote posi-
tive results by Löwenheim and Behmann on the monadic predicate calculus,
which they obtain by means of finite structures – already used by Ackermann
in his researches on decidability. Finite models allow quantifier elimination,
and it is clear the authors’ aim of extending with this technique the results
known for propositional logic. But the right strategy was already used in
another context, to which now Hilbert looks with interest, and to which we
will also turn in a moment. Hilbert and Ackermann observe that the most
general solution to the decision problem would be given by a procedure to
determine, for every formula, for which domains – meaning for which cardi-
nalities of the domains – the formula is satisfiable, and for which domains the
formula is not; they again quote Löwenheim-Skolem theorem as an example
of a restricted class, namely the class of denumerable structures, which is
sufficient to check logical validity49.

47P. Bernays, “Axiomatische Untersuchungen des Aussage-Kalkuls der ‘Principia Ma-
thematica’ ”, Mathematische Zeitschrift , 25 (1926), pp. 305-20. The paper contains the
results of 1918 Habilitationsschrift .

48B. Dreben and J. van Heijenoort (in K. Gödel, Collected Works, Vol. I, Oxford Univ.
Press, New York, 1986, p. 48) have remarked that there is here a circularity, in that
logical formulae had been immediately before defined as the derivable ones; the flaw will
be corrected in the 1938 edition; however, it is probably a slip of the pen, since the
notion of allgemeingültig was already available; other parts of Hilbert and Ackermann’s
exposition are unsatisfactory: for example there is the following confusing statement, that
the Allgemeingültigkeit of formulae, except for those that are always valid, depends on the
cardinality of the domain.

49D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik , cit., p. 68.
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In the same 1928, at the Bologna Congress, Hilbert calls attention to com-
pleteness as an open and urgent problem; but he is still wavering between
two formulations, one more syntactic, à la Post, for mathematical theories,
and another one for the consequence relation. The completeness problem for
logic is seen as a special case of that for arithmetic; the latter is more urgent,
due to the necessity of giving a finitistically satisfactory version of categori-
city. “It is true that usually one states the completeness of the axiom system
for number theory as well as that for analysis; but the usual argument by
which one proves that any two realizations of the axiom system for number
theory (resp. for analysis) must be isomorphic does not satisfy the require-
ments of finitary rigour. What has to be done – first of all for number theory,
whose domain can be delimited with precision – is to transform the usual
isomorphism proof in a finitary one, so that one can prove the following: If
for a proposition S of number theory can be proved the compatibility with
the axioms of number theory, then the compatibility with the axioms cannot
be proved also for ¬S (the opposite of S). And strictly related also: if a
sentence is compatible, then it is also provable”50.

This is problem III of Hilbert’s address. Problem IV follows: “The as-
sertion of the completeness of number theory can also be expressed in the
following way: if to the axioms of number theory a formula is added which
belongs to [the language of] number theory but is not provable, then from
the extended system a contradiction can be derived51. Since here, in proof
theory, we always deal with formalized proofs, in the statement on the com-
pleteness of number theory it is at the same time implicit the claim that the
formalized rules of reasoning are anyway sufficient in the domain of number
theory. The question of the completeness of the logical rules, in a general
form, is a problem of theoretical logic”. To logic one arrives at starting from

50D. Hilbert, “Probleme der Grundlagen der Mathematik”, in Atti Congresso interna-
zionale dei matematici, Bologna, 3-10 ottobre 1928 , Zanichelli, Bologna, 1929, vol. I; pp.
135-41, with additions and corrections in Mathematicshe Annalen, 102 (1929), pp. 1-9.

51G. Kreisel has interpreted this statement as a first inkling of the logical complete-
ness in this form: either F is derivable, or else a suitable arithmetical translation Fω is
contradictory with the arithmetic axioms (Gödel would change this second case in the
alternative that ¬Fω be true in the natural numbers). But this rendering seems a bit
forced, since Hilbert talks here always of the formula, not of an interpretation; moreover,
the completeness alluded to is explicitly that of number theory. This version of the logical
completeness is to be found only later in 1939 in Hilbert and Bernays’ Grundlagen, as
we’ll see in due time.
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arithmetic and substituting the arithmetical predicates with arbitrary letters,
and dismissing the proper axioms; one forgets about the ordered domain of
numbers and one considers an arbitrary system made up of objects and as-
sociated predicates [a substitutional completeness in reverse]. Here Hilbert
gives for the first time the semantic definition of logically valid formulae,
“those which are not refutable by any determination of the predicates one
chooses. There arises now the question whether all these formulae are prova-
ble from the rules of logical reasoning by the addition of the above mentioned
equality axioms or, in other words, whether the system of usual logical rules
is complete. Up to now, by trials and efforts, we have made the firm belief
that these rules are sufficient. A true proof is available only for pure pro-
positional logic. For the logic of monadic predicates a completeness proof
can be obtained by the method of solution of the decision problem (Schröder
elimination problem), as has been shown first by Löwenheim capitalising on
first efforts of Schröder and in a definitive way by Behmann”.

We have to turn now, as Hilbert did, to the other trend of the algebra of
logic. Following the lead of Schröder’s algebra of logic52, researchers had first
tackled the solution of logical equations, looking for necessary and sufficient
solvability conditions on the coefficients; then they had focused attention to
the satisfiability of logical equations, starting from finite domains53. While
working on decidability questions, Löwenheim in 191554 borrows some tech-
niques from this tradition, such as (what today we call) Skolem functions.
People working in the context of the algebra of logic had discovered first
order languages owing to the possibility of treating the first order existential
quantifier as a disjunction over the elements of the domain: this enabled
them to deal with the existential quantifier in an algebraic setting. Actual-
ly, their logic was an infinitary first order logic, also allowing infinite lists
of quantifiers. Algebraic terminology was still different from ours; our first

52E. Schröder, Vorlesungen über die Algebra der Logik , 3 voll., 1890-1895, Leipzig.
53In early algebraic logic, the accepted laws of quantifiers were those that could be

proved for a finite, though arbitrary and indeterminate, number of elements, see C. I.
Lewis, A Survey of Formal Logic, Univ. of California Press, Berkeley, 1918, cap. IV.

54L. Löwenheim, “Über Möglichkeiten im Relativkalkül”, Math. Ann., 76 (1915), 447-
70, in J. van Heijenoort, From Frege to Gödel , cit., pp. 228-51, see introduction of J. van
Heijenoort, ivi, pp. 228-32. Löwenheim considers also the calculus of relatives – of the
title – without variables but with algebraic operators for sum and product of relations,
and he proves that it is not equivalent to the first order calculus.
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order formulae were called numerical expressions [Zählausdrücke], and valid
formulae were called identical equations.

In his 1915 paper Löwenheim proved the decidability of the monadic cal-
culus by showing that if a sentence of this restricted language is true in all
finite structures then it is logically true; he also showed that the result does
not hold for extended languages; finally, he reduces the decision problem
for predicate logic to that for sentences with only a binary relation. His
results were improved by Skolem, Behmann, Herbrand, Kalmár, and were
appreciated and developed also by Hilbert’s school, as contributions to the
Entscheidgungsproblem. The theorem named after him is stated by Löwen-
heim as follows: if a formula is valid in all finite domains but is not valid,
then it is not the case that the formula is valid in all denumerable domain.

Löwenheim’s theorem will become Löwenheim-Skolem theorem after Sko-
lem’s contributions and refinements. There will be two versions of the theo-
rem: in the first version one merely talks of a denumerable model for a
sentence having a model at all; in the second version one notices that the
denumerable model is a substructure of the given one. This latter version is
more interesting for model theory: from it the notion of elementary substruc-
ture will follow; insofar as the completeness theorem is concerned, however,
there is no particular added value. The substructure version is due to Skolem
in 1920, or at least it can be said that the 1920 proof implies it; the expli-
cit statement will be given by Skolem only in 1929; later he will mistakenly
attribute it to Löwenheim; only in 1938 Skolem will make a neat distinction
between the following two statements:

(i) if F is satisfiable, then it is satisfiable in the natural numbers, with a
suitable assignment of arithmetical predicates to the predicative letters,

and
(ii) if F is satisfiable in a domain D then it is also satisfiable in a denu-

merable subdomain of D, with the same interpretation of the predicates.

While in 1920 Skolem actually proves (ii), in 1922 he proves (i). The 1922
proof is more similar to Löwenheim’s old one. Moreover, Skolem sometimes
uses his normal forms, other times Löwenheim’s forms; notwithstanding these
fluctuations, it is a widespread opinion that he was able to put Löwenheim’s
proof on its feet (possibly by taking the union of all his contributions). In
1920 Skolem also remarks that his result holds for denumerable sets of sen-
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tences (a remark he will correctly prove only in 1929); from 1922 on, he uses
this generalized version of (i) for the applications, e.g., to set theory; it has
been remarked that, had he used (ii), he could have anticipated Gödel’s later
discovery of submodels containing all ordinals. Version (ii) needs the axiom of
choice, while (i) does not; Löwenheim had used choice, and Skolem corrected
him; but all this refers to the minutiae of the history of Löwenheim-Skolem
theorem, and it does not have much bearing on the completeness story.

In 1915 Löwenheim had used the equivalence between a first order sen-
tence A and a second order one of the form ∃f∀xM(x, f(x)), where f and
x are vectors; actually, he used infinite lists of existential quantifiers, which
we can translate as quantified functions; Löwenheim almost achieved (what
today is known as) the normal form for satisfiability, though its form depends
the finite domain, and also needs an infinite list of quantifiers in the infinite
case. After eliminating the second order quantifier, Löwenheim proceeds to
substitute all natural numbers in the matrix M(x, f(x)), following a precise
strategy: first replace the variables by a finite number of constants, then
enlarge the resulting finite domain so as to have values for f(x), and repeat
the process, each time appending the newly obtained closed matrix to the
conjunction of the previous ones. At each stage Löwenheim has a proposi-
tion Pn, and he considers all ways of assigning truth values to the atomic
propositions occurring in Pn. Finally, he claims that if for some n all these
assignments give false value to Pn, then also the given sentence A has value
false; if on the contrary for every n there is a propositional valuation under
which Pn is true, then also A is true. Most commentators agree55 that the
argument is only roughly sketched, but in essence it is there, including the
intuition of the necessity of some form of König’s lemma, needed to obtain a
single valuation pasting together the valuations of the different Pn’s. Others
are more doubtful, among them van Heijenoort and Quine56 (who feels that
Löwenheim argument needs a law of infinite conjunction – more or less equi-
valent in its effect to König’s lemma); they find the correct reasoning only
in Skolem; the latter uses two different tools for his arguments, Dedekind’s
chains in 1920, while the techniques used by him in 1922 are more reminiscent
of Quine’s desiderata.

55R. L. Vaught, “Model Theory before 1945”, in L. Henkin et al. (eds.),Proceedings of
the Tarski Symposium, AMS, Providence, R. I., 1974, pp. 153-72.

56W. O. Quine, “A proof procedure for quantification theory”, Journal Symbolic Logic,
20 (1955), pp. 141-9.
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In the 1920 paper, Skolem57 addresses himself to decidability questions for
Boolean algebras, elementary geometry and dense sets. For every sentence
A he introduces the normal form ∀x∃yB of A for satisfiability (the Skolem
normal form of A): Skolem proves that this ∀∃ sentence is satisfiable if and
only if A is satisfiable, in the same domain. The denumerable domain is
carved out with the help of the axiom of choice. Skolem is convinced that
his method is more in accord with the usual ways of mathematical logic than
Löwenheim’s method: once A is reduced to ∀x∃yB, one chooses for every x
a y such that the quantifier-free formula B is satisfied, then for such y one
chooses another element witnessing the existential quantifier, and so on, thus
building a chain. Then one takes the intersection of all sets closed under this
operation, in a sense that will be made clearer in the next lines. Skolem’s
terminology is always purely semantic.

Given, in our notation, a normal form

∀x1 . . . ∀xm∃y1 . . . ∃ynB(x1, . . . , xm, y1, . . . , yn),

Skolem 192258 systematically substitutes numbers to variables: he first re-
places all x’s by ones, then “it must be possible to choose y1, . . . , yn among
the numbers 1, 2, . . . , n+1 in such a way that B[1, . . . , 1, y1, . . . , yn] is
satisfied. Thus we obtain one or more solutions of the first step, that
is, assignments determining the classes and relations in such a way that
B[1, . . . , 1, y1, . . . , yn] is satisfied. The second step consists in choosing, for
x1, . . . , xm, every permutation with repetitions of the n+ 1 numbers 1, 2,
. . . , n+ 1 taken m at the time, with the exception of the permutation
1, 1,. . . , 1, already considered in the first step. For at least one of the
solutions obtained in the first step, it must then be possible, for each of
these (n + 1)m − 1 permutations, to choose y1, . . . , yn among the numbers
1, 2, . . . , n + 1 + n((n + 1)m − 1) in such a way that, for each permutation

57T. Skolem, “Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder
Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen”, Skr.
Vid. Krist. I. Math.-Naturvid. Kl.,(1920), No. 4, 36 pp., in J. van Heijenoort, From Frege
to Gödel , Harvard Univ. Press, Cambridg Mass., 1967, pp. 252-63, see introduction of J.
van Heijenoort, ivi, pp. 252-54.

58T. Skolem,“Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre”,
Wissenschaftliche Vorträge gehalten auf dem Fünften kongress der skandinavischen Ma-
tematiker in Helsingfors vom 4. bis 7. Juli 1922 , pp. 217-32, in J. van Heijenoort, From
Frege to Gödel , Harvard Univ. Press, Cambridg Mass., 1967, pp. 290-301, see introduction
of J. van Heijenoort, ivi, pp. 290-91.
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x1, . . . , xm taken within the segment 1, 2, . . . , n + 1 of the number sequence,
the proposition B(x1, . . . , xm, y1, . . . , yn) holds for a corresponding choice of
y1, . . . , yn taken within the segment 1, 2, . . . , n+1+n((n+1)m−1). Thus from
certain solutions gained in the first step we now obtain certain continuations,
which constitute solutions of the second step. It must be possible to conti-
nue the process in this way indefinitely if the given first-order proposition is
consistent”. In order to obtain a “uniquely determined solution for the entire
number sequence, we must be able to choose a single solution from among
all those obtained in a given step”. To past together the solutions, Skolem
considers a kind of lexicographic order, in such a way that different solutions
coincide on the common part; by systematicaly choosing the first element
in this order, he constructs a sequence of solutions, whose limit yields the
desired proof that the proposition is satisfied in the natural numbers. Skolem
is interested here only in the fact that if a sentence is consistent then it has a
model in the natural numbers; still, again denoting by Pn the quantifier-free
propositions obtained at step n, by inspection of Skolem’s proof we see that
the original sentence has no model if and only if some Pn has no proposi-
tional model; today many textbooks present the above result as a version of
the compactness theorem, or of the Skolem-Herbrand theorem. Only in 1928
Skolem will notice the interest of this version.

In 192859 Thoralf Skolem the Great writes another epoch making pa-
per, after the 1922 one. The opening recalls and rejects Kant’s opinion,
that logic is the only science that has made no progress from the ancient
times: in fact, after giving some examples of how equations can be solved, in
Schröder’s calculus, by reducing logical to combinatorial problems, Skolem
turns to first-order logic. The terminology is still that of Russell, formulae
are called propositional functions of the variables, taking values in a do-
main; for each substituted value the function becomes a proposition, which
can be true or false. “Now we can not only give a precise formulations to
the mathematical propositions but also to represent mathematical proofs as
transformations of such logical expressions according to certain rules . . . ”,
of which he mentions – in modern notation – the equivalences ¬∃xA(x) ↔

59T. Skolem, “Über die mathematiche Logik”, Norsk. Mat. Tidsk., 10 (1928), pp.
125-42, in J. van Heijenoort, From Frege to Gödel , cit., pp. 508-24; see the introduction
of B. Dreben and J. van Heijenoort, ivi, pp. 508-12. See also T. Skolem, “Über einige
Grundlagenfragen der Mathematik”, Skr. Norsk. Akad. Oslo I. Mat.-Natur. Kl., (1929),
No. 6, 38 pp.
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∀x¬A(x),∀x(A ∧ B(x)) ↔ A ∧ ∀xB(x), ∀x(A ∨ B(x)) ↔ A ∨ ∀xB(x), and
similar ones for the existential quantifier. These are the equivalences that
allow to transform a sentence in prenex form. “But I do not go into this
more deeply, especially since I believe that it is possible to deal with the
deduction principle in another, more expedient way, to which I shall return
in a moment”. After a discussion of first and second order logic, which will
be resumed again the following year in a discussion with Zermelo, he gives
his method. “I shall not go into these difficult questions more deeply; in-
stead, I shall indicate how the deduction problem for first-order propositions
can be reduced to a problem of combinatorial arithmetic [eine arithmetisch-
kombinatorische Frage]. If U and V are first-order propositions and if we
pose the question whether V follows from U , this is equivalent to asking
whether U ∧ ¬V is a contradiction or not. It is therefore clear that eve-
rything depends upon our being able to decide whether a given first-order
proposition is contradictory or not”.

The method is the same presented today as Herbrand method (and theo-
rem)60 in logic textbooks for computer science. Skolem first of all recalls the
normal forms for satisfiability, then by introducing new functional symbols
he transforms a sentence

∀x1∀x2 . . . ∃y1∃y2 . . . ∀z1∀z2 . . . ∃u1∃u2 . . .
U(x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , u1, u2, . . .)

in a quantifier-free formula of the form

U(x1, x2, . . . , f1(x1, x2, . . .), f2(x1, x2, . . .), . . . ,
z1, z2, . . . , g1(x1, . . . , z1, . . .), g2(x1, . . . , z1, . . .), . . .)

in such a way that “the given sentence states that the latter is true for all
values of the variable in a certain domain”. If the universally quantified
variables are arbitrarily given “it is possible to introduce y1, . . . , u1, . . ., where
the y depend only on the x, the u only on the x and the z, and so on, and to
determine the truth values of the functions A,B,C, . . . [atomic components
in U ] for these arguments in such a way that U turns out to be true. Since
it does not matter what notation we use for the symbols”, the formalism of

60Responsible for the mistaken attribution is Martin Davis, in 1963, at the beginning of
automated deduction; he later acknowledged the mistake, but it was late; it is ironic that
in the classroom presentations so called Herbrand’s theorem is entirely semantical. See
M. Davis, “The Prehistory and Early History of Automated Deduction”, in J. Siekmann
and G. Wrightson (eds.), Automation of Reasoning , Springer, Berlin, 1983, pp. 1-28.
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functional symbols can be introduced, and instead of y1 it will be written
f1(x1, x2, . . .).

Next he describes what is now called Herbrand universe, formed by the
closed terms generated in stages starting with 0 and the functional sym-
bols. “The symbols of the (n + 1)th level shall be those that result from
the insertion of symbols up to the nth level as arguments in the ‘functions’
f1, f2, . . . , g1, g2, . . . and that do not already occur among the symbols of the
0th up to the nth level” [the 0th level contains 0]. Now after substituting 0
everywhere, if it is possible to assign to A,B,C, . . . propositional values in
such a way as to render U true, these values are called solutions of the first
level; if it is not possible, the given proposition “is not satisfiable; there is a
contradiction”. Otherwise, one substitutes to the variables the terms of the
first level, and then looks for an assignment to the atomic parts which gives
U value 1 and which is in agreement with the previous assignment, if there
are symbols in common. If there is no such an assignment, again, “we have
a contradiction”. One goes on indefinitely; “the real problem now is whether
there are solutions of an arbitrarily high level or whether for a certain n the-
re exists no solution of the nth level. In the latter case the given first-order
proposition contains a contradiction. In the former case, on the other hand,
it is consistent [widerspruchlos ]”.

The conclusion is perhaps a bit hasty, but it does not justify the criticism
that has been moved to it on the basis of a later remark of Gödel. Accor-
ding to Gödel, Skolem is trying here to introduce syntactic considerations,
and ends in a mess because of his informal ways. Instead of resorting to
his 1922 argument to correctly conclude the lemma, he gives “an entirely
inconclusive argument”61. Skolem’s inconclusive argument is as follows, in
the continuation of the above quotation: “The following will make this clear.
Every consequence of the [proposition] results from repeated and combined
uses of it. Every theorem derived can therefore be formulated as a propo-
sition formed by means of the functions A,B,C, . . ., and in this functions
there will occur, on the one hand, indeterminate symbols a, b, c, . . . and, on
the other, further symbols that have been obtained from these by possible
repeated substitutions in the functional expressions f1, f2, . . . , g1, g2, . . . Eve-
ry such proposition must, however, retain its validity when a, b, c, . . . all are

61K. Gödel, letter to H. Wang of December 7, 1967, in H. Wang, From Mathematics to
Philosophy , Humanities Press, New York, 1974, p. 8.
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replaced by 0. Thus, if a contradiction is derivable, a contradiction must be
provable in which there occur both 0 and the symbols obtained from 0 by
substitution in f1, f2, . . . , g1, g2, . . . up to, say, the nth level. Hence there can-
not then exist any solution of the nth level”. It is commonly accepted that
Skolem is trying here – without success – to formulate a syntactic lemma, the
very lemma which, if only it had been formulated, would have anticipated
Herbrand’s thesis. However, this is not entirely convincing, if we bear in
mind the following facts: (i) Skolem terminology as far as Widerspruchlosig-
keit is concerned, is always semantic; (ii) this is just a lecture, and the 1922
argument need not be incompatible with the present sketched considerations;
last but not least, (iii) from the very beginning Skolem had stated that he
was not interested in using and refining the syntactic notion of derivation,
since he was interested in an alternative method.

Skolem was well conversant with deductive first order methods; he did
not accept them as a foundation for mathematics, because he believed that
“the attempt to base the notions of logic upon those of arithmetic, or vice
versa, seems to me mistaken. The foundations for both must be laid simul-
taneously and in an interrelated way”. The above quoted remark, about
consequences being built up from the atomic formulae in the premises, sho-
ws a keen attention to finer details of deductive processes. But Skolem was
looking for a method to establish logical consequence, and he believed that
the combinatorial (nonsemantical) reduction presented in his paper was mo-
re expedient. The problem he addresses in 1928 is more general than the
refinement of Löwenheim’s theorem: it is the quest for an effective procedure
to establish logical consequence; owing to this explicitly stated goal, we are
entitled to attribute to Skolem the intention to prove (an equivalent of) the
completeness theorem. His method starts from semantic notions, and uses
combinatorial conditions to solve the deducibility problem. Skolem reaches
a satisfactory conclusion, which we call a completeness theorem, though he
gives the impression of halting in the middle of the river; the same, howe-
ver, happens to modern proofs, when one starts from syntactic notions and
arrives to something one does not know whether it is syntax or semantics62.
Moreover, Skolem’s approach explains the strong connection, also perceived
in Hilbert’s school, between completeness and decidability; in both cases the
problem was that of finding an effective method for logical consequence, pos-

62As, for example, in the proofs of completeness by refutation trees
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sibly different from the usual available logic systems, which in themselves
have no peculiar privilege.

“To be sure, this procedure is infinite; but there are some cases in which it
is possible to make the procedure finite”. Skolem solves the decision problem
for the prefix ∀y∃x1 . . . ∃xn (Ackermann had the same result, which Skolem
improves in a review, with a better estimate of the number of individuals
in the finite domain in which such formulae are satisfiable; Herbrand later
will also consider and improve the bounds for the ∃x1 . . . ∃xn∀y∃z1 . . . ∃zm
case). At the end of his lecture Skolem describes Langford’s theorem on the
decidability of dense orderings, obtained by means of quantifier elimination63.

Now in the history of the Löwenheim-Skolem theorem it should be the
turn of Herbrand, with the birth of the Skolem-Herbrand theorem. Her-
brand used syntactic methods, and more than that, he used only syntactic
methods; but Herbrand’s results did not become known until after Gödel’s.
Gödel’s dissertation was approved in June 1929, and discussed in February
1930; Herbrand’s dissertation dates back to April 1929, and was discussed in
June 1929; after September 1929, it seems that Herbrand did no work on it
until the middle of 1930. His 1931 paper contains some corrections on the
thesis, dating from September 1929. Apart from this chronology, Gödel’s
work explicitly aimed at a proof of the completeness theorem; Herbrand’s
goal was to give a syntactic, or finitistic, version of Löwenheim theorem. We
shall consider first Gödel’s proof.

Before plunging into the last act, it may be useful to pause to sum up
all uncertainties and ambiguities that Gödel’s theorem would finally dispel.
It is not true that everybody was convinced of completeness: somebody, like
Weyl, feared it. Already in 1917, talking of the completeness of the real num-
bers, he had confessed that “we do not know if it is so (perhaps we believe
it)”. Weyl believed in completeness, but was also afraid of it, since he wrote,
with reference to elementary geometry: “the firm belief to be able to derive
all general true judgements of elementary geometry . . . from the geometrical
axioms by means of a logical reasoning, is a scientific faith declaration: we
are not able to have a true intuition that it is so, and still less to ‘prove’
it by an examination of the logical laws. If this should happen some day,

63C. H. Langford, “Some theorems on deducibility”, Ann. of Math., 28 (1926), pp.
16-40, “Theorems on deducibility”, Ann. of Math., 29 (1927), pp. 459-71.
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this intuition would open to us the way to decide the truth or falsity of any
geometrical judgement . . . by methodically applying a certain deductive tech-
nique (‘in a finite number of steps’): mathematics would thus become trivial ,
at least in principle64”. In 1926, while discussing the fundamental concepts
of axiomatics, such as independence and completeness of the axioms, Weyl
again wrote: “completeness would be assured only by establishing for the
development of the proofs such rules as would lead automatically to the so-
lution of any pertinent problem. Mathematics would become an unexciting
enterprise. But such a philosophical stone has not been discovered, and it
will never be”. The root of such a strong belief is simply the subjective
feeling that doing mathematics is not a matter of machine applications; in
practice “it is not possible to proceed as the scholar Gulliver finds at Bar-
nilarbi, who develops in order all the consequences, to thorw away later the
non-interesting one65”. Weyl was afraid of the procedure that was later to
be called, after Alan Turing, the “British Museum procedure”. This drea-
dful procedure – which does not seem to have been considered by Hilbert’s
school – is not practically feasible, but Weyl correctly notes that it guaran-
tees the decidability of a theory. Still probably unable to distinguish between
logical completeness and completeness of theories, Weyl feared however that
mathematics would be thus made trivial.

This is reminiscent of the old argument of Poincaré, now reinforced by
the (partial) results on decidability. The Entscheidungsproblem was one of
those that could be rigorously attacked in the frame of Hilbert’s formaliza-
tion and proof theory. It was the problem of the decidability of mathematical
problems by means of a finite number of operations. In the general opinion,
the problem evoked (the belief and) the axiom of the solvability of all mathe-
matical problems, as it had been expressed by Hilbert at the Paris Congress
in 1900. Hilbert has been careful in the precise wording of his conjecture,
“that every definite mathematical problem must necessarily be susceptible
of an exact settlement, either in the form of an actual answer to the question
asked, or by the proof of the impossibility of its solution and therewith the
necessary failure of all attempts”. Hilbert had drawn his conviction (“which
every mathematician shares, but which no one has yet supported by a proof”)

64H. Weyl, Das Kontinuum. Kritische Untersuchungen über die Grundlagen der
Analysis, Veit, Leipzig, 1918.

65In an entry for the Handbuch der Philosophie, 1926, later included in H. Weyl,
Philosophy of Mathematics and Natural Science, Princeton Univ. Press, Princeton, 1949.
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by the very negative cases – such as the fifth postulate, and the solution by
radicals of algebraic equations. In all these cases, a proof had been found
that the problem was not solvable on the basis of the assumptions explicitly
stated in the conditions of the problem. In 1925 he again will repeat that
“now, to be sure, my proof theory cannot specify a general method for solving
every mathematical problem; that does not exist”66. He had no intention of
trivializing mathematics. However, the misunderstanding was strong to die;
even von Neumann mixed ethical worries with theoretical doubts, as Weyl
did; in 192767 von Neumann didn’t believe in a positive solution of the En-
tscheidungsproblem, because he was morally certain of the undecidability of
mathematics: “undecidability is a sine qua non condition for the present
work with heuristic methods having sense; the day undecidability were eli-
minated, mathematics as it is intended today would not exist any more, and
a purely mechanical process would take its place”.

After proving the completeness of the logical rules, Gödel will feel entitled
to claim as a well known fact, in 1930, that “the development of mathema-
tics toward greater precision has led, as is well konwn, to the formalization
of large tracts of it, so that one can prove any theorem using nothing but
a few mechanical rules”68. Russell’s Principia Mathematica and Zermelo
and Fraenkel’s set theory are “so comprehensive that in them all methods
of proofs today used in athematics are formalized, that is, reduced to a few
axioms and rules of inference”. Actually, not everybody was aware of this
possibility, since he had just proved it in his dissertation the previous year;
he had spoken of the result only at the Menger’s Mathematische Kolloquium
in May 1930. Gödel is not afraid of formalization and of restricted logic
methods; but he only makes this explicit at the same time when he also an-
nounces the incompleteness of PM, thus banning every fear of trivialization:
“One might therefore conjecture that these axioms and rules of inference are
sufficient to decide any mathematical question that can at all be expressed
in these systems. It will be shown below that this is not the case, that on the

66D. Hilbert, “Über das Unendliche”, Mathematische Annalen, 95 (1926), pp. 161-90,
in J. van Heijenoort, pp. 367-92.

67J. von Neumann, “Zur Hilbertschen Beweistheorie”, Mathematische Zeitschrift , 26
(1927), pp. 1-16, p. 10.

68K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I”, Monatshefte für Mathematik und Physik , 38 (1931), pp. 173-98, in
K. Gödel, Collected Works, cit., pp. 144-95.
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contrary there are in the two systems mentioned relatively simple problems
in the theory of integers that cannot be decided on the basis of the axioms”.
Notice that Gödel doesn’t use for his system the term “incomplete”, but
“nicht entscheidungsdefinit”69.

Before obtaining his incompleteness proof, Gödel, too, had had some
doubts. In the introduction to his dissertation, he lingers over the relationship
between categoricity, completeness and decidability of all problems: “Here
‘completeness’ is to mean that every valid formula expressible in the restricted
functional calculus (a valid Zählaussage, as Löwenheim would say) can be
derived from the calculus by means of a finite sequence of formal inferences.
This assertion can easily be seen to be equivalent to the following: Every
consistent axiom system consisting of only Zählaussagen has a realization.
(Here ‘consistent’ means that no contradiction can be derived by means of
finitely many formal inferences.) The latter formulation seems also to be
of some interest in itself, since the solution of this question represents in
a certain sense a theoretical completion of the usual method for proving
consistency (only, of course, for the special kind of axiom systems considered
here)”. The existence of a realization for a consistent theory, now guaranteed
by the theorem, offers support and justification to the axiomatic position70.
But – Gödel goes on brooding – to identify consistency and existence, or to
make the latter depend only on consistency constraints, seems to presuppose
“the axiom that every mathematical problem is solvable. Or, more precisely,
it presupposes that we cannot prove the unsovability of any problem”. A
problem requires an answer, either positive or negative; if one could prove
that a problem is unsolvable, one would prove in particular that neither the
positive nor the negative answer are derivable form the axioms; hence both
would be consistent with the theory, and there would be at least two non-
isomorphic models, contrary to what one can prove for the theory. Clearly,
Gödel has in mind categorical theories, such as the theory of real numbers,
that is explicitly mentioned by him.

In the same introduction, Gödel’s way out reminds us of Hilbert’s old

69K.Gödel, “Einige metamathematische Resultate über Entscheidungsdefinitheit und
Widerspruchsfreiheit”, Anzeiger der Akademie der Wissenschaften in Wien, 67, pp. 214-5,
in K. Gödel, Collected Works, cit., pp. 140-43.

70A position still as recently as 1928 contrasted by L. E. Brouwer, in a Wien lecture
apparently attended to by Gödel, who was strongly impressed.
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reflections on proof methods: ultimately, the completeness result does not
imply the impossibility of finding unsolvable problems since “what is at issue
here in only unsolvability by certain precisely stated formal means of inferen-
ce. For, all the notions that are considered here (provable, consistent, and so
on) have an exact meaning only when we have precisely delimited the means
of inference that are admitted. These reflections, incidentally, are intended
only to properly illuminate the difficulties that would be connected with such
a definition of the notion of existence, without any definite assertion being
made about its possibility or impossibility”. Gödel did not have at this time
an example of an unsolvable problem in number theory, but he wanted to
leave an open door; the other alternative was contrary to his sensibility more
that to his reason, which was still debating without a solution. It is to be
noted that he cancelled all these reflections in the 1930 printed version of the
dissertation.

Gödel’s proof71 is similar to Skolem’s 1922 proof; in a remembrance of the
sixties, Gödel will say that he did not know Skolem 1922 when he proved his
result; Gödel had some recollection of having read Skolem’s proof only later,
at the moment of printing his dissertation, and he wondered why he didn’t
quote it; it probably was an oversight or a misprint, since he was certain he
would have made a reference to Skolem 1922, whose proof was more similar to
his own than that of the 1920 paper – dutifully quoted for Skolem’s normal
forms. “The completeness theorem, mathematically, is indeed an almost
trivial consequence of Skolem 1922. However, the fact is that, at that time,
nobody (including Skolem himself) drew this conclusion (neither from Skolem
1922 nor, as I did, from similar considerations of his own)”72.

Gödel’s proof, in effect, differs from Skolem’s only in this, that the for-
mal system is well specified – a first order fragment of PM in Hilbert and
Ackermann’s notation. Given the normal form ∀xM(x, f(x)) of a sentence

71K. Gödel, “Über die Vollständigkeit des Logikkalküls”, Univ. Wien, 1929, in K. Gödel,
Collected Works, cit., pp. 60-101; K. Gödel, “Die Vollständigkeit der Axiome des logischen
Funktionenkalküls”, Monatshefte für Mathematik und Physik , 37 (1930), pp. 349-60, in K.
Gödel, Collected Works, cit., pp. 102-23. See here the introduction of B.Dreben and J. van
Heijenoort, pp. 44-59. There are no significant differences in the two versions regarding
the proof; in the published paper the denumerable compactness theorem is more clearly
stressed.

72Letter of December 7, 1967, in H. Wang, From Mathematics to Philosophy , cit.4, p.
8.
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F and the conjunctions An = M1 ∧ . . . ∧Mn obtained through systematic
substitutions of terms in the matrix M , instead of using more or less conclu-
sive semantical considerations, Gödel proves that for every n the implication
F → |existsAn is derivable in the formal system. For the other direction,
Gödel gives a new proof of König’s lemma (proved by König in 1926) refer-
ring to it as “a familiar argument”. Löwenheim-Skolem theorem of course
becomes now a corollary of the completeness theorem73. The only general
remark by Gödel is that the equivalence between validity and provability is
a kind of reduction, for the decision problem, of the nondenumerable to the
denumerable; “validity” refers to the more than denumerable totality of func-
tions, while “provable” presupposes only the denumerable totality of formal
proofs.

As for Herbrand’s dissertation74, Hilbert and Bernays will say in 1939
that it is difficult to understand, and the same judgement is valid today, not-
withstanding later corrections; Gödel remembered to have found some errors
in it in the forties; in 1963 B. Dreben, P. Andrews and S. Aanderaa filled
all the gaps75, but still, the very formulation of Herbrand’s goal is hard to
grasp. Herbrand talks of true propositions, but he means propositions pro-
vable in his first order logical system QH ; sometimes he calls them identities,
and he says he is looking for “the most general properties that are sufficiebt
for a proposition to be true”. He is looking for a finitistic reduction of the
truth problem, that is, of the derivability problem. His problem is different,
but it is cast in the same terms as Skolem 1928’s; his rules, too, are exac-
tly those presented by Skolem, except for the fact that Herbrand considers

73So it is now presented in the textbooks, see e.g. S.C. Kleene, Introduction to
Metamathematics, Van Nostrand, New York, 1952, Corollary 2, p. 394.

74J. Herbrand, “Recherches sur la théorie de la démonstration”, Trav. Soc. Sci. Lett.
Varsovie, Cl. III Sci. Math. Phys. No. 33 (1930), 128 pp.; in J. Herbrand, Ecrits
Logiques, PUF, Paris, 1968, pp. 35-133; chap. 5 in J. van Heijenoort, From Frege to
Gödel , Harvard Univ. Press, Cambridge Mass., 1967, pp. 525-81, see notes of B. Dreben
and introduction of J. van Heijenoort, ivi, pp. 525-29.

75B. Dreben, P. Andrews and S. Aanderaa, “False lemmas in Herbrand”, Bull. AMS ,
69 (1963), pp. 699-706. The relationship between Herbrand’s theorem and Gentzen’s
“verschäfter Haupsatz” is difficult to pinpoint, also for proof-theory specialists: to Gentzen,
Herbrand’s is a particular case of his own, with empty antecedent and only one prenex
formula in the consequent; but Gentzen’s Hauptsatz holds only for prenex formulae, though
it is extendable to intuitionistic logic; both give cut elimination; Herbrand’s theorem is
perhaps more informative on the Mittelsequenz .
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also conjunction, and he states the rules in double form, in order to have
commutativity.

As we shall see, Herbrand also aims at proving Löwenheim’s theorem, in
a finitistically acceptable form; among the consequences of his main result,
he mentions the completeness problem, in the following way: “if to our rules
of reasoning, listed at the beginning of Chapter 2, we were to adjoin other
rules that could not be derived from them, then we would be led to regard
as true some propositions that are in fact false in some infinite domain. We
must acknowledge that such a consequence would be difficult to accept. This
fact [in 1931 “theorem” instead of “fact”] corresponds to what the Germans
call the Vollständigkeit of our system of rules. (If we could prove that these
additional rules lead us to regard as true a proposition P that, without them,
would not be so, then, as we can readily see, the inconsistency of classical
mathematics would follow, because we could construct a denumerable set
over which P would be false.)”. In 193176 Herbrand again writes, in more
detail: “If we assume that the decision problem has been solved and if we do
not wish R + Infin Ax + Mult Ax [simple theory of types with the axiom
of infinity and the multiplicative axiom] to be inconsistent, we must not add
any rule of reasoning to those already considered”. When he got acquainted
with Gödel’s result he added an Appendix, date of April 1931, in which he
wrote: “If the decision problem is solved for a proposition P , if the solution
is formalizable in T + Infin Ax + Mult Ax (as it is for all the particular cases
of the decision problem solved up to now) and if P is not an identity, then

(1) No new rule of reasoning that makes P an identity can be added
without entailing a contradiction in R + Infin Ax + Mult Ax;

(2) P cannot be true in R + Infin Ax + Mult Ax”.

In 1931 Herbrand is still using Post version of the completeness problem.
at a variance with Hilbert’s Bologna speech, where this formulation was
used ony for the completeness of arithmetic, not for logic; but, according to
some commentators, his insistence on the formalization of the solution of the
decision problem is a hint that perhaps he is thinking of the strong version
of the problem, later to be called finitistic rendering of the completeness

76J. Herbrand, “Sur le problème fondamentale de la logique mathématique”, Spraw. z
pos. Towarsz. Nauk. Warszawskiego, W., III, 24 (1931), pp. 12-56, in J. Herbrand, Ecrits
Logiques, cit., pp. 167-207.
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theorem77.

In his dissertation Herbrand seems to be aiming not so much at new re-
sults, but rather, at setting a clear distinction between the scope of (finitary)
meta-mathematics, and that of (infinitary) mathematics. He explains how
the consequences of his theorem tinclude the following results:

“Theorem 1. If P is an identity, ¬P is not true in any infinite domain;
Theorem 2. If P is not an identity, we can construct an infinite domain

in which ¬P is true.

Similar results have already been stated by Löwenheim (1915), but his proofs,
it seems to us, are totally insufficient for our purposes. First, he gives an
intuitive meaning to the notion ‘true in an infinite domain’, hence his proof of
Theorem 2 does not attain the rigour that we deem desirable . . . Then – and
this is the gravest reproach – because of the intuitive meaning that he gives
to this notion, he seems to regard Theorem 1 as obvious. This is absolutely
impermissible; such an attitude would lead us, for example, to regard the
consistency of arithmetic as obvious. On the contrary, it is precisely the
proof of this theorem . . . that presented us with the greatest difficulties. One
could say that Löwenheim’s proof was sufficient in mathematics; but, in the
present work, we had to make it ‘meta-mathematical’ so that it would be
of some use to us”. Similar reproaches are addressed to Ackermann for his
recent use of the satisfiability notion. In the existing mathematical proofs of
the above theorems, one was only allowed to obtain a system of values in an
infinite domain via a principle of choice [König’s lemma]; to avoid this use,
one has to finitistically define the construction of an infinite domain; this is
why Herbrand introduces his term-models, and deals with them in the most
careful way.

“We shall say that we have an infinite domain if we have a definite proce-
dure for correlating with every number p: first a domain C ′ that contains C1

[given at the beginning and finite]; then, for the functions, a system of values
in C ′ that permits us to obtain in C ′ the value of any function of height not
greater than p whenever the arguments are taken in C1; and, finally, a sy-
stem of logical values that are assigned to the atomic propositional functions
. . . ” (in Herbrand’s procedure, some troubles are due to the elimination of

77So thinks Dreben, in van Heijenoort, cit., who refers to D. Hilbert, P. Bernays,
Grundlagen der Mathematik , vol. II, Springer, Berlin, 1939, pp. 243-63; see later.
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quantifiers in itinere, from which some errors in the indexing crop up). “We
shall say that P is true in the infinite domain if for every number p we have
a procedure enabling us to verify that each of the propositions obtained over
Dp [system of values at stage p] has ‘true’ as its logical value (derived from
the logical values that its atomic propositions take in the domain) . . . It is
absolutely necessary to adopt such definitions if we want to give a precise
sense to the words ‘true in an infinite domain’, words that have frequently
been used without sufficient explanation, and also if we want to justify a pro-
position proved by Löwenheim, a proposition to which many refer without
clearly seeing that Löwenheim’s proof is totally inadequate for our purposes
and that, indeed, the proposition has no precise sense until such a definition
has been given”. As a matter of fact, rather than proofs being defective,
the problem here is that the definitions are unsatisfactory; accordingly, Her-
brand is not really concerned to strengthen Löwenheim theorem, but to find
a suitable re-wording for it.

Differently from all his predecessors (Löwenheim, Skolem and Gödel) and
notwithstanding the similarity of the procedure for obtaining the sequence
of the sentences Pn, what Herbrand actually proves is the following: when
for all n Pn is propositionally satisfiable, then (it is not the case that the
original F is satisfiable in a denumerable domain, but) the negation of F
is not provable finitistically. Alternatively, if there is an n for which Pn is
not propositionally satisfiable, Herbrand shows that the negation of F has a
proof, in a cut free formal system with the subformula property78.

Gödel has explained that Skolem’s confusion in 1928 was due to the fact
that “non-finitary reasoning in mathematics was widely considered to be
meaninglful only to the extent to which it can be “interpreted’ or ‘justified’
in terms of finitary meta-mathematics”79. While the key word here is in

78Herbrand defines “P has property B of order p” if the proposition obtained by substi-
tution of terms of Dp is an identity, that is derivable in QH . Then he proves that if P is
false in some infinite domain then it cannot have property B for any p, and conversely if
for every p a proposition P does not have property B of order p then we can construct an
infinite domain in which P is false. The fundamental theorem states that if for some p P
has property B of order p then P is true, and given p one can construct a proof of P ; and
if P is true and we have a proof of P then we can find a p for which P has property B of
order p.

79K. Gödel, letter to H. Wang of December 7, 1967, in H. Wang, From Mathematics to
Philosophy , cit., p. 8.

125



fact “non-finitary”, this remark is better suited for Herbrand. The same
applies to Gödel’s remarks contained in a letter of 1970, to the effect that
“in consequence of the philosophical prejudices of our time: 1. nobody was
looking for a relative consistency proof because it was considered axiomatic
that a consistency proof must be finitary in order to make sense, 2. a concept
of mathematical truth as opposed to demonstrability was viewed with general
suspicion and widely rejected as meaningless”80. It can be worth to recall an
episode reported by A. Mostowski, that when Tarski saw notice of Gödel’s
theorem in the Monatshefte, he was sceptical about it, because Gödel didn’t
define validity81; however, as regards the completeness theorem this definition
was not necessary, the arithmetic interpretation being sufficient.

An improvement of the completeness theorem was obtained by Hilbert
and Bernays in 193982, through the formalization of Gödel’s proof; they
proved thus that every syntactically consistent sentence F has an arithmetic
model, in the sense that the sentence becomes true if its predicative symbols
are interpreted on arithmetical relations; stated otherwise, a sentence Fω

obtained by replacing the predicative symbols of F with arithmetic formulae,
also becomes true; these arithmetic formulae can be taken of complexity
∆2. Hilbert and Bernays notice that if F is not refutable then not only
Fω is satisfiable in the natural numbers, but it is derivable in an arithmetic
system in which to the usual axioms one adds the formalized statement of
the non-refutability of F , or Con(F )83. Therefore, addition to arithmetic of
the arithmetical interpretation Fω of a logically unprovable F would render
arithmetic ω-inconsistent84. This property is to Hilbert and Bernays einer
Art von deduktiver Abgeschossenheit , even more so for arithmetic then for
logic; in some sense, this is the best possible result, in the light of Gödel’s
incompleteness theorem.

80H. Wang, Reflections on Kurt Gödel , The MIT Press, Boston, 1985, p. 85.
81So G. Kreisel, in “Gödel’s excursions into intuitionistic logic”, in P. Weingartner and L.

Schmetered (eds.), Gödel remembered , Bibliopolis, Napoli, 1987, Appendix I, pp. 131-31.
82D. Hilbert, P. Bernays, Grundlagen der Mathematik , vol. II, cit., pp. 263-63. See also

S. C. Kleene, Introduction to Metamathematics, cit., Theorem 35, p. 394.
83This is “Bernays’s lemma”, according to Wang’s generalization in H. Wang,

“Arithmetic models for formal systems”, Methodos, 3 (1951), pp. 217-32.
84D. Hilbert, P. Bernays, Grundlagen der Mathematik , vol. II, Springer, Berlin, 1939,

pp. 252-3, and S.C. Kleene, Introduction to Metamathematics, Van Nostrand, New York,
1952, Theorem 36, p. 395.
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The history of the completeness theorem has, to say the least, one more
episode, with Leon Henkin’s proof of 1949-195085. This proof is free from
the constraint of the natural numbers, and uses more general techniques by
exploiting the equivalence of models and maximally consistent rich exten-
sions. Other methods will be introduced around 195586 by Beth, Hintikka,
Schütte, through a simplification of Henkin’s proof, obtained by looking for
minimal closure conditions which are strictly necessary for the construction
of the model. Among the by-products of these proofs, one should mention
the tableaux method and the method of partial valuations in Hintikka se-
ts. Further, Henkin’s proof deserves credit also for remaining valid also for
the theory of types: indeed, this proof is a major step in the clarification of
several issues concerning the status of higher order logics87.

85L. Henkin, “The completeness of the first-order functional calculus”, Journal Symbolic
Logic, 14 (1949), pp.159-66, “Completeness in the theory of types”, Journal Symbolic
Logic, 15 (1950), pp. 81-91.

86E.W. Beth, “Semantic Entailment and Formal Derivability”, Mededelingen van der
Koninlijke Nederlandse Akademie van Weteschappen, 18 (1955), pp. 309-42, in J. Hintikka
(ed.), The Philosophy of Mathematics, Oxford Univ. Press, Oxford, 1969, pp. 9-41; J.
Hintikka, “Distributive Normal Forms in the Calculus of Predicates”, Acta Philosophica
Phennica, Fasc. VI, Helsinki, 1953.

87The author wants to thank the (not too) anonymous referees who took on the painful
job of trying to improve his English.

127


