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THE STRUCTURE OF FINITE ALGEBRAS

Ralph McKenzie

A finite algebraic system, or algebra, is composed of a finite
set of elements and a set (possibly infinite) of finitary operations
acting on the set of elements. A locally finite variety is a class
of similar algebras closed under the formation of homomorphic images,
subalgebras, and Cartesian products, whose finitely generated'algebras
are finite.For example, the class of all grouns satisfying the iden-
tity x3= 1 is a locally finite variety.

In these notes we present the skeleton (some definitions and
results, with no proofs) of a theory of finite algebras, tame
congruence theory, which effords deep: insight into the structural
possibilities inherent in finite algebras, as determined by their
ordered systems of congruence relations. This thepry has been ap-
plied to obtain new results over a broad spectrum of universal
algebraic problem areas. It is particularly effective in classifying

Mal'cev conditions for locally finite varieties, and in relating

" Mal'cev conditions to congruence properties.

The theory and results presented in this paper were obtained
by myself and my student David Hobby. The results in section 3
were, for the most part, obtained by me during a seven month sabba-
tical spent at the University of Hawaii (from September 1983 into
1§84). They owe much to a lively exchange of ideas in the Hawaii
seminar, attended by Freese, Lampe, Nation, Tom Harrison, Doug

Pickering, Jacob Shapirc , Stephen Tschantz and Matthew Valeriote.

1. TYPES.

Let 4 = <A,fi(i€:I)> be a finite algebra. An admissible relation
n
of A4 is any subset SSA such that S is closed under the operations

n
of the algebra 4 . A congruence relation of 4 is an admissible
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equivalence relation on 4. The congruence lattice of 4 is denoted
as Con 4; its elements are the congruence relations of 4 and it is
a sublattice of the lattice of all equivalence relations on A. By
a quotient in Con A, or congruence quotient of A, we mean simply
a pair <a,B> where a,B & Con 4 and a<B. If a,B € Con A and a<B,

we write I [a,B] for the interval sublattice of Con 4 consisting

of all the § with a%8<£8. We write o< g8 (or B covers a ), and say
that <a,B> is a prime quotient, iff Iz [a,B][ = 2,

We are going to define five types of prime gquotients such that
every prime quotient in a finite algebra has precisely one of
these types.

By the clone of A, written Clo 4, we mean the set of all opera-
tions generated, under composition, by the basic operations fi(ie 1)
of 4 and the trivial projection operations P? (pz(xo,...,xn_1)=xi).
The set of n-ary members of Clo 4 is written as ClonA. By the

polynomial clone of A, written Pol 4, we mean the clone of the

algebra <A,fi(is I),alae A)>. Its set of n-ary members is denoted
as Pol A.
n

Now let <a,B> be a prime congruence quotient in a finite algebra.
We define the set Lh(a,B) of subsets of A (abbreviating Pol1A
to PTA): (%(a,s)consists of all sets U = f(A) where fe P1A
and f(B)é o (i.e. where there exist x,y in A such that <x,y>e B
and <f(x);f(y)>¢ a) . Then we define MA(u,B) to be the set of minimal
members (under inclusion) of UA(a;B). The sets U « MA(a,B) are
called <a,f>-minimal sets.

To state the first theorem, we need the notions of polynomial
isomorphism and induced algebra. Let a€ Con 4, fe¢ PolnA, and S 7
be a nonvoid subset of an algebra A. By als we mean an{(SxS);
by f]s we mean £ N ( snx A). By A)S we mean the non-indexed
algebra < S, (Pol A)fs > ;. vwhere (Pol A)fs =-l;}{fl s : fe Pol 4

n .
and £{ ') C s }. This algebra, AIS + is called the algebra induced

by 4 on s
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Let f € P1A and SV TS A. We write f: ST to mean that
f(S) = T and for some g€ P1A we have g{T)=S and gfl S:_idS and
fg‘ = id . We write ST (of S é T) iff there exists fe P1A with
T T

f: S>T. The relation = , of polynomial isomorphism, is an

equivalence relation on the subsets of an algebra. Moreover, if

S é.T then the structures

o
o
<8, (Pol A)} s al s(aeCon 4)> and <T,(pol 4) | o a\T(ae.Con 4)>

are isomorphic.

THEOREM 1. Let <a,B> be a prime guotient in a finite algebra A4.
(1) For each Ue MA(a,B), we have {T:T:ﬁU} = MA (a,B).

2
(2) For each Ue MA(a,B) there is e£P1 A .such that e=e and e(d)=U.

A we have £: U=£(U) iff £(8];)¢ «.

(3) For Ue MA(a,B) and fe P1

(4) If fe,P1A then f(B)# a iff f: UM E£(U) for some Ue‘MA(a,B).
(5) if <x,y>e B-a and Ué'MA(a,B) then there exists fe P1A with
f{A) = U and <f(x), £(y)> ¢ BlU— a\U;

(6) If Ue:MA(oz,B) and p = « uU{f(B\U): fe P1A§ , then the

transitive closure ofjo is B

Any quotient <a,B> in a finite algebra A which satisfies
Theorem 1 is called tame. According to the theorem, prime quotients

are tame. By a tight lattice we mean a finite lattice L such that

ifJo is any binary, reflexive, symmetric admissible relation of L
2 \

(i.e. ifjo is a tolerance), and if p # L, then <x,1>§/01ff x=1

and <x,0>§/0 iff x=0. Tight lattices include finite projective

geometries, the full finite partition lattices, and many more.
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THEOREM 2. Let <a,B8> be a quotient in a finite algebra. If I[oz,B]

is tight then <a,B8> is tame.

The five mutually exclusive types of tame quotients are discerned
through an extensive study of the induced algebras associated with
a quotient. Let <a,B> be a tame quotient in a finite algebra A.
By Theorem 2, all f_he structures <U, (Pol /l)-i U’ a[U,B] > for
UeMA(a,B), are isomorphic. We define the set TA(ot,B) gf <a,B>-
traces 1ike this: Ns_TA(a,B) iff for some UEMA(a,B) , and xe€ U, we
have. N= x/Z(B]U)# x//(alU); Thus N is-an <a,B>- trace in 4 -iff for
some <a,B>-minimal set U, N is an <alU,BlU>—- trace in A[U.

Let <a, B> be tame in 4 and choose UeMA(ct,B) . Exactly one of

the following five possibilities occurs.

(1) (Unary type). We write typ(a,B) = 1 iff for every <alU,Bl ) -trace
U
M, (A)N)/(ajN) is essentially unary.

(2) (Affine type). We write typ(a,B) = 2 iff for some <c¢lU,B! >—
U -

trace N, (AIN) /(a\N) is polynomially equivalent to a vector
space. When this holds, all of these traces in U are 22 , and

their union B (the body of U) satisfies: AlBis’-Mal'cev and nilodtent

(3) (Boolean type) . We write typlo,B)= 3 iff there is a unique

<al >-trace N and it satisfies: |N| = 2 and A}N is polyno-~

v Bly
mially equivalent to a 2-element Boolean algebra.

(4) (Lattice type) . We write typl(qa,8) = 4 iff there is a unique
<a|U,8]U)—trace N and it satisfies: IN| = 2 and A‘N is polyno-

mially equivalent to a 2-element lattice.

(5) (Semilattice type). We write typl(a,B) = 5 iff there is a

unique <a]U,B|U>-—ti:aceN and (AIN)/(oclN) is polynomially equi-
valent to a 2-element semilattice. When this holds, N is the
disjoint union of aU—classes I = {u} and O, and 4 has a

binary polynomial f(x,y) such that f(u,z)=f(z,u)=z for all zZ €N,
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and f(0x0)£0.

THEOREM 3. Every tame quotient in a finite algebra has precisely

one of the types 1,...,5.

Recall that a Mal'cev operation on a set is an operation
pi{x,y,z) satisfying the equations p(x,x,y) =y = pl{y,%,x). An
algebra A is called Mal'cev iff there is a Mal'cev operation
p€Clo3A . From the above description of the types, it follows
that if <a,B> is a tame quotient of non-unary type in an algebra
A , then TA(O.,B) ({the set of traces )is an equivalence class of
subsets of A under 2~ . The algebras AN, NETA(OL,B) , are Mal'cev
if and only if typl(o,B)e {2,3} . These algebras are 2-element
algebras if typl(a,B)€ g3,4 .

Once the types are discerned,each type can be characterized in

a more "natural" manner, without any mention of minimal sets and

traces., To do this, we need new definitions.

DEFINITION 4. Let 4 be any algebra and a,B,¥eCon 4.

(1) We use: the formula C(q,g;) (in words, o centralizes g moduloy”)
as an abbreviation for the following property. For every n>1
and every fePolnA and for all <u,v>é&€ q and <x1,y1>,...,

<x >& B, this equivalence holds:

n-1"Yn-1

g

£(u,x) £(u,y) « £(v,X) r'\{:f(V.i/-)-

(2) We use the formula C*»(a‘,zf') (in words, o is strongly Abelian

modulo ¥) to abbreviate this property. For every n>1 and every

fe_*PolnA and for all <u,v>€ a and Ryoe¥qrZoreeeaX 0¥ q7%0 9

such that xiE yiE z:,L {mod a) for all i, we have
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fIet

CEWE) = E(vLF) — £ (u,E) S f(v,3).

DEFINITION 5. Let aand B be congruences of an algebra A with o4R.

(1) B8 is Abelian over o iff C(B,8;:a).
(2) B is strongly Abelian over a iff C*(g,q).

(3) B is solvable (or strongly solvable) over a iff there exist

congruences o = aoff a, £ ... £a =8

= £
for some n with ai+1 Abelian over ai (or strongly Abelian
over ui) for each i<n.

(4) A quotient <J°¥> is Abelian, strongly Abelian, .solvable , or

strongly solvable iff ¥ has this property over d .

(5) A congruence ¥“ is said to have one of the four properties iff

it has the property over 0A (the least congruence).

(6) A has one of the four properties iff 1A has the property over

0_. :
A

THEOREM 6. Let <a,B> be tame in a finite algebra A.

(1) The following are equivalent.
(1)  typ (a,B) = 1.
(ii) <a,p> is strongly Abelian.
(iii) There do not exist <a,b> € B-a, féfPOle such that

f(b,b)=b and f(a,b)=f(b,a) = a.

(2) The following are equivalent.
(1) typ {a,B) = 2.

(ii) <o, B> is Abelian and not strongly Abelian.

(3) The following are equivalent.
(1) tvp (wBe (1,2

(ii) <a,B> is Abelian.
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{iii) There do not exist <a,b>€ B-a and fe Pole such that

f(b,b) = b and f(a,b)=f(b,a)=£f(a,a)=a.

\v4
an admissible pre-order P such that pN f = a and

B =tr.clo.£p u;pu). (In this case, there are precisely two

(4) We have typlo,B)€ { 4,5} iff <o,8> is non-Abelian and A has

minimal such pre-orders).

(5) We have typ{a,B)=5 iff typ {(o,B)e [4,5} and, where/p andgpL/
are the minimal pre-orders (from (4)) and T =¢/>i/9u (in the
2
subalgebra lattice of 4 ), the interval I[(ocxcx)lT '(BXB)lT] is

isomorphic to Q\

We can often recognize immediately that a quotient <a,B> is
Abelian, or even strongly Abelian, just from the shape of the

interval lattice I [a,é]. A lattice homomorphism 5?: L =+ L' where
L has 0 and 1,is 0,1-separating iff 551 397(0)} = {0} and

7iew]- (]

THEOREM 7. Let <q,8> be any quotient in a finite algebra 4.

(1) If <a,B> is not strongly Abelian, the following are equivalent.
(1) <o, B> is tame. ‘
(1) 1 [a,8) is tight.
(iii) I [arﬁ] admits an {essentially unique) 0,1-separating
homomorphism onto the congruence lattice of a vector

‘space (implying that I [u,B} is complemented and every

non-constant lattice homomorphism from it is 0,1-separating).
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2) If <a,B> i 1 .
(2) 1f <o,B> is not Abelian then I [0"3] is tight iff a ¢ B. 2. LABELLED CONGRUENCE LATTICES.

From this theorenm, The congruence lattice of a finite algebrabecomes a labelled

we conclude that for every tight interval

I i . - h when we label each prime quotient with its type. We define
[a,B] in the congruence lattice of a finite algebra, if II[a é}|>2 grep g : ' e
H r
K

then type sets as follows.

<a,B> is Abelian, and if in addition, 7.71.(iii) fails, then
<a,B8> is strongly Abelian. Consult [

7]»for some nice gpplications
of these results.

DEFINITION 8. Let A4 be a finite algebra, ¥ be a locally finite
-variety, and let 0/<‘X‘ in Con 4.

(1) typ {o’.xl = ityp(a,s)‘: g 4P g 7{_} .
(2) typ {AS = typ iOA'1A} .
(3) typ IV} = U ityp {A} t A € Vfin} where ygin is the class

of finite algebras in . ¥ .

We shall see that the labelling of a congruence latfice is not
entirely arbitrary. The type set of a locally finite variety is
very strongly related to the Mal'cev conditions it satisfies.

The solvability congruences on Con A are a very useful tool for
all further results. ’ )

We define a 1-snag of an algebra 4 to be a pair <a,b>e€ A2 such
that a#b and there is fe:Pole with f({b,b) = p, f(a,b) = £f(b,a) = a,
(See Theorem 6 (1-(iii)) and (3{iidi)).) A 2-snag is a 1-snag with
the added requirement thét f(a,a) = a.(BEquivalently, "<a,b> is a’

2-snag or <b,a> is a 2-snag" just in case Al{a b} is non-Abelian).
’

THEOREM 9. Let 4 be finite and ¢ < ¥ be congruences of 4.

The following are equivalent.

(1) <d,¥> 1is solvéblg (strongly solvable).

(2) typ {(,1}551,2} (typ {J;Y}= {1}»).

(3) For all Jd<o{<P® & X : <%,B> is Abeldan (strongly Abelian).

(4) There does not exist a 2-snag <a,b> (a 1-snag <a,b>) with
<a,b> e ¥-d".
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Motivated by Theorem 9, we define for any pair of congruences
ss s a
X;,’K1 | 1 {or X’OK\JX}) iff ther=
does not exist a 2-snag (of a 1-snag) <a,b> € {( ?Q)v xg)—(*(s Ax}).

in any algebra 4, 'K; A

A lattice L is said be meet-semi-distributive, or to satisfy

SD{A), iff for all x,y,z,uel, XAy = XAZ = u-—+xA(yvz) = u.

The join-semi-distributivity condition, SD(v), isvdual to SD(a).

If the algebra 4 is locally finite and ¢ £ ¥ are congruences

of 4, then by Theorem 9 it follows that o ~L ¥ iff for all finitely

generated'BSAQ, we have XIB solvable over d—]B. We say that 4

is locally solvable iff OAr{/ 1

S

THEOREM 10. Let 4 be any locally finite algebra.

(1) fi'andlgi are congruences on L = Con A. L/~ is an algebraic
lattice and L—» L/ is a complete lattice homomorphism. The
some facts hold forlib .

(2) L/~ satisfies SD(a). ‘

(3) If A is finite and 5 % typ {A} then L/ﬂi satisfies SD(V);

(4) For every B¢ 1, &‘V: 0.5, V/j /AY is a modular lattice.

The proof of this theorem involves some work. It followg easily
from the special case when 4 is finite. Some of the facts used

are in the next lemmas.

-LEMMA 11. Let <a,3> be a non-Abelian prime quotient of an algebra

A. There exists a‘unique congruence ¢ such that for-all congruences /%

HAB2ae> as ksd]

LEMMA 12. Let <o¢,B> be a prime quotient of type 3 or‘4 in a finite

algebraig. There exists a congruence of such that for all congruences

Mmoo =B iff ds g€ B,

+
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LEMMA 13. Let <a_,31>‘(i=0,1) be transposed prime quotients in a
—_— i

finite algebra 4 (i.e. QOACB1 = o and aOV B1 = BO). Then

typ(aD,BO) = typ(a1,B1) and MA(aO,BO) = MASa1rB1).

LEMMA 14. Let (<LB;J:%G/{) be a pentagon in the congruence lattice

of a finite algebra 4.
: 0
o \
i
| op
no.
o
a

the lattices
B
\
/ A
e 2 A

RV

Fig. 15

If <a,8> 1is solvable, then

s%,ﬁ& is strongly solvable.

Consider

\

It follows from Theorem 10.{2} that if D1 is a sublattice of Con 4,

with A locally finite, then ¥ is locally solvable over o .

From Theorem 10.(3), if 02 occurs, A4 1s finite, and 5¢:typ{AX, then

<¥,8> is solvable. If M3 occurs then g 1is locally solvable over o .

(In fact, one can show directly that in an M_, the quotients <g ,X;>

3
must be Abelian.)

The presence of a copy of N_ in Con 4 is, of course, equivalent

5
to the non-modularity of this lattice. At the level of (locally

finite) varieties, the absence of copies of D, in congruence lattices

1
defines a large new class of moderately well-behaved varieties.

and M_. These results

The same is true for each of the lattices D2 3
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are mostly presented in the next section. Part of the background

facts used in their proofs will now be given.

LEMMA 16. Let A be a finite algebra and suppose .that Con 4 has
a sublattice isomorphic to D1 as in Fig. 15. For each congruence
J’ satisfying « < fg ¥ we have typla ,Cﬁ = 1.

LEMMA 17. Let 4 be a finite algebra and suppose that Con 4 has
a sublattice isomorphic to D_ as in Fig.15. For each congruence

J satisfying ¥$d 48 we have typ (o/;B) € {1,5} .

THEOREM 18. Let ¥  be any locally finite variety. The following

are equivalent.

(1) 14 typ [~} -

(2) D1 is not'a sublattice of ‘the congruence lattice of any algebra

in ¥ .
{3) Con 4 is in the class SD(A)/(Modular) for all A € v .
(4) If «,B € Con 4, 4€ ¥ , and ari‘zB then a°B =Bl°0t.
(5) ¥ has a term operation p(x,y,2z) satisfying p(x,x,x) = x (as
an identity in ¥ ) and such that for every locally solvable con-
gruence @ on an algebra. 4 € ¥ , and for every

the operation p‘T is Mal'cev.

We record in passing the following result.

THEOREM 19. Let ¥ be any locally finite variety. The class fﬁ of

.locally solvable algebras in ¥, and the class v of locally
strongly solvable algebras, are varieties. If 1¢.typ {Y3 then ¥ S

iis a congruence permutable variety (and v3Sis trivial).

8 ~class T=x/B ,
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3. MAL'CEV CLASSIFICATION AND OMITTING TYPES.

The clone of a variety ¥ , denoted Clo ¥ , is equal to the

clone of term operations of the free algebra in ¥ on denumerably
many generators: Clo ¥ = Clo F%’ () .
We can consider cioneS'as abstract multi-sorted algebras with
operations of coﬁposition. An algebra in ¥ with base set A is
basically just a clone homomorphism of Clo ¥ into the clone of all
operations on A.

W. Taylor and W. Neumann have defined a lattice of varieties

in which they put ¥ < W iff hom (Clo ¥ , Clo %) # ¢. (They
say ¥ 1is interpretable into ¥ when this holds. The relation <X

is a pre-order on varieties. The members of the lattice of inter-

pretability are equivalence classes of varieties. See [4] ).
Filters in the lattice of _interpretability tend to have an

algebraic significance. Principal filters of the fonﬁ{ Y. W< W&

where ¥ 1is a finitely presentéd‘variety, have been called

strong Mal'cev conditions. For an example, a variety ¥ has .

permuting congruences (we have called such a variety Mal'cev) iff
WL Vv where #' 1s the variety with: one basic operation nm(x,y,z)
defined by the identities m{x,x,y)=y and m(x,y,y)=x. (Mal'cev
proved this) .Jonsson proved that a variety ¥ has distributive
congruence lattices iff E@n < ¥ for some n, where S?n is defined

by identities:

x = fo(x,y,z) = fi(x,y,x) (0<1i<n)

z = £ (x,y,2)

£y Yo y) = £y 1xyY) (0.5 igftn-1)/2] )
£, g xaxey) = £ (x,x,y) (15 is[n/2]).

Since 91 > Qb 2 ..., congruence distributive varieties constitute
another filter in the latticevof interpretability; this filter has

a countable base of finitely presented varieties. Such filters are
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called, simply, Mal'cev conditions. Countable intersections of

Mal'cev conditions are called weak Mal'cev conditions. For every

pure lattice identity € , the class .of .all varieties ¥ such that
v éﬁ£,8 (i.e. the congruence lattice of every.algebra in ¥ sati-
sfies € ) is a weak Mal'cev condition (Pixley [14 , Wille [12 ).
Another important strong Mal'cevcondition is that of n-permuta-
bility (where n2 2). A variety is called n-permutable itf it
satisfies @gaz Bgia... where a;ﬁB = a° Be... (n alternating
@'s and B's) for all congruences o, B on any algebra. ¥ is n-

permutable iff there are f1""fn— € Clo3‘V'satisfying

1

f1(x,y,y)_ = X

fi(x,x,y) = f (x,y,vy) (1€i<n-1)

i+1
fn_1(x,x,y) =y

Our theorems in this section impose a well defined order on the
diversityAQf Mal'cev conditions, at least for locally finite varieties.
Before we present these theorems, we require new definitions.

A variety ¥ will be called special if it is finitely presenteé
and its operations are idempotent (satisfy f(x,...,x) = x). A

variety ¥ will be called simple if it is special, has basic

operations h1,...,hn‘for some n, and is defined by simple identities,

i.e. identities of the form h_(x, ,...,x, ) = %, and h {x, ,...
. a i i a i
o k-1 o}
cee X, ) = h {y, ,e.oory. ) in which there is no superposition
i b "3 3
k-1 o 1-1
of operations.

The following lemma is involved in part of the proof of each
result of this section,

LEMMA 20. Let 7 be a variety, A€ ¥, e€ Pol 4,8 € Con 4, and

1
2
suppose thdt e = ¢~ and N= e(A)N\x/0 # ¢ for some xec A. If W is

any simple variety such that # < ¥ then W < HSP(A'N).

COROLLARY 21:
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Let ¥ be a locally finite variety and

M = /;\ &{ zﬁ% 7Vrmx$ JV} be a weak Mal'cev condition where
each ‘ﬂ;m is simple. Suppose that ¥ & 4 + Fori=1,2,...,5
in typ [1f}, 4 contains, respectively, the variety of sets, of
vector spaces over some finite field, of Boolean algebras, of

lattices, of semilattices.

We remark that every weak Mal'cev condition we have mentioned
so far can be defined using only simple varieties, and so the

corollary applies for it.

The types of prime quotients can be ordered by the richness
of the set of essentially binary polynomial operations in a 2-
element algebra whose prime quotlent has that type. We get

this picture (a lattice):

Fig.22

For each nonvoid order ideal I(with 3¢JH in this lattice 6f types,
we shall give a nice characterization of the class of locally
finite varieties 7 satisfying typ {-y} NI=g.

The class of varieties omitting 1 has alréady been characterized
in several ways in Theorem 18. Here are additional characterizations.
In the next several theorems, Bm and X’m denote lattice terms

built from lattice variables a, B, ¥ as follows:
BJ:B"{O =¥

8 =B\/(aA\(m),‘(m+1=‘6v(a/\Bm).

m+1



— 576 —

THEOREM 23. For a locally finite variety v the following are

equivalent. »

(1 1 ¢ typ {yj'

(2) There exists a simple #  such that ¥ < ¥  and #4 SETS
(the variety of sets without operations).

(3) There exists a special % ¢ ¥ with ##

(4) For some m 2 1, “Vc/—;;o(/\(lﬂ o {')5 Ym"-ofén"

The property (4) of this theorem can be expressed as a Mal'cev
condition, Vv (W < v ), where the ¥ are simple. As far
m,n mn mn
as locally finite varieties can tell, this is the largest non-
trivial Mal'cev condition defined by special varieties.
In the next theorenm, 2? is the variety of semilattices and D2

is the lattice of Fig. 15.

THEOREM 24. For a locally finite ¥ the following are equivalent
(1)1, 5 ¢ typ [} '
(2) There exists a special '1//5 ¥ such that W # £ .
(3) v é—o‘—r'l a A(Be¥) = (YVI(aaB)) e ( BViaAY)).
(4) D2 is not a sublatticé of the congruence lattice of any finite
algebra in ¥ .

(5) For every finite 4 € ¥, L = Con 4 has a congruence & such

. that L/©Q F SD(v) {(and 5D{4)) and each © /& is a modular

lattice.

Notice that Theorem 24 (3) can be written out quite d#asily as

a Mal'cev condition. Namely

(6) There exist fo,...,fzn, go""’gan~Cl°3'y- for some n,

satisfying
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X = fo(x,y,z), z= an(X.y,Z), £ n(x,y,z)= go(x,y,Z)

2

fzi(x,y,X) = f21+1(x,y,X), f2i(X.X.y) = f21+1(x,X.y)

g2i(x,y.x) = g2i+1(x,y.x), gzi(x,yly) {(x,y.y)

= 92441

f21+1(x,yyy) = f2i+2(errY)r 921+1(x,x,y) = 92i+2(X.x,y)

(for 0<4i < n).

Here is a sketch of the proof that 24(1) = 24(3). Let

F = er (x,y,z) and let a,b,g be endomorphisms of F defined by

t a{t) b(t) gl(t)
X X X X
¥ Y X z
z X zZ zZ

Let o = Ker(a), B = Ker (b), Y= Ker(g). Thus o vg=aVv¥ = g VvT{.
By Theorem 10 (especially (3)), ¥v (aAB) € vgffxgv,(a AT) .
Then by Theofem 18(4), Y vi{oa B) = ¥_ and B viaAY¥)= PR, commute.

1 1

Thus <x,Z2>¢€ 81 oﬁ} = _opg This gives (6), which easily implies

1 1°
(3). The proof that 23(1) = 23(4) is similar.

For every field k, M denotes the variety of vector spaces over

k
k. The lattice terms a,8,%, Bm'Kg are as in Theorem 23.

THEOREM 25. For any locally finite variety ¥ the following are

equivalent.
(1 1, 24 typ jw}.
(2) There exists a simple # < ¥ such that ﬁfik M for every
finite field k.
(3) + £/ aoaaAlBox)< B for some m.
con m

(4) M3 is not a sublattice of Con 4 for any 4 € ¥ .
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(5 ¥ £~  spia).

con
(6) ¥ has no non-trivial Abelian congruences.

THEOREM 26. The following are equivalent, for any locally finite
variety ¥ .
' <

(1 typ [} < [3,4] .
(2) There exists a simple # < ¥ such that:

W £ £ (semilattices) and W #‘k M for every finite field k.
3 =
(3) ¥ o aA(BeoY)ICBVIaAY).,
(4) Neither M3 nor D_ is a sublattice of Con 4 for any finite A< v .

2

(5) ¥, Cton SD(V) (and SD(A)).

Let 2 denote the variety of distributive lattices.

THEOREM 27. The following are equivalent, for ény locally finite
variety ¥ .

(1) typ (¥} < [2,3}.

(2) There exists a simple % < ¥ such that ‘l{/\#‘ D .

(3) ¥ is congruence n-permutable for some n.

Proof. That (3) — (2) is trivial. That (2) — (1) is by Corollary
21. (1£ W 1‘5 9 , then ‘Il/$ & and W$ SETS) . To prove (1) — (3),
suppose (3) is false. Let F = FV(x,y) , & finite algebra. Let/)
be the admissible binary relation on F generated by <x,x>, <y,y>,
<yrx>, and ,‘Letujot be the transitive closure of f , and
e =ft ”ft . Since ¥~ is not n-permutable for any n, <x,y>é@.
Now B is a congruence. We can find congruences «a ,B with@éa( B
and <x,y>€ B- a. By Theorem 1(5), there is an <q,8 >-trace N and
fe Pol1F with <f(x), f£(y)> € B]N— a[N,

If typ(«,pl€ 52,3} then _FlN has-aMal'cev operation, and thus
there exists ge PolTF with gf(x) = £{y), gfly) = f(x). But P

is closed under all polynomials (it is reflexive). Thus <f(x),fl(y)>¢ .
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w
€EPn P < O <o if typ (o, 8) 5{2,3} . This contradiction proves

that typ (¥} § f2,3] .

THEOREM 28. The following are equivalenﬁ, for any locally finite

variety ¥ .

(1) typ j*//} < [3} . ‘
(2) There exists a simple w g ¥ such that?: Wi 2 and ‘/V% k"/{
for every finite field k.

(3) For some n there exist fo' cee ,fn € Clo4' ¥ satisfying

x = fo(x,y,y.Z)

fi(x,x,y,x) fiH(x,y,y,x)

{for i<n}

fi.(X.X.y,y) f1+1 (x,y.,¥.v)

fn(x,x,y,z) =z,

(4) ¥ is n-permutable for some n and 4 é‘_g‘n SD(A) .
(5) ¥ is n-permutable for some n and 14 /(%na Al vy) £ B
for some m. "

We remark that G.Czedli [2] proved the equivalence of (4) and
(5) for every variety, not just locally finite ones.

We have now seen that the type set of a locally finite variety
is an important determinant of the structural and Mal'cev properties
of the variety. Of the six broad classes of varieties defined in
Theorems23-28, only the last two have been much studied, and the
special facts we have revealed in the locally finite case were
unknown.

Curiously, the most studied families of varieties, namely,
the classes of congruence distributive varieties,do not fall
quite so naturally into our scheme. In order to characterize them,

we need a lemma.
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LEMMA 29. Let A be any finite algebra, <a1,31>,...,<a B > be all

—_— n'"n

the prime quotients of 4, and Uié MA(ai,B,) for i=1,...n. We have
i

a subdirect representation

Con 4 (ffi» T Con 4 IU

1,n
i

given by 0 —< 9] _ 1< 1€ no>.
i

THEOREM 30. Let ¥ be a locally finite variety.

(1) v 4is congruence modular iff typ fy} < [2,3,4} and
(*}) for every prime quotient <o,8> in a finite algebra of ¥ ,
each UEZMA(a,B) is the union of its traces.

{2) ¥ is congruence distributive iff typ /¢1 < !3,4} and (*)
holds. '

The representation of Con A defined in Lemma 29 produces

interesting results when 4 lies in a congruence modular variety.

THEOREM 31. Let A be a finite algebra belonging to a congruence

modular variety. There exist finite algebras B,B .,B , each a
. n

PERR

loop with operators (and therefore Mal'cev), such that Bl""’B
n

are nilpotent and

con 4 ¥ con B qu_., ;’7; Con Bi'
’

The next result is perhaps only amusing. If ¥ is locally finite
and ¥ éi; & for a non-trivial pure lattice identity & , then
typ {11 < [2,3,4} . If typ [y} < Z'Z,BI , we can deduce a pure
lattice identity.
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THEOREM 32. Let ¥ be a locally finite variety, n-permutable for

some n. Then for some m, congruences in ¥ satisfy the following

identity (with /Bm as in Theorem 23):

AAlAA T v CanBvi)]s T v fa AldV (@ aB D))

4. OTHER APPLICATIONS.

The results presented in section 3 cannot be proved, so far as
we know, without the use of the theory (tame congruence theory)
presented in sections 1 and 2.These results were quite unexpected.
Perhaps they open up new problem areas for universal algebraists
to investigate. '

The tame congruence theory was actually developed in the hope
of solving some old and difficult problems. We shall now describe
the progress made on those problems with its help.

Conjecture 33. Let 4 be a finite algebra and ¥ = V(4) be the

variety generated by 4. If there exists an infinite cardinal Ao
such that ¥ has no' subdirectly irreducible algebra of cardinality
A ; then there exists an integer n such that every subdirectly
irreducible algebra in ¥ has cardinality < n. (In otherwords,

if ¥ is résidually small, then it is residually < n for an
integer n.)

This conjecture was first intertained in a weaker form by R.W.
Quackenbush. It has been provéd fof finite algebras in congruence
modular varieties (Freese and McKenzie [3] ) and for finite semi-
groups (by Golubov and Sapir, and by McKenzie; see‘[8,9] }. Now we
have the following result, proving the conjecture in case ¥ =
= V(4) is n-pérmutable, or satisfies any non-trivial lattice

identity for congruences, or in fact, any special Mal'cev condition
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not satisfied by semilaﬁticesq

THEOREM 34. Every residually small; locally finite variety ¥
such that 1,5 % typ { V& is congruence modular.

REMARK 35. It has been conjectured by McNulty ( POJ) that if 4

is a finite algebra such that Clo 4 is a maximal proper subclone
of the clone of all operations on A (a pre-primal algebra of

I. Rosenberg), then V{(4) must be residually < n for a finite n.
The 8-element algebra 4 whose operations are all the monotone ope-

rations on the partially ordered set

is a counter-example to McNulty's conjecture.This algebra is known
to be pre—primal.'One can prove that V(4) is not congruence modular,
using Gumm's 3-ary definition of the Mal'cev condition for congruen-
ce modularity. But one can find 3—ary'operations of 4 to satigfy
Theorem 24(6), with n=3. (A difficult exercise.) If follows from

Theorem 34 that v(4) is not residually small.

Conjecture 36. This is like Conjecture 33, with "simple algebra"

everywhere replacing "subdirectly irreducible algebra”.

For a finite algebra 4, it. is much more likely that the simple
algebras_in V(A) are finite and bounded, than that the subdirectly
irriducible algebras are. We should observe that a finite simple
algebra S has the unique prime quotieﬁt <Os,1 >, and its type can
be called the type of 5. A simple algebra S zf type 5 (or 4) is
orderable, that is, there exists a connected, admissible partial

ordering of the universe of §. (See Theorem 7(4).)
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THEOREM 37. Let A be a finite algebra.

(1) There exists n such that every finite simple algebra in V(4)
with moré than n elements is of type 5.
{(2) If 5 ¢ typ gV(A)g then V(4) has only finitely many simple

algebras, and they are finite.

Our theory gives a lot of information about finite simple alge-
bras, but it would require too much space to go further into that
topic.

Conjecture 38. If a locally finite variety has a decidable first

order theory, then it has an "extremely well-behaved structure

theory".

This is, of course, a vague conjecture, which was somewhat
substantiated in Burris and McKenzie [f]. There it was proved
that a locally finite, congruence modular,and dééiéable variety ¥
must decompose structurally as ¥ = @ (X) of where @ is a
discriminator variety and & is an Abelian variety. Here, the
algebras of & are polynomially equivalent to modules over a certain
finite ring R. If V=9 (® o is generated by a finite algebra,
then ¢ 1is decidable, furthermore ¥ is decidable iff RJ?
has a decidable theory. Because of these results, some authors
have begun to investigate the question of which finite rings have
a decidable theory of quules; but this guestion remains open in

general. On Conjecture 38, tame congruence theory produces two

very satisfactory results.

THEOREM 39. BEvery locally finite, decidable variety ¥  , with

1 ¢ typ { y‘} , is congruence modular  (and thus the above analysis

applies to ¥ }.
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THEOREM 40. (McKenzie and Valeriote). Let ¥ be any locally
finite and decidable variety. ¥ has a subvariety @ which is a
discriminator variety, such that for every 4 ¢ ¥ , A/Z(4) e D .

(We say that ¥ is discriminator-by-central).
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