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DOMAIN EQUATIONS AND VALID ISOMORPHISMS

- IN -ALL MODELS OF (HIGHER ORDER) LANGUAGES.
- A short discussion

KIM BRUCE‘, GIUSEPPE LONGO?
'Williams College (Massachusetts)
Dipartimento di informatica Universita di Pisa

One of the main problems in the last 10-15 years research in
Mathematical Computer Science has been suggested by the attempt to specify
the semantics of functional languages. By this we mean the solution of
recursive domain equations, by using methods and tools from Mathematical
Logic.

As a matter of fact, Scott's motivation for finding a non-trivial solution
to the equati'on

©) D=A +[D->D]
was based on mathematical investigations of the semantics of paradigmatic
functional languages, A-calculus and the theory of Combinators
(Combinatory Logic, C.L.). '

By a "non-trivial” solution to the above equation we first mean that A is
non-empty or that D is larger than a singleton set. Then, of course, the set

[D'—>D]‘ cannot include all functions over D, by Cantor's theorem. For the

purpose of Computer Science, though, [D—D] has to be at least rich enough
so that, for some suitable interpretation of the natural numbers by a countably
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infinite subset of D, it contains all computable functions over it. This is also

required in order to turn D into a model of A-calculus or C.L., for both
languages have this strong computational power.

For the reader with no direct experience in denotational semantics of
programming languages, the interest and meaning of the equation in (0) may
still be rather obscure. Let's be more specific. | :

Let Ide be the set of identifiers of a programming language; Num the set
of all integers; State the set of all possible states of a (possibly imaginary)
computer; Proc the set of all parameter-less procedures, and Val the set of all
storable values. In the language we have in mind, identifiers can denote
integer and procedures. The following equations represent the relationship
between these sets:

(1) State =Ide — Val

(2) Proc = State — State
(3) Val=Num + Proc.

Note that in (1), (2) and (3), A—>B represents a set of functions from A
to B, while A+B represents the disjoint union of A and B. By substituting
for Proc in (3) and then the new right hand side of (3) in (1) we obtain:

(4) State =Ide — [ Num + (State —> State) ].

In other words, the intended domains are recursively specified. Such a
"circular” definition of data types is commonly used in actual programming.
As mentioned above, the existencxe of a solution to (4), i.e., the consistency
of (1) + (2) + (3), is not a trivial fact in classical mathematics, mainly if one
wants to retain the expressiveness of high level programming languages.
Several methods have been published. Scott {1972] showéd how to solve

(0), for A =, and Scott [1976] gave a general treatment using retracts of

Pw. Later papers introduced neighborhood systems (Scott [1980]) and then
information systems (Scott [1982], Larsen and Winskel [1984], and Coppo,
Dezani, and Longo [1983]). A categorical approach to solving such systems
is given in Smyth and Plotkin [1982] and Lehman and Smyth [1981] (see
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also Plotkin [1978] or Wand [1979]). Applications of recursive data
specifications may be found in Gordon [1979], Milne and Strachey [1976],
Stoy [1978], and Tennent [1981].

In Bruce and Longo [1983] we present an elementary algebraic approach
to constructing domains satisfying these equations. While many of the results
are old, we hope that this concrete approach is more accessible to computer
scientists. In particular the only use of category theory in this paper is the
notion of functor which we define herein. Briefly, a natural partial order is
given in the category of complete partial order such that the usual domain
constructors turn out to be "continuous” functions. This is applied both for
the semantics of ordinary functional languages and of language which allow
the use of types as parameters.

In Bruce and Longo [1984] the equations which hold in all models of

typed A-calculus are characterized. This is done by a simple theory whose
axioms for type equality are just

o=0 and a—>(B-—>y)=B—>(0t—>75
plus the expected inference rules for equality. Since Cartesian Closed

Categories are models of typed fB-calculus, our result characterize the
isomorphisms which hold in all CCC's. |

Moreover, by a suitable extension of that theory, we characterize the
valid equations in higher order models, i.e. in models of the second order
calculus.

. An analogy
The solution of domain equations may be probably regarded as one of
the main issues in present and forthcoming research in Mathematical
Computer Science and as a major connection between the later and
Mathematical Logic. It should be considered that "equations” have been a
basic way for applying mathematical tools to other scientific areas. Think, for
example, to the equations for "motion” in Physics or to the role of partial
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differential equations in describing a huge amount of physical and
engeneering problems. Proofs of existence (and unicity) of such equations
motivated large developements in Mathematics and provided methods for
several concrete applications. ,
‘What has semantics to-do. with this? Consider say the formal equation
G x2=-1

One may get to (5) by pure algebraic-syntactic manipulations of symbols and
formal operations. In order to find a solution of (5) one has to interpret the
symbols "=", "-" and the constant symbol "1" over a suitable space where an
»1nterpretat10n of x may be found realizing or satisfying that equation. The
complex numbers or the cartesian plane would do the job.

Slmllarly, Scott' s equation (0) may be written, for A-@ as

©) X=XX

The problem of finding a non-trivial solution to (0) is clearly a hard
problem. As in the case of (5) with complex numbers (or their interpretation
in the cartesian plane), one has to invent a suitable universé for interpreting
the operations and symbols in (0). Then an interpretation or
value-assignement has to be found which realizes the givén equation,

In this case the mathematical tools are bounded from category Theory::
the universe is provided by suitable Cartesian Closed Categories, where
formal exponentiation is interpreted by the "function space” functor and "="
by an isomorphism. The objects obtained as inverse limits over suitable
chains give a solution to (0), by providing an interpretation for X.
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