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Abstract

Model checking is an alternative to simulation and testing, two classic techniques
of software engineering for software validation, which consists in expressing some
properties of a finite-state transition system in formulas of a temporal logic and then
verifying them over a model of the system itself (usually a finite Kripke structure)
through exhaustive enumeration of all the reachable states. This technique is fully
automatic and every time the design violates a desired property, a counterexample is
produced, which illustrates a behavior that falsifies the property.

All model checking techniques, such as partial order reduction, symbolic and
bounded model checking, were developed some years ago bearing in mind the well-
known “point-based” temporal logics LTL and CTL. However, while the expressiveness
of such logics is beyond doubt, there are some properties we may want to check that
are inherently “interval-based” and thus can not be expressed by point-based tempo-
ral logics, e.g., “p has to hold in at least an average number of system states in a given
computation sector”. Here interval temporal logics (ITLs) come into play, providing
an alternative setting for reasoning about time. Such logics deal with intervals, in-
stead of points, as their primitive entities; this choice gives them the ability to express
temporal properties, such as actions with duration, accomplishments, and temporal
aggregations, which cannot be dealt with in standard (point-based) logics.

A prominent position among ITLs is occupied by Halpern and Shoham’s modal
logic of time intervals (HS, for short). HS features one modality for each of the 13
possible ordering relations between pairs of intervals, apart from the equality relation.

Here, we focus our attention on the model checking problem for HS, for which a
little work has been done, if compared to model checking for point-based temporal
logics.

The idea is to evaluate HS formulas on finite Kripke structures, making it possible
to check the correctness of the behavior of systems with respect to meaningful interval
properties. To this end, we interpret each finite path (i.e., a track) in a Kripke structure
as an interval, and we define its labeling on the basis of the labeling of the states that
compose it.

Formally, we will show that finite Kripke structures can be suitably mapped into
interval-based structures, called abstract interval models, over which HS formulas
can be interpreted. Such models have in general an infinite domain, because finite
Kripke structures may have loops and thus infinitely many tracks. In order to devise
a model checking procedure for HS over finite Kripke structures, we prove a small
model theorem showing that, given an HS formula ψ and a finite Kripke structure
K , there exists a finite interval model which is equivalent to the one induced by
K with respect to the satisfiability of ψ. In this way we can prove that the model
checking problem for HS interpreted over finite Kripke structures is decidable (with a
non-elementary upper bound); in addition we show it is EXPSPACE-hard if a succinct
encoding of HS formulas is exploited.

Then we restrict our attention to the fragment HS[A, A,B ,B ,E ], consisting of HS
formulas with modalities A, A, B , B and E only, and we prove that its model checking
is in EXPSPACE by exploiting track representatives, which are the only bounded-length
tracks we need to take into consideration when checking an HS[A, A,B ,B ,E ] formula
over a Kripke structure.

Finally, we consider the fragments HS[A, A,B ,E ] and ∀HS[A, A,B ,E ], whose
model checking problems are PSPACE-complete and coNP-complete, respectively.





Sommario

Il model checking si propone come un’alternativa alla simulazione e al testing,
due tecniche classiche dell’ingegneria del software per la validazione del software;
esso consiste nell’esprimere alcune proprietà di un sistema di transizione a stati
finiti mediante formule di una logica temporale e, successivamente, nel verificarle
su un modello del sistema stesso (di solito una struttura di Kripke finita), tramite
l’enumerazione completa di tutti gli stati raggiungibili. Questa tecnica è totalmente
automatica ed ogni volta che viene violata una proprietà desiderata, viene fornito un
controesempio che illustra un comportamento che falsifica tale proprietà.

Tutte le tecniche del model checking, come la partial order reduction, il symbolic
ed il bounded model checking, sono state sviluppate prendendo in considerazione
le logiche temporali LTL e CTL, che sono basate su punti. Tuttavia, nonostante
l’indubbia espressività di tali logiche, esistono alcune proprietà che potremmo voler
verificare, che hanno inerentemente una semantica intervallare e quindi non possono
essere espresse da logiche puntuali, per esempio: “la proposizione p deve valere in
almeno un dato numero medio di stati del sistema, in un settore di computazione
fissato”. Le logiche temporali a intervalli entrano in gioco in questi casi: esse adottano
gli intervalli, invece dei punti, come loro entità primitive. Tale caratteristica dà loro
l’abilità di esprimere proprietà intervallari, come azioni con durata, conseguimenti
di obiettivi e aggregazioni temporali, che non possono essere trattate nelle logiche
(puntuali) standard.

Una posizione prominente fra le logiche a intervalli è occupata dalla logica mo-
dale degli intervalli temporali di Halpern e Shoham (HS in breve): essa possiede
una modalità per ognuna delle 13 possibili relazioni di ordinamento fra coppie di
intervalli, eccetto l’uguaglianza. In questa tesi viene considerato il problema del
model checking per HS, il quale ha ricevuto ben poca attenzione in letteratura in
confronto al model checking per logiche temporali puntuali.

L’idea è quella di valutare formule di HS su strutture di Kripke finite, per riuscire a
verificare la correttezza del comportamento di un sistema rispetto a proprietà inter-
vallari. A questo scopo interpretiamo ogni percorso finito di una struttura di Kripke,
detto anche traccia, come un intervallo e definiamo l’etichettatura di quest’ultimo
sulla base dell’etichettatura degli stati che lo costituiscono. Mostreremo infatti che le
strutture di Kripke possono essere mappate in certe strutture intervallari, chiama-
te abstract interval models, sulle quali le formule di HS vengono interpretate; esse
hanno in generale un dominio infinito, perché le strutture di Kripke possono avere
cicli e quindi infinite tracce. Al fine di sviluppare una procedura di model checking
per HS su strutture di Kripke finite, proviamo uno small model theorem che dimostra
che data una formula di HS ψ e una struttura di Kripke finita K , esiste un interval
model finito che è equivalente a quello indotto da K rispetto alla soddisfacibilità di
ψ. In questo modo riusciamo a dimostrare che il problema del model checking per
HS interpretato su strutture di Kripke finite è decidibile (con un upper bound non
elementare); in aggiunta esso è EXPSPACE-hard, se si sfrutta una codifica succinta
delle formule di HS.

Poi passiamo a considerare il frammento HS[A, A,B ,B ,E ], costituito dalle formu-
le di HS con le sole modalità A, A, B , B , E , e dimostriamo che per tale frammento il
model checking è in EXPSPACE; sfruttiamo a questo scopo i rappresentanti di tracce:
essi sono le sole tracce di lunghezza limitata che è necessario prendere in considera-
zione quando si deve verificare una formula di HS[A, A,B ,B ,E ] su una struttura di
Kripke.

Infine analizziamo i frammenti HS[A, A,B ,E ] e ∀HS[A, A,B ,E ]: il problema del
model checking per il primo è PSPACE-completo, coNP-completo per il secondo.
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Introduction

Contents
1.1 An overview of model checking and interval temporal logics . . . 1
1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 An overview of model checking and interval
temporal logics

IT systems are becoming more and more pervasive in our lives; software is normally
responsible for their operation, even in the case of hard-realtime and fault-intolerant
systems, such as telephone networks, traffic control systems, medical instruments,
e-commerce, . . . where reliability is an essential requirement. However, the typical
techniques of software engineering for software validation, that is, simulation and
testing, have become outdated and are clearly not sufficient alone in several modern
scenarios; their effectiveness decreases dramatically as the complexity of design
grows, they do not always guarantee high quality results and often discover errors
and unpredictable behaviors in software at late stages of development (or even when
it has already been deployed). Moreover, such traditional methods are not effective
at discovering the more subtle and hidden bugs.

Formal verification is an alternative to simulation and testing, which explores all
the possible states and scenarios of a system, in order to prove that it features some de-
sired properties such as correctness, deadlock freedom, data integrity, liveness, safety,
fairness, responsiveness, interference freedom and so on. The two most famous
approaches to formal verification are axiomatic reasoning and model checking.

Axiomatic reasoning involves specifying the desired properties of a system by
means of formulas; then a proof system, consisting of axioms and rules, allows to
formally prove that the system meets the expected behavior. An example is Hoare’s
tuple-based proof system. However, this method has several limitations, being the
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most significant: the proof rules are designed only for a posteriori verification of
existing software, not for its systematic development; moreover such a technique is
very time consuming, cumbersome, and can be performed only by experts: as a con-
sequence, it is mostly employed for (parts of) critical systems or security protocols.

In model checking [CE81, CGP02, QS81, VW86] some properties of a finite-state
transition system are expressed in a temporal logic and then verified over a model of
the system itself (usually a Kripke structure) through exhaustive (implicit or explicit)
enumeration of all the reachable states. This technique is fully automatic and every
time the design violates a desired property, a counterexample is produced, which
illustrates a behavior that falsifies the property. Model checking techniques allow to
analyze even partial specifications, in such a way that it is not necessary to completely
specify the system before information can be obtained regarding its correctness.

The first attempt in this direction goes back to 1977, when the use of the linear
temporal logic LTL in program verification was proposed by Pnueli [Pnu77]. LTL
allows one to reason about changes in the truth value of formulas in a Kripke structure
over a linearly-ordered temporal domain, where each moment in time has a unique
possible future. More precisely, one has to consider all possible paths in a Kripke
structure and to analyze, for each of them, how proposition letters, labeling the states,
change from one state to the next one along the path.

The model checking problem for LTL turns out to be PSPACE-complete [CGP02,
Pnu81]. This logic has been also investigated with respect to the satisfiability problem,
useful for example in planning, which is, again, PSPACE-complete.

Four years later, in 1981, Clarke and Emerson invented the branching time logic
CTL [CE81], whose model of time is a tree, i.e., the future is not determined, as
there are different paths in the future, any one of which may be realized. The model
checking problem for CTL is in P, while its satisfiability is EXP-complete. However,
these two logics are somewhat complementary, as there are properties expressible in
only one of CTL and LTL.

Software is extremely flexible and, as time goes by, it tends to get more and more
complex: therefore model checking techniques have to cope with the problem of
state explosion, which becomes particularly serious when the system being verified is
very complex or many components are working in parallel. Symbolic model checking
[BCM+90, CM90, McM93] allows an exhaustive implicit enumeration of a huge quan-
tity of states (even more than 10120): ordered binary decision diagrams (OBDDs),
particular data structures for representing boolean functions, are exploited in order
to get concise representations of transition systems and to efficiently manipulate
them. A very successful model checker was developed based on OBDDs: SMV.

Partial order reduction [Pel93] tries to reduce the size of the state space by making
computations that differ only in the ordering of independently executed actions col-
lapse, as they are indistinguishable by the specification (i.e., they can be considered
equivalent) and only one for each group needs to be tested. The model checker SPIN
makes use of the partial order reduction technique.

Another, by now traditional model checking method is bounded model check-
ing [BCC+03]: proposed in [BCC+99], its basic idea is searching a counterexample
in computations whose length is bounded by a fixed integer k. So, either a bug is
found, or one can increase k until the problem becomes intractable, or the so-called
completeness threshold is reached (i.e., for high enough values of k, this technique is
guaranteed to find any existing counterexample). In bounded model checking both
the specifications of the system and properties to be checked have to be translated
into a propositional formula. In this way, it is possible to employ SAT-solvers in model
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checking, which are less sensitive to the state explosion problem than OBDD-based
solvers. However this method is in general incomplete if the bound is not high enough,
hence it used as a complementary technique to OBDD-based symbolic model check-
ing: the former is usually exploited for falsification, i.e., finding counterexamples and
bugs, while the latter for verification.

All of these techniques were developed some years ago, bearing in mind the
“point-based” temporal logics LTL and CTL. However, while the expressiveness of such
logics is beyond doubt, there are some properties we might want to check that are
inherently “interval-based” and thus can not be expressed by point-based temporal
logics, e.g., “the proposition p has to hold in at least an average number of system
states in a given computation sector”. Here interval temporal logics (ITLs) come into
play, providing an alternative setting for reasoning about time [HS91, Ven90, Ven91].
Such logics deal with intervals, instead of points, as their primitive entities; this
choice gives them the ability to express temporal properties, such as actions with
duration, accomplishments, and temporal aggregations, which can not be dealt with
in standard (point-based) logics.

ITLs have been applied in a variety of computer science fields, including artificial
intelligence (reasoning about action and change, qualitative reasoning, planning
[BT03], configuration and multi-agent systems [GT99, LR06] and computational
linguistics [Pra05]), theoretical computer science (formal verification [CH04, Mos83]),
and databases (temporal and spatio-temporal databases [GMS04]).

A prominent position among ITLs is occupied by Halpern and Shoham’s modal
logic of time intervals (HS, for short) [HS91]. HS features one modality for each of
the 13 possible ordering relations between pairs of intervals (the so-called Allen’s
relations [All83]), apart from the equality relation. As an example, the condition: “the
current interval meets an interval over which p holds” can be expressed in HS by the
formula 〈A〉p, where 〈A〉 is the (existential) HS modality for Allen’s relation meet.

In [HS91], it was shown that the satisfiability problem for HS interpreted over
all relevant classes of linear orders is undecidable. For example, it is undecidable
overN, Z,Q and R, as well as over the classes of all dense, discrete and finite linear
orders. Since then, a lot of work has been done on the satisfiability problem for HS
fragments [DGMS11], which showed that undecidability rules over them [BDG+14,
Lod00, MM14]. As an example, the fragment HS[B ,E ] (i.e., formulas of HS with B
and E modalities only) is undecidable, again, over the class of all linear orders, over
all dense linear orders, discrete linear orders and finite linear orders.

However, meaningful exceptions exist, including the interval logic of temporal
neighbourhood HS[A, A] and the temporal logic of sub-intervals HS[D] [BGMS10,
BGMS09, BMSS11b, MPS10, MMS12, MS12, BMSS11a]. In particular, the former is
decidable over the class of all linear orders, and over all finite, discrete and dense
linear orders (also over N, Z,Q and R); as for the latter, the situation is more involved:
HS[D] is decidable over all dense linear orders (e.g., Q), undecidable over discrete
linear orders and finite linear orders [MM14], and it is not known whether it is decid-
able or not in the case of all linear orders. Some other fragments, such as HS[B ,B ]
and HS[E ,E ], have actually a point-based semantics: one of the endpoints of every
interval related to the current one can “move”, but the other remains fixed; as a con-
sequence they can be polynomially translated to a basic point-based temporal logic;
it follows that they are decidable over the class of all linear orders and, in particular,
NP-complete. On the other hand, another fragment, HS[A, A,B ,B ], is decidable over
finite linear orders, Q, as well as over the class of all linear orders, but undecidable
over Dedekind-complete linear orders (in particular,N and R) [MPS14].
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Here we focus our attention on the model checking problem for HS, for which a
little work has been done, if compared to satisfiability of HS and especially to model
checking of point-based temporal logics. The idea is to evaluate HS formulas on
finite Kripke structures, making it possible to check the correctness of the behavior
of systems with respect to meaningful interval properties. To this end, we interpret
each finite path (i.e., a track) in a Kripke structure as an interval, and we define its
labeling on the basis of the labeling of the states that compose it, according to the
homogeneity assumption [Roe80] (i.e., a proposition letter p holds on an interval I if
and only if p holds on all the subintervals of I ).

The next section provides an overview of how we tackle the problem of HS model
checking by describing the contents of the following chapters.

1.2 Organization of the thesis

In Chapter 2, after giving syntax and semantics of HS (Section 2.1), we show that
finite Kripke structures can be suitably mapped into interval-based structures, called
abstract interval models, over which HS formulas can be interpreted (Section 2.2).
Such models have, in general, an infinite domain, as finite Kripke structures may have
loops and thus an infinite number of tracks. Moreover we introduce track descriptors,
tree-like structures which give information about (possibly infinite) sets of tracks and
allow us to define a finite-index equivalence relation over tracks (Section 2.3). The
reference for this chapter is [MMPP14].

In Chapter 3, in order to show that the model checking problem for HS over finite
Kripke structures is decidable, we prove a small model theorem (Section 3.1), which
heavily rests on track descriptors, demonstrating that, given an HS formula ψ and a
finite Kripke structure K , there exists a finite interval model which is equivalent to
the one induced by K with respect to the satisfiability ofψ (here we follow [MMPP14]
again). Then, in Section 3.2, we introduce the novel notion of correspondence between
descriptors, which allows us to precisely capture the relation of equivalence between
tracks with respect to satisfiability of HS formulas. Finally, in Section 3.3, we show that
the model checking problem for HS over finite Kripke structures is EXPSPACE-hard,
if a succinct encoding of formulas is used.

In Chapter 4, in an attempt to lower the complexity of model checking, we analyze
the fragment HS[A, A,B ,B ,E ] (i.e., formulas of HS with A, A, B , B and E modalities
only). In Section 4.1 we present the notions of cluster and descriptor element indis-
tinguishability, which allow to determine when two tracks are associated with the
same descriptor, without directly building it—an operation which is very expensive in
terms of complexity, due to the size of such structures. In Section 4.2 track represen-
tatives are introduced: they are tracks of bounded length, each of which is considered
in place of all other tracks associated with its descriptor. Due to their finite length,
their quantity is finite, and we can exploit them to provide an EXPSPACE model
checking algorithm for HS[A, A,B ,B ,E ]. Finally, in Section 4.4, by rephrasing the
proof of Section 3.3, we prove that the model checking problem for HS[A, A,B ,B ,E ]
is NEXP-hard if a suitable succinct encoding of formulas is exploited.

In the last chapter (Chapter 5) we analyze some more fragments of HS of lower
complexity, which can still express meaningful properties of transition systems. In
Section 5.1 we provide a model checking algorithm for a fragment which turns out
to be coNP-complete, ∀HS[A, A,B ,E ] (i.e., formulas of HS[A, A,B ,E ] where only
universal modalities and conjunctions are allowed) and in Section 5.2 we study the
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PSPACE-complete fragment HS[A, A,B ,E ].
A final overview of the results reached in this thesis is given in Chapter 6, together

with the conclusions.
Finally, the Appendix A contains some proofs which are not directly presented

with the corresponding theorems/lemmas, because particularly long and technical.

1.3 Related work
As already mentioned, the model checking problem for interval temporal logics has
not been extensively studied in literature. Indeed, to our knowledge the only three
papers that deal with HS model checking are [MMPP14, LM13, LM14].

In [MMPP14], Montanari et al. give a first characterization of the model checking
problem for full HS, interpreted over finite Kripke structures (under the homogeneity
assumption). In that paper, the authors provide the basic elements of the general
picture, namely, the interpretation of HS formulas over abstract interval models,
the mapping of finite Kripke structures into abstract interval models, the notion of
track descriptor, and the small model theorem proving the decidability of the model
checking problem for full HS against finite Kripke structures. We will present and
extend these results in chapters 2 and 3.

In [LM13, LM14], Lomuscio and Michaliszyn address the model checking prob-
lem for some fragments of HS extended with epistemic modalities. Their semantic
assumptions differ from those made in [MMPP14], making it difficult to compare
the outcomes of the two research directions. In both cases, formulas of interval
temporal logic are evaluated over tracks obtained from the unravelling of a finite
Kripke structure. However, in [MMPP14] the authors state that a proposition letter
holds over a track if and only if it holds over all its states (homogeneity principle),
while in [LM13, LM14] truth of proposition letters is defined over pairs of states (the
endpoints of tracks).

In [LM13], the authors focus their attention on the fragment HS[B ,E ,D] (since
modality D is easily definable in terms of modalities B and E , HS[B ,E ,D] is actually
as expressive as HS[B ,E ]), extended with epistemic modalities. They consider a
restricted form of model checking, which verifies the given specification against a sin-
gle (finite) initial computation interval. Their goal is indeed to reason about a given
computation of a multi-agent system, rather than on all its admissible computations.
The authors prove that the considered model checking problem is PSPACE-complete.
Moreover, they show that the same problem restricted to the purely temporal frag-
ment HS[B ,E ,D], that is, the one obtained by removing epistemic modalities, is in P.
These results do not come as a surprise as they trade expressiveness for efficiency:
modalities B and E allow one to access only sub-intervals of the initial one, whose
number is quadratic in the length (number of states) of the initial interval.

In [LM14], they show that the picture drastically changes with other fragments
of HS, that allow one to access infinitely many tracks/intervals. In particular, they
prove that the model checking problem for the fragment HS[A,B ,L] (since modality
L is easily definable in terms of modality A, HS[A,B ,L] is actually as expressive as
HS[A,B ]), extended with epistemic modalities, is decidable with a non-elementary
upper bound. Notice that, thanks to modalities A and B , formulas of this logic can
possibly refer to infinitely many (future) tracks/intervals.





2
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In this chapter, we first give syntax and semantics of Halpern and Shoham’s
interval temporal logic HS with respect to abstract interval models. Then, we provide
a suitable mapping from Kripke structures to abstract interval models that allows
us to interpret HS formulas over Kripke structures and then to define the notion of
interval-based model checking.

Finally we introduce the notion of track descriptor, which allows to prove that,
considered a Kripke structure K and an HS formula ψ, there exists a finite abstract
interval model which is equivalent to the possibly infinite model corresponding to K
with respect to satisfiability of ψ.

2.1 The interval temporal logic HS
An interval algebra to reason about intervals and their relative order was first pro-
posed by Allen in [All83]; then, a systematic logical study of interval representation
and reasoning was done by Halpern and Shoham, who introduced the interval tem-
poral logic HS [HS91]; such a logic features one modality for each of the possible
binary ordering relations between a pair of intervals (the so-called “Allen’s relations”),
except for the equality.

Table 2.1 depicts 6 of the 13 Allen’s relations; the other 7 are the 6 inverse relations
(given a generic binary relation R , the inverse relation R holds between two elements,
bR a, if and only if aR b), and the equality.
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Allen relation HS modality Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧x < v

contains 〈D〉 [x, y]RD [v, z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

Table 2.1: Allen’s interval relations and corresponding HS modalities.

In the table, each Allen’s relation is shown together with the corresponding HS
(existential) modality. In its original formulation, HS allowed point intervals as well,
that is, intervals consisting of a single point, but that way HS modalities are neither
mutually exclusive nor jointly exhaustive, i.e., more than one relation, or even none,
may hold between any two intervals. In the following, we will consider only strict
intervals, consisting of two or more points (strict semantics).

The language of HS features a set of proposition letters AP , the Boolean con-
nectives ¬ and ∧, the logical constants > and ⊥ (respectively true and false), and a
temporal modality for each of the (non trivial) Allen’s relations, namely, 〈A〉, 〈L〉, 〈B〉,
〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉.

Formally, HS formulas are defined by the following grammar:

ψ ::= p | ¬ψ |ψ∧ψ | 〈X 〉ψ | 〈X 〉ψ, with p ∈ AP and X ∈ {A,L,B ,E ,D,O}

In the following, we will make use of the standard abbreviations of propositional
logic, e.g., we will writeψ∨φ for ¬ψ∧¬φ,ψ→φ for ¬ψ∨φ, andψ↔φ for

(
ψ→φ

)∧(
φ→ψ

)
. Moreover, for all X , dual universal modalities [X ]ψ and [X ]ψ are respectively

defined as ¬〈X 〉¬ψ and ¬〈X 〉¬ψ, as usual.
Finally, it can easily be shown that, when the strict semantics is assumed, all HS

modalities can be expressed in terms of modalities 〈A〉, 〈B〉,〈E〉, and the transposed
modalities 〈A〉,〈B〉,〈E〉 as follows:

〈L〉ψ≡ 〈A〉〈A〉ψ 〈L〉ψ≡ 〈A〉〈A〉ψ
〈D〉ψ≡ 〈B〉〈E〉ψ≡ 〈E〉〈B〉ψ 〈D〉ψ≡ 〈B〉〈E〉ψ≡ 〈E〉〈B〉ψ

〈O〉ψ≡ 〈E〉〈B〉ψ 〈O〉ψ≡ 〈B〉〈E〉ψ
Given any subset of Allen’s relations {X1, · · · , Xn}, we denote by HS[X1, · · · , Xn] the

fragment of HS that features modalities X1, · · · , Xn only. As an example, the fragment
HS[A, A,B ,B ,E ,E ] features modalities 〈A〉,〈A〉,〈B〉,〈B〉, 〈E〉, and 〈E〉 only (observe
that this fragment contains an equivalent formula for every HS formula).

HS can be viewed as a multi-modal logic with six primitive modalities, namely,
〈A〉, 〈B〉, 〈E〉, and their inverses. Accordingly, HS semantics can be defined over a
multi-modal Kripke structure, here called abstract interval model, in which (strict)
intervals are treated as atomic objects and Allen’s relations as simple binary relations
between pairs of intervals.

Definition 2.1. An abstract interval model is a tuple A = (AP , I, AI,BI,EI,σ), where:

• AP is a finite set of proposition letters;

• I is a possibly infinite set of atomic objects (worlds);
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• AI, BI, EI are three binary relations over I;

• σ : I 7→ 2AP is a (total) labeling function, which assigns a set of proposition letters
to each world.

Intuitively, in the interval setting, I is a set of intervals, AI, BI, and EI are interpreted
as Allen’s interval relations A (meets), B (started-by), and E (finished-by), respectively,
and σ assigns to each interval the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI,BI,EI,σ) and an interval I ∈ I, the
truth of an HS formula over I is defined by induction on the structural complexity of
the formula as follows:

• A , I |= p iff p ∈σ(I ), for any proposition letter p ∈ AP ;

• A , I |= ¬ψ iff it is not true that A , I |=ψ;

• A , I |=ψ∧φ iff A , I |=ψ and A , I |=φ;

• A , I |= 〈X 〉ψ, for X ∈ {A,B ,E }, iff there exists J ∈ I such that I XI J and A , J |=ψ;

• A , I |= 〈X 〉ψ, for X ∈ {A,B ,E }, iff there exists J ∈ I such that J XI I and A , J |=ψ.

Satisfiability and validity are defined in the usual way: an HS formula ψ is satis-
fiable if there exists an interval model A and a world (interval) I such that A , I |=ψ.
Moreover, ψ is valid, denoted as |= ψ, if A , I |= ψ for all worlds (intervals) I of any
interval model A .

2.2 Finite Kripke structures and abstract interval
models

Finite-state transition systems are usually modeled as finite Kripke structures. In the
following, we first recall the definition of finite Kripke structure and then we define a
suitable mapping from this class of structures to abstract interval models that makes
it possible to specify properties of systems by means of HS formulas.

Definition 2.2. A finite Kripke structure is a tuple K = (AP ,W,δ,µ, w0), where AP is a
set of proposition letters, W is a finite set of states (worlds), δ⊆W ×W is a left-total
relation between pairs of states (accessibility relation), µ : W 7→ 2AP a total labeling
function, and w0 ∈W is the initial state.

For all w ∈W , µ(w) captures the set of proposition letters that hold at that state,
while δ is the transition relation that constrains the evolution of the system over time.

A simple Kripke structure, consisting of two states only, is reported in the following
example. We will use it as a running example in this chapter.

Example 2.3. Figure 2.1 depicts a two-state Kripke structure KE qui v (the initial state
is identified by a double circle). Despite its simplicity, it features an infinite number of
different (finite) paths. Formally, KE qui v is defined by the following quintuple:

({p, q}, {v0, v1}, {(v0, v0), (v0, v1), (v1, v0), (v1, v1)},µ, v0),

where µ(v0) = {p} and µ(v1) = {q}.
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v0
p

v1
q

Figure 2.1: The Kripke structure KE qui v .

Definition 2.4. A track ρ over a finite Kripke structure K = (AP ,W,δ,µ, w0) is a finite
sequence of states v0 · · ·vn , with n ≥ 1, such that for all i ∈ {0, · · · ,n −1}, (vi , vi+1) ∈ δ.

Let TrkK be the (possibly infinite) set of all tracks over a finite Kripke structure K .
For any track ρ = v0 · · ·vn ∈ TrkK , we define:

• |ρ| = n +1;

• ρ(i ) = vi ;

• states(ρ) = {v0, · · · , vn} ⊆W ;

• intstates(ρ) = {v1, · · · , vn−1} ⊆W ;

• fst(ρ) = v0 and lst(ρ) = vn ;

• ρ(i , j ) = vi · · ·v j , 0 ≤ i ≤ j ≤ |ρ|−1 is a subtrack of ρ;

• Pref(ρ) = {ρ(0, i ) | 1 ≤ i ≤ |ρ|−2} is the set of all proper prefixes of ρ;

• Suff(ρ) = {ρ(i , |ρ|−1) | 1 ≤ i ≤ |ρ|−2} is the set of all proper suffixes of ρ.

If fst(ρ) = w0, where w0 is the initial state of K , ρ is said to be an initial track. Notice
that the length of tracks, prefixes, and suffixes is greater than 1, as they will be mapped
into strict intervals.

An abstract interval model (over TrkK ) can be naturally associated with a finite
Kripke structure by interpreting every track as an interval bounded by its first and
last states.

Definition 2.5. The abstract interval model induced by a finite Kripke structure
K = (AP ,W,δ,µ, w0) is the abstract interval model AK = (AP , I, AI,BI,EI,σ) where:

• I= TrkK ,

• AI =
{
(ρ,ρ′) ∈ I× I | lst(ρ) = fst(ρ′)

}
,

• BI =
{
(ρ,ρ′) ∈ I× I | ρ′ ∈ Pref(ρ)

}
,

• EI =
{
(ρ,ρ′) ∈ I× I | ρ′ ∈ Suff(ρ)

}
,

• σ : I 7→ 2AP such that for all ρ ∈ I,

σ(ρ) = ⋂
w∈states(ρ)

µ(w).
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In Definition 2.5, relations AI,BI, and EI are interpreted as Allen’s interval relations
A,B , and E , respectively. Moreover, according to the definition of σ, a proposition
letter p ∈ AP holds over ρ = v0 · · ·vn if and only if it holds over all the states v0, · · · , vn

of ρ. This conforms to the homogeneity principle, according to which a proposition
letter holds over an interval if and only if it holds over all of its subintervals.

Satisfiability of an HS formula over a finite Kripke structure can be given in terms
of induced abstract interval models.

Definition 2.6. (Satisfiability of HS formulas over Kripke structures) Let K be a finite
Kripke structure, ρ be a track in TrkK , ψ be an HS formula. We say that the pair (K ,ρ)
satisfies ψ, denoted by K ,ρ |=ψ, if and only if it holds that AK ,ρ |=ψ.

We are now ready to formally state the model checking problem for HS over finite
Kripke structures.

Definition 2.7. (Model checking) Let K be a finite Kripke structure and ψ be an HS
formula. We say that K models ψ, denoted by K |=ψ, if and only if

for all initial tracks ρ ∈ TrkK , it holds that K ,ρ |=ψ.

We conclude the section by giving some examples of meaningful properties of
tracks that can be expressed in HS. To start with, we observe that the formula [B ]⊥ can
be used to select all and only the tracks of length 2. Indeed, given any ρ with |ρ| = 2,
independently of K , it holds that K ,ρ |= [B ]⊥, because ρ has not (strict) prefixes. On
the other hand, it holds that K ,ρ |= 〈B〉> if (and only if) |ρ| > 2. Modality 〈B〉 can
indeed be used to constrain the length of an interval to be greater than, less than,
or equal to any value k. Let us denote k nested applications of 〈B〉 by 〈B〉k . It holds
that K ,ρ |= 〈B〉k > if and only if |ρ| ≥ k +2. Analogously, K ,ρ |= [B ]k⊥ if and only if
|ρ| ≤ k +1. Let `(k) be a shorthand for [B ]k−1⊥∧〈B〉k−2>. It holds that K ,ρ |= `(k) if
and only if |ρ| = k.

Example 2.8. Let us consider the finite Kripke structure KE qui v of Example 2.3, de-
picted in Figure 2.1. For the sake of brevity, for any track ρ, we denote by ρn the track
obtained by concatenating n copies of ρ. The truth of the following statements can be
easily checked:

• KE qui v , (v0v1)2 |= 〈A〉q;

• KE qui v , v0v1v0 6|= 〈A〉q;

• KE qui v , (v0v1)2 |= 〈A〉p;

• KE qui v , v1v0v1 6|= 〈A〉p.

The above statements show that modalities 〈A〉 and 〈A〉 can be used to distinguish
between tracks that start or end at different states.

Modalities 〈B〉 and 〈E〉 can be exploited to distinguish between tracks encompassing
a different number of iterations of a given loop. This is the case, for instance, with the
following statements:

• KE qui v , (v1v0)3v1 |= 〈B〉(〈A〉p ∧〈B〉(〈A〉p ∧〈B〉〈A〉p
))

;

• KE qui v , (v1v0)2v1 6|= 〈B〉(〈A〉p ∧〈B〉(〈A〉p ∧〈B〉〈A〉p
))

.
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Finally, HS makes it possible to distinguish between ρ1 = v3
0 v1v0 and ρ2 = v0v1v3

0 ,
which feature the same number of iterations of the same loops, but differ in the order
of loop occurrences:

KE qui v ,ρ1 |= 〈B〉(〈A〉q ∧〈B〉〈A〉p
)

but KE qui v ,ρ2 6|= 〈B〉(〈A〉q ∧〈B〉〈A〉p
)

.

Example 2.9. In Figure 2.2, we provide an example of a finite Kripke structure KSched

that models the behavior of a scheduler serving three processes which are continuously
requesting the use of a common resource. The initial state is v0: no process is served in
that state. In any other state vi and v i , with i ∈ {1,2,3}, the i -th process is served (this
is denoted by the fact that pi holds in those states). For the sake of readability, edges are
marked either by ri , for r equest (i ), or by ui , for unlock(i ). Edge labels do not have a
semantic value, that is, they are neither part of the structure definition, nor proposition
letters; they are simply used to ease reference to edges. Process i is served in state vi ,
then, after “some time”, a transition ui from vi to v i is taken; subsequently, process
i cannot be served again immediately, as vi is not directly reachable from v i (the
scheduler cannot serve twice the same process in two successive rounds). A transition
r j , with j 6= i , from v i to v j is then taken and process j is served. This structure can
easily be generalized to a higher number of processes.

v0;

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1

r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Figure 2.2: The Kripke structure KSched .

We show how some meaningful properties to be checked over KSched can be ex-
pressed in HS. In all formulas, we force the validity of the considered property over all
legal computation sub-intervals by using modality [E ] (all computation sub-intervals
are suffixes of at least one initial track). Moreover, we will make use of the shorthand
wi t≥2({p1, p2, p3}) for the formula:

(〈D〉p1 ∧〈D〉p2)∨ (〈D〉p1 ∧〈D〉p3)∨ (〈D〉p2 ∧〈D〉p3),
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which states that there exist at least two sub-intervals such that pi holds over the
former and p j over the latter, with i , j ∈ {1,2,3} and j 6= i (such a formula can be easily
generalized to an arbitrary set of proposition letters and to any natural number k).
The truth of the following statements can be easily checked:

• KSched |= [E ]
(〈B〉5>→ wi t≥2({p1, p2, p3})

)
;

• KSched 6|= [E ]
(〈B〉10>→〈D〉p3

)
;

• KSched 6|= [E ]
(〈B〉7>→〈D〉p1 ∧〈D〉p2 ∧〈D〉p3

)
.

The first formula states that in any suffix of an initial track of length greater than
or equal to 7 at least 2 proposition letters are witnessed. KSched satisfies the formula
since a process cannot be executed twice in a row. The second formula states that in
any suffix of an initial track of length at least 12 process 3 is executed at least once in
some internal states. KSched does not satisfy the formula since the scheduler can avoid
executing a process ad libitum. The third formula states that in any suffix of an initial
track of length greater than or equal to 9, p1, p2, p3 are all witnessed. The only way
to satisfy this property is to constrain the scheduler to execute the three processes in a
strictly periodic manner, but this is not the case.

2.3 The fundamental notion of BEk-descriptor
In the previous section, we have shown that, for any given finite Kripke structure
K , one can find a corresponding induced abstract interval model AK , featuring one
interval for each track of K . Since K has loops (each state must have at least one
successor), the number of its tracks, and thus the number of intervals of AK , is infinite.
In this section, we show that, given a finite Kripke structure K and an HS formula ϕ,
we can build a finite abstract interval model, which—as we will prove in Chapter 3—is
equivalent to AK with respect to the satisfiability ofϕ (in fact, of a class of HS formulas
including ϕ).

We start with the definition of some basic notions. The first one is the BE-nesting
depth of an HS formula.

Definition 2.10. Let ψ be an HS formula. The BE-nesting depth of ψ, denoted by
NestBE(ψ), is defined by induction on the structural complexity of the formula as
follows:

• NestBE(p) = 0, for any proposition letter p ∈ AP ;

• NestBE(¬ψ) = NestBE(ψ);

• NestBE(ψ∧φ) = max{NestBE(ψ),NestBE(φ)};

• NestBE(〈B〉ψ) = NestBE(〈E〉ψ) = 1+NestBE(ψ);

• NestBE(〈X〉ψ) = NestBE(ψ), for X ∈ {A, A,B ,E }.

Making use of the notion of BE-nesting depth of a formula, we can define a
relation of k-equivalence over tracks.

Definition 2.11. Let K be a finite Kripke structure and ρ and ρ′ be two tracks in TrkK .
We say that ρ and ρ′ are k-equivalent if and only if, for every HS-formula ψ with
NestBE(ψ) = k, K ,ρ |=ψ if and only if K ,ρ′ |=ψ.
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It can be easily proved that k-equivalence propagates downwards.

Proposition 2.12. Let K be a finite Kripke structure and ρ and ρ′ be two tracks in
TrkK . If ρ and ρ′ are k-equivalent, then they are h-equivalent, for all 0 ≤ h ≤ k.

Proof. Let us assume that K ,ρ |=ψ, with 0 ≤ NestBE(ψ) ≤ k. Consider the formula
〈B〉k >, whose BE-nesting depth is equal to k. It trivially holds that either K ,ρ |=
〈B〉k > or K ,ρ |= ¬〈B〉k >. In the first case, we have that K ,ρ |= 〈B〉k >∧ψ. Since
NestBE

(〈B〉k >∧ψ) = k, from the hypothesis it follows that K ,ρ′ |= 〈B〉k >∧ψ, and
thus K ,ρ′ |=ψ. The other case can be dealt with in a symmetric way.

We are now ready to introduce the notion of descriptor, which will play a funda-
mental role in the definition of finite abstract interval models.

Definition 2.13. A B-descriptor (resp., E-descriptor) is a labeled tree D = (V ,E ,λ),
where V is a finite set of vertices, E ⊆V ×V is a set of edges, and λ : V 7→W ×2W ×W
is a node labeling function, that satisfies the following conditions:

1. for all (v, v ′) ∈ E, with λ(v) = (vi n ,S, v f i n) and λ(v ′) = (v ′
i n ,S′, v ′

f i n), it holds

that S′ ⊆ S, vi n = v ′
i n , and v ′

f i n ∈ S (resp., S′ ⊆ S, v f i n = v ′
f i n , and v ′

i n ∈ S);

2. for all pairs of edges (v, v ′), (v, v ′′) ∈ E, if the subtree rooted in v ′ is isomorphic to
the subtree rooted in v ′′, then v ′ = v ′′ (here and in the following, we write subtree
for maximal subtree).

Condition (2) of Definition 2.13 simply states that no two subtrees, whose roots
are siblings, can be isomorphic.

For X ∈ {B ,E }, the depth of an X -descriptor (V ,E ,λ) is the depth of the tree (V ,E ).
We call an X -descriptor of depth k ∈N an Xk -descriptor. An X0-descriptor D consists
of its root only, which is denoted by root(D). A label of a node will be referred to
as a descriptor element. Hereafter, two descriptors will be considered equal up to
isomorphism. The following lemma holds.

Lemma 2.14. For all k ∈ N, there exists a finite number of possible Bk -descriptors
(resp., Ek -descriptors).

Proof. Let us consider the case of Bk -descriptors (the case of Ek -descriptors is anal-
ogous). For k = 0, there are at most |W | ·2|W | · |W | pairwise distinct B0-descriptors.
As for the inductive step, let us assume h to be the number of pairwise distinct B-
descriptors of depth at most k. The number of Bk+1-descriptors is at most |W | ·2|W | ·
|W | ·2h (there are at most |W | ·2|W | · |W | possible choices for the root, which can have
any subset of the h B-descriptors of depth at most k as subtrees). Moreover, by the
König’s lemma, they are all finite, because their depth is k +1 and the root has a finite
number of children (no two subtrees of the root can be isomorphic).

Lemma 2.14 provides an upper bound to the number of distinct Bk -descriptors
(resp., Ek -descr.), and thus to the number of nodes of each Bk+1-descriptor (resp.,
Ek+1-descriptors), for k ∈N, which is not elementary with respect to |W | and k, |W |
being the exponent and k the height of the exponential tower. As a matter of fact, this
is a very rough upper bound, as some descriptors may not have depth k +1 and some
others might not even fulfil the definition of descriptor.

We show now how B-descriptors and E-descriptors can be exploited to extract
relevant information from the tracks of a finite Kripke structure to be used in model
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checking. Let K be a finite Kripke structure and ρ be a track in TrkK . We now describe
how to build such descriptors for ρ.

For any k ≥ 0, the label of the root of both the Bk -descriptor and Ek -descriptor
for ρ is the triple (fst(ρ), intstates(ρ), lst(ρ)). The root of the Bk -descriptor has a child
for each prefix ρ′ of ρ, labeled with (fst(ρ′), intstates(ρ′), lst(ρ′)). Such a construction
is then iteratively applied to the children of the root until either depth k is reached
or a track of length 2 is being considered on a node. The Ek -descriptor is built in a
similar way by considering the suffixes of ρ.

In general, B- and E-descriptors do not convey enough information to determine
which track they were built from (this will be clear shortly). However, they can be
exploited to determine which HS formulas are satisfied by the track from which they
have been built:

• to check satisfiability of proposition letters, they keep information about initial,
final, and internal states of the track;

• to deal with 〈A〉ψ and 〈A〉ψ formulas they store the final and initial states of
the track;

• to deal with 〈B〉ψ formulas, the B-descriptor keeps information about all the
prefixes of the track;

• to deal with 〈E〉ψ formulas, the E-descriptor keeps information about all the
suffixes of the track;

• no additional information is needed for 〈B〉ψ and 〈E〉ψ formulas.

Let K be a finite Kripke structure. The Bk -descriptor (resp., Ek -descriptor) for a
track ρ in TrkK is formally defined as follows.

Definition 2.15. Let K be a finite Kripke structure, ρ be a track in TrkK , and k ∈N.
The Bk -descriptor (respectively, Ek -descriptor) for ρ is inductively defined as follows:

• for k = 0, the Bk -descriptor (respectively, Ek -descriptor) for ρ is the tree

D = (root(D),;,λ),

where
λ(root(D)) = (fst(ρ), intstates(ρ), lst(ρ));

• for k > 0, the Bk -descriptor (respectively, Ek -descriptor) for ρ is the tree

D = (V ,E ,λ),

where
λ(root(D)) = (fst(ρ), intstates(ρ), lst(ρ)),

which satisfies the following conditions:

1. for each prefix (respectively, suffix) ρ′ of ρ, there exists v ∈ V such that
(root(D), v) ∈ E and the subtree rooted in v is the Bk−1-descriptor (respec-
tively, Ek−1-descriptor) for ρ′.

2. for each vertex v ∈V such that (root(D), v) ∈ E, there exists a prefix (respec-
tively, suffix) ρ′ of ρ such that the subtree rooted in v is the Bk−1-descriptor
(respectively, Ek−1-descriptor) for ρ′;
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3. for all pairs of edges (root(D), v ′), (root(D), v ′′) ∈ E, if the subtree rooted in
v ′ is isomorphic to the subtree rooted in v ′′, then v ′ = v ′′.

It can be easily checked that any Bk -descriptor (resp., Ek -descriptor) for some
track of some finite Kripke structure satisfies the conditions of Definition 2.13 (in
particular, condition (1)), but not vice versa.

Consider, for instance, the B1-descriptor reported in Figure 2.3. It is built on a set
of states W including at least states v0, v1, v2, and v3, and it satisfies both conditions
of Definition 2.13. However, no track of a finite Kripke structure can be described by
it, as no track may feature two prefixes to associate with the first two children of the
root.

(v0, {v1, v2}, v3)

(v0,;, v1)(v0, {v1}, v2)(v0, {v2}, v1)

Figure 2.3: An example of a B1-descriptor devoid of a corresponding track (in any Kripke
structure).

Example 2.16. Figure 2.4 depicts the B2- and E2-descriptors for the track v0v1v0v0v1

of the Kripke structure KE qui v of Figure 2.1.

(v0, {v0, v1}, v1)

(v0,;, v1)(v0, {v1}, v0)

(v0,;, v1)

(v0, {v0, v1}, v0)

(v0,;, v1)(v0, {v1}, v0)

(a) B2-descriptor for the track v0v1v0v0v1 of KE qui v .

(v0, {v0, v1}, v1)

(v0,;, v1)(v0, {v0}, v1)

(v0,;, v1)

(v1, {v0}, v1)

(v0,;, v1)(v0, {v0}, v1)

(b) E2-descriptor for the track v0v1v0v0v1 of KE qui v .

Figure 2.4: B2- and E2-descriptors for the track v0v1v0v0v1 of KE qui v .

Example 2.17. In Figure 2.5, we show the B2-descriptor for ρ = v0v1v0v0v0v0v1 of
KE qui v . It is worth noticing that there exist two distinct prefixes of ρ, that is, the tracks
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ρ′ = v0v1v0v0v0v0 and ρ′′ = v0v1v0v0v0, which have the same B1-descriptor. Since,
according to Definition 2.13, no tree can occur more than once as a subtree of the
same node (in this example, the root), in the B2-descriptor for ρ prefixes ρ′ and ρ′′ are
represented by the same tree (the first subtree of the root on the left). In general, it holds
that the root of a descriptor for a track with h proper prefixes does not necessarily have
h children.

(v0, {v0, v1}, v1)

(v0,;, v1)(v0, {v1}, v0)

(v0,;, v1)

(v0, {v0, v1}, v0)

(v0,;, v1)(v0, {v1}, v0)

(v0, {v0, v1}, v0)

(v0,;, v1)(v0, {v1}, v0)(v0, {v0, v1}, v0)

Figure 2.5: The B2-descriptor for the track v0v1v0v0v0v0v1 of KE qui v .

Example 2.18. This example shows that not all of the Bk -descriptors that can be
generated from the set of states of a given finite Kripke structure are Bk -descriptors for
some track of that structure. (The same holds for Ek -descriptors.) Let us consider the
finite Kripke structure K and the B1-descriptor DB1 respectively depicted on the left
and the right of Figure 2.6. By inspecting DB1 , it can be easily checked that it can be the
B1-descriptor for tracks of the form v0vh

1 v2
3 , with h ≥ 2, only. However, no track of this

form can be obtained from the unravelling of K .

v1

v0

v2

v3

(a) A Kripke structure K .

(v0, {v1, v3}, v3)

(v0,;, v1)(v0, {v1}, v1)(v0, {v1}, v3)

(b) DB1 : a B1-descriptor not corresponding to
any of the tracks of K in figure 2.6(a).

Figure 2.6: Not all of the Bk -descriptors over W are descriptors for some track of the
Kripke structure K = (AP ,W,δ,µ, w0).

To check an HS formula against a given finite Kripke structure we actually need
to account for both the started-by and finished-by relations at the same time. To this
end, we introduce BEk -descriptors for tracks. Given a finite Kripke structure K and a
track ρ in TrkK , the BEk -descriptor for ρ can be obtained from a suitable merging
of its Bk -descriptor and Ek -descriptor. It can be viewed as a sort of “product” of the
Bk -descriptor and the Ek -descriptor for ρ, and it is formally defined as follows:

Definition 2.19. Let K be a finite Kripke structure, ρ be a track in TrkK , and k ∈N.
The BEk -descriptor for ρ is a labeled tree D = (V ,E ,λ), where V is a finite set of vertices,
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E = EB ∪EE , with EB ⊆V ×V the set of “B-edges”, EE ⊆V ×V the set of “E-edges”, and
EB ∩EE =;, and λ : V 7→W ×2W ×W , which is inductively defined on k ∈N as follows:

• for k = 0, the BEk -descriptor for ρ is D = (root(D),;,λ), where

λ(root(D)) = (fst(ρ), intstates(ρ), lst(ρ)).

• for k > 0, the BEk -descriptor for ρ is D = (V ,E ,λ) with

λ(root(D)) = (fst(ρ), intstates(ρ), lst(ρ))

which satisfies the following conditions:

1a. for each prefix ρ′ of ρ, there exists v ∈V such that (root(D), v) ∈ EB and the
subtree rooted in v is the BEk−1-descriptor for ρ′;

1b. for each vertex v ∈V such that (root(D), v) ∈ EB , there exists a prefix ρ′ of
ρ such that the subtree rooted in v is the BEk−1-descriptor for ρ′;

1c. for all pairs of edges (root(D), v ′), (root(D), v ′′) ∈ EB , if the subtree rooted
in v ′ is isomorphic to the subtree rooted in v ′′, then v ′ = v ′′;

2a. for each suffix ρ′′ of ρ, there exists v ∈V such that (root(D), v) ∈ EE and the
subtree rooted in v is the BEk−1-descriptor for ρ′′;

2b. for each vertex v ∈V such that (root(D), v) ∈ EE , there exists a suffix ρ′′ of
ρ such that the subtree rooted in v is the BEk−1-descriptor for ρ′′;

2c. for all pairs of edges (root(D), v ′), (root(D), v ′′) ∈ EE , if the subtree rooted
in v ′ is isomorphic to the subtree rooted in v ′′, then v ′ = v ′′.

From Definition 2.19, it follows that for all (v, v ′) ∈ EB , with λ(v) = (vi n ,S, v f i n)
and λ(v ′) = (v ′

i n ,S′, v ′
f i n), S′ ⊆ S, vi n = v ′

i n , and v ′
f i n ∈ S, and for all (v, v ′) ∈ EE , with

λ(v) = (vi n ,S, v f i n) and λ(v ′) = (v ′
i n ,S′, v ′

f i n), S′ ⊆ S, v f i n = v ′
f i n and v ′

i n ∈ S.

Example 2.20. In Figure 2.7, with reference to the finite Krikpe structure KE qui v of
Figure 2.1, we give an example of a BE2-descriptor. B-edges are represented by solid
lines, while E-edges are represented by dashed lines. It is worth pointing out that
the BE2-descriptor of Figure 2.7 turns out to be the BE2-descriptor for both the track
ρ = v0v1v3

0 v1 and the track ρ′ = v0v1v4
0 v1 (and many others). As we will see very

soon, this is not an exception, but the rule: different tracks of a finite Kripke structure
are described by the same BE-descriptor. Notice also that it features two isomorphic
subtrees for the same node (the root). They both consist of a single node, labeled with
(v0,;, v1). However, this does not violate Definition 2.19 since one of them is connected
to the parent via a B-edge and the other via an E-edge.

Bk and Ek -descriptors can be easily recovered from BEk ones. The Bk -descriptor
DBk for a track ρ can be obtained from the BEk -descriptor DBEk for ρ by pruning
it in such a way that only those vertices of DBEk which are connected to the root
via paths consisting of B-edges only are maintained (the set of edges of DBk and its
labeling function can be obtained by restricting those of DBEk to the nodes of DBk ).
The Ek -descriptor DEk of ρ can be obtained in a similar way.

We focus now our attention on the relationships between the tracks obtained
from the unravelling of a finite Kripke structure and their BEk -descriptors. A key
observation is that, even though the number of tracks of a finite Kripke structure K
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is infinite, for any k ∈N the set of BEk -descriptors for its tracks is finite. This is an
immediate consequence of Definition 2.19 and Lemma 2.14. Thus, at least one BEk -
descriptor must be the BEk -descriptor for infinitely many tracks. BEk -descriptors
naturally induce an equivalence relation of finite index over the set of tracks of a finite
Kripke structure, that we call k-descriptor equivalence relation.

Definition 2.21. Let K be a finite Kripke structure, ρ,ρ′ be two tracks in TrkK , and
k ∈N. We say that ρ and ρ′ are k-descriptor equivalent, denoted by ρ ∼k ρ

′, if and
only if the BEk -descriptors for ρ and ρ′ coincide.

The equivalence class of a track ρ will be denoted by [ρ]∼k . In the next chapter (in
Theorem 3.2), we will prove that, for any given pair of tracks ρ,ρ′ ∈ TrkK , if ρ ∼k ρ

′,
then ρ and ρ′ are k-equivalent (see Definition 2.11).

For all k ∈N, by exploiting the fact that the set of BEk -descriptors for the tracks
of a finite Kripke structure K is finite (or, equivalently, ∼k has a finite index), we can
associate a finite abstract interval model with K , called the quotient induced abstract
interval model of depth k, as follows.

Let K be a finite Kripke structure, TrkK be the set of all its tracks, and k ∈N. Each
class of ∼k is identified by a BEk -descriptor DBEk , and it consists of all and only those
tracks in TrkK which have DBEk as their BEk -descriptor. We denote by k -Desc the set
of all BEk -descriptors DBEk such that there exists at least one track ρ in TrkK which
is described by DBEk (we say that DBEk is witnessed by a track in TrkK ).

Allen’s relations A (meets), B (started-by), and E (finished-by) over k -Desc can be
defined as follows.

Definition 2.22. Let DBEk ,D ′
BEk

be two BEk -descriptors in k -Desc, with

DBEk = (V ,EB ∪EE ,λ) and D ′
BEk

= (V ′,E ′
B ∪E ′

E ,λ′).

We say that:

1.
(
DBEk ,D ′

BEk

)
∈ ADesc iff

λ
(
root(DBEk )

)
= (vi n ,S, v f i n),λ′

(
root(D ′

BEk
)
)
= (v ′

i n ,S′, v ′
f i n), and v f i n = v ′

i n ;

2.
(
DBEk ,D ′

BEk

)
∈ BDesc iff there exists v ∈ V such that

(
root(DBEk ), v

) ∈ EB and

the subtree of DBEk rooted in v is isomorphic to the tree obtained from D ′
BEk

by removing the nodes at depth k (if any) and the isomorphic subtrees possibly
resulting from such a removal (see condition (1c) of Definition 2.19);

3.
(
DBEk ,D ′

BEk

)
∈ EDesc iff there exists v ∈ V such that

(
root(DBEk ), v

) ∈ EE and

the subtree of DBEk rooted in v is isomorphic to the tree obtained from D ′
BEk

by removing the nodes at depth k (if any) and the isomorphic subtrees possibly
resulting from such a removal (see condition (2c) of Definition 2.19).

Definition 2.22 can be read as follows. Item 1 states that, whenever the third
component (final state) of the label of the root of a BEk -descriptor is equal to the first
component (initial state) of the label of the root of another BEk -descriptor, the two
BEk -descriptor are related by ADesc. This amounts to say that any pair of tracks ρ,ρ′,
which are described respectively by the former and latter BEk -descriptor, are such
that lst(ρ) = fst(ρ′), and thus Allen relation A holds between ρ and ρ′. Item 2 states
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that, whenever there exists a subtree of DBEk , linked to the root via a B-edge, which
is isomorphic to the tree obtained from D ′

BEk
by removing the nodes at depth k (if

any) and the isomorphic subtrees possibly resulting from such a removal (this is the
case, for instance, with subtrees of D ′

BEk
that differ on the labels of nodes at depth k

only), DBEk and D ′
BEk

are related by BDesc. As a matter of fact, several tracks may be
described by the same BEk -descriptor DBEk . However, whenever a track is described
by (the tree obtained from the pruning of) D ′

BEk
, it is a prefix of at least one of the

tracks described by DBEk . Item 3 is analogous to item 2.
The generalization of Definition 2.22 to pairs of descriptors belonging to k -Desc

and k ′ -Desc, with k 6= k ′, is straightforward.
We are now ready to formally define the notion of quotient induced abstract

interval model of depth k.

Definition 2.23. Let K = (AP ,W,δ,µ, v0) be a finite Kripke structure, ϕ be an HS
formula with BE-nesting depth k ∈N, and

Ω= ⋃
h≤k

h -Desc.

The quotient induced abstract interval model of depth k is the finite abstract interval
model A/∼k = (AP ,Ω, ADesc,BDesc,EDesc,σ), where the valuation functionσ :Ω 7→ 2AP

is such that for all DBE ∈Ω, with λ(root(DBE )) = (vi n ,S, v f i n),

σ(DBE ) =µ(vi n)∩ ⋂
v∈S

µ(v)∩µ(v f i n).

This notion is fundamental for the decidability of the model checking problem
for HS, which is proved in the next chapter.
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In this chapter we prove the decidability of the model checking problem for HS
over finite Kripke structures (under the homogeneity assumption). The proof makes
an essential use of quotient induced abstract interval models. Formally, we show that,
for any given finite Kripke structure K , the (finite) quotient induced abstract interval
model A/∼k and the (possibly infinite) abstract interval model AK , induced by K ,
are equivalent with respect to the satisfiability of HS formulas with nesting depth
at most k. In addition, we show that the notions of k-equivalence and k-descriptor
equivalence are not equivalent (if two tracks are k-descriptor equivalent, they are
also k-equivalent, but not vice versa), and we show how to weaken the notion of
k-descriptor equivalence to perfectly match k-equivalence.

Finally, we prove that the model checking problem for HS against finite Kripke
structures is EXPSPACE-hard, if a suitable succinct encoding of formulas is exploited,
otherwise it is PSPACE-hard.

3.1 The decidability proof

As a preliminary step, we prove a right extension lemma. Let K be a finite Kripke
structure, k ∈N, and ρ and ρ′ be two tracks in TrkK with the same BEk -descriptor
(and thus, in particular, lst(ρ) = lst(ρ′)). The lemma states that if we extend ρ and ρ′
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“to the right” with the same track ρ in TrkK , with
(
lst(ρ), fst(ρ)

) ∈ δ, then the resulting
tracks ρ ·ρ and ρ′ ·ρ (both belonging to TrkK ) have the same BEk -descriptor as well.
An analogous lemma holds for the extension of the two tracks ρ and ρ′ “to the left”,
which guarantees that ρ ·ρ and ρ ·ρ′ have the same BEk -descriptor (left extension
lemma). In the proof, we will exploit the fact that if two tracks in TrkK have the
same BEk+1-descriptor, then they also have the same BEk -descriptor. The latter can
indeed be obtained from the former by removing the nodes of the BEk+1-descriptor at
depth k +1 (leaves) and then deleting isomorphic subtrees possibly originated by the
removal (as a matter of fact, we have already specified how to extract a BEk -descriptor
from a BEk+1-descriptor in Definition 2.22).

Lemma 3.1. (Right extension lemma) Let K = (AP ,W,δ,µ, v0) be a finite Kripke struc-
ture and let ρ and ρ′ be two tracks in TrkK with the same BEk -descriptor. For any track
ρ in TrkK , with

(
lst(ρ), fst(ρ)

) ∈ δ, the two tracks ρ ·ρ and ρ′ ·ρ belong to TrkK and
have the same BEk -descriptor.

Proof. The proof is by induction on k ∈N.

• Base case (k = 0). Since ρ and ρ′ have the same BE0-descriptor, it holds that
fst(ρ) = fst(ρ′), intstates(ρ) = intstates(ρ′), and lst(ρ) = lst(ρ′) and thus

– fst(ρ ·ρ) = fst(ρ) = fst(ρ′) = fst(ρ′ ·ρ);

– lst(ρ ·ρ) = lst(ρ′ ·ρ) = lst(ρ);

– intstates(ρ ·ρ) = intstates(ρ)∪ {lst(ρ), fst(ρ)}∪ intstates(ρ) =
intstates(ρ′)∪ {lst(ρ′), fst(ρ)}∪ intstates(ρ) = intstates(ρ′ ·ρ)

This allows us to conclude that ρ ·ρ and ρ′ ·ρ have the same BE0-descriptor.

• Inductive step (k > 0). Let DBEk = (V ,EB ∪EE ,λ) and DBEk

′ = (V
′
,EB

′∪EE
′
,λ

′
)

be respectively the BEk -descriptors of ρ ·ρ and ρ′ ·ρ. We prove that DBEk and

DBEk

′
are equal (up to isomorphism).

As for the roots, it is immediate to show that λ(root(DBEk )) = λ′(root(DBEk

′
))

(they have the same labeling).

Let us consider now a node v ∈V such that (root(DBEk ), v) ∈ EB ∪EE . We show

that there exists a v ′ ∈V
′

such that (root(DBEk

′
), v ′) ∈ EB

′∪EE
′

and the subtrees
rooted in v and in v ′ are isomorphic. We distinguish two cases.

– Let
(
root(DBEk ), v

) ∈ EB . By definition of BEk -descriptor, there exists a
prefix ρ′′ of ρ ·ρ such that the subtree rooted in v is the BEk−1-descriptor
of ρ′′. Three cases are possible.

* Case 1: ρ′′ is a (proper) prefix of ρ. Since ρ and ρ′ have the same
BEk -descriptor, there exists a prefix ρ′′′ of ρ′ having the same BEk−1-
descriptor as ρ′′.

* Case 2: ρ′′ = ρ. Since ρ and ρ′ have the same BEk -descriptor, they
have also the same BEk−1-descriptor.

* Case 3: ρ′′ = ρ ·ρ̃, where ρ̃ is a prefix of ρ. By the inductive hypothesis,
ρ · ρ̃ and ρ′ · ρ̃ have the same BEk−1-descriptor.

– Let (root(DBEk ), v) ∈ EE . By definition of BEk -descriptor, there exists a
suffix ρ′′ of ρ ·ρ such that the subtree rooted in v is the BEk−1-descriptor
of ρ′′. We distinguish two cases.
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* Case 1: let ρ′′ be a proper suffix of ρ or ρ′′ = ρ. Then, ρ′′ is a suffix
of both ρ ·ρ and ρ′ ·ρ. Hence, the same BEk−1-descriptor is rooted

both in v and in v ′, for some v ′ ∈V
′

such that (root(DBEk

′
), v ′) ∈ EE

′
.

* Case 2: let ρ′′ = ρ̃ ·ρ, where ρ̃ is a suffix of ρ. If |ρ̃| = 1, ρ′′ is a suffix of
both ρ ·ρ and ρ′ ·ρ, as lst(ρ) = lst(ρ′). Let |ρ̃| ≥ 2. Since by hypothesis
ρ and ρ′ have the same BEk -descriptor, there is a subtree of depth
k −1 in this descriptor which is associated both with ρ̃ and with a
suffix of ρ′, say, ρ̃′. By inductive hypothesis, ρ′′ = ρ̃ ·ρ and ρ̃′ ·ρ have
the same BEk−1-descriptor.

To sum up, we have shown that (i) λ(root(DBEk )) =λ′(root(DBEk

′
)), (ii) for each

prefix of ρ ·ρ there exists a prefix of ρ′ ·ρ with the same BEk−1-descriptor, and
(iii) for each suffix of ρ ·ρ there exists a suffix of ρ′ ·ρ with the same BEk−1-
descriptor. The converse of conditions (ii) and (iii) holds by symmetry. This

allows us to conclude that DBEk and DBEk

′
are isomorphic.

The next theorem proves that k-descriptor equivalent tracks are k-equivalent.

Theorem 3.2. (k-descriptor equivalence implies k-equivalence) Let ψ be an HS for-
mula, with NestBE(ψ) = k, K be a finite Kripke structure, ρ and ρ′ be two tracks in
TrkK , and AK be the abstract interval model induced by K . If ρ and ρ′ have the same
BEk -descriptor, then

AK ,ρ |=ψ ⇐⇒ AK ,ρ′ |=ψ
Proof. The proof is by induction on the structural complexity of ψ.

• ψ = p: AK ,ρ |= p iff p ∈ ⋂
w∈states(ρ)µ(w). Since ρ and ρ′ have the same BEk -

descriptor, they consist of occurrences of the same set of states of K , that is,
states(ρ) = states(ρ′), witnessed by the root of the BEk -descriptor. Therefore,
AK ,ρ |= p iff AK ,ρ′ |= p.

• ψ = ¬ϕ: AK ,ρ |= ψ iff AK ,ρ 6|= ϕ iff (by inductive hypothesis) AK ,ρ′ 6|= ϕ iff
AK ,ρ′ |=ψ.

• ψ=ϕ1∧ϕ2: let us assume that NestBE(ϕ1) = NestBE(ψ) = k and NestBE(ϕ2) ≤ k.
By the inductive hypothesis, AK ,ρ |=ϕ1 iff AK ,ρ′ |=ϕ1. Since any pair of tracks
that have the same BEk -descriptor have also the same BEk ′-descriptor, for
all k ′ ≤ k, by the inductive hypothesis, AK ,ρ |= ϕ2 iff AK ,ρ′ |= ϕ2. Hence, if
AK ,ρ |= ψ, then AK ,ρ |= ϕ1 and AK ,ρ |= ϕ2, and thus AK ,ρ′ |= ψ. As for the
converse, if AK ,ρ′ |=ψ, then AK ,ρ′ |=ϕ1 and AK ,ρ′ |=ϕ2, and thus AK ,ρ |=ψ.

• ψ = 〈A〉ϕ: AK ,ρ |= ψ iff there exists ρ ∈ TrkK such that lst(ρ) = fst(ρ) and
AK ,ρ |=ϕ. Analogously, AK ,ρ′ |=ψ iff there exists ρ′ ∈ TrkK such that lst(ρ′) =
fst(ρ′) and AK ,ρ′ |=ϕ. Since ρ and ρ′ have the same BEk -descriptor, it holds
that lst(ρ) = lst(ρ′). Hence, we can choose ρ = ρ′, so that AK ,ρ |=ϕ if and only
if AK ,ρ′ |=ϕ.

• ψ= 〈B〉ϕ: NestBE(ψ) = 1+NestBE(ϕ) = k. If AK ,ρ |=ψ, then there is ρ ∈ Pref(ρ)
such that AK ,ρ |=ϕ. Let DBEk = (V ,EB ∪EE ,λ) be the BEk -descriptor for ρ. By
definition of BEk -descriptor, there exists an edge (root(DBEk ), v) ∈ EB such that
the subtree rooted in v is the BEk−1-descriptor for ρ. Since, by hypothesis, ρ
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and ρ′ have the same BEk -descriptor, there exists a prefix ρ′ of ρ′ such that
the subtree rooted in v is the BEk−1-descriptor for ρ′. Now, by the inductive
hypothesis, AK ,ρ′ |=ϕ, and thus AK ,ρ′ |=ψ. Exactly the same argument allows
us to conclude that if AK ,ρ′ |=ψ, then AK ,ρ |=ψ.

• ψ = 〈B〉ϕ: if AK ,ρ |=ψ, then there exists ρ in TrkK such that ρ ∈ Pref(ρ) and
AK ,ρ |=ϕ. We can express ρ as ρ ·ρ̃ for some ρ̃ in TrkK such that (lst(ρ), fst(ρ̃)) ∈
δ. Now, since ρ and ρ′ have the same BEk -descriptor, it holds that lst(ρ) =
lst(ρ′). By Lemma 3.1, ρ = ρ · ρ̃ and ρ′ · ρ̃ have the same BEk -descriptor. By
the inductive hypothesis, AK ,ρ′ · ρ̃ |=ϕ, and thus AK ,ρ′ |=ψ. Exactly the same
argument allows us to conclude that if AK ,ρ′ |=ψ, then AK ,ρ |=ψ.

The remaining cases can be proven by symmetry.

Since k-descriptor equivalence preserves satisfiability of HS formulas, testing
whether K ,ρ |=ψ can be reduced to checking whether A/∼k , [ρ]∼k |=ψ.

Corollary 3.3. Let ψ be an HS formula, with NestBE(ψ) ≤ k, K be a finite Kripke
structure, and ρ be a track in TrkK . It holds that

K ,ρ |=ψ ⇐⇒ A/∼k , [ρ]∼k |=ψ.

Proof. By Definition 2.6, K ,ρ |=ψ if and only if AK ,ρ |=ψ. The proof of the left-to-
right implication (if AK ,ρ |=ψ, then A/∼k , [ρ]∼k |=ψ) is by induction on the structural
complexity of ψ, and it basically makes use of Definition 2.22 and Definition 2.23.
The proof of the opposite implication is straightforward.

By exploiting Corollary 3.3, we can reduce the model checking problem for HS
against finite Kripke structures to the model checking problem for multi-modal, finite
Kripke structures, whose nodes are all possible (witnessed) descriptors, with depth
up to k, and there is a distinct accessibility relation for each one of the HS modalities
A, B , E , A, B , and E . Since the model checking problem for multi-modal, finite
Kripke structures and formulas is decidable (in [Gab87, Lan06], it has been shown
that the model checking problem for multi-modal Kripke structures and formulas
is decidable in polynomial time with respect to both the size of the Kripke structure
and the length of the formula), decidability of the model checking problem for HS
against finite Kripke structures immediately follows.

Theorem 3.4. The model checking problem for HS against finite Kripke structures is
decidable (with a non-elementary algorithm).

Proof. Lemma 2.14 provides a non-elementary upper bound to the number of BEh-
descriptors, with 0 ≤ h ≤ k, as well as to the size of BEk+1-descriptors, with respect
to the size of the Kripke structure and the nesting depth k of the input HS formula.
Hence, the derived model checking problem for multi-modal, finite Kripke structures
has to be solved over a model whose size has a non-elementary upper bound.

3.2 The relation between k-equivalence and cor-
responding BEk-descriptors

In the previous section (in Theorem 3.2), we prove that k-descriptor equivalence
is a sufficient condition for k-equivalence, that is, if two tracks are k-descriptor
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equivalent, then they are k-equivalent. However, it is not a necessary one. To show
that the converse does not hold, consider once more the finite Kripke structure
KE qui v in Figure 2.1. The tracks v5

0 and v6
0 of KE qui v have the same BE2-descriptor,

but not the same BE3-descriptor, yet there exists no formula ψ, with NestBE(ψ) ≤ 3,
such that K , v6

0 |=ψ and K , v5
0 6|=ψ. Intuitively, since these two tracks are made of

a different number of occurrences of the same state, the only way to distinguish
them is by means of the formula 〈B〉4>, or similar ones, for which K , v6

0 |= 〈B〉4> and
K , v5

0 6|= 〈B〉4>, but these formulas have a BE-nesting depth greater than 3.
In the following, we introduce the notion of corresponding BEk -descriptors, and

we prove that it provides a necessary and sufficient condition for k-equivalence.
Such a notion allows us to rephrase equivalence between tracks in terms of more
abstract characteristics of their descriptors, in a stronger way than Theorem 3.2. As
an example, by exploiting the correspondence among descriptors it defines and the
statement of Theorem 3.11 below, it will be possible to prove that v5

0 and v6
0 are

actually 3-equivalent.

Definition 3.5. Let K = (AP ,W,δ,µ, w0) be a finite Kripke structure, let DBEk and
D ′

BEk
be two BEk -descriptors associated with some of its tracks, and let (vi n ,S, v f i n)

and (v ′
i n ,S′, v ′

f i n) be the labels of the root of DBEk and D ′
BEk

, respectively. We say that

DBEk and D ′
BEk

are corresponding BEk -descriptors if and only if:

• the two roots are labelled by the same set of propositions, that is,⋂
w∈{vi n }∪S∪{v f i n }

µ(w) = ⋂
w ′∈{v ′

i n }∪S′∪{v ′
f i n }

µ(w ′);

• for any track ρ ∈ TrkK , with fst(ρ) = v f i n , there is a track ρ′ ∈ TrkK with fst(ρ′) =
v ′

f i n , such that ρ and ρ′ are associated with corresponding BEk -descriptors, and

vice versa (we say that the BEk -descriptors for ρ and ρ′ are A-successors of DBEk

and D ′
BEk

, respectively);

• for any track ρ ∈ TrkK , with lst(ρ) = vi n , there is a track ρ′ ∈ TrkK , with lst(ρ′) =
v ′

i n , such that ρ and ρ′ are associated with corresponding BEk -descriptors, and

vice versa (we say that the BEk -descriptors for ρ and ρ′ are A-successors of DBEk

and D ′
BEk

, respectively);

• given a track ρ̃ associated with DBEk and a track ρ̃′ associated with D ′
BEk

, for

any track ρ, with (v f i n , fst(ρ)) ∈ δ, there is a track ρ′, with (v ′
f i n , fst(ρ′)) ∈ δ,

such that both ρ̃ ·ρ and ρ̃′ ·ρ′ belong to TrkK , and they are associated with
corresponding BEk -descriptors, and vice versa (we say that the BEk -descriptors
for ρ̃ ·ρ and ρ̃′ ·ρ′ are B-successors of DBEk and D ′

BEk
, respectively)1;

• given a track ρ̃ associated with DBEk and a track ρ̃′ associated with D ′
BEk

, for any

track ρ, with (lst(ρ), vi n) ∈ δ, there is a track ρ′, with (lst(ρ′), v ′
i n) ∈ δ, such that

both ρ · ρ̃ and ρ′ · ρ̃′ belong to TrkK , and they are associated with corresponding
BEk -descriptors, and vice versa (we say that the BEk -descriptors for ρ · ρ̃ and
ρ′ · ρ̃′ are E-successors of DBEk and D ′

BEk
, respectively);

1If a track ρ was considered in place of ρ̃ and they are both associated with DBEk
, by the right extension

lemma ρ̃ ·ρ ∈ TrkK and ρ ·ρ ∈ TrkK are associated with the same descriptor as well.
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• whenever k > 0, for any subtree of depth k −1 in DBEk , whose root is linked to
the root of DBEk via a B-edge, there is a corresponding subtree of depth k −1 in
D ′

BEk
, whose root is linked to the root of D ′

BEk
via a B-edge, and vice versa;

• whenever k > 0, for any subtree of depth k−1 in DBEk , whose root is linked to the
root of DBEk via an E-edge, there exists a corresponding subtree of depth k −1 in
D ′

BEk
, whose root is linked to the root of D ′

BEk
via an E-edge, and vice versa.

It can easily be checked that the correspondence between descriptors of Defi-
nition 3.5 is an equivalence relation. Definition 3.5 expresses a form of bisimula-
tion among BEk -descriptors with respect to the defined relations of A-successor,
A-successor, B-successor, B-successor, E-successor, and E-successor. Since, in a
finite Kripke structure, every state has (at least) a successor with respect to δ, BEk -
descriptors always have both A-successors and B-successors. On the contrary, BEk -
descriptors may have no A-successors or E-successors, because a state does not
necessarily have a predecessor with respect to δ, Finally, a BEk -descriptor has B- and
E-successors if and only if k ≥ 1 and the represented tracks are long enough. The
number of proper prefixes (resp., suffixes) of short tracks can indeed be less than k.
In such a case, the actual height of BEk -descriptors is less than the nominal height
k, and thus it may happen that the BEi -descriptor and BE j -descriptor, with i 6= j ,
for a track are isomorphic. When collecting all the BEi -descriptor, for 0 ≤ i ≤ k (for
instance, in Definition 3.6 below), isomorphic descriptors of different depths will be
considered as distinct elements.

The set of descriptors and their successor relations, corresponding to the various
HS modalities, allow us to define a graph structure.

Definition 3.6. Let K = (AP ,W,δ,µ, w0) be a finite Kripke structure. The graph G of
the BE-descriptors of depth at most k, with k ≥ 0, witnessed by some tracks of K , is a
pair (VG ,EG ), where EG ⊆VG ×VG is a set of labeled edges, such that:

• VG contains a node for each BEt -descriptor, with 0 ≤ t ≤ k, witnessed by some
track of K ;

• edges in EG are labeled with X ∈ {A,B ,E , A,B ,E } according to the following
criteria:

– (v, v ′) ∈ EG is an X -edge, with X ∈ {A, A,B ,E }, whenever the descriptor of
v ′ is an X -successor of the descriptor of v;

– (v, v ′) ∈ EG is a B-edge whenever the descriptors associated with v and v ′
are DBEt and D ′

BEt−1
, respectively (for some t ≥ 1), and D ′

BEt−1
is isomorphic

to a subtree of DBEt connected to the root of DBEt via a B-edge;

– (v, v ′) ∈ EG is an E-edge whenever the descriptors associated with v and v ′
are DBEt and D ′

BEt−1
, respectively (for some t ≥ 1), and D ′

BEt−1
is isomorphic

to a subtree of DBEt connected to the root of DBEt via an E-edge.

The set of nodes VG is finite and the out-degree of every node is finite as well.
Moreover, VG can be partitioned into k sets, according to the depth of the descriptors
associated with its nodes. A node associated with a descriptor of depth t can be
connected to a node associated with a descriptor of depth t −1, with 0 < t ≤ k, only
by B- or E-edges. It is possible to show that two descriptors are corresponding if
and only if the associated nodes in the graph are bisimilar. Thus, the definition of
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correspondence between descriptors could be equivalently expressed in terms of a
standard notion of bisimilarity among nodes of G .

For technical reasons, we need to introduce a variant of two of the previously-
defined concepts: the nesting depth of formulas, to take into consideration the
nesting of all HS modalities (not only B and E as in Definition 2.10), and descriptor
correspondence up to a bounded number of “steps”.

Definition 3.7. The nesting depth of an HS formula ψ, denoted by Nest(ψ), is induc-
tively defined on the structure of ψ as follows:

• Nest(p) = 0, for any proposition letter p ∈ AP ;

• Nest(¬ψ) = Nest(ψ);

• Nest(ψ∧φ) = max{Nest(ψ),Nest(φ)};

• Nest(〈X〉ψ) = 1+Nest(ψ), with X ∈ {A,B ,E , A,B ,E }.

It trivially holds that NestBE(ψ) ≤ Nest(ψ) for all formulas ψ.
The next definition differs from Definition 3.5 in the limitation to a bounded

number of coinductive steps that it introduces in the descriptor correspondence.

Definition 3.8. Let K = (AP ,W,δ,µ, w0) be a finite Kripke structure, let DBEk and
D ′

BEk
be two BEk -descriptors associated with some of its tracks, and let (vi n ,S, v f i n)

and (v ′
i n ,S′, v ′

f i n) be the labels of the root of DBEk and D ′
BEk

, respectively. We say that

DBEk and D ′
BEk

are corresponding BEk -descriptors up to depth n if and only if:

• the two roots are labeled by the same set of propositions, that is,⋂
w∈{vi n }∪S∪{v f i n }

µ(w) = ⋂
w ′∈{v ′

i n }∪S′∪{v ′
f i n }

µ(w ′);

• if n > 0:

– for any track ρ ∈ TrkK , with fst(ρ) = v f i n , there is a track ρ′ ∈ TrkK , with
fst(ρ′) = v ′

f i n , such that ρ and ρ′ are associated with corresponding BEk -

descriptors up to depth n −1, and vice versa;

– for any track ρ ∈ TrkK , with lst(ρ) = vi n , there is a track ρ′ ∈ TrkK , with
lst(ρ′) = v ′

i n , such that ρ and ρ′ are associated with corresponding BEk -
descriptors up to depth n −1, and vice versa;

– given two tracks ρ̃ and ρ̃′ associated with DBEk and D ′
BEk

, respectively, for

any track ρ, with (v f i n , fst(ρ)) ∈ δ, there is a track ρ′, with (v ′
f i n , fst(ρ′)) ∈ δ,

such that both ρ̃ ·ρ and ρ̃′ ·ρ′ belong to TrkK , and they are associated with
corresponding BEk -descriptors up to depth n −1, and vice versa;

– given two tracks ρ̃ and ρ̃′ associated with DBEk and D ′
BEk

, respectively, for

any track ρ, with (lst(ρ), vi n) ∈ δ, there is a track ρ′, with (lst(ρ′), v ′
i n) ∈ δ,

such that both ρ · ρ̃ and ρ′ · ρ̃′ belong to TrkK , and they are associated with
corresponding BEk -descriptors up to depth n −1, and vice versa;

– whenever k > 0, for any subtree of depth k −1 in DBEk , whose root is linked
to the root of DBEk via a B-edge (resp. E-edge), there is a subtree of depth
k −1 in D ′

BEk
, whose root is linked to the root of D ′

BEk
via a B-edge (resp.,

E-edge), corresponding up to depth n −1, and vice versa.
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In order to prove that corresponding descriptors actually capture the notion of k-
equivalence (Theorem 3.11 below), we need a couple of preparatory lemmas, whose
proofs are given in the appendix (Section A.1).

Lemma 3.9. Let K = (AP ,W,δ,µ, w0) be a finite Kripke structure and ρ,ρ′ be two
tracks in TrkK . For all n,k ∈N, with k ≤ n, if ρ and ρ′ are k-equivalent with respect
to all HS formulas ψ, with Nest(ψ) ≤ n, then the BEk -descriptors of ρ and ρ′ are
corresponding up to depth n.

Lemma 3.10. Let K = (AP ,W,δ,µ, w0) be a finite Kripke structure. For all n,k ∈ N,
with k ≥ 1, if two descriptors DBEk and D ′

BEk
are corresponding up to depth n, then

DBEk |k−1 and D ′
BEk

|k−1 are corresponding up to depth n, where DBEk |k−1 denotes the
descriptor obtained from DBEk by deleting its nodes at depth k (and removing possible
isomorphic subtrees).

The following theorem formally states the relationship between corresponding
descriptors and track equivalence.

Theorem 3.11. Let K be a finite Kripke structure, k ∈N, and ρ,ρ′ ∈ TrkK . The tracks
ρ and ρ′ are k-equivalent if and only if ρ and ρ′ are associated with corresponding
BEk -descriptors.

Proof. (⇒) Let us first show that if ρ and ρ′ are k-equivalent, then they are associated
with corresponding BEk -descriptors. The proof directly follows from Lemma 3.9.
Since ρ and ρ′ are k-equivalent, with no bound on the nesting depth of formulas,
then their BEk -descriptors are corresponding, with no bound on the depth.

(⇐) We now prove that, for any HS formula ψ, with NestBE(ψ) = k, if ρ and ρ′ are
associated with corresponding BEk -descriptors, then K ,ρ |=ψ ⇐⇒ K ,ρ′ |=ψ. The
proof is by induction on the structure of the formula.

• Let K ,ρ |= p, for some p ∈ AP . Since the roots for the BE-descriptors of ρ and
ρ′ are labeled with the same set of proposition letters, it immediately follows
that K ,ρ′ |= p.

• Let K ,ρ |=ψ1 ∧ψ2. Then, K ,ρ |=ψ1 and K ,ρ |=ψ2. Let NestBE(ψ1) = k and
assume w.l.o.g. that NestBE(ψ2) = t ≤ k. By Definition 3.8 and Lemma 3.10,
it immediately follows that if ρ and ρ′ have corresponding BEk -descriptors,
then they also have corresponding BEt -descriptors, with t ≤ k. Hence, by
the inductive hypothesis, K ,ρ′ |=ψ1 and K ,ρ′ |=ψ2, and, as a consequence,
K ,ρ′ |=ψ1 ∧ψ2.

• Let K ,ρ |= ¬ψ. Then, K ,ρ 6|=ψ. By the inductive hypothesis, K ,ρ′ 6|=ψ, and
thus K ,ρ′ |= ¬ψ.

• Let K ,ρ |= 〈A〉ψ. Then, there exists a track ρ ∈ TrkK , with fst(ρ) = lst(ρ), such
that K ,ρ |= ψ. Since the BEk -descriptors for ρ and ρ′ are corresponding,
there exists, in particular, a track ρ′ ∈ TrkK , with fst(ρ′) = lst(ρ′), such that
the BEk -descriptors for ρ and ρ′ are corresponding. By the inductive hypothe-
sis, K ,ρ′ |=ψ, so K ,ρ′ |= 〈A〉ψ. The 〈A〉 case is symmetric (notice that, due to
the correspondence of the BEk -descriptors for ρ and ρ′, there exists ρ ∈ TrkK ,
with lst(ρ) = fst(ρ), if and only if there exists ρ′ ∈ TrkK , with lst(ρ′) = fst(ρ′)).
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• Let K ,ρ |= 〈B〉ψ. Then, there is a track ρ, with (lst(ρ), fst(ρ)) ∈ δ and ρ ·ρ ∈ TrkK ,
such that K ,ρ·ρ |=ψ. Since the BEk -descriptors for ρ and ρ′ are corresponding,
there exists, in particular, a track ρ′, with (lst(ρ′), fst(ρ′)) ∈ δ, such that ρ ·ρ and
ρ′ ·ρ′ ∈ TrkK have corresponding BEk -descriptors. By the inductive hypothesis
K ,ρ′ ·ρ′ |= ψ, and thus K ,ρ′ |= 〈B〉ψ. The 〈E〉 case is symmetric (a remark
similar to the one for the 〈A〉 case can be done).

• Let K ,ρ |= 〈B〉ψ. Then, there exists a track ρ ∈ Pref(ρ) such that K ,ρ |=ψ. Since
the BEk -descriptors for ρ and ρ′ are corresponding, the subtree of depth k −1
for ρ, in the BEk -descriptor for ρ, corresponds to a subtree of depth k − 1,
in the BEk -descriptor for ρ′. By definition of descriptor, there exists a track
ρ′ ∈ Pref(ρ′) associated with the latter subtree. By the inductive hypothesis,
K ,ρ′ |= ψ, and thus K ,ρ′ |= 〈B〉ψ. The 〈E〉 case is symmetric, and thus its
analysis is omitted.

This concludes the proof.

We started this section by illustrating the case of the two tracks v5
0 and v6

0 of
KE qui v . They have the same BE2-descriptor (it is shown in Figure 3.1(a)), but not
the same BE3-descriptor (the BE3-descriptor for v5

0 is shown in Figure 3.1(b)). The
BE3-descriptor for v6

0 , indeed, features one more subtree, that is, the BE2-descriptor
for v5

0 , which is not present in Figure 3.1(b). However, such a subtree corresponds
to the BE2-descriptor for v4

0 . Symmetrically, the same happens for the suffix v5
0 of

v6
0 . Thus, v5

0 and v6
0 , which have corresponding BE3-descriptors, are 3-equivalent by

Theorem 3.11.
On the other hand, the BE4-descriptors for v5

0 and v6
0 are not corresponding. In

Figure 3.2, a part of the graph G of the BE-descriptors for the tracks of KE qui v is
shown. As it is evident from the figure, there exists a path consisting of 4 B-edges
starting from the node of the BE4-descriptor for v6

0 , whereas there is no a path of the
same length starting from the node of the BE4-descriptor for v5

0 . Hence, v5
0 and v6

0
are not 4-equivalent (as we already pointed out, K , v6

0 |= 〈B〉4> but K , v5
0 6|= 〈B〉4>).

3.3 EXPSPACE-hardness of HS model checking

We conclude this chapter by proving that the model checking problem for HS over
finite Kripke structures is EXPSPACE-hard. As a preparatory work, we introduce a
succinct encoding of HS formulas, according to which we write 〈B〉k ψ for

〈B〉〈B〉 · · · 〈B〉︸ ︷︷ ︸
k times

ψ,

and we represent k in binary (the same for all the other HS modalities). As we will
prove, if we exploit this encoding, the model checking problem for HS is EXPSPACE-
hard, otherwise—using the standard unary notation—it is PSPACE-hard.

Theorem 3.12. The model checking problem for HS against finite Kripke structures is
EXPSPACE-hard (under a LOGSPACE reduction), if formulas are succinctly encoded,
otherwise it is PSPACE-hard.

Proof. Let us consider a language L decided by a deterministic one-tape Turing ma-

chine M (w.l.o.g.) that, on an input of size n, requires no more than 2nk −3 symbols
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Figure 3.2: Part of the graph G of the BEt -descriptors (t ≤ 4) for the tracks of KE qui v .
In all nodes, we report the depth of the descriptors they are associated with (top) and a
witness track for the descriptor (bottom).

on its tape (we are assuming a high enough constant k ∈N). Hence, L belongs to EX-
PSPACE. Let Σ and Q be respectively the alphabet and the set of states of M , and let #
be a special symbol, which does not belong to Σ, used as separator for configurations
(in the following, we let Σ′ =Σ∪ {#}). The alphabet Σ is assumed to contain the blank
symbol t. As usual, a computation of M is a sequence of configurations of M , where
each configuration fixes the content of the tape, the position of the head on the tape,
and the internal state of M .

We exploit a standard encoding for computations, called computation table (or
tableau) (see [Pap94, Sip12] for further details). Each configuration of M is a sequence
over the alphabet Γ=Σ′∪(Q×Σ). A symbol (q,c) ∈Q×Σ occurring at the i -th position
encodes the fact that the machine has an internal state q and its head is currently on
the i -th position of the tape (obviously, there is exactly one occurrence of a symbol in
Q ×Σ in each configuration).

Since M uses no more than 2nk −3 symbols on its tape, the size of a configuration

is 2nk
(we need 3 occurrences of the special symbol #, two for delimiting the beginning

of the configuration and one for the end; additionally, M never overwrites delimiters

#). If a configuration is actually shorter than 2nk
, it is padded with t symbols to reach

length 2nk
(which is a fixed number, once the input length is known).

The computation table is a matrix of 2nk
columns, where the i -th row records the

configuration of M at the i -th computation step.
An example of a table is given in Figure 3.3. In the first configuration (row), the

head is in the leftmost position (to the right of the delimiters #) and M is in state
q0. In addition, the string symbols c0c1 · · ·cn−1 are padded with occurrences of t’s

to reach length 2nk
. In the second configuration, the head has moved one position

to the right, c0 has been overwritten with c ′0, and M is in state q1. From the first two
rows, we can deduce that the tuple (q0,c0, q1,c ′0,→) belongs to the transition relation
δM ⊆Q ×Σ×Q ×Σ× {→,←,•} of M , with the standard meaning for the components
(the first one gives the current state, the second the symbol on tape currently read,
the third the next state, the fourth the symbol replaced in the current position, the
fifth the move of the head to right, left, or stay). Being M deterministic , δM is actually
a function of Q ×Σ.

Following [Pap94, Sip12], we introduce the notion of (legal) window. A window
is a 2×3 matrix, in which the first row represents three consecutive symbols of a
possible configuration. The second row represents the three symbols which are
placed exactly in the same position in the next configuration. A window is legal when
the changes from the first to the second row are coherent with δM in the obvious
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# # (q0,c0) c1 c2 · · · · · · cn−1 t t ·· · · · · t #
# # c ′0 (q1,c1) c2 · · · · · · cn−1 t t ·· · · · · t #
...

...
. . .

. . .
...

...
...

. . .
. . .

...
# # · · · · · · (qyes ,ck ) · · · · · · · · · · · · · · · · · · · · · · · · #︸ ︷︷ ︸

2nk

Figure 3.3: An example of a computation table.

sense. Actually, the set of legal windows, which we denote by W nd ⊆ (
Γ3

)2
, is a

suitable tabular representation of the transition relation δM . For instance, two legal
windows associated with the table of the previous example are:

# (q0,c0) c1

# c ′0 (q1,c1)
(q0,c0) c1 c2

c ′0 (q1,c1) c2

Formally, a pair ((x, y, z), (x ′, y ′, z ′)) ∈W nd can be represented as follows:

x y z
x ′ y ′ z ′ with x, x ′, y, y ′, z, z ′ ∈ Γ,

where the following constraints must be satisfied:

1. if all x, y, z ∈Σ′ (x, y , z are not state-symbol pairs), then y = y ′;

2. if one among x, y , and z belongs to Q ×Σ, then x ′, y ′ and z ′ are univocally
determined by δM ;

3. (x = # ⇒ x ′ = #)∧ (y = # ⇒ y ′ = #)∧ (z = # ⇒ z ′ = #).

As we already said, M never overwrites an occurrence of #; we can assume that the
head never visits a cell labelled with # as well (see [Pap94]). As a matter of fact, in
some window, condition 2 would require to move the head right (or left) overwriting
# (or just visiting it), while 3 does not allow one to replace an occurrence of # with
another symbol (notice that (qi ,#) does not belong to Γ for any state qi of M). In such
a case, the window is not valid and thus it is discarded (it does not belong to W nd).

In the following, we define a finite Kripke structure K = (AP ,W,δ,µ, w0) and a
formula ψ of HS such that K |=ψ if and only if M accepts its input string c0c1 · · ·cn−1.
The set of proposition letters is AP = Γ∪Γ3 ∪ {st ar t }. The finite Kripke structure K is
obtained by suitably composing a basic pattern, called gadget (see Figure 3.4). Any
instance of the gadget is associated with a triple of symbols (a,b,c) ∈ Γ3, that is, a
sequence of three adjacent symbols in a configuration, and it consists of 3 states
q0

(a,b,c), q1
(a,b,c), and q2

(a,b,c) such that

µ(q0
(a,b,c)) =µ(q1

(a,b,c)) = {(a,b,c),c} and µ(q2
(a,b,c)) =;.

Moreover,
δ(q0

(a,b,c)) = {q1
(a,b,c)} and δ(q1

(a,b,c)) = {q2
(a,b,c)}.
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q0
(a,b,c)

(a,b,c),c
q1

(a,b,c)

(a,b,c),c
q2

(a,b,c);
...

...

...

Figure 3.4: An instance of the gadget for (a,b,c) ∈ Γ3.

The underlying idea is that a gadget associated with (x, y, z) ∈ Γ3 “records” the
current proposition letter z and the two “past” (immediately preceding) proposition
letters x and y .

The finite Kripke structure K has (an instance of) a gadget for every (x, y, z) ∈ Γ3,
and for all (x, y, z), (x ′, y ′, z ′) ∈ Γ3, it holds that q0

(x′,y ′,z ′) ∈ δ(q2
(x,y,z)) if and only if x ′ = y

and y ′ = z. Moreover, K has some additional (auxiliary) states w0, · · · , w6, whose
relationships are described in Figure 3.5, and δ(w6) = {q0

(#,#,x) | x ∈ Γ}. It is worth
noticing that the overall size of K only depends on |Γ| and it is constant with respect
to the input string c0c1 · · ·cn−1 of M .

w0
st ar t

w1
st ar t ,#

w2
#

w3;

w4
#

w5
#

w6;...

...

...

Figure 3.5: Initial part of K .

Now, we want to decide whether or not an input string belongs to the language
L by solving the model checking problem K |= st ar t → 〈A〉ξ, where ξ is satisfied
only by those tracks which represent a successful computation of M . Since the only
(initial) track which satisfies st ar t is w0w1 (see Figure 3.5), we are actually verifying
the existence of a track which begins with w1 and satisfies ξ.

As for ξ, it basically requires that a track ρ, with fst(ρ) = w1, for which K ,ρ |= ξ,
mimics a successful computation of M . First, every interval ρ(i , i +1) for i mod 3 = 0
satisfies the proposition letter p ∈ AP if and only if the i

3 -th character of the computa-
tion represented by ρ is p (notice that as a consequence of the gadget structure, only
subtracks ρ = ρ(i , i +1), with i mod 3 = 0, of ρ can satisfy some proposition letters).
A symbol of a configuration is mapped to an occurrence of an instance of a gadget
in ρ; in turn, ρ encodes a computation of M through the concatenation of the first,
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second, third. . . rows of the computation table (two consecutive configurations are
separated by 3 occurrences of #, which require 9 states overall).

Let us now formally define the HS formula ξ:

ξ=ψaccept ∧ψi nput ∧ψwi ndow .

The first conjunct
ψaccept = 〈B〉〈A〉 ∨

a∈Σ
(qyes , a)

requires a track to contain an occurrence of the accepting state of M , qyes .
The second conjunct ψi nput is a bit more involved. It requires that the subtrack

corresponding to the first configuration of M actually “spells” the input c0c1 · · ·cn−1,
suitably padded with occurrences of t and ended by a # (we recall that `(k), which
has been introduced in Section 2.2, is satisfied only by those tracks whose length
equals k, with k ≥ 2, and it has a binary encoding of O(logk) bits):

ψi nput = [B ](`(7) →〈A〉(q0,c0))∧ [B ](`(10) →〈A〉c1)∧ [B ](`(13) →〈A〉c2)∧
...

[B ](`(7+3(n −1)) →〈A〉cn−1)∧

[B ](〈B〉5+3n >∧ [B ]3·2nk −6⊥→〈A〉((`(2)∧ ∧
a∈Γ

¬a)∨t))∧ [B ](`(3 ·2nk −2) →〈A〉#).

Finally, the conjunct ψwi ndow enforces the window constraint: if (d ,e, f ) ∈ Γ3 is
witnessed by a subinterval (of length 2) in the subtrack of ρ corresponding to the
j -th configuration of M , then, at the same position of (the subtrack of ρ associ-
ated with) configuration j −1, there must be some (a,b,c) ∈ Γ3 which is such that
((a,b,c), (d ,e, f )) ∈W nd .

ψwi ndow = [B ](〈B〉3(2nk +2)+1>→∧
(d ,e, f )∈Γ3

(〈A〉(d ,e, f ) → [E ](`(3 ·2nk
) → ∨

((a,b,c),(d ,e, f ))∈W nd
〈A〉(a,b,c)))).

The subformula 〈B〉3(2nk +2)+1> guarantees that we are not considering the (subtrack
associated with the) first configuration. Moreover, if some prefix ρ̃ of ρ satisfies

(〈B〉3(2nk +2)+1> and) 〈A〉(d ,e, f ), for some (d ,e, f ) ∈ Γ3, then it holds that

K , ρ̃ |= [E ](`(3 ·2nk
) → ∨

((a,b,c),(d ,e, f ))∈W nd
〈A〉(a,b,c)).

This amounts to say that the suffix ρ̂ of ρ̃ of length 3 ·2nk
is such that

K , ρ̂ |= ∨
((a,b,c),(d ,e, f ))∈W nd

〈A〉(a,b,c),

that is, ρ̂ is the subtrack between (the prefixes of ρ corresponding to) the same
position (same column) in two adjacent configurations (rows of the table), and it
is forced to begin with an occurrence of q1

(a,b,c) and to end with q0
(d ,e, f ), for some

((a,b,c), (d ,e, f )) ∈W nd .
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It is immediate to check that all the integers which need to be stored in the

formula are less than or equal to 3 ·2nk +7, and thus O(nk ) bits suffice. This allows us
to conclude that the formula can be generated in polynomial time (and logarithmic
working space).

If we do not allow the binary encoding of the exponents, the model checking
problem for HS formulas is PSPACE-hard (under a LOGSPACE reduction): the proof
is the same as before, but in order for the formula ξ to be generated in polynomial
time, we must restrict ourselves to computations of Turing machines using at most
polynomial space.

In conclusion, in this chapter we have proved that the model checking problem
for HS is decidable, and it is EXPSPACE-hard if a proper succinct encoding of for-
mulas is exploited, otherwise it is PSPACE-hard. Actually, we have also proved that
the fragment HS[A, A,B ,E ] is, again, EXPSPACE-hard if the succinct encoding of
formulas is allowed, and PSPACE-hard otherwise, because the formula ξ of the above
proof does not contain occurrences of B and E modalities.

In the next chapter we shall analyze a pair of fragments whose model checking is
featured by a lower complexity if compared to that of (full) HS, namely HS[A, A,B ,B ,E ]
and HS[A, A,E ,B ,E ].
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In this chapter, we restrict our attention to the fragment HS[A, A,B ,B ,E ] and
we show that the model checking problem for it has a lower complexity (compared
to that of full HS). By symmetry, all the results presented in the next sections are
applicable to HS[A, A,E ,B ,E ], as well.

Since E modality does not occur in formulas of HS[A, A,B ,B ,E ], we shall exploit
Bk -descriptors instead of BEk -descriptors in the following algorithms; moreover
we preliminary have to “adapt” some of the notions we have already defined in the
previous chapter to such a fragment:

• the B-nesting depth of an HS[A, A,B ,B ,E ] formula ψ, NestB(ψ), is defined like
NestBE, but it does not account for the E modality.

• Two tracks ρ,ρ′ ∈ TrkK are said k-equivalent if and only if, for every formula ψ
of HS[A, A,B ,B ,E ] with NestB(ψ) = k, it holds that K ,ρ |=ψ iff K ,ρ′ |=ψ.

• Two tracks ρ,ρ′ ∈ TrkK are k-descriptor equivalent, denoted by ρ ∼k ρ
′, if and

only if the Bk -descriptors for ρ and ρ′ coincide.

Next we state a lemma and two propositions, which are preparatory to Theo-
rem 4.4.
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Lemma 4.1. Let k ∈N, K = (AP ,W,δ,µ, v0) be a finite Kripke structure and ρ1, ρ′
1, ρ2,

ρ′
2 be tracks in TrkK such that:

(
lst(ρ1), fst(ρ′

1)
) ∈ δ,

(
lst(ρ2), fst(ρ′

2)
) ∈ δ, ρ1 ∼k ρ2 and

ρ′
1 ∼k ρ

′
2. Then ρ1 ·ρ′

1 ∼k ρ2 ·ρ′
2.

The proof can be found in A.2.1. The next propositions immediately follow:

Proposition 4.2. (Right extension) Let K = (AP ,W,δ,µ, v0) be a finite Kripke struc-
ture, ρ and ρ′ be two tracks in TrkK such that ρ ∼k ρ

′. For any ρ ∈ TrkK such that(
lst(ρ), fst(ρ)

) ∈ δ, it holds that ρ ·ρ ∼k ρ
′ ·ρ.

Proposition 4.3. (Left extension) Let K = (AP ,W,δ,µ, v0) be a finite Kripke struc-
ture, ρ and ρ′ be two tracks in TrkK such that ρ ∼k ρ

′. For any ρ ∈ TrkK such that(
lst(ρ), fst(ρ)

) ∈ δ, it holds that ρ ·ρ ∼k ρ ·ρ′.

The former proposition states that if we extend the two tracks ρ and ρ′ having the
same Bk -descriptor “to the right” with the same track ρ ∈ TrkK , with

(
lst(ρ), fst(ρ)

) ∈ δ,
then the resulting tracks ρ ·ρ and ρ′ ·ρ (both belonging to TrkK ) have the same Bk -
descriptor as well. The latter proposition symmetrically deals with the extension of
the two tracks ρ and ρ′ “to the left”. In these Propositions 4.2 and 4.3, |ρ| ≥ 2; however
both continue to hold if |ρ| = 1.

The following theorem is the analogous to Theorem 3.2 for Bk -descriptors; its
proof is omitted, as it is basically a simplification of that of Theorem 3.2.

Theorem 4.4. Let K be a finite Kripke structure, ρ and ρ′ two tracks in TrkK , AK
the abstract interval model induced by K and ψ a formula of HS[A, A,B ,B ,E ] with
NestB(ψ) = k. If ρ ∼k ρ

′, then AK ,ρ |=ψ ⇐⇒ AK ,ρ′ |=ψ.

Thanks to this theorem and to the notions of descriptor element indistinguisha-
bility and track representatives presented in the next sections, we will provide an
EXPSPACE model checking algorithm for HS[A, A,B ,B ,E ]. Finally, we will prove
that the model checking problem for the fragment HS[A, A,B ,B ,E ] is NEXP-hard if a
suitable succinct encoding of formulas is exploited.

4.1 Descriptor element indistinguishability
A Bk -descriptor provides a finite encoding for a possibly infinite set of tracks (the
tracks associated with that descriptor). Unfortunately, the representation of Bk -
descriptors as trees labelled over descriptor elements is highly redundant. As an
example, given any pair of subtrees rooted in some children of the root of a descriptor,
it is always the case that one of them is a subtree of the other. This property immedi-
ately follows from the fact that the two subtrees are associated with two (different)
prefixes of a track and one of them is necessarily a prefix of the other. In practice, the
size of the tree representation of Bk -descriptors prevents their direct use in model
checking algorithms, and makes it difficult to determine the intrinsic complexity of
Bk -descriptors.

In this section, we devise a more compact representation of Bk -descriptors. Each
class of the k-descriptor equivalence relation is a set of k-equivalent tracks. For every
such class, we select a representative track whose length is (exponentially) bounded
in both the cardinality of W (the set of states of the Kripke structure) and k.

In order to fix such a bound on the length of track representatives, we consider
suitable ordered sequences (possibly with repetitions) of descriptor elements of a Bk -
descriptor. Let us define the descriptor sequence for a track as the ordered sequence
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v0

v1

v2

v3

Figure 4.1: An example of finite Kripke structure.

of descriptor elements associated with the prefixes of that track. In a descriptor
sequence, descriptor elements can obviously be repeated. We devise a criterion to
avoid such repetitions whenever they cannot be distinguished by any formula of
HS[A, A,B ,B ,E ] with B-nesting depth up to k.

Definition 4.5. Let ρ = v0v1 · · ·vn be a track of a finite Kripke structure. The descriptor
sequence ρd s for ρ is d0 · · ·dn−1, where di = ρd s (i ) = (v0, intstates(v0 · · ·vi+1), vi+1),
for 0 ≤ i ≤ n−1. We denote the set of descriptor elements occurring inρd s by DElm(ρd s ).

As an example, let us consider the finite Kripke structure of Figure 4.1 and the
track ρ = v0v0v0v1v2v1v2v3v3v2v2. The descriptor sequence for ρ is:

ρd s = (v0,;, v0)(v0, {v0}, v0)(v0, {v0}, v1)

(v0, {v0, v1}, v2)(v0, {v0, v1, v2}, v1)(v0, {v0, v1, v2}, v2)

(v0, {v0, v1, v2}, v3)(v0,∆, v3)(v0,∆, v2)(v0,∆, v2)

where ∆= {v0, v1, v2, v3}, and

DElm(ρd s ) = {(v0,;, v0), (v0, {v0}, v0), (v0, {v0}, v1),

(v0, {v0, v1}, v2), (v0, {v0, v1, v2}, v1), (v0, {v0, v1, v2}, v2),

(v0, {v0, v1, v2}, v3), (v0,∆, v2), (v0,∆, v3)}.

To express the relationships between descriptor elements occurring in a descrip-
tor sequence, we introduce a binary relation Rt. Intuitively, given two descriptor
elements d ′ and d ′′ of a descriptor sequence, it holds that d ′ Rt d ′′ if d ′ and d ′′ are the
descriptor elements of two tracks ρ′ and ρ′′, respectively, and ρ′ is a prefix of ρ′′.

Definition 4.6. Let ρd s be the descriptor sequence for a track ρ and d ′ = (vi n ,S′, v ′
f i n)

and d ′′ = (vi n ,S′′, v ′′
f i n) be two descriptor elements in ρd s . Then,

d ′ Rt d ′′ if (and only if) S′∪ {v ′
f i n} ⊆ S′′.

It can be easily checked that the relation Rt is transitive. For all triple of descriptor
elements d ′,d ′′,d ′′′, if d ′ Rt d ′′ and d ′′ Rt d ′′′, then S′∪{v ′

f i n} ⊆ S′′ and S′′∪{v ′′
f i n} ⊆ S′′′.

It immediately follows that S′∪ {v ′
f i n} ⊆ S′′′, and thus d ′ Rt d ′′′.

It is worth noticing that Rt is neither an equivalence relation, nor a quasiorder,
since Rt is neither reflexive (e.g., (v0, {v0}, v1)�R t(v0, {v0}, v1)), nor symmetric (e.g.,
(v0, {v0}, v1)Rt(v0, {v0, v1}, v1) and (v0, {v0, v1}, v1)�R t(v0, {v0}, v1)), nor antisymmetric
(e.g., (v0, {v1, v2}, v1)Rt(v0, {v1, v2}, v2) and (v0, {v1, v2}, v2)Rt(v0, {v1, v2}, v1), but the
two elements are distinct).

The following proposition shows that Rt associates descriptor elements of increas-
ing prefixes of the same track.
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Proposition 4.7. Let ρd s be the descriptor sequence for the track ρ = v0v1 · · ·vn . Then,
ρd s (i )Rtρd s ( j ) for all 0 ≤ i < j < n.

Proof. ρd s (i ) and ρd s ( j ) are associated with the tracks ρ1 = v0 · · ·vi+1 and ρ2 =
v0 · · ·vi+1 · · ·v j+1, respectively, and thus intstates(ρ1)∪ {vi+1} ⊆ intstates(ρ2).

We now introduce a distinction between two types of descriptor element.

Definition 4.8. A descriptor element (vi n ,S, v f i n) is a Type-1 descriptor element if
v f i n ∉ S, while it is a Type-2 descriptor element if v f i n ∈ S.

It can easily be checked that a descriptor element d = (vi n ,S, v f i n) is of Type-1 if
and only if Rt is not reflexive in d : (i) if d�R t d , then S ∪ {v f i n} 6⊆ S, and thus v f i n ∉ S,
and (ii) if v f i n ∉ S, then d�R t d . It follows that a Type-1 descriptor element cannot
occur more than once in a descriptor sequence. On the contrary, Type-2 descriptor
elements may occur multiple times in a descriptor sequence, and if a descriptor
element occurs more than once, then it is necessarily of Type-2.

Proposition 4.9. If it holds that both d ′ Rt d ′′ and d ′′ Rt d ′, where d ′ = (vi n ,S′, v ′
f i n)

and d ′′ = (vi n ,S′′, v ′′
f i n), then v ′

f i n ∈ S′, v ′′
f i n ∈ S′′, and S′ = S′′, and thus both d ′ and

d ′′ are Type-2 descriptor elements.

Proof. S′∪ {v ′
f i n} ⊆ S′′ ⊆ S′′∪ {v ′′

f i n} ⊆ S′ and S′′∪ {v ′′
f i n} ⊆ S′ ⊆ S′∪ {v ′

f i n} ⊆ S′′.

We are now ready to provide a general characterization of the descriptor sequence
ρd s for a track ρ: ρd s is composed of some (maximal) subsequences, consisting of
occurrences of Type-2 descriptor elements on which Rt is symmetric, separated by
occurrences of Type-1 descriptor elements. Such a characterization can be formalized
by means of the notion of cluster.

Definition 4.10. A cluster C of (Type-2) descriptor elements is a maximal set of
descriptor elements {d1, · · · ,ds } ⊆ DElm(ρd s ) such that di Rt d j and d j Rt di for all
i , j ∈ {1, · · · , s}.

Thanks to maximality, clusters are pairwise disjoint: if C and C ′ are distinct
clusters, d ∈ C and d ′ ∈ C ′, either d Rt d ′ and d ′

�R t d , or d ′ Rt d and d�R t d ′.

Definition 4.11. Let ρd s be a descriptor sequence and C be one of its clusters. The
subsequence of ρd s associated with C is a subsequence ρd s (i , j ) such that ρd s (i ′) ∈ C
if and only if i ≤ i ′ ≤ j < |ρd s |.

For example, the descriptor sequence ρd s for ρ = v0v0v0v1v2v1v2v3v3v2v2, a
track of the finite Kripke structure in Figure 4.1, is shown again here; subsequences
associated with clusters are surrounded by boxes (∆= {v0, v1, v2, v3}):

ρd s = (v0,;, v0) (v0, {v0}, v0) (v0, {v0}, v1)

(v0, {v0, v1}, v2) (v0, {v0, v1, v2}, v1)(v0, {v0, v1, v2}, v2)

(v0, {v0, v1, v2}, v3) (v0,∆, v3)(v0,∆, v2)(v0,∆, v2) .

It is worth observing that:

• the descriptor elements of a cluster C are contiguous (in other words, they form
a subsequence), i.e., occurrences of descriptor elements in C are never shuffled
with occurrences of descriptor elements not belonging to C ;
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• two subsequences associated with two distinct clusters C and C ′ in a descriptor
sequence must be separated by at least one occurrence of a Type-1 descriptor
element (intuitively, in order to “leave” a cluster and to enter another one, a
new state—not belonging to the set of already met states—must occur in the
track). Type-1 descriptor elements thus act as “separators”.

While Rt allows us to order any pair of Type-1 descriptor elements, as well as any
Type-1 descriptor element with respect to a Type-2 descriptor element, it does not give
any means to order Type-2 descriptor elements belonging to the same cluster. This,
together with the fact that Type-2 descriptor elements may have multiple occurrences
in a descriptor sequence, implies that we need to somehow limit the number of
occurrences of Type-2 descriptor elements in order to give a bound on the length of
track representatives of Bk -descriptors.

To this end, we introduce an equivalence relation that allows us to put together in-
distinguishable occurrences of the same descriptor element in a descriptor sequence,
that is, to detect those occurrences which are associated with prefixes of the track with
the same Bk -descriptor. The idea is that a track representative for a Bk -descriptor
should not include indistinguishable occurrences of the same descriptor element.

Definition 4.12. Let ρd s be a descriptor sequence and k ≥ 1. We say that two occur-
rences ρd s (i ) and ρd s ( j ), with 0 ≤ i < j < |ρd s |, of the same descriptor element d are
k-indistinguishable if (and only if):

• (for k = 1) DElm(ρd s (0, i −1)) = DElm(ρd s (0, j −1));

• (for k ≥ 2) for all i ≤ ` ≤ j −1, there exists 0 ≤ `′ ≤ i −1 such that ρd s (`) and
ρd s (`′) are (k −1)-indistinguishable.

From Definition 4.12, it immediately follows that two indistinguishable occur-
rences ρd s (i ) and ρd s ( j ) of the same descriptor element necessarily belong to the
same subsequence of ρd s .

In general, it is always the case that DElm(ρd s (0, i −1)) ⊆ DEl m(ρd s (0, j −1)),
for i < j . Moreover, 1-indistinguishability guarantees that DEl m(ρd s (0, i − 1)) =
DElm(ρd s (0, j −1)). From this, it easily follows that the two first occurrences of a
descriptor element are not 1-indistinguishable.

Propositions 4.13, 4.14 state some basic properties of the k-indistinguishability
relation.

Proposition 4.13. Let k ≥ 2 and ρd s (i ) and ρd s ( j ), with 0 ≤ i < j < |ρd s |, be two k-
indistinguishable occurrences of the same descriptor element in a descriptor sequence
ρd s . Then, ρd s (i ) and ρd s ( j ) are (k −1)-indistinguishable.

Proof. The proof is by induction on k ≥ 2.
Base case (k = 2). Let ρd s (i ) and ρd s ( j ) be two 2-indistinguishable occurrences of

a descriptor element d . By definition, for any ρd s (i ′), with i ≤ i ′ < j , an occurrence of
the descriptor element d ′ = ρd s (i ′) must occur before position i , and thus

DElm(ρd s (0, i −1)) = DEl m(ρd s (0, j −1)).

It immediately follows that ρd s (i ) and ρd s ( j ) are 1-indistinguishable.
Inductive step (k ≥ 3). By definition, for all i ≤ `≤ j −1, there exists 0 ≤ `′ ≤ i −1

such that ρd s (`) and ρd s (`′) are (k−1)-indistinguishable. By the inductive hypothesis,
ρd s (`) and ρd s (`′) are (k −2)-indistinguishable, which implies that ρd s (i ) and ρd s ( j )
are (k −1)-indistinguishable.
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Proposition 4.14. Let k ≥ 1 and ρd s (i ) and ρd s (m), with 0 ≤ i < m < |ρd s |, be two
k-indistinguishable occurrences of the same descriptor element in a descriptor se-
quence ρd s . If ρd s ( j ) = ρd s (m), for some i < j < m, then ρd s ( j ) and ρd s (m) are
k-indistinguishable.

Proof. The proof is by induction on k ≥ 1.
Base case (k = 1). Since DElm(ρd s (0, i −1)) = DElm(ρd s (0,m −1)) and

DElm(ρd s (0, i −1)) ⊆ DElm(ρd s (0, j −1)) ⊆ DElm(ρd s (0,m −1)),

then
DElm(ρd s (0, i −1)) = DElm(ρd s (0,m −1)) = DEl m(ρd s (0, j −1)),

proving the property.
Inductive step (k ≥ 2). By hypothesis, all occurrences ρd s (i ′), with i ≤ i ′ < m,

are (k −1)-indistinguishable from some occurrence of the same descriptor element
before i . In particular, this is true for all occurrences ρd s ( j ′), with j ≤ j ′ < m. The
thesis trivially follows.

In Figure 4.2, we provide some examples of k-indistinguishability relations, for
k ∈ {1,2,3}, for a track of the finite Kripke structure depicted in Figure 4.1.

The next theorem establishes a fundamental connection between the notions of
k-indistinguishability of descriptor elements and k-descriptor equivalence of tracks.

Theorem 4.15. Let ρd s be the descriptor sequence for a track ρ. Two occurrences ρd s (i )
and ρd s ( j ), 0 ≤ i < j < |ρd s |, of the same descriptor element are k-indistinguishable if
and only if ρ(0, i +1) ∼k ρ(0, j +1).

Proof. Let us assume that ρd s (i ) and ρd s ( j ), with i < j , are k-indistinguishable. We
prove by induction on k ≥ 1 that ρ(0, i +1) and ρ(0, j +1) have the same Bk -descriptor.

Base case (k = 1). Since ρd s (i ) and ρd s ( j ) are occurrences of the same descriptor
element, the B1-descriptors for ρ(0, i +1) and ρ(0, j +1) have roots labeled by the
same descriptor element. Moreover, the children of these B1-descriptors are in
one-to-one correspondence since, by 1-indistinguishability, DEl m(ρd s (0, i −1)) =
DElm(ρd s (0, j −1)).

Inductive step (k ≥ 2). Since all the prefixes of ρ(0, i + 1) are also prefixes of
ρ(0, j +1), we just need to consider the prefixes ρ(0, t ) with i +1 ≤ t ≤ j . By definition,
any occurrence ρd s (i ′) with i ≤ i ′ < j , is (k − 1)-indistinguishable from another
occurrence ρd s (i ′′), with i ′′ < i , of the same descriptor element. By the inductive
hypothesis, ρ(0, i ′+1) and ρ(0, i ′′+1) have the same Bk−1-descriptor. It follows that
for any proper prefix of ρ(0, j +1) (of length at least 2), there exists a proper prefix of
ρ(0, i +1) with the same Bk−1-descriptor, which implies that the tracks ρ(0, i +1) and
ρ(0, j +1) have the same Bk -descriptor.

Conversely, we prove, by induction on k > 1, that if ρd s (i ) and ρd s ( j ), with i < j ,
are not k-indistinguishable, then the Bk -descriptors of ρ(0, i +1) and ρ(0, j +1) are
different. We assume ρd s (i ) and ρd s ( j ) to be occurrences of the same descriptor
element (if this was not the case, the thesis would trivially follow, since the roots of
the Bk -descriptors for ρ(0, i+1) and ρ(0, j+1) would be labeled by different descriptor
elements).

Base case (k = 1). If ρd s (i ) and ρd s ( j ), with i < j , are not 1-indistinguishable, then
DElm(ρd s (0, i −1)) ⊂ DEl m(ρd s (0, j −1)). So there exists d ∈ DElm(ρd s (0, j −1))
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such that d ∉ DEl m(ρd s (0, i − 1)), and the B1-descriptor for ρ(0, j + 1) has a leaf
labeled by d which is not present in the B1-descriptor for ρ(0, i +1).

Inductive step (k ≥ 2). If ρd s (i ) and ρd s ( j ), with i < j , are not k-indistinguishable,
then there exists (at least) one occurrence ρd s (i ′), with i ≤ i ′ < j , of a descriptor
element d which is not (k −1)-indistinguishable from any occurrence of d before
position i . By the inductive hypothesis, ρ(0, i ′+1) has a Bk−1-descriptor which is not
isomorphic to any Bk−1-descriptor associated with proper prefixes of ρ(0, i +1). Thus,
in the Bk -descriptor for ρ(0, j +1) there exists a subtree of depth k −1 such that there
is not an isomorphic subtree of depth k −1 in the Bk -descriptor for ρ(0, i +1).

Notice that k-indistinguishability between occurrences of descriptor elements is
defined only for pairs of prefixes of the same track, while the relation of k-descriptor
equivalence can be applied to any pair of tracks of a Kripke structure.

We conclude the section with the following proposition, which easily follows from
Theorem 4.15.

Proposition 4.16. Let ρd s (i ), ρd s ( j ), and ρd s (m), with 0 ≤ i < j < m < |ρd s |, be three
occurrences of the same descriptor element. If both the pair ρd s (i ) and ρd s ( j ) and
the pair ρd s ( j ) and ρd s (m) are k-indistinguishable, for some k ≥ 1, then ρd s (i ) and
ρd s (m) are k-indistinguishable as well.

4.2 Track representatives

In this section, we will exploit the k-indistinguishability relation between descriptor
elements in a descriptor sequence ρd s for a track ρ to possibly replace ρ by a k-
descriptor equivalent, shorter track ρ′ of bounded length. This allows us to find,
for each (witnessed) Bk -descriptor DBk , a track representative ρ̃, witnessed in the
considered finite Kripke structure, such that (i) DBk is the Bk -descriptor for ρ̃ and
(ii) the length of ρ̃ is bounded. Thanks to property (ii), we can check all the track
representatives of a finite Kripke structure by simply visiting its unravelling up to a
bounded depth.

The notion of track representative can be explained as follows. Let ρd s be the
descriptor sequence for a track ρ. If there exist two occurrences of the same descriptor
element ρd s (i ) and ρd s ( j ), with i < j , which are k-indistinguishable (we let ρ =
ρ(0, j+1)·ρ andρ = ρ( j+2, |ρ|−1)), then we can replace the trackρ by the k-descriptor
equivalent, shorter trackρ(0, i+1)·ρ. Indeed, by Theorem 4.15, ρ(0, i+1) andρ(0, j+1)
have the same Bk -descriptor and thus, by Proposition 4.2, ρ = ρ(0, j + 1) ·ρ and
ρ(0, i + 1) ·ρ have the same Bk -descriptor. Moreover, since ρd s (i ) and ρd s ( j ) are
occurrences of the same descriptor element, ρ(i +1) = ρ( j +1) and thus the track
ρ(0, i +1) ·ρ is witnessed in the finite Kripke structure. By iteratively applying such
a contraction method, we can find a track ρ′, which is k-descriptor equivalent to ρ,
whose descriptor sequence is devoid of k-indistinguishable occurrences of descriptor
elements. A track representative is a track that fulfils this property. In the rest of the
section, we shall consider the problem of establishing a bound to the length of track
representatives.

We start by stating some technical properties. The next proposition provides
a bound to the distance within which we observe a repeated occurrence of some
descriptor element in the descriptor sequence for a track. We preliminary observe
that, for any track ρ, |DEl m(ρd s )| ≤ |W |2 +1, where W is the set of states of the finite
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Kripke structure. Indeed, in the descriptor sequence, the sets of internal states of pre-
fixes of ρ increase monotonically with respect to the “⊆” relation. As a consequence,
at most |W | distinct sets may occur, excluding ;, which can occur only in the first
descriptor element. Moreover, these sets can be paired with all possible final states,
which are at most |W |.

Proposition 4.17. For each track ρ of K , with descriptor element d, there exists a track
ρ′ of K , with the same descriptor element, such that |ρ′| ≤ 2+|W |2.

Proof. By induction on the length `(≥ 2) of ρ.
Base case (`= 2). The track ρ satisfies the condition `≤ 2+|W |2.
Inductive step (`> 2). We distinguish two cases. If ρd s has not duplicated occur-

rences of the same descriptor element, |ρd s | ≤ 1+|W |2, since |DElm(ρd s )| ≤ 1+|W |2,
and thus ρ satisfies the condition `≤ 2+|W |2. If ρd s (i ) = ρd s ( j ), for 0 ≤ i < j < |ρd s |,
ρ(0, i + 1) and ρ(0, j + 1) are associated with the same descriptor element. Now,
ρ′ = ρ(0, i +1) ·ρ( j +2, |ρ|−1) is a track of K since ρ(i +1) = ρ( j +1), and, by Proposi-
tion 4.2, ρ = ρ(0, j +1) ·ρ( j +2, |ρ|−1) and ρ′ have the same descriptor element. By
the inductive hypothesis, there is a track ρ′′ of K associated with the same descriptor
element of ρ′ (and ρ) with |ρ′′| ≤ 2+|W |2.

Proposition 4.17 will be used in the unravelling Algorithm 1 as a termination
criterion (referred to as 0-termination criterion) for unravelling a finite Kripke struc-
ture when it is not necessary to observe multiple occurrences of the same descriptor
element.

Definition 4.18 (0-termination criterion). To get a track representative for all descrip-
tor elements, witnessed in a finite Kripke structure with set of states W and with initial
state v, we can avoid considering tracks longer than 2+ |W |2, while exploring the
unravelling of the Kripke structure from v.

Let us now consider the problem of establishing a bound for tracks devoid of pairs
of k-indistinguishable occurrences of descriptor elements. We first notice that in a
descriptor sequence ρd s for a track ρ, there are at most |W | occurrences of Type-1
descriptor elements. On the contrary, Type-2 descriptor elements can occur multiple
times and thus, in order to bound the length of ρd s , one has to bound the length of
subsequences of ρd s associated with clusters of Type-2 descriptor elements. Since
these subsequences are separated by Type-1 descriptor elements, at most |W | of
them, related to distinct clusters, can occur in any descriptor sequence. Finally, for
any cluster C , it holds that |C | ≤ |W |, because all (Type-2) descriptor elements of C
share the same set S of internal states and their final states v f i n must belong to S.

In the following, we consider the (maximal) subsequence ρd s (u, v) of ρd s associ-
ated with a specific cluster C , for some 0 ≤ u ≤ v ≤ |ρd s |−1 and, when we mention
an index i , we implicitly assume that u ≤ i ≤ v , that is, i refers to a position in the
subsequence.

Given the subsequence associated with a cluster C , we sequentially scan it, suit-
ably recording the multiplicity of occurrences of descriptor elements into an auxiliary
structure. To detect indistinguishable occurrences of descriptor elements up to in-
distinguishability s ≥ 1, we use s + 3 arrays Q−2(), Q−1(), Q0(), Q1(), Q2(), . . ., Qs ().
Array elements are sets of descriptor elements of C . Given an index i , the sets at
position i , Q−2(i ), Q−1(i ), Q0(i ), Q1(i ), Q2(i ), . . ., Qs (i ) store information about indis-
tinguishabilty for multiple occurrences of descriptor elements in the subsequence
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up to position i > u. If we assume that the scan function finds an occurrence of the
descriptor element d ∈ C at position i , that is, ρd s (i ) = d , we have:

1. Q−2(i ) contains all descriptor elements of C which have never occurred in
ρd s (u, i );

2. d ∈Q−1(i ) if d has never occurred in ρd s (u, i −1) and ρd s (i ) = d , that is, ρd s (i )
is the first occurrence of d in ρd s (u, i );

3. d ∈Q0(i ) if d occurs at least twice in ρd s (u, i ) and the occurrence ρd s (i ) of d is
not 1-indistinguishable from the last occurrence of d in ρd s (u, i −1);

4. d ∈Qt (i ) (for some t ≥ 1) if the occurrence ρd s (i ) of d is t-indistinguishable,
but not (t +1)-indistinguishable, from the last occurrence of d in ρd s (u, i −1).

At position u (the first of the subsequence), Q−1(u) contains only the descriptor
element d = ρd s (u), Q−2(u) is the set C \ {d} and Q0(u), Q1(u),. . . are empty sets.

In general, arrays Q−2(), Q−1(), Q0(), Q1(), Q2(), . . ., Qs () satisfy the following
constraints:

• for all i ,
⋃s

m=−2 Qm(i ) = C ;

• for all i and all m 6= m′, Qm(i )∩Qm′ (i ) =;.

Intuitively, at every position i , Q−2(i ), Q−1(i ), . . ., Qs (i ) describe a state of the
scanning process of the subsequence. The change of the state produced by the
transition from position i −1 to i while scanning the sequence is formally defined by
the function f , reported in Figure 4.3, which maps the descriptor sequence ρd s and a
position i to the tuple of sets

(
Q−2(i ),Q−1(i ),Q0(i ), . . . ,Qs (i )

)
.

Notice that whenever a descriptor element ρd s (i ) = d is such that d ∈Qz (i −1)
and d ∈Qz ′ (i ), with z < z ′ (cases (a), (b) and (d) of the definition of f ), all Qz ′′ (i ) with
z ′′ > z ′ are empty sets and all elements in Qz ′′ (i −1) for all z ′′ ≥ z ′ belong to Qz ′ (i ).

Consider, for instance, this scenario: in a subsequence of ρd s associated with
some cluster C , ρd s (h) = ρd s (i ) = d ∈ C and ρd s (h′) = ρd s (i ′) = d ′ ∈ C for some in-
dexes h < h′ < i < i ′ and d 6= d ′, and there are not other occurrences of d and d ′
in ρd s (h, i ′). If ρd s (h) and ρd s (i ) are exactly z ′-indistinguishable, by definition of
the indistinguishability relation, ρd s (h′) and ρd s (i ′) can be no more than (z ′+1)-
indistinguishable. Thus, if d ′ is in Qz ′′ (i −1) for some z ′′ > z ′, we can safely “down-
grade” it to Qz ′ (i ), because we know that when we meet the next occurrence of d ′
(ρd s (i ′)), ρd s (h′) and ρd s (i ′) will be no more than (z ′+1)-indistinguishable.

In the following, we will make use of an abstract characterization of the state
of the arrays at a given position i , as determined by the scan function f , called
configuration, that only considers the cardinality of the sets of arrays. We will prove
that when a descriptor subsequence is scanned, configurations never repeat, that is,
the sequence of configurations is strictly decreasing according to the lexicographical
order >lex . This property will allow us to establish the bound to the length of track
representatives.

Definition 4.19. Let ρd s be the descriptor sequence for a track ρ and i be a position in
the subsequence of ρd s associated with a given cluster. The configuration at position i ,
written c(i ), is the tuple:

c(i ) = (|Q−2(i )|, |Q−1(i )|, |Q0(i )|, |Q1(i )|, · · · , |Qs (i )|),

where f (ρd s , i ) = (Q−2(i ),Q−1(i ),Q0(i ),Q1(i ), · · · ,Qs (i )).
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An example of a configuration sequence is given in Figure 4.2.

Theorem 4.20. Let ρd s be the descriptor sequence for a track ρ and ρd s (u, v), for
some u < v, be the subsequence associated with a cluster C . For all u < i ≤ v, if
ρd s (i ) = d, then it holds that d ∈Qs (i −1), d ∈Qs+1(i ), for some s ∈ {−2,−1}∪N, and
c(i −1) >lex c(i ).

The proof of Theorem 4.20 is given in A.2.2. It is worth pointing out that, by this
theorem, it follows that the definition of f is in fact redundant: cases (c) and (e) never
happen.

We show now how to select all and only those tracks which do not feature any
pair of k-indistinguishable occurrences of descriptor elements. To this end, we
make use of the scan function f with k +3 arrays (the value k +3 derives from the k
of descriptor element indistinguishability, plus the three arrays Q−2(), Q−1(), Q0()).
Theorem 4.20 guarantees that, while scanning a subsequence, configurations are
never repeated. Such a property allows us to fix an upper bound to the length of a
track, exceeding which the descriptor sequence for the track features at least a pair of
k-indistinguishable occurrences of a descriptor element. The bound is essentially
given by the number of possible configurations for k +3 arrays.

By an easy combinatorial argument, we can prove the following proposition.

Proposition 4.21. For all n, t ∈N+, the number of distinct t-tuples of natural numbers
whose sum equals n is

ε(n, t ) =
(

n + t −1

n

)
=

(
n + t −1

t −1

)
.

Proof. The following figure suggests an alternative representation of a tuple, in the
form of a configuration of separators/bullets; such a representation is unambiguous
(i.e., there exists a bijection between configurations of separators/bullets and tuples):

◦ ◦ ◦ ◦ ◦ | ◦ ◦ ◦ | ◦ | | ◦ ! (5,3,1,0,1)

The sum of the integers of the tuple equals the number of bullets and the size
of the tuple is the number of separators plus 1. Since there exist ε(n, t) = (n+t−1

t−1

)
distinct ways of choosing t −1 separators among n+ t −1 different places (and places
which are not chosen must contain bullets), there are exactly ε(n, t ) distinct t-tuples
of naturals whose sum equals n.

Two upper bounds for ε(n, t ) can be derived: ε(n, t ) ≤ (n +1)t−1 and ε(n, t ) ≤ t n .
Since a configuration c(i ) of a cluster C is a (k+3)-tuple, whose elements add up to

|C |, Proposition 4.21 allows us to conclude that there are at most ε(|C |,k+3) = (|C |+k+2
k+2

)
distinct configurations of size (k +3), whose integers add up to |C |. Moreover, since
configurations never repeat while scanning a subsequence associated with a cluster
C , ε(|C |,k +3) is an upper bound to the length of such a subsequence.

Now, for any track ρ, ρd s has at most |W | subsequences associated with distinct
clusters C1,C2, . . . , and thus if the following upper bound to the length of ρ is exceeded,
then there is at least one pair of k-indistinguishable occurrences of a descriptor
element in ρd s : |ρ| ≤ 1+ (|C1| + 1)k+2 + (|C2| + 1)k+2 + ·· · + (|Cs | + 1)k+2 + |W |, with
s ≤ |W | and the last addend is to count the occurrences of Type-1 descriptor elements.
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Since clusters are disjoint, their union is a subset of DEl m(ρd s ), and |DElm(ρd s )| ≤
1+|W |2, we have:

|ρ| ≤ 1+ (|C1|+ |C2|+ · · ·+ |Cs |+ |W |)k+2 +|W | ≤
1+ (|DElm(ρd s )|+ |W |)k+2 +|W | ≤

1+ (1+|W |2 +|W |)k+2 +|W | ≤ 1+ (1+|W |)2k+4 +|W |.

Analogously:

|ρ| ≤ 1+ (k +3)|C1|+ (k +3)|C2 |+·· ·+ (k +3)|Cs |+|W | ≤
1+ (k +3)|C1|+|C2 |+···+|Cs |+|W | ≤

1+ (k +3)|DEl m(ρd s )|+|W | ≤ 1+ (k +3)|W |2+1 +|W |.

The upper bound for |ρ| is then the least of the two given upper bounds:

τ(|W |,k) = min
{
1+ (1+|W |)2k+4 +|W |,1+ (k +3)|W |2+1 +|W |}.

Theorem 4.22. Let K be a finite Kripke structure and ρ be a track in Tr kK . If it holds
that |ρ| > τ(|W |,k), there exists another track in TrkK , whose length is less than or
equal to τ(|W |,k), which has the same Bk -descriptor as ρ.

Proof. (Sketch) If |ρ| > τ(|W |,k), then there exists at least one subsequence of ρd s ,
associated with some cluster C , which contains at least a pair of k-indistinguishable
occurrences of a descriptor element d ∈ C , say ρd s (i ) and ρd s ( j ), with j < i . By
Theorem 4.15, the two tracks associated with ρd s (0, j ) and ρd s (0, i ), say ρ̃1 and ρ̃2,
have the same Bk -descriptor. Now, let us rewrite the track ρ as the concatenation
ρ̃2 ·ρ for some ρ. By Proposition 4.2, the tracks ρ = ρ̃2 ·ρ and ρ′ = ρ̃1 ·ρ have the
same Bk -descriptor. Since lst(ρ̃1) = lst(ρ̃2) (ρd s ( j ) and ρd s (i ) are occurrences of the
same descriptor element d), ρ′ = ρ̃1 ·ρ is a track of K , and it is shorter than ρ. If
|ρ′| ≤ τ(|W |,k), we have proved the thesis; otherwise, we can iterate the process by
applying the above contraction to ρ′.

Theorem 4.22 allows us to specify a termination criterion to bound the depth of
the unravelling of a finite Kripke structure, while searching for track representatives
for witnessed Bk -descriptors.

Definition 4.23 ((k ≥ 1)-termination criterion). For any given k ≥ 1, to get a track
representative for every Bk -descriptor with a given initial state v and witnessed in a
finite Kripke structure with set of states W , we can avoid taking into consideration
tracks longer than τ(|W |,k) while exploring the unravelling of the structure from v.

Now we outline the unravelling Algorithm 1: it scans the unravelling of the input
Kripke structure K to find the track representatives for all witnessed Bk -descriptors.
The upper bound τ(|W |,k) on the maximum depth of the unravelling ensures the
termination of the algorithm, which never returns a track ρ whenever there exist
k-indistinguishable occurrences of a descriptor element d in ρd s .

The following theorem proves soundness and completeness of the unravelling
Algorithm 1 in forward direction. Backward direction is analogous.
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Algorithm 1 Unrav(K , v,k,direction)
1: / “¿” is an arbitrary order of the nodes of K
2: if direction = FORWARD then
3: Unravel K starting from v according to ¿
4: For every new node of the unravelling met during the visit, return the track ρ from v to the current

node only if:
5: if k = 0 then
6: Apply 0-termination criterion of Definition 4.18
7: else
8: if The last descriptor element d of (the descriptor sequence of) the current track ρ is k-

indistinguishable from a previous occurrence of d then
9: do not return ρ and backtrack to ρ(0, |ρ|−2) · v , where v is the minimum state (w.r.t. ¿)

greater than ρ(|ρ|−1) such that (ρ(|ρ|−2), v) is an edge of K .

10: else if direction = BACKWARD then
11: Unravel K starting from v according to ¿ / K is K with transposed edges
12: For every new node of the unravelling met during the visit, consider the track ρ from the current

node to v , and recalculate descriptor elements indistinguishability from scratch (left to right); return
the track only if:

13: if k = 0 then
14: Apply 0-termination criterion of Definition 4.18
15: else
16: if There exist two k-indistinguishable occurrences of a descriptor element d in (the descriptor

sequence of) the current track ρ then
17: do not return ρ

18: Do not visit tracks of length greater than τ(|W |,k)

Theorem 4.24. Let K be a finite Kripke structure, v be a state in W , and k ∈N. For
every track ρ of K , with fst(ρ) = v and |ρ| ≥ 2, the unravelling algorithm returns a
track ρ′ of K , with fst(ρ′) = v, such that ρ and ρ′ have the same Bk -descriptor and
|ρ′| ≤ τ(|W |,k).

The proof of Theorem 4.24 is given in A.2.3. It basically shows how a “contracted
variant” of a track ρ is (indirectly) computed by Algorithm 1.

As an example, in place of the track ρ of Figure 4.2, the algorithm returns the fol-
lowing contracted track: ρ′ = v0v1v2v3v3v2v3v3v2v3v2v3v2v1v3v2v3v2v1v2v1v3v2.
It can be checked that ρ′ does not contain any pair of 3-indistinguishable occurrences
of a descriptor element and that ρ and ρ′ have the same B3-descriptor.

In the forward modality, the direction of track exploration and that of indistin-
guishability checking are the same, so we can stop extending a track as soon as the
first pair of k-indistinguishable occurrences of a descriptor element is found in the
descriptor sequence, suggesting an easy termination criterion for stopping the unrav-
elling of tracks. In the backward modality, such a straightforward criterion cannot
be adopted, because tracks are explored right to left (the opposite direction with
respect to edges of the Kripke structure), while the indistinguishability relation over
occurrences of descriptor elements is computed left to right. In general, changing
the prefix of a considered track requires recomputing from scratch the descriptor
sequence and the indistinguishability relation over descriptor elements. In particular,
k-indistinguishable occurrences of descriptor elements can be detected in the middle
of a subsequence, and not necessarily at the end.

Luckily, a heuristic is applicable when dealing with the backward modality: if
the descriptor sequence ρd s for ρ contains a pair of k-indistinguishable occurrences
ρd s ( j ) and ρd s (i ) of the same descriptor element, with j < i , it is possible to skip
the exploration of tracks of the form ρ ·ρ, for any ρ ∈ TrkK . Since ρ(0, j + 1) and
ρ(0, i +1) have the same Bk -descriptor, by Proposition 4.3 for any ρ ∈ TrkK such that
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(lst(ρ), fst(ρ)) is an edge of K , ρ·ρ(0, i+1) andρ·ρ(0, j+1) have the same Bk -descriptor
and thus ρ ·ρ still features the same pair of k-indistinguishable occurrences. Then,
the exploration can continue from v ·ρ(1, |ρ|−1), where v is the minimum state (with
respect to the arbitrarily chosen order of nodes ¿) greater than ρ(0) such that (v ,ρ(1))
is an edge of K .

4.3 The model checking algorithm

Building on the unravelling Algorithm 1, we can easily define the model checking
procedure ModCheck(K ,ψ) (Algorithm 2). In particular u.hasMoreTracks(), in the
guard of the while-loop, is true if and only if not all tracks have already been returned
by u, which is an instance of the unravelling algorithm; u.getNextTrack() returns
the next track from u.

ModCheck(K ,ψ) exploits the procedure Check(K ,k,ψ, ρ̃) (Algorithm 3), which
checks a formula ψ of B-nesting depth k against a track ρ̃ of the Kripke structure K .

Algorithm 2 ModCheck(K ,ψ)
1: k ← NestB(ψ)
2: u ← New (Unrav(K ,init_state(K ),k, FORWARD))
3: while u.hasMoreTracks() do
4: ρ̃← u.getNextTrack()
5: if Check(K ,k,ψ, ρ̃) = 0 then
6: return 0: “K , ρ̃ 6|=ψ” / Counterexample

7: return 1: “K |=ψ”

Before proving the correctness of the model checking procedure, we first assess a
correctness result for the auxiliary procedure Check (the proof is given in A.2.4).

Lemma 4.25. Let ψ be an HS[A, A,B ,B ,E ] formula with NestB(ψ) = k, K be a Kripke
structure, and ρ̃ be a track in TrkK . The procedure Check(K ,k,ψ, ρ̃) returns 1 if and
only if K , ρ̃ |=ψ.

Notice that an optimization step could be introduced at line 32 of Algorithm 3,
before calling Check recursively on a prefix of ρ̃: if a prefix ρ̂1 has the same Bk−1-
descriptor of the current prefix ρ̂2 of ρ̃, and it is shorter than ρ̂2 (it is possible to
check the requirement by exploiting descriptor element indistinguishability), and
Check has already tested ρ̂1, it is possible to skip the call on ρ̂2. Moreover, instead
of checking ρ̂2 ·ρ, a prefix of ρ̃ for some ρ, it is possible to check ρ̂1 ·ρ (since, by the
right extension Proposition 4.2, they have the same Bk−1-descriptor).

The following theorem assesses the correctness and completeness of the model
checking procedure.

Theorem 4.26. Let ψ be an HS[A, A,B ,B ,E ] formula and K be a finite Kripke struc-
ture. ModCheck(K ,ψ) = 1 if and only if K |=ψ.

Proof. If K |=ψ, then for all ρ ∈ TrkK such that fst(ρ) = w0 is the initial state of K ,
we have K ,ρ |=ψ. By Lemma 4.25, it follows that Check(K ,NestB(ψ),ψ,ρ) returns 1.
Now, the unravelling procedure returns a subset of the initial tracks. This implies that
ModCheck(K ,ψ) returns 1.

On the other hand, if ModCheck(K ,ψ) = 1, then for any track ρ with fst(ρ) = w0

returned by the unravelling algorithm, Check(K ,NestB(ψ),ψ,ρ) returns 1 and, by
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Algorithm 3 Check(K ,k,ψ, ρ̃)
1: if ψ=> then
2: return 1
3: else if ψ=⊥ then
4: return 0
5: else if ψ= p ∈ AP then
6: if p ∈⋂

s∈states(ρ̃)µ(s) then
7: return 1
8: else
9: return 0

10: else if ψ=¬ϕ then
11: return 1 − Check(K ,k,ϕ, ρ̃)
12: else if ψ=ϕ1 ∧ϕ2 then
13: if Check(K ,k,ϕ1, ρ̃) = 0 then
14: return 0
15: else
16: return Check(K ,k,ϕ2, ρ̃)

17: else if ψ= 〈A〉ϕ then
18: u ← New

(
Unrav(K , lst(ρ̃),k, FORWARD)

)
19: while u.hasMoreTracks() do
20: ρ← u.getNextTrack()
21: if Check(K ,k,ϕ,ρ) = 1 then
22: return 1
23: return 0
24: else if ψ= 〈A〉ϕ then
25: u ← New

(
Unrav(K , fst(ρ̃),k, BACKWARD)

)
26: while u.hasMoreTracks() do
27: ρ← u.getNextTrack()
28: if Check(K ,k,ϕ,ρ) = 1 then
29: return 1
30: return 0
31: else if ψ= 〈B〉ϕ then
32: for each ρ prefix of ρ̃ do
33: if Check(K ,k −1,ϕ,ρ) = 1 then
34: return 1
35: return 0
36: else if ψ= 〈B〉ϕ then
37: for each v ∈W such that (lst(ρ̃), v) is an edge of K do
38: if Check(K ,k,ϕ, ρ̃ · v) = 1 then
39: return 1
40: u ← New (Unrav(K , v,k, FORWARD))
41: while u.hasMoreTracks() do
42: ρ← u.getNextTrack()
43: if Check(K ,k,ϕ, ρ̃ ·ρ) = 1 then
44: return 1
45: return 0
46: else if ψ= 〈E〉ϕ then
47: for each v ∈W such that (v, fst(ρ̃)) is an edge of K do
48: if Check(K ,k,ϕ, v · ρ̃) = 1 then
49: return 1
50: u ← New (Unrav(K , v,k, BACKWARD))
51: while u.hasMoreTracks() do
52: ρ← u.getNextTrack()
53: if Check(K ,k,ϕ,ρ · ρ̃) = 1 then
54: return 1
55: return 0



4.4. NEXP-hardness of model checking for HS[A, A,B ,B ,E ] ¦ 55

Lemma 4.25, we have K ,ρ |=ψ. Assume now that a track ρ̃ with fst(ρ̃) = w0 is not
returned by the unravelling algorithm. By Theorem 4.24, there is a track ρ, with
fst(ρ) = w0, which is returned in place of ρ̃ and ρ has the same Bk -descriptor as ρ̃
(with k = NestB(ψ)). Since K , ρ̃ |=ψ ⇐⇒ K ,ρ |=ψ (by Theorem 4.4) and K ,ρ |=ψ,
we get that K , ρ̃ |=ψ. So all tracks starting with state w0 model ψ, thus K |=ψ.

Finally, we observe that the model checking algorithm ModCheck is in EXPSPACE.
Indeed, ModCheck uses an instance of the unravelling algorithm and some additional
space for a track ρ̃. Analogously, every recursive call to Check needs an instance of
the unravelling algorithm and space for a track. Since there are at most |ψ| (where
ψ is the input formula) simultaneously active calls to Check, the total space needed
by the considered algorithms is

(|ψ|+1
) ·O(|W | +NestB(ψ)) ·τ(|W |,NestB(ψ)) bits

overall, where τ(|W |,NestB(ψ)) is the maximum length of track representatives, and
O(|W | +NestB(ψ)) bits are needed to represent a state of K , a descriptor element,
and a counter for k-indistinguishability.

As a particular case, formulas ψ of the fragment HS[A, A,B ,E ] can be checked
in polynomial space, because for these formulas NestB(ψ) = 0 (we will come back to
this HS fragment in the next chapter).

4.4 NEXP-hardness of model checking for the
fragment HS[A, A,B ,B ,E ]

We conclude this chapter by proving that the model checking problem for formulas of
the fragment HS[A, A,B ,B ,E ], interpreted over finite Kripke structures, is NEXP-hard
when a succinct encoding of formulas is exploited (Theorem 4.27). Like in the proof
of Theorem 3.12, we allow to write 〈B〉k ψ standing for k repetitions of 〈B〉 before
ψ, with k represented in binary. The same can be done for all other HS modalities.
Additionally,

∧
i=l ,··· ,r ψ(i ) denotes a conjunction of formulas which contain some

occurrences of the index i as exponents (l and r are binary encoded naturals), for
example

∧
i=1,··· ,5 〈B〉i >.

We finally denote by expand(ψ) the expanded form of ψ: all exponents k have
to be eliminated from ψ by explicitly repeating k times each HS modality with such
an exponent, and big conjunctions must be replaced by conjunctions of formulas
without indexes.

Theorem 4.27. The model checking problem for succinct HS[A, A,B ,B ,E ] formulas
against finite Kripke structures is NEXP-hard.

Proof. Since this proof is very similar to that of Theorem 3.12, we only outline which
elements have to be changed.

• We consider a language L decided by a non-deterministic one-tape Turing

machine M (w.l.o.g.) that halts after no more than 2nk −3 computation steps
on an input of size n (L belongs to NEXP).

• As a consequence, M uses at most 2nk −3 cells on its tape, so the size of a con-

figuration is 2nk
. Moreover the number of configurations is 2nk −3. Therefore

the computation table is now a matrix of 2nk −3 rows and 2nk
columns.
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• Finally ψwi ndow changes in this way (obviously the ψwi ndow described in the
proof of 3.12 is not suitable, as it contains modality E):

ψwi ndow = [B ]

( ∧
i=2,··· ,t

∧
(d ,e, f )∈Γ3

(
`(3 ·2nk +3i +1)∧〈A〉(d ,e, f )

→ [B ]
(
`(3i +1) → ∨

((a,b,c),(d ,e, f ))∈W nd
〈A〉(a,b,c)

)))
,

where t = 2nk · (2nk −4)−1 is encoded in binary.

In the proof of Theorem 3.12, in order to consider the positions in a track corre-
sponding to the same cell of two consecutive rows of the computation table, we can
“isolate” a subinterval of such a track in between these two positions, thanks to the
joint use of modalities B and E . In this proof, the lack of E forces us to consider pairs
of positions by taking into account two prefixes of the track (with suitable lengths): if
we had considered an EXPSPACE Turing machine, the number of rows of the table
could have been doubly exponential in n: this would have forced to have indexes in
ψwi ndow —which accounts for all the cells of the computation table—that are doubly
exponential in n (thus encoded with an exponential quantity of bits), and the formula
could not have been generated in polynomial time. Therefore we have to restrict
ourselves to NEXP.

If for a succinct HS[A, A,B ,B ,E ] formulaψ, |expand(ψ)| ≤ 2|ψ|c for some constant
c ∈ N+, then the model checking Algorithm 2 still runs in exponential space with
respect to the succinct input formula ψ, by preliminarily expanding ψ to expand(ψ),
as τ(|W |,NestB(expand(ψ)) is exponential in |W | and |ψ|. Indeed, it’s not difficult to
show that all succinct formulas ψ are such that |expand(ψ)| ≤ 2|ψ|c . Thus we have
shown that the model checking problem for succinct HS[A, A,B ,B ,E ] formulas is in
between NEXP and EXPSPACE.

In the next chapter, we shall analyze some more HS fragments and we will obtain
as a by-product that the model checking problem for formulas of HS[A, A,B ,B ,E ] is
PSPACE-hard if the described succinct encoding is not allowed.
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In this chapter, we identify some well-behaved fragments of the HS logic, namely,
∀HS[A, A,B ,E ] (and ∃HS[A, A,B ,E ]), HS[A, A,B ,E ], and HS[A, A], which are still ex-
pressive enough to capture meaningful interval properties of state-transition systems
and whose model checking problem exhibits a considerably lower computational
complexity.

In Section 5.1, we deal with the fragment ∀HS[A, A,B ,E ], including formulas
of HS[A, A,B ,E ] in which only universal modalities are allowed and negation can
be applied to propositional formulas only. We first provide a coNP model checking
algorithm for ∀HS[A, A,B ,E ], and then we show that the model checking problem
for the pure propositional fragment HS[Prop] is coNP-hard. The two results allow us
to conclude that the model checking problem for both HS[Prop] and ∀HS[A, A,B ,E ]
is coNP-complete. In addition, upper and lower bounds to the complexity of the
problem for HS[A, A] (the logic of temporal neighbourhood) directly follow. Recall
that the model checking algorithm for HS[A, A,B ,B ,E ] of Section 4.3 can check
formulas of HS[A, A,B ,E ] in polynomial space. Since HS[A, A] is a fragment of
HS[A, A,B ,E ] and HS[Prop] is a fragment of HS[A, A], complexity of model checking
for HS[A, A] is in between coNP and PSPACE.

In Section 5.2, we focus our attention on HS[A, A,B ,E ] and we prove that the
model checking problem for HS[A,B ] is PSPACE-hard. PSPACE-completeness of
HS[A, A,B ,E ] (and HS[A,B ]) immediately follows. From this, we get for free a lower
bound to the complexity of the model checking problem for HS[A, A,B ,B ,E ] in the
non-succinct case, which turns out to be PSPACE-hard.
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w0
x0

w1
r0, x0

w2
r1

w3
r0,r1

w4
r0,r1,e1
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r0,r1,e0, x0

w7
e0, x0

w8
r0,r1,e0,e1

w9
e0,e1

P1 P0 P0, P1

S

Figure 5.1: A simple state-transition system.

The following simple example shows the HS fragments we consider in this chapter
at work.

Example 5.1. Let K = (AP ,W,δ,µ, w0), with AP = {r0,r1,e0,e1, x0}, be the Kripke
structure of Figure 5.1, that models the interactions between a scheduler S and two
processes, P0 and P1, which possibly ask for a shared resource. At the initial state
w0, S has not received any request from the processes yet, while in w1 (resp., w2) only
P0 (resp., P1) has sent a request, and thus r0 (resp., r1) holds. As long as at most one
process has sent a request, S is not forced to allocate the resource (w1 and w2 have self
loops). At w3, both P0 and P1 are waiting for the shared resource, and hence both r0

and r1 hold there. State w3 has transitions only towards w4, w6, and w8. At w4 (resp.,
w6) P1 (resp., P0) can access the resource: e1 (resp., e0) holds in w4w5 (resp., w6w7).
However, a faulty transition may be taken from w3: in w8 and w9 both P0 and P1 are
using the resource (both e0 and e1 hold in w8w9). Finally, from w5, w7, and w9 the
system can only move to w0, where S waits for new requests from P0 and P1.

Now, let P be the set {r0,r1,e0,e1} and let x0 be an auxiliary proposition letter
labelling the states w0, w1, w6, and w7, where S and P0, but not P1, are active.

In the following formulas notice that K |= [A]ψ (equivalently, K |= [E ]ψ) iff ψ
holds over any (reachable) computation sub-interval.

It can be easily checked that K 6|= [E ]¬(e0 ∧e1) (this formula is in ∀HS[A, A,B ,E ]),
that is, mutual exclusion is not guaranteed, as the faulty transition leading to w8 may
be taken at w3, and then both P0 and P1 access the resource in w8w9 (e0 ∧e1 holds).

On the contrary, it holds that K |= [A]
(
r0 → 〈A〉e0 ∨〈A〉〈A〉e0

)
(in HS[A, A] and

HS[A, A,B ,E ]). Such a formula expresses the following reachability property: if r0

holds over some interval, then there is always a way to reach an interval over which e0

holds. Obviously, this does not mean that all possible computations will necessarily
lead to such an interval; however, the system will never “fall” in a state from which it is
no more possible to satisfy requests from P0.

It also holds that K |= [A]
(
r0 ∧ r1 → [A](e0 ∨ e1 ∨∧

p∈P ¬p)
)

(in HS[A, A] and

HS[A, A,B ,E ]). Indeed, if both processes send a request to S (state w3), then it im-
mediately allocates the resource. Formally, if r0 ∧ r1 holds over some tracks (the only
possibilities are w3w4, w3w6, and w3w8), then in any possible subsequent interval of
length 2 e0 ∨e1 holds, that is, P0 or P1 are executed, or

∧
p∈P ¬p holds, if we consider
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tracks longer than 2. On the contrary, if only one process asks for the resource, then S
can arbitrarily delay its allocation, that is, K 6|= [A]

(
r0 → [A](e0 ∨∧

p∈P ¬p)
)
.

Finally, it holds that K |= x0 →〈B〉x0 (in HS[A, A,B ,E ]), that is, any initial track
satisfying x0 (any such track features occurrences of states w0, w1, w6, and w7 only)
can be extended to the right in such a way that the resulting track still satisfies x0. This
amounts to say that there exists a computation in which P1 starves. Notice that S and
P0 can continuously interact without waiting for P1. This is the case, for instance,
when P1 does not ask for the shared resource at all.

5.1 The fragments ∀HS[A, A,B ,E ], HS[A, A], and
HS[Prop]

In this section, we take into consideration the universal and existential fragments
of HS[A, A,B ,E ], respectively denoted by ∀HS[A, A,B ,E ] and ∃HS[A, A,B ,E ], whose
formulas are defined as follows:

ψ ::=β |ψ∧ψ | [A]ψ | [B ]ψ | [E ]ψ | [A]ψ

(resp., ψ ::=β |ψ∨ψ | 〈A〉ψ | 〈B〉ψ | 〈E〉ψ | 〈A〉ψ),

where
β ::= p |β∨β |β∧β | ¬β | ⊥ | > with p ∈ AP .

The intersection of ∀HS[A, A,B ,E ] and ∃HS[A, A,B ,E ] is the set of all and only
pure propositional formulas (HS[Prop]). Negations occur in pure propositional for-
mulas only, and formulas with modalities can be combined only by conjunctions (in
∀HS[A, A,B ,E ]) or disjunctions (in ∃HS[A, A,B ,E ]). The negation of any formula of
∀HS[A, A,B ,E ] can be transformed into an equivalent ∃HS[A, A,B ,E ] formula (of at
most double length), and vice versa, by using De Morgan’s laws and the equivalences
[X ]ψ≡¬〈X 〉¬ψ and ¬¬ψ≡ψ.

We now outline a non-deterministic algorithm to decide the model checking prob-
lem for a ∀HS[A, A,B ,E ] formula ψ. The algorithm searches for a counterexample to
ψ. As we already pointed out, ¬ψ is equivalent to a suitable formula ψ′ of the dual
fragment ∃HS[A, A,B ,E ]. Hence, the algorithm looks for an initial track of the Kripke
structure that satisfies ψ′.

For the satisfiability check, we use the non-deterministic procedure Check (Algo-
rithm 4), which does not exploit (directly or indirectly) neither BEk - descriptors nor
Bk -descriptors, but only descriptor elements.

Recall that (Proposition 4.17, Definition 4.18) if a descriptor element d is wit-
nessed, then there exists a track of length at most 2+|W |2 associated with it, and thus
to generate a (all) witnessed descriptor element(s) with initial state v , we just need to
non-deterministically visit the unravelling of K from v up to depth 2+|W |2.

The procedure Check takes as input a formula ψ of ∃HS[A, A,B ,E ] and a wit-
nessed descriptor element d = (vi n ,S, v f i n) and it returns Yes if and only if there
exists a track ρ ∈ TrkK associated with d such that K ,ρ |=ψ. The procedure is recur-
sively defined as follows.

If it is called on a Boolean combination β of proposition letters (base of the
recursion), V AL(β,d) evaluates β over d in the standard way. The evaluation can be
performed in deterministic polynomial time, and if V AL(β,d) returns >, then there
exists a track associated with d (of length at most quadratic in |W |) that satisfies β.
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If ψ has the form ψ′∨ψ′′, the procedure non-determistically calls itself on ψ′ or
ψ′′ (the control construct Either c1 Or c2 EndOr denotes a non-deterministic choice
between commands c1 and c2).

If ψ has the form 〈A〉ψ′ (resp., 〈A〉ψ′), the procedure looks for a new descriptor
element for a track starting from the final state (resp., leading to the initial state) of the
current descriptor element d . To this end, we use the procedure aDescrEl(K , v, FORW)
(resp., aDescrEl(K , v, BACKW)) which non-deterministically returns a descriptor ele-
ment (v ′

i n ,S′, v ′
f i n), with v ′

i n = v (resp., v ′
f i n = v), witnessed in K by exploring forward

(resp., backward) the unravelling of K from v ′
i n (resp., from v ′

f i n). Its complexity is

polynomial in |W |, since it needs to examine the unravelling of K from v up to depth
2+|W |2.

If ψ has the form 〈B〉ψ′, the procedure looks for a new descriptor element d1 and
eventually calls itself onψ′ and d1 only if the current descriptor element d results from
the “concatenation” of d1 with a suitable descriptor element d2: if d1 = (v ′

i n ,S′, v ′
f i n)

and d2 = (v ′′
i n ,S′′, v ′′

f i n), then concat(d1,d2) returns the descriptor element (v ′
i n ,S′∪

{v ′
f i n , v ′′

i n}∪S′′, v ′′
f i n). Notice that if ρ1 and ρ2 are tracks associated with d1 and d2,

respectively, then ρ1 ·ρ2 is associated with concat(d1,d2).
The following theorem proves soundness and completeness of the Check proce-

dure.

Theorem 5.2. For any ∃HS[A, A,B ,E ] formula ψ and any witnessed descriptor ele-
ment d = (vi n ,S, v f i n), the procedure Check(K ,ψ,d) has a successful computation iff
there exists a track ρ associated with d such that K ,ρ |=ψ.

Proof. (Soundness) The proof is by induction on the structure of ψ. In the proof we
assume that d is (vi n ,S, v f i n).

• ψ is a boolean combination of propositions β: let ρ be a witness track for d ; if
check(K ,β,d) has a successful computation it means that V AL(β,d) is true,
hence K ,ρ |=ψ.

• ψ = ϕ1 ∨ϕ2: if check(K ,ψ,d) has a successful computation, it follows that
for some i ∈ {1,2}, check(K ,ϕi ,d) has a successful computation. By inductive
hypothesis, there exists ρ ∈ TrkK described by d such that K ,ρ |= ϕi . Thus
K ,ρ |=ϕ1 ∨ϕ2.

• ψ = 〈A〉ϕ: if check(K ,ψ,d) has a successful computation, then there exists
a witnessed d ′ = (v ′

i n ,S′, v ′
f i n) with v ′

i n = v f i n , such that check(K ,ϕ,d ′) has

a successful computation. By inductive hypothesis, there exists a track ρ′
described by d ′ such that K ,ρ′ |= ϕ. If ρ is a track described by d (which is
witnessed by hypothesis), we have lst(ρ) = fst(ρ′) = v f i n and, by definition,
K ,ρ |=ψ.

• ψ= 〈B〉ϕ: if check(K ,ψ,d) has a successful computation, there are two possi-
ble cases:

– there exists d ′ = (vi n ,S′, v ′
f i n) witnessed by a track with (v ′

f i n , v f i n) ∈ δ
such that (vi n ,S′∪ {v ′

f i n}, v f i n) = d and check(K ,ϕ,d ′) has a successful

computation. By inductive hypothesis, there exists a track ρ′ described by
d ′ such that K ,ρ′ |=ϕ. Hence K ,ρ′ · v f i n |=ψ and ρ′ · v f i n is associated
with d .
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Algorithm 4 Check(K ,ψ, (vi n ,S, v f i n))

1: if ψ=β then / β is a Boolean combination of propositions
2: if V AL(β, (vi n ,S, v f i n )) => then
3: Yes
4: else
5: No
6: else if ψ=ϕ1 ∨ϕ2 then
7: Either
8: return Check(K ,ϕ1, (vi n ,S, v f i n ))
9: Or

10: return Check(K ,ϕ2, (vi n ,S, v f i n ))
11: EndOr
12: else if ψ= 〈A〉ϕ then
13: (v f i n ,S′, v ′

f i n ) ← aDescrEl(K , v f i n , FORW)

14: return Check(K ,ϕ, (v f i n ,S′, v ′
f i n ))

15: else if ψ= 〈A〉ϕ then
16: (v ′

i n ,S′, vi n ) ← aDescrEl(K , vi n , BACKW)

17: return Check(K ,ϕ, (v ′
i n ,S′, vi n ))

18: else if ψ= 〈B〉ϕ then
19: (v ′

i n ,S′, v ′
f i n ) ← aDescrEl(K , vi n , FORW) / v ′

i n = vi n

20: Either
21: if (v ′

i n ,S′∪ {v ′
f i n }, v f i n ) = (vi n ,S, v f i n ) and (v ′

f i n , v f i n ) is an edge of K then

22: return Check(K ,ϕ, (v ′
i n ,S′, v ′

f i n ))

23: else
24: No
25: Or
26: (v ′′

i n ,S′′, v ′′
f i n ) ← aDescrEl(K , v ′′

i n , FORW), where (v ′
f i n , v ′′

i n ) is an edge of K non-

deterministically chosen

27: if concat
(
(v ′

i n ,S′, v ′
f i n ), (v ′′

i n ,S′′, v ′′
f i n )

)
= (vi n ,S, v f i n ) then

28: return Check(K ,ϕ, (v ′
i n ,S′, v ′

f i n ))

29: else
30: No
31: EndOr
32: else if ψ= 〈E〉ϕ then
33: (v ′

i n ,S′, v ′
f i n ) ← aDescrEl(K , v f i n , BACKW) / v ′

f i n = v f i n

34: Either
35: if (vi n , {v ′

i n }∪S′, v ′
f i n ) = (vi n ,S, v f i n ) and (vi n , v ′

i n ) is an edge of K then

36: return Check(K ,ϕ, (v ′
i n ,S′, v ′

f i n ))

37: else
38: No
39: Or
40: (v ′′

i n ,S′′, v ′′
f i n ) ← aDescrEl(K , v ′′

f i n , BACKW), where (v ′′
f i n , v ′

i n ) is an edge of K non-

deterministically chosen

41: if concat
(
(v ′′

i n ,S′′, v ′′
f i n ), (v ′

i n ,S′, v ′
f i n )

)
= (vi n ,S, v f i n ) then

42: return Check(K ,ϕ, (v ′
i n ,S′, v ′

f i n ))

43: else
44: No
45: EndOr
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– there exist d ′ = (vi n ,S′, v ′
f i n) witnessed by a track and d ′′ = (v ′′

i n ,S′′, v ′′
f i n)

witnessed by a track such that (v ′
f i n , v ′′

i n) ∈ δ, concat(d ′,d ′′) = d and

check(K ,ϕ,d ′) has a successful computation. By induction hypothesis,
there exists a track ρ′ described by d ′ such that K ,ρ′ |= ϕ. Therefore
K ,ρ′ ·ρ′′ |= ψ, where ρ′′ is any track associated with d ′′, and ρ′ ·ρ′′ is
associated with d .

The case for ψ= 〈A〉ϕ (resp. ψ= 〈E〉ϕ) can be treated as ψ= 〈A〉ϕ (resp. ψ= 〈B〉ϕ).

(Completeness) The proof is by induction on the structure of ψ.

• ψ is a boolean combination of propositions β: if ρ is described by d and it
holds that K ,ρ |=β, then V AL(β,d) =>, thus check(K ,ψ,d) has a successful
computation.

• ψ=ϕ1 ∨ϕ2: if there exists a track ρ described by d such that K ,ρ |=ϕ1 ∨ϕ2,
then K ,ρ |=ϕi , for some i ∈ {1,2}. By inductive hypothesis, check(K ,ϕi ,d) has
a successful computation, hence check(K ,ψ,d) has a successful computation.

• ψ = 〈A〉ϕ: if there exists a track ρ described by d such that K ,ρ |= 〈A〉ϕ, by
definition there exists a track ρ with fst(ρ) = lst(ρ) = v f i n such that K ,ρ |=ϕ. If
d ′ = (v f i n ,S′, v ′

f i n) is the descriptor element of ρ, then by inductive hypothesis

check(K ,ϕ,d ′) has a successful computation. Now there is a computation
where the non-deterministic call to aDescrEl(K , v f i n , FORW) returns the de-
scriptor element d ′ of ρ and check(K ,ψ,d) has a successful computation.

• ψ= 〈B〉ϕ: if there exists a track ρ described by d such that K ,ρ |= 〈B〉ϕ, there
are two possible cases:

– K ,ρ |=ϕwith ρ = ρ ·v f i n for ρ ∈ TrkK . If d ′ = (vi n ,S′, v ′
f i n) describes ρ, by

inductive hypothesis check(K ,ϕ,d ′) has a successful computation. Now,
there is a computation where aDescrEl(K , vi n , FORW) returns d ′; clearly,
(v ′

f i n , v f i n) ∈ δ and (vi n ,S′∪ {v ′
f i n}, v f i n) = d , and check(K ,ψ,d) has a

successful computation.

– K ,ρ |= ϕ with ρ = ρ · ρ̃ for some ρ, ρ̃ ∈ TrkK . Let d ′ = (vi n ,S′, v ′
f i n) and

d ′′ = (v ′′
i n ,S′′, v ′′

f i n) be the descriptor elements of ρ and ρ̃, respectively.

Obviously we have concat(d ′,d ′′) = d .
By inductive hypothesis, check(K ,ϕ,d ′) has a successful computation.
Since ρ and ρ̃ are witnessed, there exists a computation where the calls
to aDescrEl(K , vi n , FORW) and to aDescrEl(K , v ′′

i n , FORW) return non-
deterministically d ′ and d ′′, respectively, and (v ′

f i n , v ′′
i n) ∈ δ is chosen non-

deterministically. Hence check(K ,ψ,d) has a successful computation.

The case forψ= 〈A〉ϕ (respectivelyψ= 〈E〉ϕ) can be treated asψ= 〈A〉ϕ (respectively
ψ= 〈B〉ϕ).

The procedure ProvideCounterex(K ,ψ) of Algorithm 5 has a successful compu-
tation iff K 6|=ψ, where ψ is a ∀HS[A, A,B ,E ] formula, to∃HS[A, A,B ,E ](¬ψ) is the
∃HS[A, A,B ,E ] formula equivalent to ¬ψ, and w0 is the initial state of K .

If ProvideCounterex(K ,ψ) has a successful computation it means that there
exists a witnessed descriptor element d = (vi n ,S, v f i n), where vi n is the initial state of



5.1. The fragments ∀HS[A, A,B ,E ], HS[A, A], and HS[Prop] ¦ 63

Algorithm 5 ProvideCounterex(K ,ψ)

1: (vi n ,S, v f i n ) ← aDescrEl(K , w0, FORW) / vi n = w0

2: return Check(K ,to∃HS[A, A,B ,E ](¬ψ), (vi n ,S, v f i n ))

K , such that check(K ,to∃HS[A, A,B ,E ](¬ψ),d) has a successful computation. So
there exists a track ρ associated with d such that K ,ρ |= ¬ψ. Thus K 6|=ψ.

On the other hand, if K 6|=ψ then there exists an initial track ρ such that K ,ρ |= ¬ψ.
Let d be the descriptor element of ρ: check(K ,to∃HS[A, A,B ,E ](¬ψ),d) has a suc-
cessful computation. Since d is witnessed by an initial track, some non-deterministic
instance of aDescrEl(K , w0, FORW) returns d ; hence ProvideCounterex(K ,ψ) has
a successful computation.

As for the complexity, ProvideCounterex(K ,ψ) runs in non-deterministic poly-
nomial time (it is in NP) since the number of recursive invocations of the procedure
Check is O(|ψ|) and each invocation requires time polynomial in |W | while gen-
erating descriptor elements. As a consequence, the model checking problem for
∀HS[A, A,B ,E ] belongs to the complexity class coNP.

We conclude the section by proving that the model checking problem for the
fragment ∀HS[A, A,B ,E ] is coNP-complete. Such a result is an easy corollary of the
following theorem.

Theorem 5.3. Let K be a finite Kripke structure and β ∈ HS[Prop] be a Boolean
combination of proposition letters. The problem of deciding whether K 6|=β is NP-hard
(under a LOGSPACE reduction).

Proof. We provide a LOGSPACE reduction from the NP-complete SAT problem to our
problem. Let β be a Boolean formula over a set of variables {x1, . . . , xn}. We build a
Kripke structure K = (AP ,W,δ,µ, w0), where:

• AP = {x1, . . . , xn},

• W = {w0}∪ {w`
i | ` ∈ {>,⊥}, 1 ≤ i ≤ n},

• δ= {(w0, w>
1 ), (w0, w⊥

1 )}∪ {(w`
i , wm

i+1) | `,m ∈ {>,⊥}, 1 ≤ i ≤ n −1}∪
{(w>

n , w>
n ), (w⊥

n , w⊥
n )},

• µ(w0) = AP ,

• for all 1 ≤ i ≤ n, µ(w>
i ) = AP and µ(w⊥

i ) = AP \ {xi }.

Figure 5.2 provides an example of such a Kripke structure for AP = {x1, x2, x3, x4}.
It is immediate to see that any initial track ρ of any length induces a truth assign-

ment to the variables of AP : for any xi ∈ AP , xi evaluates to > iff xi ∈⋂
w∈states(ρ)µ(w).

Vice versa, for any possible truth assignment to the variables in AP , there exists an
initial track ρ that induces such an assignment: we include in the track the state x>

i if
xi is assigned to >, x⊥

i otherwise.
Let γ = ¬β. It holds that β is satisfiable iff there exists an initial track ρ ∈ TrkK

such that K ,ρ |=β, that is, iff K 6|= γ. To conclude, it suffices to observe that K can be
built with logarithmic working space.

It immediately follows that checking whether K 6|= β for β ∈ HS[Prop] is NP-
complete, so model checking for formulas of HS[Prop] is coNP-complete. Moreover,
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w0
x1, x2, x3, x4

w>
x1

x1, x2, x3, x4

w⊥
x1

x2, x3, x4

w>
x2

x1, x2, x3, x4

w⊥
x2

x1, x3, x4

w>
x3

x1, x2, x3, x4

w⊥
x3

x1, x2, x4

w>
x4

x1, x2, x3, x4

w⊥
x4

x1, x2, x3

Figure 5.2: Kripke structure associated with a SAT formula with variables x1, x2, x3, x4.

since a Boolean combination of proposition letters in HS[Prop] is also a formula of
∀HS[A, A,B ,E ], ProvideCounterex(K ,ψ) is at least as hard as checking whether
K 6|=β for β ∈ HS[Prop]. Thus, ProvideCounterex(K ,ψ) is NP-complete, and hence
the model checking problem for ∀HS[A, A,B ,E ] is coNP-complete.

Finally, from the lower bound for HS[Prop], it immediately follows that model
checking for HS[A, A] is coNP-hard (and we already know it is in PSPACE from Sec-
tion 4.3).

5.2 The fragment HS[A, A,B ,E ]

As we said, the model checking algorithm for HS[A, A,B ,B ,E ] of Section 4.3 can check
formulas of HS[A, A,B ,E ] in polynomial (not exponential) space. Here, we prove
that such an algorithm is asymptotically optimal by showing that model checking
for HS[A,B ] is a PSPACE-hard problem (Theorem 5.4). PSPACE-completeness of
HS[A, A,B ,E ] (and HS[A,B ]) immediately follows. As a by-product, we have that
model checking for HS[A, A,B ,B ,E ] is PSPACE-hard, as well.

Theorem 5.4. The model checking problem for HS[A,B ] formulas over finite Kripke
structures is PSPACE-hard (under LOGSPACE reductions).

Proof. We provide a reduction from the problem of determining the truth of a fully-
quantified boolean formula in prenex normal form (the QBF problem, for short),
which is known to be PSPACE-complete (see [Sip12, Pap94]), to the model check-
ing problem for HS[A,B ] formulas over Kripke structures. We consider a QBF for-
mula ψ = Qn xnQn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · · , x1), where Qi ∈ {∃,∀}, i = 1, · · · ,n
and φ(xn , xn−1, · · · , x1) is a quantifier free Boolean formula. Let V ar = {xn , . . . , x1}
be the set of Boolean variables of ψ. We define the following Kripke structure
K V ar

QBF = (AP ,W,δ,µ, w0):

• AP =V ar ∪ {st ar t }∪ {xi aux | 1 ≤ i ≤ n};

• W = {w`
xi
| 1 ≤ i ≤ n, ` ∈ {⊥1,⊥2,>1,>2}}∪ {w0, w1, si nk}.
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w0
x, y, z, st ar t

w1
x, y, z, st ar t

w>1
x

x, y, z, xaux

w⊥1
x

y, z, xaux

w>2
x

x, y, z, xaux

w⊥2
x

y, z, xaux

w>1
y

x, y, z, yaux

w⊥1
y

x, z, yaux

w>2
y

x, y, z, yaux

w⊥2
y

x, z, yaux

w>1
z

x, y, z, zaux

w⊥1
z

x, y, zaux

w>2
z

x, y, z, zaux

w⊥2
z

x, y, zaux

si nk
x, y, z

Figure 5.3: Kripke structure K x,y,z
QBF associated with a QBF formula with variables x, y, z.

• For n = 0, δ= {(w0, w1), (w1, si nk), (si nk, si nk)}.
For n ≥ 1,

δ= {(w0, w1), (w1, w>1
xn

), (w1, w⊥1
xn

), (si nk, si nk)} ∪
{(w>1

xi
, w>2

xi
), (w⊥1

xi
, w⊥2

xi
) | 1 ≤ i ≤ n} ∪

{(w`
xi

, wm
xi−1

) | ` ∈ {⊥2,>2}, m ∈ {⊥1,>1}, n ≤ i ≤ 2} ∪
{(w>2

x1
, si nk), (w⊥2

x1
, si nk)};

• µ(w0) =µ(w1) =V ar ∪ {st ar t };
µ(w`

xi
) =V ar ∪ {xi aux }, for 1 ≤ i ≤ n and ` ∈ {>1,>2};

µ(w`
xi

) = (V ar \ {xi })∪ {xi aux }, for 1 ≤ i ≤ n and ` ∈ {⊥1,⊥2};
µ(si nk) =V ar .

For an example of such a Kripke structure for V ar = {x, y, z}, see Figure 5.3.
From ψ, we derive the following HS[A,B ] formula ξ= st ar t → ξn , where

ξi =


φ(xn , xn−1, · · ·x1) i = 0

〈B〉((〈A〉xi aux )∧ξi−1
)

i > 0∧Qi =∃
[B ]

(
(〈A〉xi aux ) → ξi−1

)
i > 0∧Qi =∀

.

Clearly, K V ar
QBF and ξ can be built by using logarithmic working space.

It can be proved (the proof is in the appendix, Section A.3.1) that the quantified
Boolean formula ψ is true if and only if K V ar

QBF |= ξ.





6
Conclusions

In this final chapter we summarize the results achieved so far (see Figure 6.1 for a
visual report).

In Chapter 3 we have proved that the (full) HS model checking problem is decid-
able with a non-elementary upper bound, by following [MMPP14]. The cornerstone
of the decidability proof is the notion of BEk -descriptor, which allows us to obtain a
finite representation of a possibly infinite set of equivalent tracks. Since the number
of BEk -descriptors is always finite, the decidability of the model checking problem
for HS over finite Kripke structures easily follows. In addition, we have provided a no-
tion, correspondence between descriptors, which precisely captures k-equivalence
between tracks. Finally, we have proved that the HS model checking problem is
EXPSPACE-hard, provided that a succinct encoding of formulas is used (otherwise
we can only prove that it is PSPACE-hard).

In Chapter 4 we have showed that formulas of the fragment HS[A, A,B ,B ,E ] (and
of the symmetric HS[A, A,E ,B ,E ]) can be checked with exponential working space.
The proposed algorithm rests on a contraction method that allows us to restrict the
verification of the input formula to a finite subset of tracks of bounded size, called
track representatives. These are determined by evaluating k-indistinguishability
among descriptor elements, a notion which allows both to determine if two tracks
are associated with the same Bk -descriptor (without building it explicitly), and to
calculate an upper bound to the length of representatives. In the end, we have proved
that the model checking problem for HS[A, A,B ,B ,E ] is NEXP-hard, provided that a
succinct encoding of formulas is used.

In Chapter 5 we have clarified the complexity picture of some HS fragments,
∀HS[A, A,B ,E ], HS[A, A] and HS[A, A,B ,E ], whose formulas are expressive enough
to capture typical interval properties of transition systems, while keeping the model
checking complexity lower, comparable to that of point-based temporal logics.

Clearly, our analysis of HS model checking is innovative, thus many problems
are still open. For example, the exact complexity of the full logic is unknown: it
ranges from PSPACE to non-ELEMENTARY (in the non-succinct case), quite a big gap!
Even some apparently easy fragments are still unsolved (e.g., HS[A, A] is in between
coNP and PSPACE). It is evident that if B and E modalities are not involved, model
checking for such fragments is in PSPACE. As soon as one of these two is added, the
expressiveness of fragments increases (e.g., metric properties about the length of
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HS[A, A,B ,E ] PSPACE-complete (5.2) HS[A,B ] PSPACE-complete (5.2)

HS[A, A]
PSPACE (5.1)

coNP-hard (5.1)

∀HS[A, A,B ,E ] coNP-complete (5.1) HS[Prop] coNP-complete (5.1)

HS[A, A,B ,B ,E ]
EXPSPACE (4.3)

PSPACE-hard (5.2)

succinct HS[A, A,B ,B ,E ]
EXPSPACE (4.3)

NEXP-hard (4.4)

HS[A, A,B ,E ]
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Figure 6.1: Complexity of the model checking problem for the HS fragments we have
studied. The number of the section in which we deal with a fragment is shown next to it.

tracks can be expressed by exploiting B or E operators), but so too does complexity:
HS[A, A,B ,B ,E ], HS[A, A,E ,B ,E ] and full HS hardly appear to be in PSPACE (but this
is just a conjecture).

Finally, we have always understood the homogeneity assumption, starting from
the very definition of HS semantics over induced abstract interval models. However,
in this way we can not benefit of the full expressive power of HS. Thus an obvious
research direction would be to redefine HS semantics relaxing such an hypothesis
and then study if and how complexity and decidability results change, and/or adapt
the current notions and machinery to the new, more expressive semantics.
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A.1 Proofs of Chapter 3

A.1.1 Proof of Lemma 3.9

Proof. The proof is by induction on n ≥ 0. Let DBEk and D ′
BEk

be the BEk -descriptors

for ρ and ρ′, respectively.
Base case (n = 0). Since K ,ρ |= p ⇐⇒ K ,ρ′ |= p, for any p ∈ AP , the roots of DBEk

and D ′
BEk

are labelled by the same set of proposition letters and the descriptors are
corresponding up to depth 0.

Inductive step (n ≥ 1). We preliminarily show that if ρ and ρ′ are k-equivalent
with respect to all formulas ϕ with Nest(ϕ) ≤ n, then for any track ρ ∈ TrkK , with
fst(ρ) = lst(ρ), there is a track ρ′ ∈ TrkK , with fst(ρ′) = lst(ρ′), such that, for all HS
formulas ψ, with Nest(ψ) ≤ n −1 and NestBE(ψ) ≤ k, K ,ρ |=ψ ⇐⇒ K ,ρ′ |=ψ. The
proof is by contradiction. Suppose that there is a track ρ ∈ TrkK , with fst(ρ) = lst(ρ),
such that, for all tracks ρ′ ∈ TrkK , with fst(ρ′) = lst(ρ′), there exists a formula ψ, with
Nest(ψ) ≤ n−1 and NestBE(ψ) ≤ k, such that K ,ρ |=ψ and K ,ρ′ 6|=ψ. Let H be the set
of those tracks ρ̂ such that fst(ρ̂) = lst(ρ′). H can be partitioned into a finite number
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of classes, say s ≥ 1, each one containing k-descriptor equivalent tracks of H (recall
that k-descriptor equivalence is an equivalence relation of finite index). Now, let
{ρ′

1,ρ′
2, . . . ,ρ′

s } be a set of track representatives, chosen one for each equivalence class
induced by ∼k on H (for all 1 ≤ i < j ≤ s, ρ′

i and ρ′
j have distinct BEk -descriptors).

By Theorem 3.2, tracks which are k-descriptor equivalent satisfy the same set of
formulas ψ′, with NestBE(ψ′) ≤ k. So there are formulas ψ1, . . . ,ψs such that, for all
1 ≤ i ≤ s, Nest(ψi ) ≤ n−1, NestBE(ψi ) ≤ k, K ,ρ |=ψi , and K ,ρ′

i 6|=ψi . It easily follows
that K ,ρ |= ψ1 ∧ψ2 ∧ ·· · ∧ψs and, for all 1 ≤ i ≤ s, K ,ρ′

i |= ¬ψ1 ∨¬ψ2 ∨ ·· · ∨¬ψs .
Hence, K ,ρ |= 〈A〉(ψ1 ∧ψ2 ∧·· ·∧ψs ) and K ,ρ′ |= [A](¬ψ1 ∨¬ψ2 ∨·· ·∨¬ψs ), that is,
K ,ρ′ 6|= 〈A〉(ψ1 ∧ψ2 ∧·· ·∧ψs ), which is a contradiction.

Thus, we have proved that for any track ρ ∈ TrkK , with fst(ρ) = lst(ρ), there ex-
ists a track ρ′ ∈ TrkK , with fst(ρ′) = lst(ρ′), such that, for all HS formulas ψ, with
Nest(ψ) ≤ n−1 and NestBE(ψ) ≤ k, K ,ρ |=ψ ⇐⇒ K ,ρ′ |=ψ. By the inductive hypoth-
esis, ρ and ρ′ are associated with corresponding BEk -descriptors up to depth n −1.
Symmetrically, we can show that for any track ρ′ ∈ TrkK , with fst(ρ′) = lst(ρ′), there
exists ρ ∈ TrkK , with fst(ρ) = lst(ρ), such that ρ′ and ρ are associated with correspond-
ing BEk -descriptors up to depth n −1. In this way, we have proved the condition
for modality A of Definition 3.8. The conditions for modalities A, B , and E can be
proved in a very similar way. In particular, as a consequence of the fact that ρ and
ρ′ are k-equivalent with respect to all HS formulas ψ, with Nest(ψ) ≤ n and n ≥ 1, it
holds that K ,ρ |= 〈A〉> ⇐⇒ K ,ρ′ |= 〈A〉>. It follows that DBEk has an A-successor if
and only if D ′

BEk
has one. The same holds for E-successors.

Let us now consider the condition for modality B of Definition 3.8.
First of all, we show that for any track ρ ∈ Pref(ρ), there exists a track ρ′ ∈ Pref(ρ′)

such that for all formulas ψ of HS, having Nest(ψ) ≤ n − 1 and NestBE(ψ) ≤ k − 1,
K ,ρ |=ψ ⇐⇒ K ,ρ′ |=ψ. The proof is again by contradiction. Suppose that there
exists a track ρ ∈ Pref(ρ) such that, for all tracks ρ′ ∈ Pref(ρ′), there exists a formula ψ,
with Nest(ψ) ≤ n −1 and NestBE(ψ) ≤ k −1, such that K ,ρ |=ψ and K ,ρ′ 6|=ψ. Now,
let us consider the tracks ρ′

1,ρ′
2, · · · ,ρ′

s (for some s ∈N) which are prefixes of ρ′ and
are associated with distinct subtrees of depth k −1 of the BEk -descriptor for ρ′ (the
number of these tracks is obviously finite). So there are formulas ψ1, . . . ,ψs such
that, for all 1 ≤ i ≤ s, Nest(ψi ) ≤ n −1, NestBE(ψi ) ≤ k −1, K ,ρ |=ψi , and K ,ρ′

i 6|=ψi .
Thus, K ,ρ |= ψ1 ∧ψ2 ∧ ·· ·∧ψs and for all i , K ,ρ′

i |= ¬ψ1 ∨¬ψ2 ∨ ·· ·∨¬ψs . Hence
we have K ,ρ |= 〈B〉(ψ1 ∧ψ2 ∧·· ·∧ψs ) and K ,ρ′ |= [B ](¬ψ1 ∨¬ψ2 ∨·· ·∨¬ψs ), that is
K ,ρ′ 6|= 〈B〉(ψ1 ∧ψ2 ∧·· ·∧ψs ), which leads to a contradiction.

We have proved that for any track ρ ∈ Pref(ρ), there exists a track ρ′ ∈ Pref(ρ′)
such that, for all formulas ψ of HS, having Nest(ψ) ≤ n −1 and NestBE(ψ) ≤ k −1,
K ,ρ |=ψ ⇐⇒ K ,ρ′ |=ψ. By the inductive hypothesis, ρ and ρ′ are associated with
corresponding BEk−1-descriptors up to depth n −1. Symmetrically, we can show
that for any track ρ′ ∈ Pref(ρ′), there exists a track ρ ∈ Pref(ρ) such that ρ′ and ρ are
associated with corresponding BEk−1-descriptors up to depth n −1.

In this way, we have proved the condition for modality B of Definition 3.8. The
condition for modality E can be proved in a symmetrical way.

A.1.2 Proof of Lemma 3.10

Proof. The proof is by induction on n ≥ 0.
Base case (n = 0). Consider the descriptors DBEk , D ′

BEk
, DBEk |k−1, and D ′

BEk
|k−1.

Since the roots of DBEk and D ′
BEk

are labelled by the same set of proposition letters,
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the roots of DBEk |k−1 and D ′
BEk

|k−1 are labelled by the same set of proposition letters
as well.

Inductive step (n > 0). Let ρ,ρ′ ∈ TrkK be two witnesses for DBEk and for D ′
BEk

,

respectively (and thus for DBEk |k−1 and D ′
BEk

|k−1, respectively). Consider a track

ρ̃ ∈ TrkK , with fst(ρ̃) = lst(ρ). The BEk -descriptor ˜DBEk for ρ̃ is an A-successor of
DBEk , and ˜DBEk |k−1 is an A-successor of DBEk |k−1. Since DBEk and D ′

BEk
are corre-

sponding up to depth n, there exists a track ρ ∈ TrkK , with fst(ρ) = lst(ρ′), described
by DBEk , such that ˜DBEk and DBEk are corresponding up to depth n −1. By the in-
ductive hypothesis, ˜DBEk |k−1 and DBEk |k−1 are corresponding up to depth n−1 (and,
obviously, DBEk |k−1 is an A-successor of D ′

BEk
|k−1).

Let us consider now a track ρ̂, with (lst(ρ), fst(ρ̂)) ∈ δ and ρ · ρ̂ ∈ TrkK . The BEk -
descriptor ˆDBEk of ρ · ρ̂ is a B-successor of DBEk and ˆDBEk |k−1 is a B-successor of
DBEk |k−1. Since DBEk and D ′

BEk
are corresponding up to depth n, there exists a track

ρ̌ such that (lst(ρ′), fst(ρ̌)) ∈ δ, ρ′ · ρ̌ is described by ˇDBEk , and ˆDBEk and ˇDBEk are
corresponding up to depth n−1. By the inductive hypothesis, ˆDBEk |k−1 and ˇDBEk |k−1

are corresponding up to depth n −1 (and, obviously, ˇDBEk |k−1 is a B-successor of
D ′

BEk
|k−1).

Finally (only for cases with k ≥ 2), let us consider a subtree of depth k−2 linked to
the root of DBEk |k−1 via a B-edge. In this case, there exists (at least) a subtree of DBEk ,
say Sk−1, such that Sk−1|k−2 is the considered subtree of DBEk |k−1. Since DBEk and
D ′

BEk
are corresponding up to depth n, there exists a subtree S ′

k−1 of D ′
BEk

, connected

to the root of D ′
BEk

via a B-edge, corresponding to Sk−1 up to depth n −1. By the

inductive hypothesis Sk−1|k−2 and S ′
k−1|k−2 are corresponding up to depth n −1 (the

latter is a subtree of D ′
BEk

|k−1 connected to the root of D ′
BEk

|k−1 via a B-edge).
The remaining cases can be dealt with analogously.

A.2 Proofs of Chapter 4

A.2.1 Proof of Lemma 4.1

In the proof, we will exploit the fact that if two tracks in TrkK have the same Bk+1-
descriptor, then they also have the same Bk -descriptor. The latter can indeed be
obtained from the former by removing the nodes at depth k +1 (leaves) and then
deleting isomorphic subtrees possibly originated by the removal.

Proof. By induction on k ∈N.
k = 0: if ρ1 and ρ2 are associated with the descriptor element (vi n ,S, v f i n), and

ρ′
1 and ρ′

2 with (v ′
i n ,S′, v ′

f i n), then ρ1 ·ρ′
1 and ρ2 ·ρ′

2 are both represented by the

descriptor element (vi n ,S ∪ {v f i n , v ′
i n}∪S′, v ′

f i n).

k > 0: let DBk be the Bk -descriptor of ρ1 ·ρ′
1 and D ′

Bk
the Bk -descriptor of ρ2 ·ρ′

2:

their roots are the same (as for k = 0); let us now consider a generic prefix ρ of ρ1 ·ρ′
1:

• if ρ is a proper prefix of ρ1, since ρ1 and ρ2 have the same Bk -descriptor, there
exists a prefix ρ of ρ2 associated with the same subtree as ρ of depth k −1 in
the descriptor of ρ1 (and ρ2);

• for ρ = ρ1, it holds that ρ1 and ρ2 have the same Bk−1-descriptor because they
have the same Bk -descriptor;
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• if ρ is a proper prefix of ρ1 ·ρ′
1 such that ρ = ρ1 ·ρ̃1 for some prefix ρ̃1 of ρ′

1, then
two cases have to be taken into account:

– if |ρ̃1| = 1, then ρ̃1 = v ′
i n ; but also fst(ρ′

2) = v ′
i n . Let us now consider the

Bk−1-descriptors for ρ1 · v ′
i n and ρ2 · v ′

i n : the labels of the roots are the
same, (vi n ,S ∪ {v f i n}, v ′

i n), then the subtrees of depth k −2 are exactly the
same as those of ρ1 and ρ2’s Bk−1-descriptor, (possibly) with the addition
of the Bk−2-descriptor of ρ1 (which is equal to that of ρ2). Thus ρ1 · v ′

i n
and ρ2 · v ′

i n have the same Bk−1-descriptor;

– otherwise, since ρ̃1 is a prefix of ρ′
1 of length at least 2, and ρ′

1 and ρ′
2 have

the same Bk -descriptor, there exists a prefix ρ̃2 of ρ′
2 associated with the

same subtree of depth k −1 as ρ̃1 (in the Bk -descriptor of ρ′
1). Hence, by

inductive hypothesis, ρ1 · ρ̃1 and ρ2 · ρ̃2 have the same Bk−1-descriptor.

Therefore we have shown that for any proper prefix of ρ1 ·ρ′
1 there exists a proper

prefix of ρ2 · ρ′
2 having the same Bk−1-descriptor. The inverse can be shown by

symmetry. Thus DBk is equal to D ′
Bk

.

A.2.2 Proof of Theorem 4.20

Proof. The proof is by induction on i ≥ u +1.
(Case i = u +1) We consider two cases:

1. if ρd s (u) = ρd s (u +1) = d ∈ C , then we have Q−2(u) = C \ {d}, Q−1(u) = {d}, ;=
Q0(u) =Q1(u) = ·· · =Qs (u). Moreover, it holds Q−2(u +1) = C \ {d}, Q−1(u) =;,
Q0(u) = {d} and ; = Q1(u) = Q2(u) = ·· · = Qs (u). c(u) >lex c(u + 1) and the
thesis follows.

2. if d ,d ′ ∈ C , d 6= d ′ and ρd s (u) = d , ρd s (u+1) = d ′, then we have Q−2(u) = C \{d},
Q−1(u) = {d}, ;=Q0(u) =Q1(u) = ·· · =Qs (u). Moreover, Q−2(u+1) = C \{d ,d ′},
Q−1(u) = {d ,d ′}, ; = Q0(u) = Q1(u) = ·· · = Qs (u), c(u) >l ex c(u +1), implying
the thesis.

(Case i > u+1) In the following we say that ρd s (`) and ρd s (m) (`< m) are consecutive
occurrences of a descriptor element d if there are no other occurrences of d in
ρd s (`+1,m −1). We consider the following cases:

1. If ρd s (i ) is the first occurrence of d ∈ C , then d ∈ Q−2(i −1), d ∈ Q−1(i ) and
c(i −1) >lex c(i ).

2. If ρd s (i ) is the second occurrence of d ∈ C , according to the definition, ρd s (i )
can not be 1-indistinguishable from the previous occurrence of d . Therefore
d ∈ Q−1(i −1) (ρd s (u, i −1) contains the first occurrence of d) and d ∈ Q0(i ),
proving that c(i −1) >l ex c(i ).

3. If ρd s (i ) is at least the third occurrence of d but ρd s (i ) is not 1-indistinguishable
from the immediately preceding occurrence of d ρd s (i ′), (with i ′ < i ), then
DElm(ρd s (u, i ′−1)) ⊂ DElm(ρd s (u, i −1)). Hence, there exists a first occur-
rence of some d ′ ∈ C in ρd s (i ′+1, i −1), say ρd s ( j ) = d ′, for i ′+1 ≤ j ≤ i −1.
Thus d ∈Q−1( j ), · · · , d ∈Q−1(i −1) and d ∈Q0(i ), proving that c(i −1) >lex c(i ).
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4. In the remaining cases we assume that ρd s (i ) is at least the third occurrence
of d ∈ C . If ρd s (i −1) and ρd s (i ) are both occurrences of d ∈ C and ρd s (i −1)
is t-indistinguishable, for some t > 0, and not (t +1)-indistinguishable, from
the immediately preceding occurrence of d , then ρd s (i − 1) and ρd s (i ) are
exactly (t + 1)-indistinguishable. So d ∈ Qt (i − 1) and d ∈ Qt+1(i ), implying
that c(i −1) >lex c(i ) (as a particular case, if ρd s (i −1) and the immediately
preceding occurrence are not 1-indistinguishable, then ρd s (i −1) and ρd s (i )
are at most 1-indistinguishable).

5. If ρd s (i ) is exactly 1-indistinguishable from the immediately preceding occur-
rence of d , ρd s ( j ), j < i −1, then DElm(ρd s (u, j −1)) = DElm(ρd s (u, i −1)),
and there are no first occurrences of any d ′ ∈ C in ρd s ( j , i −1). If ρd s ( j ) is not
1-indistinguishable from its previous occurrence of d , it immediately follows
that d ∈Q0( j ), · · · , d ∈Q0(i −1) and d ∈Q1(i ), implying that c(i −1) >l ex c(i ).

Otherwise, there exists j < i ′ < i s.t. ρd s (i ′) = d ′′ ∈ C is not 1-indistinguishable
from any occurrence of d ′′ before j (as a matter of fact, if this was not the case,
ρd s (i ) and ρd s ( j ) would be 2-indistinguishable); in particular, ρd s (i ′) is not 1-
indistinguishable from the last occurrence of d ′′ before j , say ρd s ( j ′), for some
j ′ < j (such a j ′ exists since there are no first occurrences in ρd s ( j +1, i −1)).
Now, if by contradiction every pair of consecutive occurrences of d ′′ inρd s ( j ′, i ′)
were 1-indistinguishable, then by Property 4.16 ρd s ( j ′) and ρd s (i ′) would be
1-indistinguishable. Thus, a pair of consecutive occurrences of d ′′ exists, where
the second element in the pair is ρd s (`) = d ′′ with j < ` < i , such that they
are not 1-indistinguishable. By inductive hypothesis, d ′′ ∈Q−1(`−1) and d ′′ ∈
Q0(`). Therefore, d ∈ Q0(`), · · · , d ∈ Q0(i − 1) (recall that there are no first
occurrences between j and i ) and d ∈Q1(i ), proving that c(i −1) >lex c(i ).

6. If ρd s ( j ) = d ∈ C is at most t-indistinguishable (for some t ≥ 1) from a preced-
ing occurrence of d and ρd s ( j ) and ρd s (i ) = d (with j < i −1) are consecutive
occurrences of d and they are (t+1)-indistinguishable (by definition of indistin-
guishability ρd s ( j ) and ρd s (i ) cannot be more than (t +1)-indistinguishable),
any occurrence of d ′ ∈ C in ρd s ( j +1, i −1) is (at least) t-indistinguishable from
another occurrence of d ′ before j . By Property 4.14, all pairs of consecutive
occurrences of d ′ in ρd s ( j +1, i −1) are (at least) t-indistinguishable, hence
d ∈Qt ( j ), · · · , d ∈Qt (i −1) and finally d ∈Qt+1(i ), proving that c(i −1) >l ex c(i ).

7. If ρd s ( j ) = d ∈ C is at most t-indistinguishable (for some t ≥ 1) from a preced-
ing occurrence of d , and ρd s ( j ) and ρd s (i ) = d (with j < i −1) are consecutive
occurrences of d which are at most t-indistinguishable, for 1 ≤ t ≤ t , we pre-
liminary observe that DEl m(ρd s (u, j −1)) = DElm(ρd s (u, i −1)). Then, if a
d ′′ ∈ C ,d 6= d ′′ occurs in ρd s ( j +1, i −1) which is not 1-indistinguishable from
any occurrence of d ′′ before j , t = 1 and we are again in case 5.

Otherwise all the occurrences of descriptor elements in ρd s ( j +1, i −1) are (at
least) 1-indistinguishable from other occurrences before j . Moreover, there
exists j < i ′ < i such that ρd s (i ′) = d ′ ∈ C ,d 6= d ′ and it is at most (t − 1)-
indistinguishable from another occurrence of d ′ before j . Analogously to
the case 5, ρd s (i ′) must be (t −1)-indistinguishable from the last occurrence
of d ′ before j , say ρd s ( j ′) with j ′ < j (it’s a consequence of Property 4.14).
But two consecutive occurrences of d ′ in ρd s ( j ′, i ′) must then be at most
(t − 1)-indistinguishable (if all pairs of occurrences of d ′ in ρd s ( j ′, i ′) were
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t-indistinguishable, ρd s (i ′) and ρd s ( j ′) would be t-indistinguishable as well)
where the second occurrence is ρd s (`) = d ′ for some j < ` ≤ i ′. By applying
the inductive hypothesis, we have d ′ ∈Qt−2(`−1) and d ′ ∈Qt−1(`). As a con-
sequence, we have d ∈Qt−1(`), · · · , d ∈Qt−1(i −1) (all descriptor elements in
ρd s ( j , i ) are at least (t −1)-indistinguishable from other occurrences before j )
and finally d ∈Qt (i ), implying that c(i −1) >lex c(i ).

A.2.3 Proof of Theorem 4.24

Proof. The proofs for the forward and backward directions are quite similar. We give
the proof for one direction (the forward one), and we omit the proof for the other
direction.

If k = 0 the thesis follows immediately by Definition 4.18. So let’s assume k ≥ 1.
The proof is by induction on `= |ρ|.

(Case ` = 2) ρd s = (fst(ρ),;, lst(ρ)), and the only descriptor element of the se-
quence is Type-1. Thus ρ itself is returned by the algorithm.

(Case `> 2) If in ρd s there are no pairs of k-indistinguishable occurrences of some
descriptor element, the termination criterion of Algorithm 1 can never be applied.
Thus ρ itself is returned (as soon as it is visited) and its length is at most τ(|W |,k).

Otherwise, the descriptor sequence of any track ρ can be split into 3 parts: ρd s =
ρd s1 ·ρd s2 ·ρd s3 where ρd s1 ends with a Type-1 descriptor element and it does not
contain pairs of k-indistinguishable occurrences of a descriptor element, ρd s2 is a
subsequence of ρd s associated with a cluster C of (Type-2) descriptor elements with
at least a pair of k-indistinguishable occurrences of descriptor elements, and ρd s3

(if it is not the empty sequence) begins with a Type-1 descriptor element. Namely,
ρd s2 is the “leftmost” subsequence of ρd s consisting of elements of a cluster C , with
at least a pair of k-indistinguishable occurrences of some descriptor element.

There exist two indexes i and j with j < i such that ρd s2( j ) and ρd s2(i ) are two
k-indistinguishable occurrences of some d ∈ C . By Proposition 4.14, there exists
a pair of indexes i ′, j ′ with j ′ < i ′ such that ρd s2( j ′) and ρd s2(i ′) are consecutive k-
indistinguishable occurrences of d . If there are many such pairs (even for different
elements in C ), let us consider the one with the lower index i ′ (namely, precisely the
pair which is found earlier by the unravelling algorithm). By Theorem 4.15, the two
tracks associated with ρd s1 ·ρd s2(0, j ′) and ρd s1 ·ρd s2(0, i ′), say ρ̃1 and ρ̃2, have the
same Bk -descriptor. Then, by the right extension Proposition 4.2, the tracks ρ = ρ̃2 ·ρ
(for some ρ) and ρ′ = ρ̃1 ·ρ have the same Bk -descriptor.

The Algorithm 1 does not return ρ̃2 and, due to the backtrack step, neither ρ =
ρ̃2 ·ρ is returned. But since lst(ρ̃1) = lst(ρ̃2) (ρd s2( j ′) and ρd s2(i ′) are occurrences of
the same descriptor element), the unravelling of K features ρ′ = ρ̃1 ·ρ, as well. Now,
by induction hypothesis, a track ρ′′ of K is returned such that ρ′ and ρ′′ have the
same Bk -descriptor, and |ρ′′| ≤ τ(|W |,k). ρ has in turn the same Bk -descriptor as
ρ′′.

A.2.4 Proof of Lemma 4.25

Proof. The proof is by induction on the structure of ψ. (Base cases). The cases in
which ψ = >,ψ = ⊥,ψ = p ∈ AP are trivial. (Inductive cases). The cases in which
ψ=¬ϕ, ψ=ϕ1 ∧ϕ2 are also trivial and omitted. We focus on the remaining cases.
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• ψ= 〈A〉ϕ. If K , ρ̃ |=ψ, then there exists ρ ∈ TrkK such that lst(ρ̃) = fst(ρ) and
K ,ρ |= ϕ. By Theorem 4.24 the unravelling procedure returns ρ ∈ TrkK such
that fst(ρ) = fst(ρ) and ρ and ρ have the same Bk -descriptor, thus K ,ρ |=ϕ. By
inductive hypothesis, Check(K ,k,ϕ,ρ) = 1, hence Check(K ,k,ψ, ρ̃) = 1.

Vice versa, if Check(K ,k,ψ, ρ̃) = 1, there exists ρ ∈ TrkK such that lst(ρ̃) = fst(ρ)
and Check(K ,k,ϕ,ρ) = 1. By inductive hypothesis, K ,ρ |=ϕ, hence K , ρ̃ |=ψ.

• ψ= 〈A〉ϕ. The proof is symmetric to the case ψ= 〈A〉ϕ.

• ψ = 〈B〉ϕ. If K , ρ̃ |= ψ, there exists ρ ∈ Pref(ρ̃) such that K ,ρ |= ϕ. By induc-
tive hypothesis, Check(K ,k −1,ϕ,ρ) = 1. Since all prefixes of ρ̃ are checked,
Check(K ,k,ψ, ρ̃) = 1. Note that, by definition of descriptor, if ρ̃ is a track rep-
resentative of a Bk -descriptor DBk , a prefix of ρ̃ is a representative of a Bk−1-
descriptor, whose root is a child of the root of DBk .

Vice versa, if Check(K ,k,ψ, ρ̃) = 1, then for some track ρ ∈ Pref(ρ̃), we have
Check(K ,k −1,ϕ,ρ) = 1. By inductive hypothesis K ,ρ |=ϕ, hence K , ρ̃ |=ψ.

• ψ = 〈B〉ϕ. If K , ρ̃ |= ψ, then there exists ρ such that ρ̃ ·ρ ∈ TrkK for which
K , ρ̃ ·ρ |= ϕ. If |ρ| = 1, since by inductive hypothesis Check(K ,k,ϕ, ρ̃ ·ρ) = 1,
then Check(K ,k,ψ, ρ̃) = 1. Otherwise, the unravelling algorithm returns a track
ρ with the same Bk -descriptor as ρ. Thus, by the left extension Proposition
4.3, ρ̃ · ρ and ρ̃ · ρ have the same Bk -descriptor. Thus K , ρ̃ · ρ |= ϕ. So (by
inductive hypothesis) Check(K ,k,ϕ, ρ̃ ·ρ) = 1 implying that Check(K ,k,ψ, ρ̃) =
1. Notice that, given two tracks ρ,ρ′ of K , if we are considering ρ as the track
representative of the Bk -descriptor of ρ, and the unravelling algorithm returns
ρ′ as the representative of the Bk -descriptor of ρ′, since by Lemma 4.1 ρ ·ρ′ and
ρ ·ρ′ have the same Bk -descriptor, we have that ρ ·ρ′ is the representative of the
Bk -descriptor of ρ ·ρ′.
Vice versa, if Check(K ,k,ψ, ρ̃) = 1, there exists ρ such that ρ̃ ·ρ ∈ TrkK and
Check(K ,k,ϕ, ρ̃ ·ρ) = 1. By inductive hypothesis, K , ρ̃ ·ρ |=ϕ, hence K , ρ̃ |=ψ.

• ψ= 〈E〉ϕ. The proof is symmetric to case ψ= 〈B〉ϕ.

A.3 Proofs of Chapter 5

A.3.1 Proof of Theorem 5.4
We preliminary introduce some definitions.

Given K = (AP ,W,δ,µ, w0) and an HS formula ψ, we define K |p`(ψ) as the Kripke

structure (AP ,W,δ,µ, w0) where p`(ψ) is the set of proposition letters occurring in
ψ, AP = AP ∩p`(ψ) and for all w ∈ W , µ(w) = µ(w)∩p`(ψ). Intuitively this is the
Kripke structure obtained from K by restricting the labelling of every state to p`(ψ).

Given K = (AP ,W,δ,µ, w0) and v ∈W , r each(K , v) is defined as the Kripke struc-
ture (AP ,W ′,δ′,µ′, v), such that

W ′ = {w ∈W | there exists ρ ∈ TrkK with fst(ρ) = v and lst(ρ) = w},

δ′ = δ∩ (W ′×W ′) and for all w ∈W ′, µ′(w) =µ(w); r each(K , v) is thus the subgraph
of K of the states reachable from v . Notice that the initial state of r each(K , v) is v .
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We say that K = (AP ,W,δ,µ, w0) and K ′ = (AP ′,W ′,δ′,µ′, w ′
0) are isomorphic (we

denote this by K ∼ K ′) if and only if there exists a bijection f : W 7→W ′ such that:

• f (w0) = w ′
0;

• for all u, v ∈W , (u, v) ∈ δ ⇐⇒ ( f (u), f (v)) ∈ δ′;
• for all v ∈W , µ(v) =µ′( f (v)).

Finally we introduce the following shorthand: L(K ,ρ) is equal to σ(ρ), where K
is the Kripke structure (AP ,W,δ,µ, w0), ρ ∈ TrkK and AK = (AP , I, AI,BI,EI,σ) is the
abstract interval model induced by K .

The following lemma holds:

Lemma A.1. Given an HS[A,B ] formulaψ, two Kripke structures K = (AP ,W,δ,µ, w0)
and K ′ = (AP ′,W ′,δ′,µ′, w ′

0), and two tracks ρ ∈ TrkK , ρ′ ∈ TrkK ′ such that

L(K |p`(ψ),ρ) = L(K ′
|p`(ψ),ρ

′) and r each(K |p`(ψ), lst(ρ)) ∼ r each(K ′
|p`(ψ), lst(ρ′)),

then K ,ρ |=ψ ⇐⇒ K ′,ρ′ |=ψ.

This lemma intuitively states that for any HS[A,B ] formula ψ, if the same set
of propositions, restricted to p`(ψ), holds over two tracks ρ and ρ′ of two Kripke
structures, and the subgraphs of the reachable states from lst(ρ) and lst(ρ′) of the
structures are isomorphic, then ρ and ρ′ are equivalent with respect to ψ.

Proof. By induction on the structural complexity of ψ.

• ψ = p is a proposition letter. p`(p) = {p}. If K ,ρ |= p then p ∈ L(K ,ρ) and
hence p ∈ L(K |p`(ψ),ρ). By hypothesis it follows that p ∈ L(K ′

|p`(ψ),ρ
′), so

p ∈ L(K ′,ρ′) and K ′,ρ′ |= p.

• ψ=¬φ. p`(φ) = p`(ψ). If K ,ρ |= ¬φ then K ,ρ 6|=φ; by inductive hypothesis,
K ′,ρ′ 6|=φ, so K ′,ρ′ |= ¬φ.

• ψ = φ1 ∧φ2. If K ,ρ |= φ1 ∧φ2 then K ,ρ |= φ1; by hypothesis we have that
L(K |p`(ψ),ρ) = L(K ′

|p`(ψ),ρ
′) and r each(K |p`(ψ), lst(ρ)) ∼ r each(K ′

|p`(ψ), lst(ρ′)).

Being p`(φ1) ⊆ p`(ψ), we get that L(K |p`(φ1),ρ) = L(K ′
|p`(φ1),ρ

′) and

r each(K |p`(φ1), lst(ρ)) ∼ r each(K ′
|p`(φ1), lst(ρ′)).

By inductive hypothesis, K ′,ρ′ |=φ1. By reasoning in a symmetric way for φ2,
the thesis follows.

• ψ = 〈A〉φ. If K ,ρ |= 〈A〉φ then there exists ρ ∈ TrkK such that fst(ρ) = lst(ρ)
and K ,ρ |= φ. Obviously p`(ψ) = p`(φ). Since by hypothesis it holds that
r each(K |p`(ψ), lst(ρ)) ∼ r each(K ′

|p`(ψ), lst(ρ′)), we consider ρ′ ∈ TrkK ′ such that

fst(ρ′) = lst(ρ′), |ρ| = |ρ′| and for all 0 ≤ i < |ρ|, f (ρ(i )) = ρ′(i ), where f is the
(an) isomorphism between r each(K |p`(ψ), lst(ρ)) and r each(K ′

|p`(ψ), lst(ρ′)). It

immediately follows that L(K |p`(φ),ρ) = L(K ′
|p`(φ),ρ

′).

We have to prove that r each(K |p`(φ), lst(ρ)) ∼ r each(K ′
|p`(φ), lst(ρ′)) as well.

Indeed, the restriction of f to the states of r each(K |p`(φ), lst(ρ)), say f ′, is
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an isomorphism between r each(K |p`(φ), lst(ρ)) and r each(K ′
|p`(φ), lst(ρ′)) (no-

tice that r each(K |p`(φ), lst(ρ)) is a subgraph of r each(K |p`(ψ), lst(ρ))): first,
f (lst(ρ)) = f ′(lst(ρ)) = lst(ρ′); then if w is any state of r each(K |p`(φ), lst(ρ)),
f (w) = f ′(w) = w ′ must be a state of r each(K ′

|p`(φ), lst(ρ′)): since there exists a

track from lst(ρ) to w , then there exists an isomorphic track (w.r.t. f ) from lst(ρ′)
to w ′. Moreover, if (w, w) ∈ δ, then w is another state of r each(K |p`(φ), lst(ρ)),
hence (w ′, f (w)) ∈ δ′ and f (w) = f ′(w) is a state of r each(K ′

|p`(φ), lst(ρ′)), as

well. Reasoning by symmetry, we can conclude that for any two states of
r each(K |p`(φ), lst(ρ)), v, v ′, it holds that (v, v ′) is an edge iff ( f ′(v), f ′(v ′)) is an
edge of r each(K ′

|p`(φ), lst(ρ′)).

By inductive hypothesis, K ′,ρ′ |=φ. So K ′,ρ′ |= 〈A〉φ.

• ψ = 〈B〉φ. If K ,ρ |= 〈B〉φ, then K ,ρ ·ρ |= φ, where ρ ·ρ ∈ TrkK and ρ is either
a single state or a proper track. Obviously p`(ψ) = p`(φ). Analogously to the
previous case, we consider ρ′ ∈ TrkK ′ such that |ρ| = |ρ′| and for all 0 ≤ i < |ρ|,
f (ρ(i )) = ρ′(i ), where f is the isomorphism between r each(K |p`(ψ), lst(ρ)) and
r each(K ′

|p`(ψ), lst(ρ′)). Since f (lst(ρ)) = lst(ρ′), by definition of isomorphism

(lst(ρ), fst(ρ)) ∈ δ implies (lst(ρ′), fst(ρ′)) ∈ δ′. It immediately follows that

L(K |p`(φ),ρ) = L(K ′
|p`(φ),ρ

′) and r each(K |p`(φ), lst(ρ)) ∼ r each(K ′
|p`(φ), lst(ρ′)).

Finally,

L(K |p`(φ),ρ ·ρ) = L(K |p`(φ),ρ)∩L(K |p`(φ),ρ) =
L(K ′

|p`(φ),ρ
′)∩L(K ′

|p`(φ),ρ
′) = L(K ′

|p`(φ),ρ
′ ·ρ′).

and obviously r each(K |p`(φ), lst(ρ ·ρ)) ∼ r each(K ′
|p`(φ), lst(ρ′ ·ρ′)). By inductive

hypothesis, K ′,ρ′ ·ρ′ |=φ, therefore K ′,ρ′ |= 〈B〉φ.

We are now ready to give the proof of Theorem 5.4.

Proof. We prove that

ψ=Qn xnQn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1)

is a true quantified boolean formula if and only if K xn ,··· ,x1
QBF |= ξ by induction on

the number of variables n of ψ. In the following, φ(xn , xn−1, · · ·x1){xi /υ}, with υ ∈
{>,⊥}, denotes the formula obtained from φ(xn , xn−1, · · ·x1) by replacing all of the
occurrences of xi with υ. For the purpose of the proof, it is worth noticing that
K xn ,xn−1,··· ,x1

QBF and K xn−1,··· ,x1
QBF are isomorphic when restricted to the states w>1

xn−1
, w>2

xn−1
,

w⊥1
xn−1

, w⊥2
xn−1

, · · · , w>1
x1

, w>2
x1

, w⊥1
x1

, w⊥2
x1

, si nk (i.e. the leftmost part of both Kripke
structures is eliminated), and the labeling of states is suitably restricted as well.
Moreover only the track w0w1 satisfies st ar t and, for i = n, · · · ,1, the letter xi aux

holds only over the two tracks w>1
xi

w>2
xi

and w⊥1
xi

w⊥2
xi

.

(Case n = 0) ψ equals φ and it does not have variables; the states of K ;
QBF are

W = {w0, w1, si nk} and ξ= st ar t →φ.
Let us assume φ is true. All initial tracks of length greater than 2 trivially satisfy

ξ, as st ar t does not hold on them. As for w0w1, it is true that K ;
QBF , w0w1 |= φ,
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since φ is true (its truth does not depend on the propositions which hold on w0w1,
because it has no variables). Thus K ;

QBF |= ξ. Vice versa, if K ;
QBF |= ξ then in particular

K ;
QBF , w0w1 |=φ. But φ does not have variables, hence it is true.

(Case n ≥ 1) Let us consider the QBF formula

ψ=Qn xnQn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1);

we distinguish two cases, Qn =∃ and Qn =∀ and for both we prove the two implica-
tions.

• Qn =∃:

(⇒) if ψ is true, then by definition, if all occurrences of xn in φ(xn , xn−1, · · ·x1) are
replaced with some υ ∈ {>,⊥}, we get φ′(xn−1, · · ·x1) =φ(xn , xn−1, · · ·x1){xn/υ}
such that

ψ′ =Qn−1xn−1 · · ·Q1x1φ
′(xn−1, · · ·x1)

is a true quantified boolean formula. By inductive hypothesis K xn−1,··· ,x1
QBF |= ξ′,

where ξ′ = st ar t → ξ′n−1 is derived from ψ′ and ξ′n−1 = ξn−1{xn/υ}. It follows
that K xn−1,··· ,x1

QBF , w ′
0w ′

1 |= ξ′n−1, where w ′
0 and w ′

1 are the two “leftmost” states of

K xn−1,··· ,x1
QBF (corresponding to w0 and w1 of K xn ,··· ,x1

QBF ).

Let us prove that K xn ,··· ,x1
QBF |= ξ. We consider a generic initial track ρ in K xn ,··· ,x1

QBF :

if it does not satisfy st ar t then trivially K xn ,··· ,x1
QBF ,ρ |= ξ, otherwise ρ = w0w1

and we have to show that K xn ,··· ,x1
QBF , w0w1 |= 〈B〉((〈A〉xn aux )∧ξn−1) (= ξn). We

consider w0w1w>1
xn

if υ=> (and w0w1w⊥1
xn

otherwise). In the former case (the

latter is symmetric) we have to prove that K xn ,··· ,x1
QBF , w0w1w>1

xn
|= (〈A〉xn aux )∧

ξn−1. Trivially K xn ,··· ,x1
QBF , w0w1w>1

xn
|= 〈A〉xn aux , thus it remains to show that

K xn ,··· ,x1
QBF , w0w1w>1

xn
|= ξn−1.

As we proved, from the inductive hypothesis it follows that K xn−1,··· ,x1
QBF , w ′

0w ′
1 |=

ξ′n−1(= ξn−1{xn/>}). Now, since

– p`(ξn−1{xn/>}) = {x1, · · · , xn−1, x1 aux , · · · , xn−1 aux },

– L(K xn−1,··· ,x1
QBF |p`(ξn−1{xn />})

, w ′
0w ′

1) = {xn−1, · · · , x1},

– L(K xn ,··· ,x1
QBF |p`(ξn−1{xn />})

, w0w1w>1
xn

w>2
xn

) = {xn−1, · · · , x1},

– r each(K xn ,··· ,x1
QBF |p`(ξn−1{xn />})

, w>2
xn

) ∼ r each(K xn−1,··· ,x1
QBF |p`(ξn−1{xn />})

, w ′
1),

by Lemma A.1, K xn ,··· ,x1
QBF , w0w1w>1

xn
w>2

xn
|= ξ′n−1 . So K xn ,··· ,x1

QBF , w0w1w>1
xn

w>2
xn

|=
ξn−1 as xn is in the labelling of the track w0w1w>1

xn
w>2

xn
and of any ρ such that

w0w1w>1
xn

w>2
xn

∈ Pref(ρ).

Now, if n = 1, ξn−1 =φ(xn), and we have K xn ,··· ,x1
QBF , w0w1w>1

xn
|= ξn−1.

If n > 1, either ξn−1 = 〈B〉((〈A〉xn−1 aux )∧ξn−2) or ξn−1 = [B ]((〈A〉xn−1 aux ) →
ξn−2): in the first case, since K xn ,··· ,x1

QBF , w0w1w>1
xn

w>2
xn

|= 〈B〉((〈A〉xn−1 aux ) ∧
ξn−2) then there are only two possibilities: K xn ,··· ,x1

QBF , w0w1w>1
xn

w>2
xn

w>1
xn−1

|=
(〈A〉xn−1 aux )∧ξn−2 or K xn ,··· ,x1

QBF , w0w1w>1
xn

w>2
xn

w⊥1
xn−1

|= (〈A〉xn−1 aux )∧ξn−2. In
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both cases K xn ,··· ,x1
QBF , w0w1w>1

xn
|= 〈B〉((〈A〉xn−1 aux )∧ξn−2) by definition. Oth-

erwise K xn ,··· ,x1
QBF , w0w1w>1

xn
w>2

xn
|= [B ]((〈A〉xn−1 aux ) → ξn−2). It follows that

K xn ,··· ,x1
QBF , w0w1w>1

xn
w>2

xn
w>1

xn−1
|= ξn−2 and K xn ,··· ,x1

QBF , w0w1w>1
xn

w>2
xn

w⊥1
xn−1

|= ξn−2.

As a consequence K xn ,··· ,x1
QBF , w0w1w>1

xn
|= [B ]((¬〈A〉xn−1 aux ) ∨ ξn−2)(= ξn−1)

(recall that the only successor of w>1
xn

in K xn ,··· ,x1
QBF is w>2

xn
and in particular

K xn ,··· ,x1
QBF , w0w1w>1

xn
w>2

xn
|= ¬〈A〉xn−1 aux ).

(⇐) If K xn ,··· ,x1
QBF |= ξ, then K xn ,··· ,x1

QBF , w0w1 |= 〈B〉(〈A〉xn aux ∧ ξn−1). A possibility is

that K xn ,··· ,x1
QBF , w0w1w>1

xn
|= (〈A〉xn aux )∧ξn−1 (the other, K xn ,··· ,x1

QBF , w0w1w⊥1
xn

|=
(〈A〉xn aux ) ∧ ξn−1, is symmetric). Hence K xn ,··· ,x1

QBF , w0w1w>1
xn

|= ξn−1{xn/>}

and K xn ,··· ,x1
QBF , w0w1w>1

xn
w>2

xn
|= ξn−1{xn/>} (as before). Thus (by Lemma A.1)

K xn−1,··· ,x1
QBF , w ′

0w ′
1 |= ξn−1{xn/>}(= ξ′n−1) and K xn−1,··· ,x1

QBF |= st ar t → ξ′n−1, i.e.

K xn−1,··· ,x1
QBF |= ξ′. By inductive hypothesis

ψ′ =Qn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1){xn/>}

is a true quantified boolean formula. Thus

ψ=∃xnQn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1)

is a true quantified boolean formula.

• Qn =∀:

(⇒) the formulas

ψ′ =Qn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1){xn/>}

and
ψ′′ =Qn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1){xn/⊥}

are both true quantified boolean formulas. We now show that K xn ,··· ,x1
QBF , w0w1 |=

[B ]((〈A〉xn aux ) → ξn−1). We just need to prove that K xn ,··· ,x1
QBF , w0w1w>1

xn
|= ξn−1

and K xn ,··· ,x1
QBF , w0w1w⊥1

xn
|= ξn−1. By reasoning as in the ∃ case, the thesis fol-

lows.

(⇐) If K xn ,··· ,x1
QBF |= ξ, then K xn ,··· ,x1

QBF , w0w1 |= [B ]((〈A〉xn aux ) → ξn−1). Therefore

K xn ,··· ,x1
QBF , w0w1w>1

xn
|= ξn−1 and K xn ,··· ,x1

QBF , w0w1w⊥1
xn

|= ξn−1. Reasoning as in
the ∃ case and by applying the inductive hypothesis twice, we get that

Qn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1){xn/>}

and
Qn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1){xn/⊥}

are true quantified boolean formulas, thus

∀xnQn−1xn−1 · · ·Q1x1φ(xn , xn−1, · · ·x1)

is a true quantified boolean formula.
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