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Introduction

This talk will be about some novel algebraic characterisations of
cut-elimination and reductive cut-elimination and their
relationships.

It will be argued that in a suitable subsystem of FL, extensions
with any set of acyclic structural rules preserves cut-elimination
if, and only if, they preserve reductive cut-elimination.

This allow to modestly extend some recent result relating
(modular) cut-elimination and McNeille completion.
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Cut-elimination = semantic propagation

In [1] the author gives both a semantic and a syntactic
characterisation of (left) additive structural rules which preserve
cut-elimination when added to the Full Lambek Calculus (FL).

The property that such rules must enjoy is called semantic
(resp. syntactic) propagation.

The key construction to prove that such requirement is sufficient
to the cut-elimination of the resulting calculus, dates back to
some works by M. Okada.

[1] K. Terui.
Which structural rules admit cut elimination? An algebraic
criterion.
Journal of Symbolic Logic, 72(3):738, 2007.
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Reductive cut-elimination = propagation

Shortly later a similar approach was proposed in [2] to study a
wider class of sequent calculi and to extend the method to
unrestricted structural rules and logical rules for connectives. In
this work the rules that preserve a stronger form of
cut-elimination, called reductive cut-elimination, are again
characterised both syntactically and semantically.

So in a sense [2] widely generalises [1], but on the other hand it
only handles rules with the stronger property of preserving
reductive cut-elimination.

[2] A. Ciabattoni and K. Terui.
Towards a semantic characterization of cut-elimination.
Studia Logica, 82(1):95–119, 2006.



5/ 24

Reductive cut-elimination

Definition
An occurrence of (CUT ) in a derivation is said to be reducible if
one of the following holds:

1 Both cut formulae are the principal formulae of logical rules.
2 One of the two cut formulae is a context formula of a rule

other than (CUT ).
3 One of the two premises is an identity axiom.

We say that a simple sequent calculus L admits reductive
cut-elimination if whenever a sequent S0 is derivable in L from a
set A of non-logical axioms, S0 has a derivation in L from A
without any reducible cuts.
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An example

Notice that in general reductive cut-elimination is strictly
stronger than cut-elimination

This can be checked by considering the sequent calculus
consisting only of the rules (?, r) and (?, l) below:

Θ⇒ X Θ⇒ Y
Θ⇒ X ? Y

(?, r)
Θl, X, Y,Θr ⇒ Ξ
Θl, X ? Y,Θr ⇒ Ξ

(?, l)
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Modular cut-elimination

Definition
A set S of sequents is said to be elementary if S consists of
atomic formulas and is closed under cuts.
In other words if S contains Σ⇒ p and Γ, p,∆⇒ Π, it also
contains Γ,Σ,∆⇒ Π.

Definition

A sequent calculus admits modular cut-elimination if for any
elementary set S and a sequent s, if s is derivable from S, then
it is also derivable from S without using (CUT).

Modular and reductive cut-elimination coincide in any extension
of FL with structural rules (It can be checked just using the
syntactic characterisations mentioned above)
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Main aim

The main aim of our study is to show that:

(Claim) For any set of structural rues R, in the extension
FL(R), reductive cut-elimination is equivalent to cut-elimination.

Some important motivation for this study can be found in [3],
where a strong connection between modular cut-elimination
and McNeille completion is unveiled.

[3] A. Ciabattoni , N. Galatos and K. Terui.
Algebraic proof-theory for substructural logics: cut-elimination
and completions.
Submitted, 2009.
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Main aim

At the moment we are able to prove the claim only for a
restricted class of structural rules (namely acyclic) in a weaker
version of FL where the right-hand side of the sequents must
contain exactly one formula.

Such restriction is known to characterise Minimal Logic.

Let us call mFL the sequent calculus of FL where each sequent
has exactly one formula on the right side.
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A short recap

In any extension of FL the following logical relations hold

Semantic Propagation oo [1] // Cut-eliminaton

Propagation oo [2] // Reductive cut-elimination

OO

OO

��
McNeille canonicity oo [3] // Modular cut-elimination
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Structural rules

For 0 ≤ i ≤ n, let Θi,Γi,Ξi be sequences of (variables
denoting) formulae.

Definition
By a structural rule we mean a rule (R) of the form

Γ1,Θ1 ` Ξ1 . . .Γn,Θn ` Ξn

Γ0,Θ0 ` Ξ0
(R)

such that any formula appearing in Θ1, ...,Θn also appears in
Θ0 (non erasing condition).
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Additive structural rules and axiomatic forms

If (R) can be written also in the form

Γ,Θ1 ` Ξ . . .Γ,Θn ` Ξ
Γ,Θ0 ` Ξ

(R)

then it is said to be additive.

Definition
Given an additive structural rule R = (Θ0 C Θ1; ...; Θn), its
axiomatic form is defined by: R̂ := ∗Θ0 → ∗Θ1 ∨ ... ∨ ∗Θn

Lemma ([1])

An instance R[ϕ] of a structural rule R is derivable from R̂[ϕ] in
FL and vice-versa.
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Lattive-valued interpretations of sequents

Let us define an interpretation of sequents into (bounded)
residuated lattices.

Let L = 〈L,∨,∧, /, \, ·, 1〉 be a residuated lattice, then a
valuation is a function which sends each propositional variable
in an element of L. As usual any valuation can be extended to
the whole set of formulas.

A formula ϕ is said to be true (or valid) under a valuation f , if
f(ϕ) ≥ 1. Given a set X ⊆ L we call X-valuation a valuation
ranging inside X. A formula is X-valid if it is true for any
X-valuation.
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Semantic propagation

Let us use the following notation∏
(X) := {x1 · · ·xn | x1, . . . , xn ∈ X}∐

(X) := {
∨
Y | Y ⊆ X}

Definition ([1])
A set R of structural rules satisfies the semantic propagation if
in any residuated lattice L and for any X ⊆ L if all formulae in R̂
are X-valid then they are also

∐ ∏
(X)-valid.
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Pre-phase structures

Let 〈A∗, ·, 1〉 be the free monoid generated by A and, for any
X,Y ⊆ A∗, let

X • Y = {x · y | x ∈ X, y ∈ Y },
X ) Y = {y ∈ A | ∀x ∈ X, x · y ∈ Y },
X ( Y = {y ∈ A | ∀x ∈ X, y · x ∈ Y }.

A pre-phase structure is a triple P = 〈A,B,⊥〉 such that
B ⊆P(A∗) and ⊥ ⊆ A∗.

A closed set is a subset of A∗ of the form⋂
i∈I

({yi} )Qi ( {zi}) with yi, zi ∈ A∗
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Pre-phase structures
Let CP be the operator assigning to any X ⊆ A∗ the smallest
closed set containing X. Then CP is a closure operator
compatible with •. Let

j
X = C(

⋃
X )

X ◦ Y = C(X • Y )

The set of closed sets CP forms a complete residuated lattice

〈CP,∩,
j
, ◦,),(, CP({1})〉.

The following lemma is a special case of a general result in [1].

Lemma

Let C′(A) = {CP({y}) | y ∈ A}, then CP =
∐ ∏

(C ′(A))
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Phase-valued interpretations of sequents I
Definition
Let P = 〈A,B,⊥〉 be a pre-phase structure and Θ ` Ξ be a
meta-sequent in which the meta-variables range among
X1, . . . , Xn. Then given a valuation of Xi 7→ JXiK ∈ CP, we
extend it to Θ ` Ξ as follow:

JΘK =

{
JXi1K ◦ · · · ◦ JXikK if Θ ≡ Xi1 , . . . , Xik

1 = CP ({1}) if Θ is empty.

JΞK =

{
JXiK if Ξ ≡ Xi

⊥ if Ξ is empty.

Definition
We say that J K satisfies Θ ` Ξ if JΘK ⊆ JΞK. Given a structural
rules (R) we say that it is valid in P if whenever J K satisfies the
premises of (R) it also satisfies the conclusion.
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Phase-valued interpretations of sequents II
Definition
Let P = 〈A,B,⊥〉 and Θ ` Ξ as above and let Ξ be either Y or
empty. Then given two functions | | and [ ], which associate
Xi 7→ |Xi| ∈ A and Y 7→ [Y ] ∈ B, we interpret Θ ` Ξ as follow:

|Θ| =

{
|Xi1 | · · · |Xik | ∈ A∗ if Θ ≡ Xi1 , . . . , Xik

1 if Θ is empty.

[Ξ] =

{
[Xi] if Ξ ≡ Xi

⊥ if Ξ is empty.

Definition
We say that | | and [ ] pre-satisfy Θ ` Ξ if |Θ| ∈ [Ξ]. Given a
structural rules (R) we say that it is pre-valid in P if whenever | |
and [ ] satisfy the premises of (R) they also satisfies the
conclusion.
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Propagation

Definition
A structural rule is propagating if it is valid in all pre-phase
structures in which is pre-valid.
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Definition

Given a structural rule

Θ1 ` Ξ1 · · · Θn ` Ξn

Θ0 ` Ξ0
(R)

we build its dependency graph D(R) as follows:
• The vertices of D(R) are the (variables for) formulas

occurring in the premises Θ1 ` Ξ1, · · · ,Θn ` Ξn (without
distinguishing occurrences).

• There is a directed edge α −→ β in D(R) if and only if there
is a premise Θi ` Ξi such that α occurs in Θi and β = Ξi.

A structural rule (R) is said to be acyclic if D(R) is acyclic.
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Two Lemmas

The proof of the (restricted) claim is based on two lemmas, one
purely syntactical and one purely semantical.

Syntactical Lemma
There exists a procedure to transform every acyclic structural
rule (R) in mFL in an equivalent additive structural rule (called
the additive form of (R)).

Semantical Lemma

Let (R) be an additive structural rule. If (R) has the semantic
propagation property then it is propagating.
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Theorem
Let mFL(R) be the calculus obtained by adding a set of acyclic
rules R to mFL, then its additive form R′ is such that the
following are equivalent:

(i) mFL(R′) enjoys cut-elimination;

(ii) mFL(R′) enjoys reductive cut-elimination;

(iii) The quasi-equational translations of the rules in R′ are
McNeille canonical.

Proof.
(ii) ⇒ (i) is straightforward.
Recall that, by [1], if mFL(R′) has cut-elimination then (R′) has
the semantic propagation property. So by (i) and the
Semantical Lemma (R′) is propagating. Finally, by the
characterisation in [2] we get (ii).
The equivalence between (ii) and (iii) can be found in [3].
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Concluding

As far as acyclic rules are concerned in mFL, we have

Semantic Propagation Cut-eliminaton

Propagation Reductive cut-elimination

McNeille canonicity Modular cut-elimination
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