Finite forcing

Infinite forcing 0 000

Forcing in Łukasiewicz logic a joint work with Antonio Di Nola and George Georgescu

Luca Spada

lspada@unisa.it

Department of Mathematics University of Salerno

 3^{rd} MATHLOGAPS Workshop Aussois, $24^{th} - 30^{th}$ June 2007

Finite forcing

Infinite forcing 0 000

Overview

1 Introduction

History of forcing Łukasiewicz logic

2 Finite forcing

Properties of finite forcing Generic model theorem

3 Infinite forcing

Properties of forcing Generic structures

History of forcing

- P. COHEN The independence of the continuum hypothesis. *Proc. Natl. Acad. Sci. U.S.A* 50: 1143-1148 (1963).
- A. ROBINSON, Forcing in model theory. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1: 245-250. Gauthier-Villars, Paris, 1971.
- A. ROBINSON, Infinite forcing in model theory. In *Proceedings of the Second Scandinavian Logic Symposium* (Oslo, 1970): 317-340. Studies in Logic and the Foundations of Mathematics, Vol. 63, North-Holland, Amsterdam, 1971.
- H. J. KEISLER, Forcing and the omitting types theories, *Studies in Model Theory*, MAA Studies in Math., Buffalo, N.Y., 8: 96-133, 1973.
- J.-C. LABLANIQUE, Propriétés de consistance et forcing, Ann. Sci. Univ. Clermont, Ser. Math., Fasc. 18: 37-45, 1979.

Finite forcing

Infinite forcing 0 000

Motivations

The aim of our work is to generalize the classical model-theoretical notion of forcing to the infinite-valued Łukasiewicz predicate logic.

Łukasiewicz predicate logic is not complete w.r.t. standard models and, its set of standard tautologies is in Π_2 . The Lindenbaum algebra of Łukasiewicz logic is not semi-simple.

In introducing our notions we will follow the lines of Robinson and Keisler.

Finite forcing

Infinite forcing 0 000

Łukasiewicz propositional logic

The language of **Łukasiewicz propositional logic** L_{∞} is defined from a countable set *Var* of propositional variables $p_1, p_2, \ldots, p_n, \ldots$, and two binary connectives \rightarrow and \neg . L_{∞} has the following axiomatization:

• $\varphi \rightarrow (\psi \rightarrow \varphi);$ • $(\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi));$ • $((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow ((\psi \rightarrow \varphi) \rightarrow \varphi);$ • $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi).$

where φ, ψ and χ are formulas. Modus ponens is the only rule of inference. The notions of proof and theorem are defined as usual.

Introduction
00
0000

MV-algebras

A **MV-algebra** is structures $\mathcal{A} = \langle A, \oplus, *, 0 \rangle$ satisfying the following equations:

- $x \oplus (y \oplus z) = (x \oplus y) \oplus z$,
- $x \oplus y = y \oplus x$,
- $x \oplus 0 = x$,
- $x \oplus 0^* = 0^*$,
- $x^{**} = x$,
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x.$

Other operations are definable as follows:

$$x \to y = x^* \oplus y$$
 and $x \odot y = (x^* \oplus y^*)^*$.

MV-algebras form the equivalent algebraic semantics of the propositional Łukasiewicz logic, in the sense of Blok and Pigozzi.

Łukasiewicz predicate logic

The following are the axioms of **Łukasiewicz predicate logic** (PL_{∞}) :

- 1 the axioms of ∞ -valued propositional Łukasiewicz calculus L_{∞} ;
- **2** $\forall x \varphi \rightarrow \varphi(t)$, where the term *t* is substitutable for *x* in φ ;
- **3** $\forall x(\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \forall x\psi)$, where x is not free in φ ;
- $(\varphi \to \exists x \psi) \to \exists x (\varphi \to \psi), \text{ where } x \text{ is not free in } \varphi.$

 PL_{∞} has two *rules of inference*:

- Modus ponens (m.p.): from φ and $\varphi \rightarrow \psi$, derive ψ ;
- Generalization (G): from φ , derive $\forall x \varphi$.

Finite forcing

Infinite forcing 0 000

The semantic of PL_∞

Let *L* be an MV-algebra. An *L*-structure of the language PL_{∞} has the form $\mathfrak{A} = \langle A, (P^{\mathfrak{A}})_{P}, (c^{\mathfrak{A}})_{C} \rangle$ where

A is a non-empty set (the universe of the structure); for any *n*-ary predicate P of PL_{∞} , $P^{\mathfrak{A}} : A^n \to L$ is an *n*-ary *L*-relation on A;

for any constant c of PL_{∞} , $c^{\mathfrak{A}}$ is an element of A.

The notions of evaluations, tautology, etc. are defined as usual.

Finite forcing

Forcing properties

Let $PL_{\infty}(C)$ be the language of PL_{∞} , to which we add an infinite set *C* of new constants. Let *E* be set of sentences of $PL_{\infty}(C)$ and *At* the set of atomic sentences of $PL_{\infty}(C)$.

Definition

A forcing property is a structure of the form $\mathbf{P} = \langle P, \leq, 0, f \rangle$ such that the following properties hold:

- (i) $(P, \leq, 0)$ is a poset with a first element 0;
- (ii) Every well-orderd subset of P has an upper bound;
- (iii) $f: P \times At \rightarrow [0, 1]$ is a function such that for all $p, q \in P$ and $\varphi \in At$ we have $p \leq q \Longrightarrow f(p, \varphi) \leq f(q, \varphi)$.

The elements of *P* are called **conditions**.

Finite forcing

Infinite forcing 0 000

Finite forcing

Definition

Let $\langle P, \leq, 0, f \rangle$ be a forcing property. For any $p \in P$ and any formula φ we define the real number $[\varphi]_p \in [0, 1]$ by induction on the complexity of φ :

Some properties of finite forcing

For any forcing property P, $p \in P$ and for any sentence φ , ψ or $\forall x \chi(x)$ of $PL_{\infty}(C)$ we have :

1 If
$$p \leq q$$
 then $[\varphi]_p \leq [\varphi]_q$

$$2 \ [\neg \neg \varphi]_p = \bigwedge_{p \leq q} \bigvee_{q \leq v} [\varphi]_v;$$

$$(\varphi]_{p} \leq [\neg \neg \varphi]_{p}.$$

$$[\forall x \chi(x)]_{p} = \bigwedge_{p \leq q} \bigwedge_{c \in C} \bigvee_{q \leq r} [\chi(c)]_{r}.$$

$$6 [\varphi \to \psi]_{p} = [\neg \varphi]_{p} \oplus [\psi]_{p};$$

Generic sets

Definition

A non-empty subset G of P is called **generic** if the following conditions hold

If $p \in G$ and $q \leq p$ then $q \in G$, For any $p, g \in G$ there exists $v \in G$ such that $p, g \leq v$; For any $\varphi \in E$ there exists $p \in G$ such that $[\varphi]_p \oplus [\neg \varphi]_p = 1$.

Definition

Given a forcing property $\langle P, \leq, 0, f \rangle$, a model \mathfrak{A} is **generated by** a generic set *G* if for all $\varphi \in E$ and $p \in G$ we have $[\varphi]_p \leq ||\varphi||_{\mathfrak{A}}$. A model \mathfrak{A} is **generic** for $p \in P$ if it is generated by a generic subset *G* which contains *p*. \mathfrak{A} is generic if it is generic for 0.

Generic model theorem

Theorem

Let $< P, \leq, 0, f >$ be a forcing property and $p \in P$. Then there exists a generic model for p.

Sketch of the proof.

For any $p \in P$ build by stages a generic set G such that $p \in G$, proving that the condition $[\varphi]_q \oplus [\neg \varphi]_q < 1$ must fail for some $q \ge p_n$

Build a structure starting form the constants in the language and define an evaluation by $e(\varphi) = \bigvee_{p \in G} [\varphi]_p$. Such an enumerable model is generated by G.

Finite forcing $\circ\circ$

Infinite forcing 0 000

Generic model theorem

Corollary

If p belongs to some generic set G which has a maximum g, then there exists \mathfrak{M} , generic model for p, such that $[\varphi]_g = \|\varphi\|_{\mathfrak{M}}$

Corollary

For any $\varphi \in E$ and $p \in P$ we have

 $[\neg \neg \varphi]_p = \bigwedge \{ \|\varphi\|_{\mathfrak{M}} \mid \mathfrak{M} \text{ is a generic structure for } p \}.$

Finite forcing

Infinite forcing

Henceforth all structures will be assumed to be members of a fixed inductive class $\boldsymbol{\Sigma}.$

Definition

For any structure \mathfrak{A} and for any sentence φ of $\mathsf{PL}_{\infty}(\mathfrak{A})$ we shall define by induction the real number $[\varphi]_{\mathfrak{A}} \in [0, 1]$:

Finite forcing

An example

A natural question is whether $[\varphi]_{\mathfrak{A}} = 1$ for any formal theorem φ of PL_{∞} . The following example shows that the answer is negative: Let us consider a language of PL_{∞} with a unique unary predicate symbol R. We define two standard structures \mathfrak{A} and \mathfrak{B} by putting

$$\begin{aligned} \mathfrak{A} &= \{a, b\}, & R^{\mathfrak{A}}(a) = 1/2, & R^{\mathfrak{A}}(b) = 1/3 \\ \mathfrak{B} &= \{a, b, c\}, & R^{\mathfrak{B}}(a) = 1/2, & R^{\mathfrak{B}}(b) = 1/3, & R^{\mathfrak{B}}(c) = 1. \end{aligned}$$

An example

Of course $\mathfrak A$ is a substructure of $\mathfrak B.$ Let us take $\Sigma=\{\mathfrak A,\mathfrak B\}$ and consider the following sentence of PL_∞

$$\exists x R(x) \to \exists x R(x).$$

This sentence is a formal theorem of PL_∞ (identity principle), but:

 $[\exists x R(x)]_{\mathfrak{A}} = [R(a)]_{\mathfrak{A}} \vee [R(b)]_{\mathfrak{A}} = \max(1/2, 1/3) = 1/2$ $[\exists x R(x)]_{\mathfrak{B}} = [R(a)]_{\mathfrak{B}} \vee [R(b)]_{\mathfrak{B}} \vee [R(c)]_{\mathfrak{B}} = \max(1/2, 1/3, 1) = 1.$ and

$$[\exists x R(x) \rightarrow \exists x R(x)]_{\mathfrak{A}} = [\exists x R(x)]_{\mathfrak{B}} \rightarrow [\exists x R(x)]_{\mathfrak{A}} = 1 \rightarrow 1/2 = 1/2.$$

Finite forcing

Infinite forcing

Properties of infinite forcing

For any structure \mathfrak{A} and for any sentences φ , ψ and $\forall x \chi(x)$ of $\mathsf{PL}_{\infty}(\mathfrak{A})$ the following hold:

1 If
$$\mathfrak{A} \subseteq \mathfrak{B}$$
 then $[\varphi]_{\mathfrak{A}} \leq [\varphi]_{\mathfrak{B}}$.

$$2 \ [\neg \neg \varphi]_{\mathfrak{A}} = \bigwedge_{\mathfrak{A} \subseteq \mathfrak{B}} \bigvee_{\mathfrak{B} \subseteq \mathfrak{C}} [\varphi]_{\mathfrak{C}};$$

$$\Im \ [\varphi]_{\mathfrak{A}} \leq [\neg \neg \varphi]_{\mathfrak{A}}.$$

$$(\varphi \to \psi]_{\mathfrak{A}} = [\neg \varphi]_{\mathfrak{A}} \oplus [\psi]_{\mathfrak{A}};$$

5
$$[\varphi \oplus \psi]_{\mathfrak{A}} = [\neg \neg \varphi]_{\mathfrak{A}} \oplus [\psi]_{\mathfrak{A}};$$

6
$$[\forall x \chi(x)]_{\mathfrak{A}} = \bigwedge_{\mathfrak{A} \subseteq \mathfrak{B}} \bigwedge_{b \in \mathfrak{B}} \bigvee_{\mathfrak{B} \subseteq \mathfrak{C}} [\chi(b)]_{\mathfrak{C}}.$$

$$\ \, \boldsymbol{\mathcal{O}} \ \, [\varphi]_{\mathfrak{A}} \odot [\neg \varphi]_{\mathfrak{A}} = \mathbf{0}.$$

Finite forcing

Generic structures

The following result characterizes the members $\mathfrak A$ of Σ for which []_{\mathfrak A} and $\| ~\|_{\mathfrak A}$ coincide.

Proposition

For any $\mathfrak{A}\in\Sigma$ the following assertions are equivalent:

Finite forcing

Generic structures

Definition

A structure $\mathfrak{A} \in \Sigma$ which satisfies the equivalent conditions of the proposition above will be called Σ -generic.

Theorem

Any structure $\mathfrak{A} \in \Sigma$ is a substructure of a Σ -generic structure.

Theorem

Any Σ -generic structure \mathfrak{A} is Σ -existentially-complete.

Characterization of generic structures

Let use denote by \mathfrak{G}_{Σ} the class of Σ -generic structures.

Proposition

 \mathfrak{G}_{Σ} is an inductive class.

Theorem

 \mathfrak{G}_Σ is the unique subclass of Σ satisfying the following properties:

- (1) it is model-consistent with Σ ;
- (2) it is model-complete;
- (3) it is maximal with respect to (1) and (2).