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Prerequisites

1. Some universal algebra,

2. Some category theory,

3. Some general topology.
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Caveats

1. The general framework gives a uniform
understanding of several dualities, however
it does not dramatically simplify the
mathematics behind.

2. This is still a work in progress, so proofs
may be sub-optimal.

3. There is much space for further research.



An outlook on some prominent dualities
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Varieties, homomorphism, and congruences

1. By a finitary language I mean a language
with possibly infinitely many operations,
all with finite arity.

2. Infinitary languages may admit operation
symbols with infinite arity.

From now on, fix a (possibly infinitary)
functional signature L.



Varieties, homomorphism, and congruences

Definition
An (algebraic) variety is the class of all
structures in the signature L satisfying a
given set of equations.

Definition
A homomorphism f between two structures A and B
in the language L is a map that preserves alla
operations in L i.e., for any n-ary operation ⋆
in L and any tuple a1, ...,an ∈ A:

f(⋆A(a1, ...,an)) = ⋆B(f(a1), ...,f(an)).



Varieties, homomorphism, and congruences

Definition
A congruence θ on an algebra A is an
equivalence relation on A2 which is compatible
with the operations of A i.e., for any n-ary
operation ⋆ in L

if a1θa′1, ...,anθa
′
n then ⋆A (a1, ...,an)θ ⋆A (a′1, ...,a

′
n)



Varieties, homomorphism, and congruences

Lemma (The homomorphism theorem)
In an algebraic variety V, for every
homomorphism f : A → B there exists a congruence
θ on A such that f = i ◦ πθ where πθ is surjective
and i is injective.

A B

A/θ

f

πθ i



Free algebras

Definition
A free algebra over µ generators for a class of
structures K (notation FK(µ)) is an algebra in
K with the following property:

for any algebra A ∈ K and any assignment
of the µ free generators into A, there
exists a unique homomorphism form FK(µ)
into A that extends the above
assignment.



Free algebras

1. Free algebra on a fixed number of
generators are easily seen to be unique (up
to isomorphism).

2. The free algebra over µ generators in a
variety V can be obtained in a syntactic
way. One takes the set of terms with
variables in {Xα | α < µ} in the language L
with its obvious L structures, and quotient
it over the congruence generated by the
equalities holding in the variety:

θV :=< {
(
s(X),t(X)

)
| V |= s(X) = t(X)} > .



Subdirect products

Definition
An algebra is said to be a subdirect product of
the algebras Ai with i ∈ I, if

1. A embeds into the product
∏
i∈I

Ai.

2. The projections πi : A → Ai are surjective.

An algebra which cannot be decomposed into a
subdirect product of simpler algebra is called
subdirectly irreducible.



Subdirect products

Theorem (Birkhoff subdirect representation)
Any algebra in a finitary variety is isomorphic
to the subdirect product of subdirectly
irreducible algebras.

Notice that an equation holds in A if, and only
if, it holds in all components of its subdirect
representation. So, the study of equations
holding in a variety can be safely reduced to
the ones holding on the subdirectly
irreducible.



Galois connections

Let (A,≤) and (B,≤) be two partially ordered
sets.
An isotone Galois connection between these
posets consists of two isotone functions:
F : A → B and G : B → A, such that for all a ∈ A and
b ∈ B, we have

F(a) ≤ b if and only if a ≤ G(b).

An antitone Galois connection between these
posets consists of two antitone functions:
F : A → B and G : B → A, such that for all a ∈ A and
b ∈ B, we have

b ≤ F(a) if and only if a ≤ G(b).



Galois connections, examples

Example
Let U be a set and pick a fixed subset L of U.
Then the maps F and G, where F(X) = L ∩ X, and
G(X) = (U \ L) ∪ X, form a monotone Galois
connection from ℘(U) into ℘(U).

A similar Galois connection exists in any
Heyting algebra. F(x) = (a ∧ x) and G(x) = (a → x).
In logical terms: "implication from a" is the
upper adjoint of "conjunction with a".



Galois connections, examples

Example
Let  f : X → Y be a function, M ⊆ X and N ⊆ Y.
Consider the image function
F(M) = f[M] = {f(m) | m ∈ M} and the preimage function
G(N) = f−1[N] = {x ∈ X | f(x) ∈ N}. Then F and G form a
monotone Galois connection between the power
sets of X and Y, both ordered by inclusion.



Galois connections, examples

Example
Let A and B be sets and R ⊆ A× B. Consider the
maps F : A → B and G : B → A, given by

F(X) = {b ∈ B | xRb ∀x ∈ X} and G(Y) = {a ∈ A | aRy ∀y ∈ Y}.

The maps F and G form an antitone Galois
connection.

Actually all antitone Galois connections arise
in this manner.



Galois connections, properties

If F : A ⇄ B : G is an antitone Galois connection,
the pair F,G enjoys a number of immediate
properties:

1. b ≤ F ◦ G(b) expansive.

2. F ◦ G ◦ F(a) = F(a) fixed points.

3. F(
∨
i∈I

ai) =
∧
i∈I

F(ai) inverts arbitrary joins.



Categories

A category is a collection of objects A,B,C, ...
together with a collection of arrows f,g,h, ....
such that

1. each arrow f is associated to a pair of
objects called domain and codomain of f.

2. If f and g are arrows such that dom(f) = A,
cod(f) = B, dom(g) = B, and cod(g) = C, then
there exists an arrow g ◦ f, called
composition such that dom(g ◦ f) = A and
cod(g ◦ f) = C.

3. Composition is associative.

4. For any object A there exists an arrow idA
which is a neutral element w.r.t.
compositions.



Functors

Let C and D be categories. A functor F from C
to D is a mapping that

1. associates to each object X ∈ C an object
F(X) ∈ D,

2. associates to each morphism f : X → Y ∈ C a
morphism F(f) : F(X) → F(Y) ∈ D preserving the
structure of C i.e., such that
2.1 F(idX) = idF(X), for every object X ∈ C,
2.2 F(g ◦ f) = F(g) ◦ F(f) for all morphisms f : X → Y

and g : Y → Z.



Equivalence of categories

Let C and D be categories. A pair of functors
F : C → D G : D → C is called categorical
equivalence if there exists a family of
isomorphisms εY : FG(Y) → Y and ηX : X → GF(X)
natural in X and Y.



Adjoints

Let C and D be categories. A pair of functors
F : C → D G : D → C is called adjunction if there
exists a family of maps εY : FG(Y) → Y and
ηX : X → GF(X) natural in X and Y and such that

F(X) F ◦ G ◦ F(X) F(X)
F(ηX) εF(X)

idF(X)

If F and G are adjoint, then there exists a
natural bijection

homC(FY,X) ∼= homD(Y,GX)
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The Galois connection between ideals and
affine varieties

Let k be an algebraically closed field. There
is an antitone Galois connection between
subsets of kn and subsets of the ring of
polynomials k[x1, . . . ,kn]. The connection carries

1. a subset E ⊆ k[x1, . . . ,kn] to the set V (E) ⊆ kn

of common zeros of the polynomials in E;

2. a subset S ⊆ kn to the set C (S) of
polynomials in k[x1, . . . ,xn] vanishing over S.

▶ The affine sets of kn that are fixed by this
connection are called affine varieties.

▶ The ideals of k[x1, . . . ,xn] that are fixed are
precisely the radical ideals.

The latter statement is the content of
Hilbert's Nullstellensatz.



An algebraic Galois connection

Let V be any variety of algebras and F (µ) the
free algebra over µ generators in V. Let A be
any algebra in V.
For any θ ⊆ F (µ)2, put

V(θ) := {s ∈ Aµ | p(s) = q(s) ∀(p,q) ∈ F (µ)}.

Vice versa, given a subset S of Aµ one defines
a congruence of F (µ) as follows:

C(S) := {(p,q) ∈ F (µ)2 | p(s) = q(s) ∀s ∈ S}.



An algebraic Galois connection

Lemma
The operators C and V form an antitone Galois
connection between the powersets of kµ and
F 2(µ).

Assume R ⊆ I (S) and let p ∈ S. If (s,t) ∈ R then
s(p) = t(p) by the definition of I , so that
p ∈ V (R).

Conversely, assume S ⊆ V (R) and suppose
(s,t) ∈ R. If p ∈ S then s(p) = t(p) by the
definition of V , so that (s,t) ⊆ I (S).



Definable functions

Definition
Given S ⊆ Aµ and T ⊆ Aν, a function λ : S → T is
definable if there exists a ν-tuple of terms
(tβ)β<ν, with tβ ∈ Fµ, such that

λ( (pα)α<µ ) = (tβ( (pα)α<µ ) )β<ν

for every (pα)α<µ ∈ S. We call any such ν-tuple
a family of defining terms for λ. In the
special case that ν = 1, the ν-tuple may be
regarded as a single term t ∈ Fµ, called a
defining term for λ.



The functor C: objects

For any S ⊆ Aµ, it is easy to check that C (S) is
a congruence on Fµ. In view of this, for any
subset S ⊆ Aµ we define

C (S) = Fµ /C (S) .



The functor C: arrows

Given S ⊆ Aµ and T ⊆ Aν, let λ : S → T be a
definable map, and let (lβ)β<ν be a ν-tuple of
defining terms for λ. Then there is an induced
function

C (λ) : C (T) → C (S)

which acts on each s ∈ F ν by substitution as
follows:

s
(
(Xα)β<ν

)
C (T)

∈ C (T)
C (λ)7−→

s
(
[Xβ\lβ]β<ν

)
C (S)

∈ C (S) .



The functor C: arrows

There can be several distinct defining terms
for a definable function λ : S → [0, 1]. However,
l ∈ Fµ is a defining term for λ and (l,l′) ∈ C (S)
if, and only if, l′ is a defining term for λ.

Indeed, (l,l′) ∈ C (S) if, and only if, l(p) = l′(p)
holds for each p ∈ S.

On the other hand, l′ is a defining term for λ
if, and only if, λ(p) = l′(p) holds for each
p ∈ S.

The stated equivalence then follows from the
assumption that l defines λ, i.e. λ(p) = l(p) for
each p ∈ S.



The functor C: arrows

The definition of C (λ) above does not depend on
the choice of the representing term s, for if
s′ is another term such that (s,s′) ∈ C (T), then
s
(
[Xβ\lβ]β<ν

)
is congruent to s′

(
[Xβ\lβ]β<ν

)
modulo

C (S), because substitutions commute with
congruences.

Further, the definition of C (λ) does not depend
on the choice of the family of defining terms
(lβ)β<ν either. Indeed, suppose (l′β)β<ν is
another ν-tuple of defining terms for λ, and
let p ∈ S. For each β < ν we have (lβ,l

′
β) ∈ C (S) by

1 in this remark, so that
(s( (lβ)β<ν ) , s( (l

′
β)β<ν )) ) ∈ C (S) because

congruences are compatible with operations.



The functor V : objects

Given R = {(si,ti) | i ∈ I} ⊆ Fµ×Fµ, for I an
index set, we set

V (Fµ /θ) = V (θ) .



The functor V : arrows

Let h : Fµ /θ1 → F ν /θ2 be a homomorphism of
MV-algebras. For each α < µ, let πα be the
projection term on the αth coordinate, and let
πα/θ1 denote the equivalence class of πα modulo
θ1. Fix, for each α, an arbitrary fα ∈ h(πα/θ1).
For any (pβ)β<ν ∈ V (θ2), set

V (h)((pβ)β<ν) =
(
fα( (pβ)β<ν )

)
α<µ

.



The functor V : arrows

To see that V (h) is well-defined, fix α < µ. By
definition, if p is a point of V (θ2), and if
g ∈ F ν is such that (fα,g) ∈ θ2, then fα(p) = g(p).
Therefore, the definition of V (h) does not
depend on the choices of the fα's.



A general adjunction between varieties
and topological spaces

Theorem
For any variety V, for any A ∈ V the functors V
and C are adjoint.

S

V C (S)

T

V C (T)

λ

V C (λ)

εS εT

Fµ

θ1

C V (
Fµ

θ1
)

F ν

θ2

C V (
F ν

θ2
)

h

C V (h)

ηFµ
θ1

ηFν
θ2
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The Birkhoff transform.

Given a presented algebra F (ν)/θ one can
decompose it as follows:

1. If a is any element of V(θ), then θ ⊆ C(a), so
there exists a canonical epimorphism
qa : F (ν)/θ → F (ν)/C(a).

2. The above epimorphism sends any term of
F (ν)/θ, t/θ into the element t(a)/C(a).

3. So there is a map σθ : F (ν)/θ →
∏

a∈V(a)

F (ν)/C(a).

4. Call this map the Birkhoff transform.



The algebraic Nullstellensatz

Theorem (Algebraic Nullstellensatz)

Fix a cardinal ν, and a congruence θ on F (ν).
The following are equivalent.

(i) C (V (θ)) = θ.

(ii) θ =
∩

a∈V(θ)

C(a).

(iii) The Birkhoff transform

σθ : F (ν)/θ →
∏

a∈V (θ)

F (ν)

C (a)
is a subdirect

embedding.



Proof of the algebraic Nullstellensatz

Recall that

θ ⊆ C (V (θ))

And notice that

θ ⊆
∩

a∈V(θ)

C(a) .

(i)⇒(ii) By hypothesis θ = C (V (θ)), so it is
enough to prove ∩

a∈V(θ)

C(a) ⊆ C (V (θ)) .

If (p,q) ∈
∩

a∈V(θ)

C(a), then for every a ∈ V(θ),

p(a) = q(a), which means (p,q) ∈ C (V (θ)).



Proof of the algebraic Nullstellensatz

(ii)⇒(i) It is enough to prove

C (V (θ)) ⊆
∩

a∈V(θ)

C(a).

Suppose that (p,q) ∈ C (V (θ)), i.e. for all
a ∈ V(θ) p(a) = q(a). The latter entails that, for
all a ∈ V(θ), (p,q) ∈ C (a), whence (p,q) ∈

∩
a∈V(θ)

C(a).



Proof of the algebraic Nullstellensatz

(ii) ⇔ (iii). The homomorphism

σθ : F (ν)/θ →
∏

a∈V(θ)

F (ν)/θ

C(a)/θ

is an embedding if, and only if,
∩

a∈V(θ

C(a)/θ is

the identity congruence on F (ν)/θ.
It is clear by construction that if σθ is an
embedding, then it is subdirect.
Since a ∈ V (θ) iff θ ⊆ C (a), by the Second
Isomorphism Theorem

∀a ∈ V (a) :
F (ν)/θ

C (a)/θ
∼= F (ν)/C (a).



Proof of the algebraic Nullstellensatz

Upon recalling that the mapping θ′ 7→ θ′/θ is an
isomorphism of lattices between the lattice of
congruences of F (ν) extending θ and the lattice
of congruences of F (ν)/θ, we have∩

a∈V (θ)

C (a)/θ = ∆/θ ⇐⇒
∩

a∈V (θ)

C (a) = θ.



The Gelfand evaluation

For any a ∈ A we have the following canonical
surjection.

qa : F (ν) ↠ F (ν)/C (a).

By the universal property of the quotient
homomorphism there exists a unique homomorphism

γa : F (ν)/C (a) −→ A

So the following diagram commutes.

F (ν)

A
F (ν)

C (a)

eva
qa

γa

!

Figure: The Gelfand evaluation γa.

Definition (Gelfand evaluation)
Given a cardinal ν and an element a ∈ Aν, the
homomorphism (??) above is called the Gelfand
evaluation (of F (ν) at a).



The GKS lemma

Lemma (GKS Lemma)
(i) For each a ∈ Aν, the Gelfand evaluation γa

is a monomorphism.
(ii) For each congruence θ on F (ν), and each

homomorphism e : F (ν)/θ → A

F (ν)

A
F (ν)

θ

e ◦ qθ
qθ

e

If e is a monomorphism, then there exists
a ∈ A such that θ = C (a), and the
commutative diagram above coincides with
the one above.



Proof of the GKS lemma

(i) Pick p,q ∈ F (ν) such that (p,q) ̸∈ C (a). Then,
by definition, p(a) ̸= q(a), and therefore
eva(p) ̸= eva(q). But then, by the definition of
Gelfand evaluation, it follows that γa(p) ̸= γa(q).
(ii) Since e is monic, we have
ker (e ◦ qθ) = kerqθ = θ. Explicitly,

∀s,t ∈ F (ν) : (s,t) ∈ θ ⇐⇒ e(qθ(s)) = e(qθ(t)).

Set a := (e ◦ qθ(Xβ))β<ν ∈ Aν, then the above yields

∀s,t ∈ F (ν) : (s,t) ∈ θ ⇐⇒ s(a) = t(a).

Therefore, we have a ∈ V (θ), which is equivalent
to

θ ⊆ C (a).



Proof of the GKS lemma

For the converse inclusion, if (u,v) ∈ C (a), then
u(a) = v(a), and therefore (u,v) ∈ θ. This proves
θ = C (a), and therefore qθ = qa. To show
eva = e ◦ qa, note that, by the definition of eva
and the universal property of F (ν), they both
are the (unique) extension of the function
Xβ 7→ ev(Xβ, (e ◦ qθ(Xβ))), for β < ν.



A picture

F (ν)/θ

∏
a∈V (θ)

F (ν)

C (a) AV (θ)

F (ν)/C (a) A

q
γa ◦ πa

γa

paπa

σθ

!

ιθ

!

γθ := ιθ ◦ σθ
!

Figure: The Gelfand and Birkhoff transforms γθ and
σθ.



The algebra of definable functions

Theorem
For any set S ⊆ Aν let D(S) be the algebra of
definable functions into A restricted to S.
The map γ̂θ : F (ν) → D(V(θ)) is an epimorphism.
Furthermore, γ̂θ is an isomorphism if, and only
if, θ = CV(θ).



Proof of the representation

The map γθ sends an element t(X)/θ of F (ν)/θ,
into the definable function t̃ associated to
t(X) restricted to V(θ).

▶ Well defined
Suppose (s,t) ∈ θ, then for all a ∈ V(θ),
s(a) = t(a), so s̃ = t̃.

▶ homomorphism
Let ⋆ be an binary connective, then we need
to prove that s̃ ⋆ t(a) = s̃(a) ⋆ t̃(a) for all
a ∈ V(θ). Which is equivalent to say that
s ⋆ t(a) = s(a) ⋆ t(a) for all a ∈ V(θ). The
latter holds because the interpretation of
connective is given pointwise.



Proof of the representation

▶ surjective
For any definable map λ, there exists a
defining term t, so λ = γ̂θ(t).

▶ If θ = CV(θ), then γ̂θ is injective.

It is enough to prove that ker(γ̂θ) =
CV(θ)

θ
.

The fact that γ̂θ(s/θ) = γ̂θ(t/θ), is equivalent
to the statement that for all a ∈ V(θ)
s(a) = t(a), which in turn is equivalent to
say that (s,t) ∈ CV(θ), so (s/θ,t/θ) ∈ CV(θ)/θ.



Choosing the right A

Proposition
Assume the variety V is finitary. The
adjunction V ,C completely fixes the algebraic
side if, and only if, A contains a copy of each
subdirectly irreducible algebra in V.

▶ Call a congruence subdireclty irreducible
if it presents a subdirectly irreducible
algebra.

▶ If A contains a copy of each subdirectly
irreducible algebra, by the GKS-lemma, all
subdirectly irreducible congruences are of
the form C(a) for some point a ∈ Aµ.



Choosing the right A

▶ If the variety is finitary, then every
congruence is the intersection of
subdirectly irreducible congruences, so by
the algebraic Nullstellensatz every
congruence is fixed.

▶ Vice versa, if every congruence is fixed by
CV on the algebraic side, then also all
subdirectly irreducible congruences are.

▶ So, every subdirectly irreducible
congruence θ can be written as

∩
a∈V(θ)

C(a).

▶ But if a subdirectly irreducible congruence
can be written as an intersection of a
family of congruences, then it must belong
to that family, so there exists a such that
θ = C(a).



Choosing the right A

As an immediate corollary

Corollary
Assume the variety V is finitary. If the
adjunction V ,C completely fixes the algebraic
side then A generates the variety.

Indeed, by Birkhoff theorem the sudirectly
irreducible algebras alone generates the full
variety and they are all present in A as
subalgebras.

We will see an example that shows that the
implication cannot be inverted.
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The Zariski topology

Notice that V ◦C (S) = VC(S).

Recall that by the fact that C and V are a
Galois adjunction, for any S ⊆ Aµ,

1. S ⊆ VC(S),
2. If S1 ⊆ S2 then VC(S1) ⊆ VC(S2), and

3. VC
(
VC(S)

)
= VC(S).

So the composition VC is a closure operator.

Although this does not guarantee that the sets
of the form VC(S) are the closed sets in some
topology, in the cases we will meet, it always
holds that VC(S1 ∪ S2) = VC(S1) ∪ VC(S2), in which
case the closure operator is topological



The Zariski topology

The fixed points are of the form

V(θ) = {p ∈ Aµ | s(p) = t(p) for all (t,s) ∈ θ}.

Compare with the Zariski topology in algebraic
geometry given by following closed sets:

V(S) = {x ∈ An | f(x) = 0 for all f ∈ S}

So we are interested in characterising the
fixed points in this generalised Zariski
topology.



Kelley's embedding lemma

Given a family F of continuous functions from a
topological space X into topological spaces Yf
the evaluation map e : X →

∏
f∈F

Yf defined as

e(x)f := f(x).

Theorem
The map e is

1. continuos on X,

2. injective if, and only if, p,q ∈ X there
exists f ∈ F such that f(p) ̸= f(q),

3. open if for any p ∈ X and any closed subset
C such that p /∈ C there exists f ∈ F such
that f(p) /∈ f[C].



A-compact spaces

Obviously, we are interested in using the above
result with Yf = A, to prove that any abstract
topological space (satisfying certain
properties) is homeomorphic to a closed set of
a suitable power of A.

In the literature those spaces have been
extensively studied under the name of A-compact
spaces.



Two topologies

However there is a problem namely, there are
two natural topologies on Aµ

1. the Zariski topology given by the µ-ary
definable functions,

2. the product topology induced by the Zariski
topology on A,

and in general the two are different!



Two topologies

Lemma
If A is Hausdorff and all definable functions
are continuous with regard to the product
topology then a set S ⊆ Aµ is closed in the
product topology if, and only if, V(C (S)) = S.



Two topologies

▶ Let us start by noticing that definable
functions are continuous w.r.t. the Zariski
topology. Indeed, if S is closed in the
Zariski topology, then there exits θ such
that S = V(θ). If f is a definable function,
then

f−1[S] = {p ∈ Aµ | s(f(p)) = t(f(p)) for all (s,t) ∈ θ},

hence if θ′ := {(s ◦ f,t ◦ f) | (s,t) ∈ θ},
f−1[S] = V(θ′).

▶ Let us write S for the smallest closed set
in the product topology that contains S.
The product topology is coarser than the
Zariski topology, because the projections
are continuous in the Zariski topology. So,
we have VC (S) ⊆ S.



Two topologies

▶ To prove the other direction, recall that
if X is any space, and Y is Hausdorff, then
for any two continuous functions f,g : X → Y
the solution set of the equation f = g is a
closed subset of X.

▶ Now, by assumption A is Hausdorff and
definable functions are continuous, so for
any pair of terms (s,t), the set V (s,t) is
closed in product topology.

▶ On the other hand,
V(R) = V

( ∪
(s,t)∈R

{(s,t)}
)
=

∩
(s,t)∈R

V (s,t) so we

conclude that V(R) is closed in the product
topology for any subset R of Fµ×Fµ. Thus
we obtain the inclusion S ⊆ V (C (S)).



Two topologies

Corollary

If the Zariski topology on A is discrete, then
Zariski and product topology coincide.

▶ If the Zariski topology on A is discrete
then it obviously is Hausdorff.

▶ In addition all finite products are also
discrete, so all definable functions are
continuous.

▶ Thus the assumptions of the above Lemma are
met and the claim holds by its direct
application.
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1. Stone duality



Stone duality

Let V be the variety of Boolean algebras. Let A
be the Boolean algebra whose support is {0, 1}.

By the general framework we have an adjunction
V ,C between V and the subsets of Aµ for µ
ranging among all cardinals.

Recall that

Lemma
The only subdirectly irreducible Boolean
algebra is A.

So, a fortiori, all subdirectly irreducible
Boolean algebra embed into A, hence the
adjunction fixes completely the algebraic side.



Stone duality

So there is a dual equivalence between the
variety of Boolean algebra and the closed
subsets of the cubes Aµ with the Zariski
topology.

An easy checking shows that all such closed
spaces are Stone spaces. (Notice that closed
subspaces of Stone spaces are again Stone
spaces.)



An intrinsic characterisation

Finally, we need to prove that any compact,
Hausdorff, totally disconnected space X, there
exists a cardinal µ and closed subset S of
{0, 1}µ such that X is homeomorphic to S.

Given such a space X, consider the family F of
all continuous functions from X to {0, 1}. If C
is a closed subset of X and p ∈ X \ C, then there
exists a clopen K which extends C and does not
contain p.

It is then easy to see that the following
function is continuous.

f(x) :=

{
0 if x ∈ K

1 otherwise.



An intrinsic characterisation

So we can apply Kelley's embedding lemma to
affirm that any Stone space can be realised as
closed subspace of some Cantor cube {0, 1}µ with
the Zariski topology.

Further, any continuous map between Stone
spaces can be realised as a map between the
respective closed supspaces of the Cantor cube,
by composing with the homeomorphisms given by
Kelley's embedding lemma.

Hence, the category of Stone spaces and
continuous maps among them is equivalent to the
category of closed subspaces of Cantors cubes
with definable maps among them.



Stone duality

Corollary (Stone 1936)

The category of Boolean algebras with their
homomorphisms is dually equivalent to the
category of compact, Hausdorff, totally
disconnected spaces with continuous maps among
them.
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Priestley duality

Let V be the variety of distributive lattice.
Let A be the distributive lattice whose support
is {0, 1}.

By the general framework we have an adjunction
V ,C between V and the subsets of Aµ for µ
ranging among all cardinals.

Recall that

Lemma
The only subdirectly irreducible distributive
lattice is A.

So, a fortiori, all subdirectly irreducible
distributive lattices embed into A, hence the
adjunction fixes completely the algebraic side.



Priestley duality

So, there is a dual equivalence between the
variety of distributive lattices and the closed
subsets of the cubes Aµ with the Zariski
topology.

As before all such closed spaces are Stone
spaces, but now we will consider also their
pointwise order. It is again easy to verify
that they satisfy Priestley separation axiom:

If x ̸≤ y then there exists a upward closed,
clopen set containing x and omitting y.



Priestley duality

We also need to check that

1. definable functions are order preserving,
and

2. every continuos, order preserving map among
closed subspace of Cantor cubes is
definable.



An intrinsic characterisation

Finally, we need to prove that any Priestley
space X, there exists a cardinal µ and closed
subset S of {0, 1}µ such that X is order
homeomorphic to S.

Given such a space X, consider the family F of
all continuous functions from X to {0, 1}. If
p ̸= q we may safely assume p ̸≤ q, so there is a
clopen K which contains p and does not contain
q.

It is then easy to see that the following
function is continuous.

f(x) :=

{
0 if x ∈ K

1 otherwise.



An intrinsic characterisation

So we can apply Kelley's embedding lemma to
affirm that any Priestley space can be realised
as closed subspace of some Cantor cube {0, 1}µ
with the Zariski topology.

Since the evaluation map is also order
preserving, any continuous and order preserving
map between Priestley spaces can be realised as
a map between the respective closed supspaces
of the Cantor cube, by composing with the
respective evaluation maps.

Hence, the category of Priestley spaces and
continuous, order preserving maps among them is
equivalent to the category of closed subspaces
of Cantors cubes with definable maps among
them.



Stone duality

Corollary (Priestley 1970)
The category of distributive lattices with
their homomorphisms is dually equivalent to the
category of Priestley spaces with continuous
and order preserving maps among them.
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MV-algebras

Consider the structure ⟨[0, 1],⊕,¬, 0 where

x⊕ y = min 1,x+ y and ¬x = 1− x.

This is an MV-algebras. In general,
MV-algebras are the algebras in the variety
generated by the above structure.

MV-algebras provide the equivalent algebraic
semantics for Łukasiewicz logic.



MV-algebras

Let V be the variety of MV-algebras and A be
the above MV-algebra on [0, 1]

The functors V and C provide a dual adjunction
between the variety of MV-algebras and the
closed subspaces of [0, 1]µ.



Semisimple MV-algebras

Lemma
An MV-algebra is simple if, and only if, it can
be embedded into [0, 1].

So all simple congruences are of the form C(a)
for some point a ∈ [0, 1]µ. The intersection of
such congruences are exactly the semisimple
congruences.

We then immediately have that the adjunction
V ,C fixes exactly the semisimple MV-algebras.



Complete regularity

Lemma
Fro any open interval (a,b) ⊆ [0, 1] and any
p ∈ (a,b), there exists a term l(x) such that its
definable function l̃ : [0, 1] → [0, 1] satisfies
l̃(p) > 0 and ( [0, 1] \ (a,b) ) ⊆ (l̃)−1(0).

So, if C ⊆ [0, 1] is a closed set in the Euclidean
topology and p is an external point, by the
above lemma there is a Zariski closed set
V (t, 0) which contains C but excludes p.

From this we immediately have that the
Euclidean topology is coarser than the Zariski
topology. So the two coincides.



The two topologies

Lemma
The product and Zariski topologies on Aµ

coincide for any cardinal µ.

One implication is trivial, for the product
topology is coarser than the Zariski.

Vice versa, every Zariski closed set is
intersection of sets of the form V(s,t) where s
and t are terms representing definable
functions from [0, 1]µ into [0, 1]. But [0, 1] is
Hausdorff and definable functions are
continuous w.r.t. the product topology, so
V(s,t) is closed in the product topology.



The intrinsic characterisation

Once more, as an application of Kelley's
embedding lemma, one obtains that

Lemma
Every Tychonoff space is homeomorphic to a
closed subset of [0, 1]µ for a suitable cardinal
µ.



Finitely presented MV-algebras

Theorem (Wójcicki's Theorem)
Every finitely presented MV-algebra is
semisimple.

So, in particular finitely presented algebras
are fixed by the adjunction.

It is interesting to characterise the
corresponding topological spaces.



Finitely presented MV-algebras

▶ A convex combination of a finite set of
vectors v1, . . . ,vu ∈ Rm is any vector of the
form r1v1 + · · ·+ ruvu, for non-negative real
numbers ri ≥ 0 summing up to 1.

▶ If S ⊆ Rm is any subset, we let conv(S) denote
the collection of all convex combinations
of finite sets of vectors v1, . . . ,vu ∈ S.

▶ A polytope is any subset of Rm of the form
conv(S), for some finite S ⊆ Rm.

▶ A (compact) polyhedron is a union of
finitely many polytopes in Rm.

▶ A polyhedron is rational if it may be
written as union of polytopes of the form
conv(S) for some finite set S ⊆ Qm of vectors
with rational coordinates.



Finitely presented MV-algebras

Definition
Given a rational polyhedron P ⊆ [0, 1]m and a
continuous map ζ = (ζ1, ..., ζn) : P → [0, 1]n, for n ≥ 0
an integer, we say that ζ is a Z-map if for
each i = 1, . . . ,n, ζi is piecewise linear with
integer coefficients.



McNaughton theorem

Theorem (McNaughton's Theorem for rational
polyhedra)
Let P ⊆ [0, 1]m be a rational polyhedron, and let
λ : P → [0, 1] be any function. Then λ is a Z-map
if, and only if, λ is a definable function.



The intrinsic characterisation

▶ S is a rational polyhedron if, and only if,
there is a Z-map ζ : [0, 1]m → [0, 1] vanishing
precisely on S.

▶ If S is of the form V (R) for some finite
R ⊆ F m×F m, we may assume that R is a
singleton {(s, 0)}

▶ So S is the solution set over [0, 1]m of the
equation s̃ = 0, where s̃ is the function
defined by s.

▶ By McNaughton theorem, s̃ is a Z-map, and
therefore S is a rational polyhedron.



The intrinsic characterisation

▶ Conversely, if S is a rational polyhedron
in [0, 1]m, there is a Z-map ζ : [0, 1]m → [0, 1] such
that ζ−1(0) = S.

▶ By McNaughton theorem there is a term s ∈ F m

such that ζ is the function defined by s.
▶ Therefore, since S = V (s, 0), S correspond to
a finitely presented MV-algebras.



The duality for finitely presented
MV-algebras

Corollary (The duality theorem for
finitely presented MV-algebras)

The adjunction V ,̉̃restricts to an equivalence
of categories between finitely presented
MV-algebras and rational polyhedra with Z-maps
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Syntactic and semantic category

All categories in this paper are assumed to be
locally small.

We consider the following.
▶ Two categories T and S.
▶ A functor I : T → S.
▶ An object △ of T.



The category of subobjects

Objects are all pairs (t,s) where t is T-object
and s : doms → I (t) is an S-subobject.

Arrows (t,s) → (t′,s′) are the T-arrows f : t → t′

such that I (f) ◦ s factors through s′; that is,
there exists an S-arrow g : S → S′ such that the
diagram

doms

I (t)

doms′

I (t′)

g

I (f)

s s′

commutes.



The category of subobjects

Objects are all pairs (t,R) where t is a
T-object and R is a relation on HomT (t,△).

Arrows (t,R) → (t′,R′) are the T-arrows f : t → t′

such that the function

− ◦ f : HomT (t′,△) → HomT (t,△)

satisfies the property

(p′,q′) ∈ R′ =⇒ (p′ ◦ f,q′ ◦ f) ∈ R.

We say in this case that f preserves R′ (with
respect to R).



The Galois connection C, V

Definition

For any (t,s) ∈ D, we define the following
equivalence relation on HomT (t,△):

C(s) :=
{
(p,q) ∈ Hom2T (t,△) | I (p) ◦ s = I (q) ◦ s

}
.



The Galois connection C, V

In order to define V it is necessary to assume
that S has enough limits. It is sufficient to
make the following
Assumption: Henceforth, we assume that S has
equalisers of pairs of parallel arrows, and
intersections of arbitrary families of
subobjects.

Definition

For any (t,R) in R, we set

V (R) :=
∧

(p,q)∈R

Eq(I (p),I (q)),



The Galois connection C, V

Lemma (Galois connection)

For any T-object t, any relation R on HomT (t,△),
and any S-subobject s : doms → I (t), we have

R ⊆ C (s) if, and only if, s ≤ V (R). (1)



The Galois connection C, V

Theorem (Weak Nullstellensatz)

Fix an R-object (t,R). For any family Σ = {σi}i∈I
of subobjects of I (t) such that for each σi
there exists mi with σi = V (R)◦mi (i.e. σi ≤ V (R))
and the family of S-arrows {mi}i∈I is jointly
epic in S, the following are equivalent.

(i) R = C (V (R)), i.e. R is fixed by the Galois
connection (1).

(ii) R =
∩
i∈I

C(σi).



The end.

Thank you for your (extended)
attention!
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