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Abstract. The  Loś-Tarski Theorem and the Chang- Loś-Susko Theo-
rem, two classical results in Model Theory, are extended to the infinite-
valued  Lukasiewicz logic. The latter is used to settle a characterisation
of the class of generic structures introduced in the framework of model
theoretic forcing for  Lukasiewicz logic [1].
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1 Introduction

 Lukasiewicz logic is just one possibility in the myriad of infinite-valued gener-
alisations of classical logic. An infinite-valued generalisation of classical logic is
obtained by simply picking up some functions on an infinite superset of {0, 1}
which behave on 0 and 1 accordingly to the classical connectives which they gen-
eralise; in other words, by extending the truth tables of the classical connectives.

Among those generalisations some are meaningless, for they have very little
in common with a logic. Yet, when one requires a few natural properties to
be fulfilled, the systems arising allow deep mathematical investigations; this is
the case of continuous t-norm based logics. In these systems the conjunction
is interpreted in an associative, commutative and weakly-increasing continuous
function from [0, 1]2 to [0, 1], which behaves accordingly to classical conjunction
in the limit cases 0 and 1, namely a continuous t-norm.

As a matter of fact the most important many-valued logics studied in mathe-
matics are based on continuous t-norms; this is the case, for instance, of  Lukasi-
ewicz logic or Gödel logic. The logical system BL, introduced in [2], encompasses
all logics based on continuous t-norms.

The setting based on continuous t-norm1, or equivalently BL, has been quite
successful, for it provides a general mathematical framework for investigations
on many-valued logics and offers an utter bridge towards fuzzy set theory and
fuzzy logic, as t-norms are a pivotal tool in fuzzy logic.
? Partially supported by FWF project P 19872-N18.
1 The requirement on continuity is sufficient for the existence of a residual operation,

which plays the role of implication. Such a requirement can be relaxed to only left-
continuity leading to a logical system called MTL [3].



Yet  Lukasiewicz logic stands out among those logics because of some of its
properties. Indeed,  Lukasiewicz logic is the only one, among continuous t-norm
based logics, with a continuous implication and therefore the only logic whose
whole set of formulae can be interpreted as continuous functions. Furthermore
the  Lukasiewicz negation is involutive, namely it is such that ¬¬ϕ ↔ ϕ. Those
two features, inherited from classical logic, makes  Lukasiewicz logic a promising
setting to test how far the methods of model theory can reach in the realm of
many-valued logics.

A model theoretic study of many-valued logic is especially important in the
light of the negative results already obtained in the first order theory of these
logics: the predicate version BL has a (standard) tautology problem whose com-
plexity is not arithmetical, the same problem is Π2-complete for  Lukasiewicz
logic. Thus the favourable duality between syntax and semantics vanishes when
switching to t-norm based logics and new tools must be developed.

The results so far are encouraging: in [1] the Robinson finite and infinite
forcing were generalised to  Lukasiewicz logic; here some basic results for a model
theory of  Lukasiewicz logic are presented and used to settle an open problem
left therein.

2 Preliminaries

The language of the infinite-valued  Lukasiewicz propositional logic,  L, is built
from a countable set of propositional variables, V ar = {p1, p2, . . . , pn, . . . }, and
two connectives → and ¬. The axioms of  L are the following:

ϕ→ (ψ → ϕ); (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ));
((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ); (¬ϕ→ ¬ψ)→ (ψ → ϕ),

Modus ponens is the only rule of inference. The notions of proof and tautology
are defined as usual.

The equivalent algebraic semantics for  L (in the sense of [4]) is given by the
variety of MV-algebras [5]. An MV-algebra is a structure A = 〈A,⊕, ∗, 0〉 such
that A = 〈A,⊕, 0〉 is a commutative monoid, ∗ is an involution and the following
equations hold: (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x and x⊕ 0∗ = 0∗.

An  L∀ language L is defined similarly to a language for classical first order
logic, without functional symbols2, taking as primitive the connectives: →,¬,∃.
This allows the syntactical concepts of term, (atomic) formula, free or bounded
variable, substitutable variable for a term, formal proof, formal theorems, etc.
to be defined just as usual. The set V = {x, y, z, ...} is a fixed set of variables
and Form will be used to indicate the set of formulae of L.

The axioms of  L∀ are:

(i) All the axioms of the infinite-valued propositional  Lukasiewicz calculus;
2 Functional symbols can be added, in principle, to the language, however this requires

a discussion on how equality has to be treated which goes beyond the scope of this
article.



(ii) ∀xϕ→ ϕ(t), where the term t is substitutable for x in ϕ;
(iii) ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ), where x is not free in ϕ;

The inference rules are Modus ponens: from ϕ and ϕ → ψ, derive ψ; Gen-
eralisation: from ϕ, derive ∀xϕ. The fact that ϕ is a formal theorem of  L∀ is
indicated by ` ϕ. A theory is a set of formulae. If T is a theory and ϕ is a
formula then the formal inference T ` ϕ is defined in the usual way.

Let L be a  L∀ language with n predicate symbols and m constant symbols.
Let A be an MV-algebra. An A-structure has the form

M = 〈M,PM1 , ..., PMn , cM1 , ..., cMm 〉

where M is a non-empty set (called the universe of the structure); if Pi is a
predicate symbol in L of arity k then PMi is a k-ary A-valued relation on A,
namely PMi : Mk → A; if cj is a constant symbol in L then cMj is an element of
M .

LetM be an A-structure. An evaluation of L inM is a function e : V →M .
Given any two evaluations e, e′ of L and for x ∈ V let e ≡x e′ iff e |V \{x}=
e′ |V \{x} . For any term t of L and any evaluation in M let

tM(e) =

{
e(x) if t is a variable x
cM if t is a constant c

Given any evaluation inM, e and any formula ϕ of L, the element ‖ϕ(e)‖M
of A is defined by induction, and it is called the truth value of ϕ:

- if ϕ is of the form P (t1, ..., tn) then ‖ϕ(e)‖ = PM(tM1 (e), ..., tMn (e));
- if ϕ = ¬ψ then ‖ϕ(e)‖ = ‖ψ(e)‖∗;
- if ϕ = ψ → χ then ‖ϕ(e)‖ = ‖ψ(e)‖ ⇒ ‖χ(e)‖;
- if ϕ = ∃xψ then ‖ϕ(e)‖ =

∨
{‖ψ(e′)‖ | e′ ≡x e}.

An A-structure M is called safe if for any evaluation e : V → M and for
any formula ψ of L, the supremum

∨
{‖ψ(e′)‖ | e′ ≡x e} exists in A (in this case

the infimum
∧
{‖ψ(e′)‖ | e′ ≡x e} also exists).

If ‖ϕ‖M = 1 then ϕ is said to be true inM, this can be alternatively written
as M |= ϕ. A safe A-structure M is a model of a theory T if M |= ϕ for
all ϕ ∈ T . A standard structure is a [0, 1]-structure, which is always safe. A
standard model of a theory T is a [0, 1]-structure which is a model of T . If ϕ
every A-model of a theory T is also an A-model of a formula ϕ then ϕ is said
an A-logical consequence of T , in symbols T |=A ϕ, in particular, when this
is true for standard models then I write T |=[0,1] ϕ.

Definition 1. A formula ϕ is generally satisfiable if there exists a modelM
such that ‖ϕ‖M = 1. If the model can be taken standard then ϕ is called just
satisfiable. The previous definitions naturally generalise to theories. A theory
T is consistent if T 6` ⊥.

All the results in the next section hinge on the following theorems.



Theorem 1 (Weak Completeness [6]). Any consistent theory T of  L∀ has
a standard model.

As can be easily guessed from the considerations at the end of Section 1,
the notion of compactness in  Lukasiewicz logic splits in two, furthermore, if one
considers also the two classes of general and standard models, then four different
re-statements of compactness emerge (see e.g. [2] for more details). The situation
in  L∀ is fully described below.

Theorem 2 (Compactness). Let T be a theory in  L∀:

(i) If T is finitely generally satisfiable then T is generally satisfiable.
(ii) If T is finitely satisfiable then T is satisfiable.

(iii) If T |= ϕ then there exists a finite T0 ⊆ T such that T0 |= ϕ
(iv) If T |=[0,1] ϕ then in general it is false that there exists a finite T0 ⊆ T

such that T0 |=[0,1] ϕ.

3 Main results

Henceforth L is assumed to be a fixed language of  L∀ and all structures are
standard.

In  Lukasiewicz logic, all the connectives are continuous, thus each formula is
equivalent to one in prenex form. This allows to define a total hierarchy on the
lines of the arithmetical hierarchy in classical logic.

Definition 2. A formula of L belongs to the set Σn (Πn, respectively) if it is
equivalent to a formula with n blocks of quantifier, where each block is either
empty or constituted of an uninterrupted sequence of the same quantifier, ∃ or
∀, and the first block is made of ∃’s (∀’s respectively).

As in the classical case one has Σn ∪Πn ⊆ Σn+1 ∩Πn+1.
Let M be an A-structure, L(M) is the expansion of the language L with a

new constant symbol for each element of M . The diagram ofM, i.e. the set of
atomic formulae ϕ in L(M) such that ‖ϕ‖M = 1, is indicated by D(M); Th(M)
is the set of formulae ϕ such that ‖ϕ‖M = 1.

Definition 3. If M1 ⊆ M2 are two A-structures and for any ϕ ∈ D(M1),
M1 |=A ϕ iff M2 |=A ϕ then M1 is a substructure of M2, in symbols
M1 ≤ M2. If the same is true for any sentence of L(M1) than M1 is an
elementary substructure of M2, written M1 �M2

Proposition 1. Let T be a theory, let T∀ be the set of logical consequences of T
which are in Π1 and let K be the class of all substructures of models of T . Then
K is the class of model of T∀.

Proof. It follows directly from the definition of the interpretation of universal
quantifiers that if M ∈ K then M |=[0,1] T∀. Vice-versa, let M be a model of
T∀, then it follows that D(M) ∪ T is finitely satisfiable. Indeed if it is not then



there exist finite subsets Ψ ⊆ D(M) and Φ ⊆ T such that
∧
Ψ |=[0,1] ¬

∧
Φ, but

¬
∧
Φ is in Π1 and this contradicts the fact that

∧
Φ ∈ D(M). By compactness,

D(M) ∪ T has a model, say N . Obviously M embeds in N which is a model of
T , hence M∈ K.

Corollary 1 ( Loś-Tarski Theorem for  Lukasiewicz logic).
A theory is preserved under substructure if, and only if, it is equivalent to a
universal (i.e. Π1) theory.

Let α be an ordinal and (Mλ)λ∈α a family of L-structure. The structure
(Mλ)λ∈α is a chain if for any λ1 ≤ λ2 < α,Mλ1 ≤Mλ2 . If for any λ1 ≤ λ2 < α,
Mλ1 �Mλ2 then (Mλ)λ∈α is called elementary chain.

Lemma 1 ([1, Lemma 4.2]). Let (Mλ)λ∈α be an elementary chain. Then for
every λ ∈ α, Mλ �

⋃
λ∈αMλ

T is an inductive theory if it is closed under unions of chains.

Theorem 3 (Chang- Loś-Suszko Theorem for  Lukasiewicz logic).
A theory is inductive if, and only if, it is equivalent to a Π2 theory.

Proof. For the non-easy direction suppose that a theory T is inductive. Let
M |= T∀2 then T ∪ Th∃(M) is satisfiable, for if it is not then there exist two
finite sets Ψ ⊆ Th∃(M) and Φ ⊆ T such that

∧
Φ |=[0,1] ¬

∧
Ψ , but then

¬ ∧ Ψ ∈ T∀, whence it holds in M, which is a contradiction. So T ∪ Th∃(M)
has a model N , and M⊆ N . Every existential sentence of L(M) which is true
in N holds in M, hence D(N ) ∪ Th(M) is satisfiable, so it has a model M1

which is an extension of N and an elementary extension of M. Repeating such
a construction countably many times an infinite chain is produced:

M≤ N ≤M1 ≤ N1 ≤ . . .

Let O be the limit of this chain. O is a model of T , for T is inductive; furthermore
O is an elementary extension of M, because the chain {Mi}i∈ω is elementary.
Therefore M is a model of T .

The above characterisation is extremely useful, when dealing with model com-
plete theories.

Corollary 2. When the model companion of a theory is axiomatisable, it is
equivalent to a ∀∃ theory.

Proof. In a model companion every chain is elementary.

From this it is also easy to see that

Corollary 3. There exists at most one model companion of a theory.



In [1] both the notions of finite and infinite model theoretic forcing [7,8] were
extended to  Lukasiewicz logic. Following the lines of Robinson, the family of
generic models, GK, of a given class K was studied and proved to contain the
class of models existentially closed in K. Theorem 3 enables to complete this
result.

Proposition 2. Let T be an inductive theory, then if GMod(T ) is axiomatisable
then it is the class of existentially closed models of T .

Proof. One direction is given in [1, Proposition 5.7]. For the other let M be a
existentially closed model of T , then, by [1, Theorem 5.10], it embeds in a model
N ∈ GMod(T ). By [1, Theorem 5.9] GMod(T ) is inductive, so if it is axiomatisable
then by Theorem 3 it is equivalent to a Π2 theory. Since M is existentially
closed, it is easy to see that it satisfies the same Π2 formulae of N , whence
M∈ GMod(T ).
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