A(nother) duality for the whole variety of MV-algebras

Luca Spada Universiteit van Amsterdam & Università di Salerno

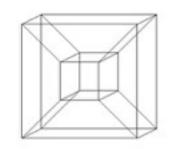
Joint thinking with V. Marra and A. Pedrini

BEYOND 2014 December 05, 2014 - University of Florence - Italy

Preliminary notes

- It is a work in progress.
- MV-algebras as case study, but the main result applies in more general cases.

An n-cube



An infinite dimensional cube

Finitely presented MValgebras

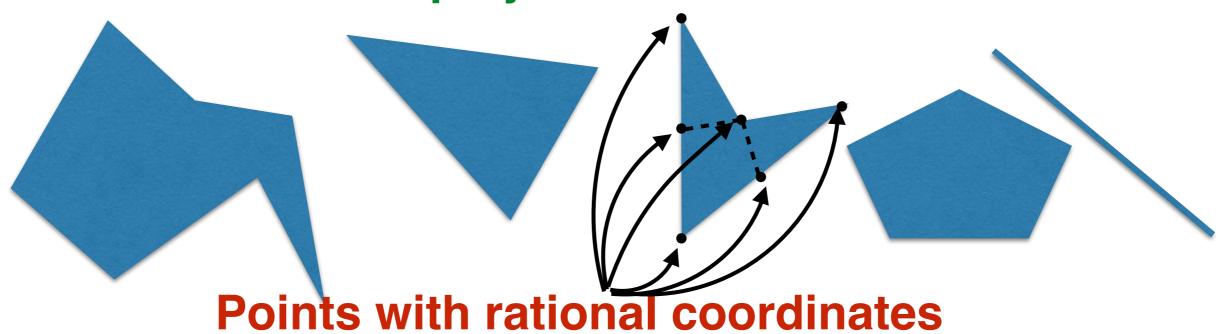
A finitely presented algebra is the quotient of a finitely generated free algebra over a finitely generated congruence

$$\frac{\mathcal{F}(n)}{\langle \{s_1 = t_1, s_2 = t_2, \dots, s_m = t_m\} \rangle}$$

The equations $s_1 = t_{1,...,} s_m = t_m$ define a closed subspace of $[0,1]^n$

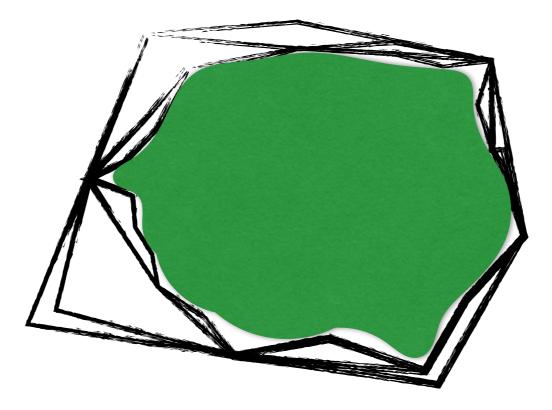
Finitely presented MValgebras

In the case of MV-algebras, those equations define a rational polyhedron.



More precisely, a rational polyhedron is a finite union of convex hulls of rational points in [0,1]ⁿ.

Semisimple MV-algebras



Closed spaces in [0,1]ⁿ are *limits* of rational polyhedra

Z-maps

Let a, b possibly infinite cardinals. A continuous map

$$z = (z_d)_{d < b} : [0,1]^a \longrightarrow [0,1]^b$$

is called a Z-map if for each d<b, z_d is **piecewise linear with integer coefficients**.

In other words, if there is a **finite number** of (affine) linear polynomials with integer coefficients

 $I_1, \ldots, I_{i(d)}$

such that for every point x in $[0,1]^a$ there is j < i(d) with $z_i(x) = l_j(x)$.

Given subsets P in $[0,1]^a$ and Q in $[0,1]^b$, a Z-map z : P —> Q is a restriction of Z-map from $[0,1]^a$ into $[0,1]^b$

The duality for semisimple and finitely presented MV-algebras

Theorem

The category of semisimple MV-algebras with their homomorphisms

is dually equivalent

to the category of closed subspaces of [0,1]^a, with *a* ranging among all cardinals, and Z-maps as arrows.

In particular, the category of finitely presented MV-algebras with their homomorphisms

is dually equivalent

to the category P_Z of rational polyhedra and Z-maps.

MV-algebras (general case)

Any algebra is the quotient of a free algebra over some congruence

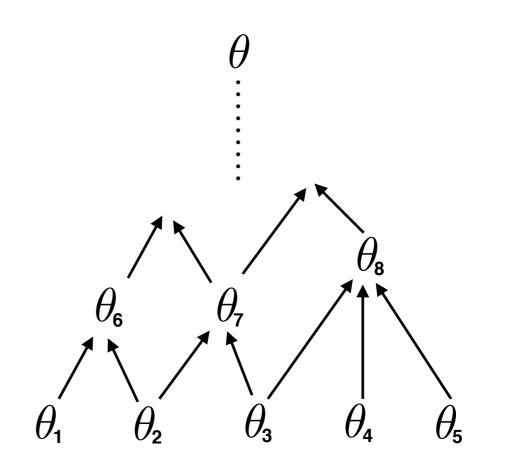
$$\frac{\mathcal{F}(\kappa)}{\langle \{s_i = t_i\}_{i \in I} \rangle}$$

Finitely presented algebras as building blocks

 $\mathcal{F}(\kappa)$

Start with any algebra

One can form a directed diagram by taking all **finite subsets** of θ



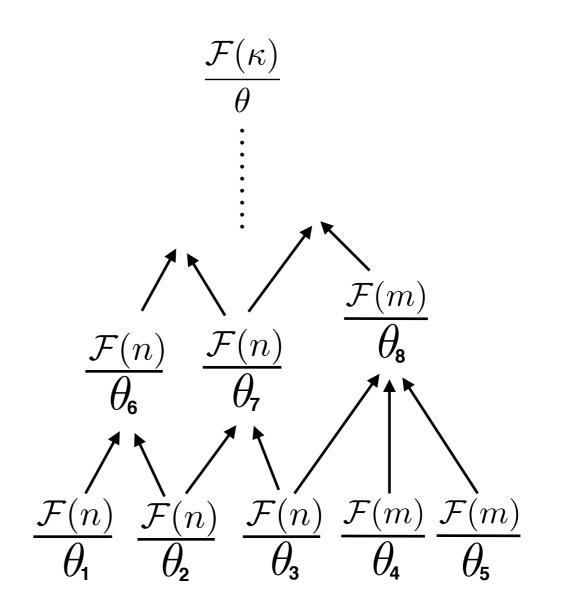
Finitely presented algebras as building blocks

 (κ)

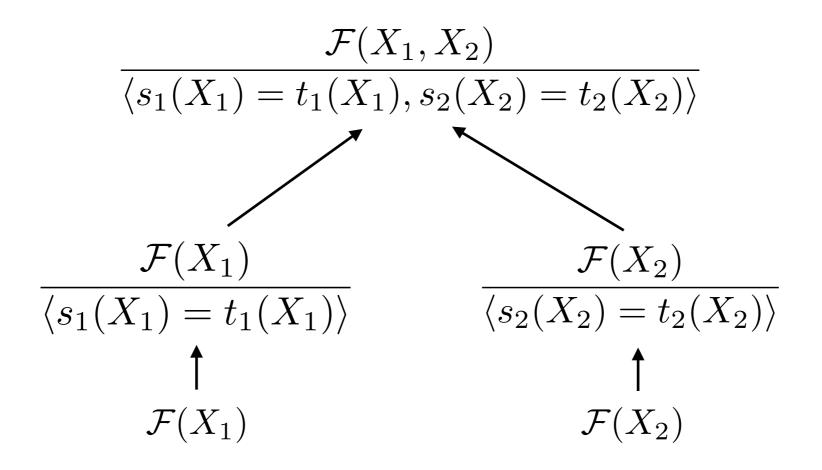
Start with any algebra

One can form a directed diagram by taking all finite subsets of θ

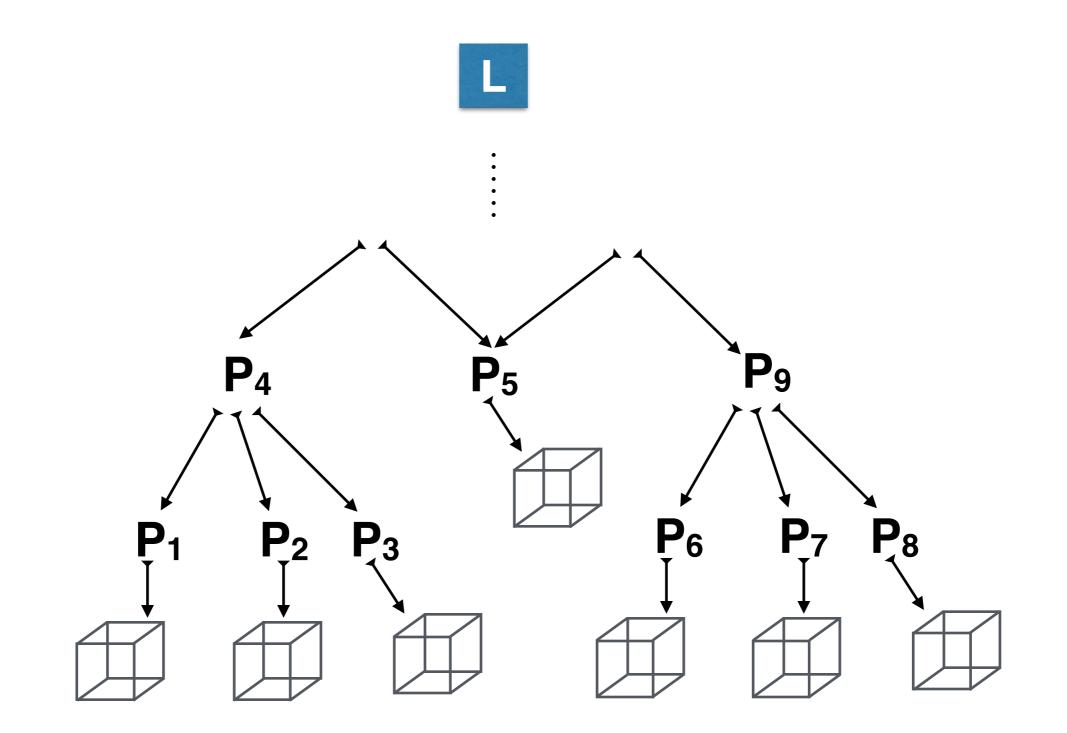
This corresponds to a directed diagram of algebras



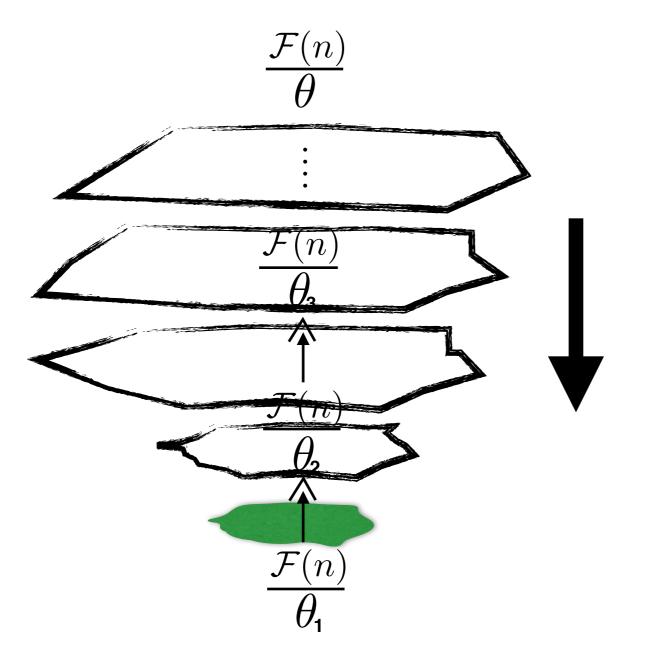
Directedness of the diagram



Limits of rational polyhedra

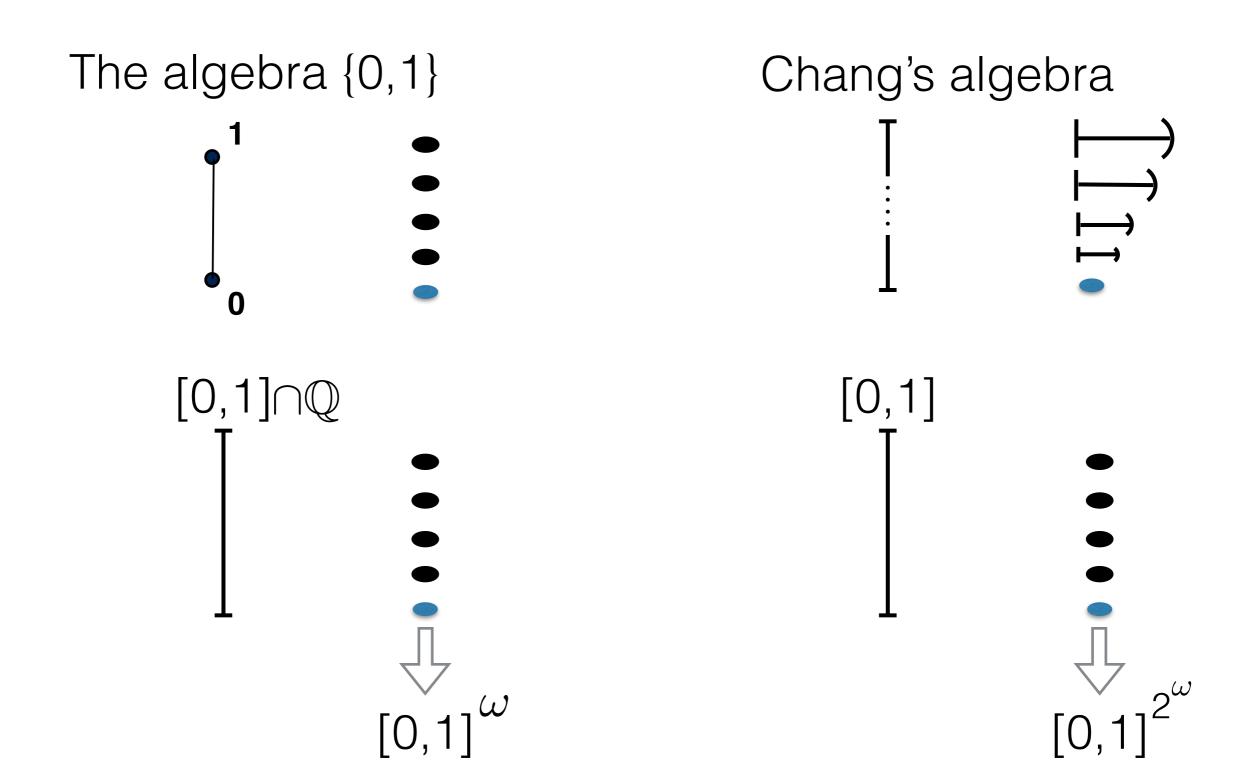


Finitely generated MValgebras



For finitely generated MV-algebra, it is enough to consider diagrams that have the order type of ω

Four examples



Ind- and pro- completions

- The ind-completion of a category C is a new category whose objects are directed diagrams in C.
- Arrows in ind-C are family of equivalence classes of arrows in C.
- The **pro-completion** is formed similarly.

Ind- and pro- completions

Let B and C be two categories

if $B \simeq C$ then ind- $B \simeq (pro-C^{op})^{op}$.

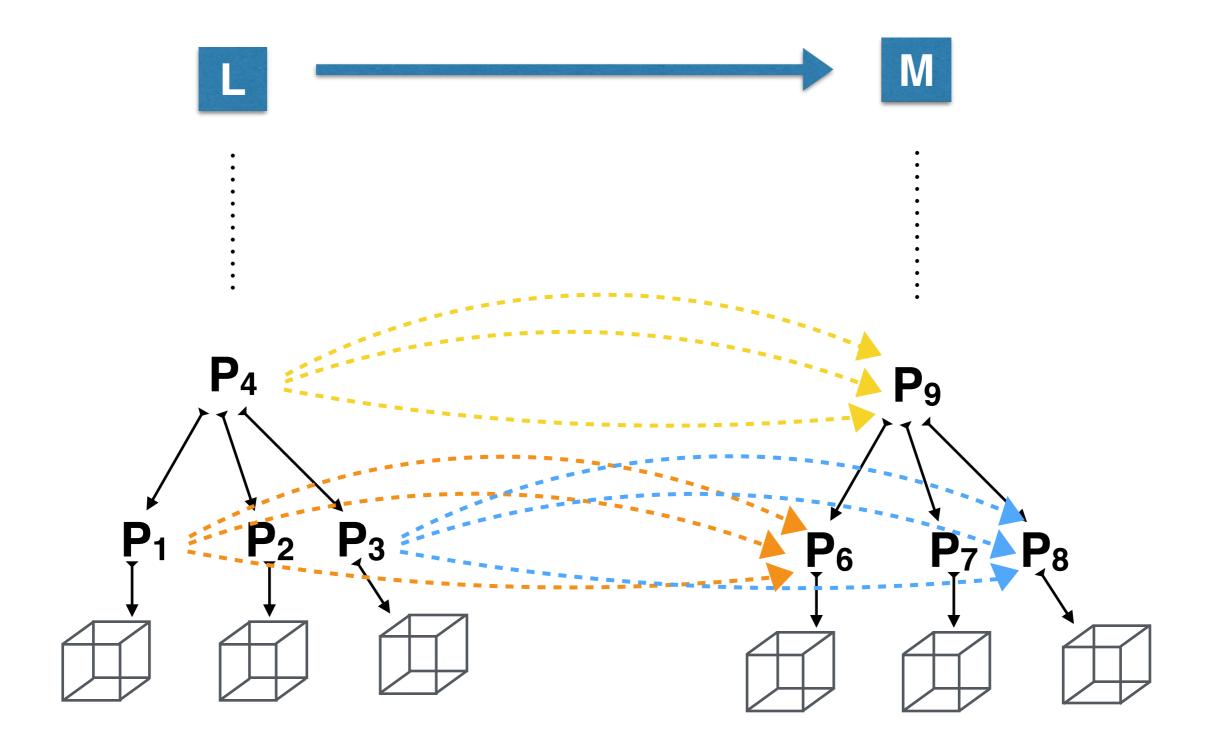
Now, $MV_{fp} \simeq (P_Z)^{op}$, so

 $MV \simeq ind - MV_{fp} \simeq ((pro-(P_Z)^{op})^{op})^{op} \simeq (pro-P_Z)^{op}.$

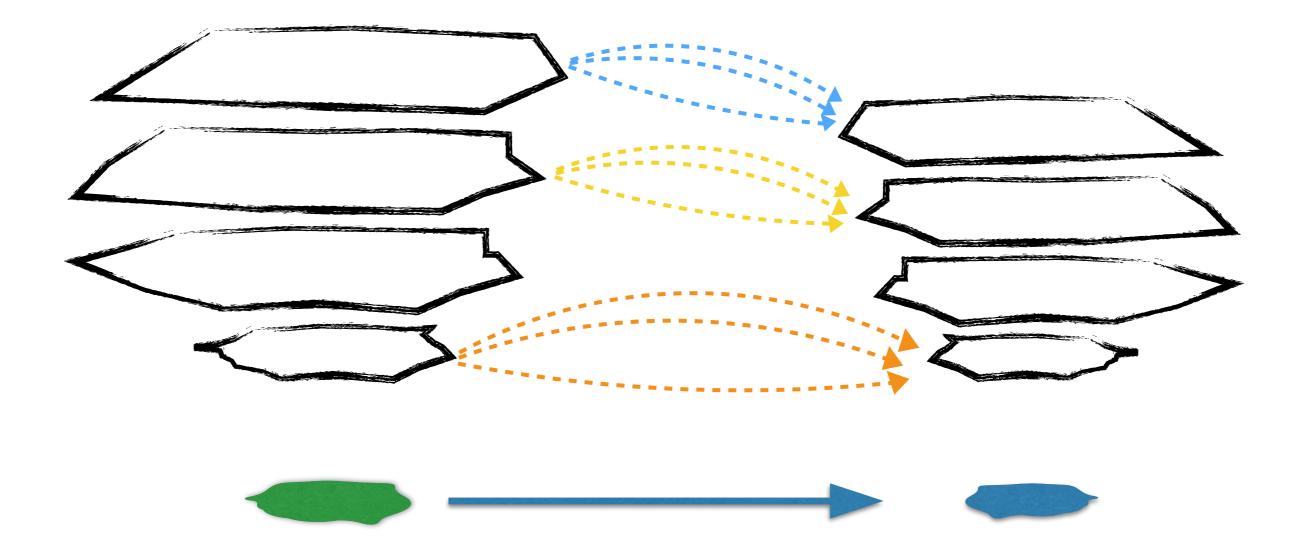
The dual of MV

Theorem

 $MV \simeq (pro-P_Z)^{op}$



Arrows in the finitely generated case



Compatible arrows

Let $A = \{(A_i, a_{ij}) \mid i, j \in \omega\}$ and $\{(B_k, b_{kl}) \mid k, l \in \omega\}$ be a pair of diagrams of finitely presented algebras. We can assume that A_0 is $[0, 1]^n$ and B_0 is $[0, 1]^m$.

The family of **compatible arrows** C(A,B) is given by all arrows $f : A_0 \longrightarrow B_0$ for which for any i there exists k such that $b_{0k} \circ f$ factors through A_i .

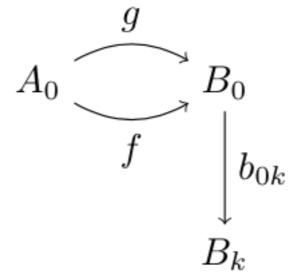
$$\begin{array}{ccc} A_0 & \xrightarrow{f} & B_0 \\ a_{0i} & & & \downarrow \\ a_{0i} & & & \downarrow \\ A_i & \xrightarrow{f} & B_k \end{array}$$

Eventually equal maps

Let C be a category and A = { $(A_i, a_{ij}) | i, j \in \omega$ } and { $(B_k, b_{kl}) | k, l \in \omega$ } be a pair of diagrams of finitely presented algebras.

We define an equivalence relation E on C(A,B) as follows.

Two arrows f,g \in C(A,B) are in E (to be read as f and g being **eventually equal**), if, and only if, there exists $k \in K$ such that $b_{0k} \circ f = b_{0k} \circ g$.

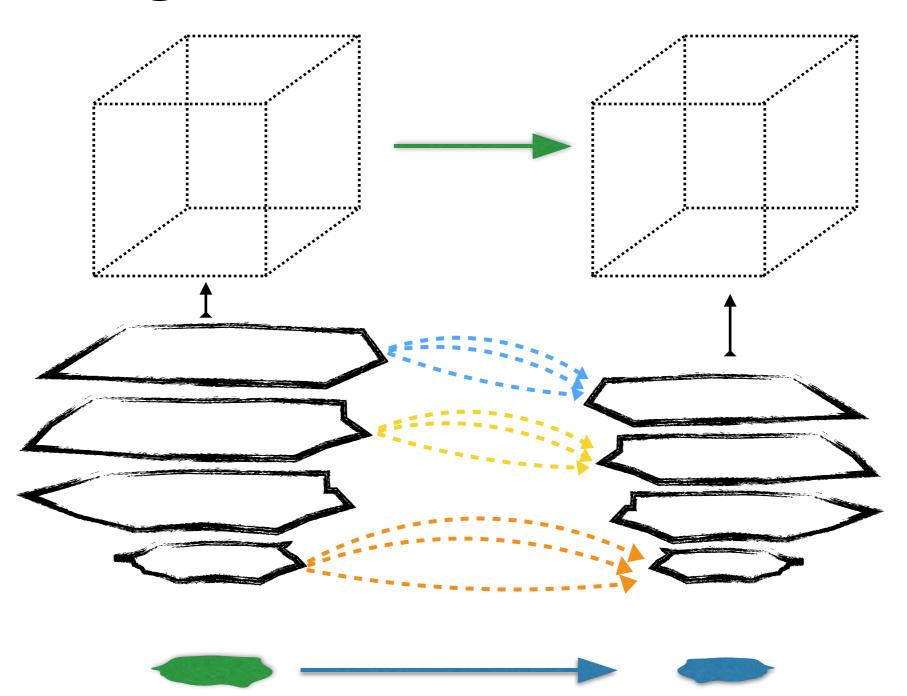


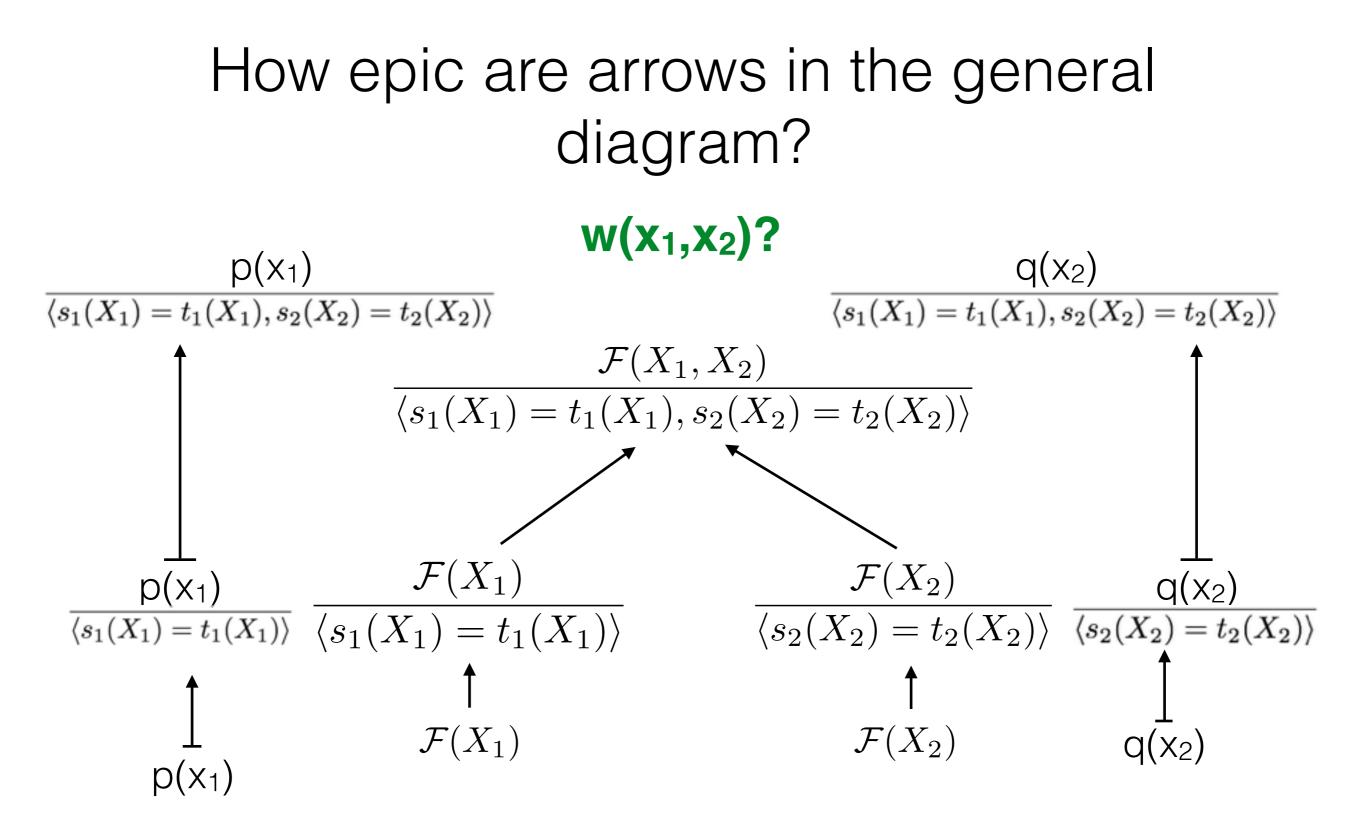
The case of finitely generated algebras

Theorem Let $\{(A_i, a_{ij}) \mid i, j \in I\}$ and $\{(B_{kl}, b_{kl}) \mid k, l \in K\}$ be diagrams of order type ω in a category C, A and B their respective limits in ind-C, and suppose that the arrows a_{ij} and b_{kl} are epic.

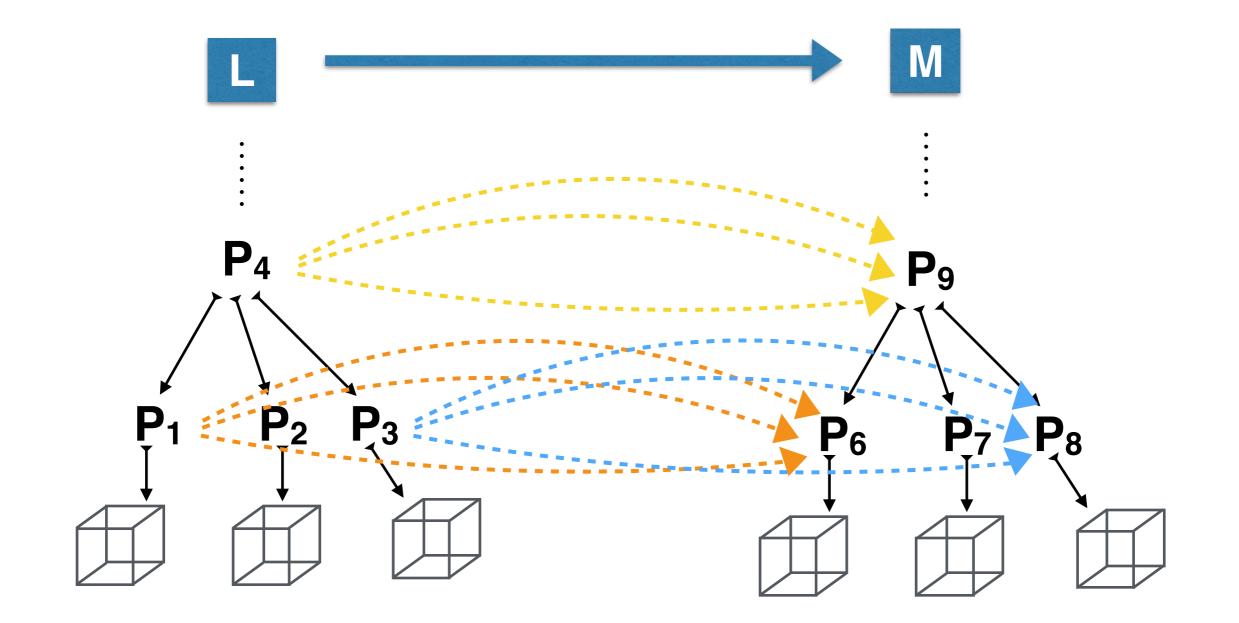
- 1. For any \mathcal{E} -equivalence class C in $\mathcal{C}(A, B)$ of arrows $f: A_0 \to B_0$ there is a corresponding arrow ϕ_C between A and B in ind-C.
- 2. Vice-versa, for any arrow $\phi = {\phi_i}_{i \in I}$ in ind-C between A and B, there is an \mathcal{E} -equivalence class C_{ϕ} of arrows $f: A_0 \to B_0$ in $\mathcal{C}(A, B)$.
- 3. The above associations are such that $C = C_{\phi_C}$ and $\phi = \phi_{C_{\phi}}$.

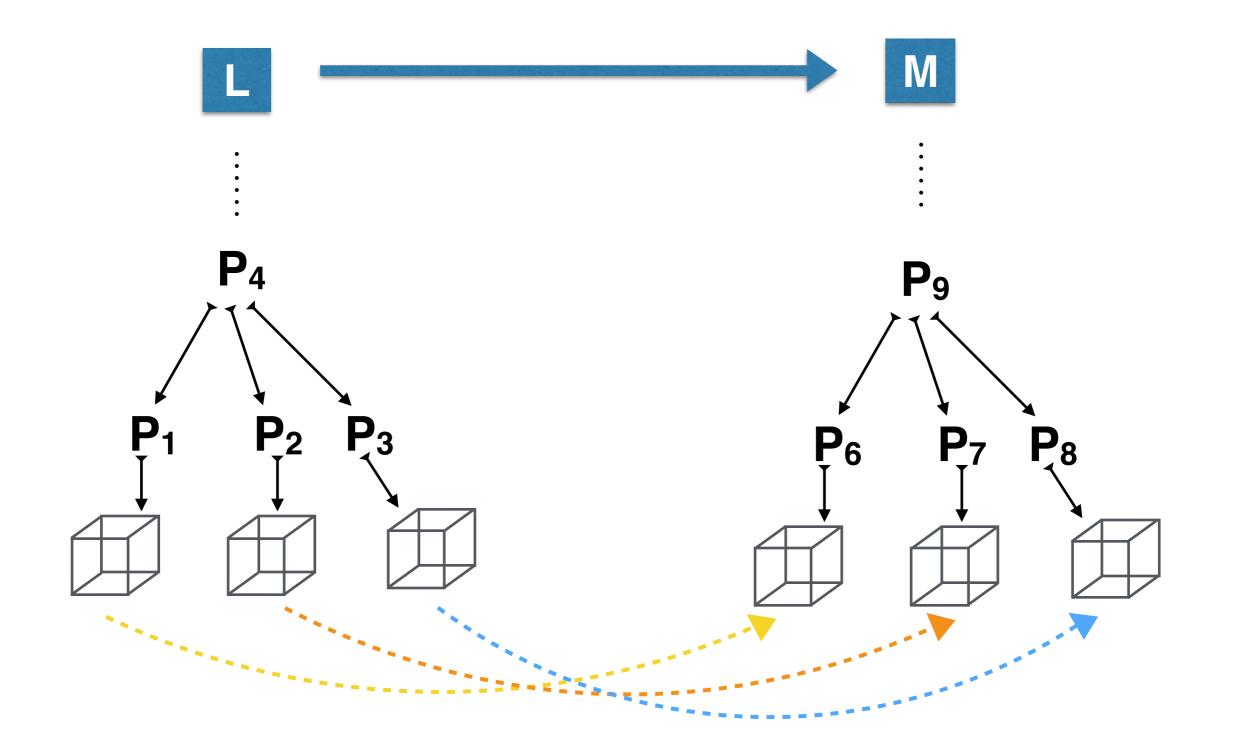
Arrows in the finitely generated case

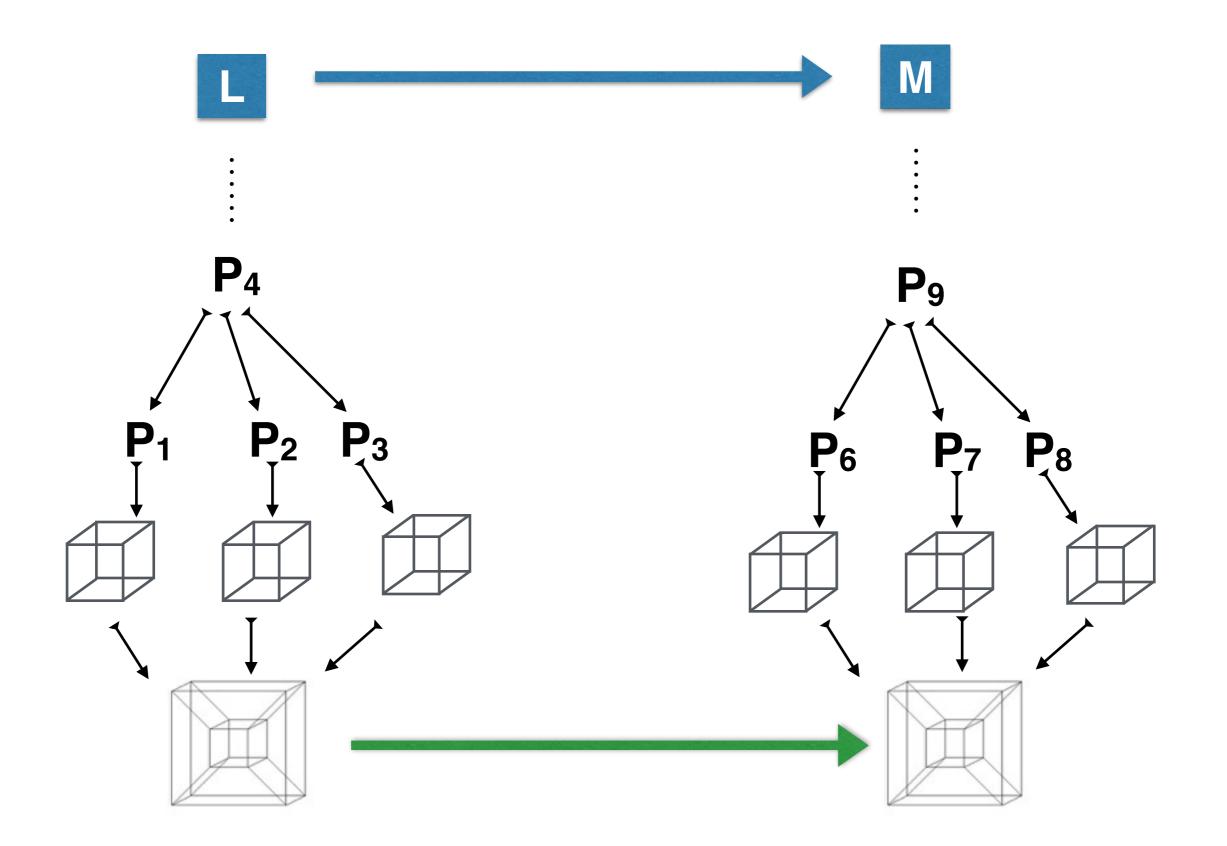




Arrows are jointly epic







Thank you for your attention!