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Abstract. In this paper we study the notion of forcing for  Lukasiewicz predicate logic

( L∀, for short), along the lines of Robinson’s forcing in classical model theory. We deal

with both finite and infinite forcing. As regard to the former we prove a Generic Model

Theorem for  L∀, while for the latter, we study the generic and existentially complete

standard models of  L∀.
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1. Introduction

 Lukasiewicz and Tarski introduced in [21] a generalization of classical propo-
sitional logic with infinite truth values. This system, called  Lukasiewicz logic,
was independently shown to be complete by Rose and Rosser [28], and by
Chang [5, 6]. While Rose and Rosser’s proof was basically syntactic, Chang
showed that  Lukasiewcz logic is complete w.r.t. the variety of MV-algebras.
In his proof Chang shows that the variety of MV-algebras is generated by
the MV-algebra whose lattice reduct is the real unit interval [0, 1] and the
basic operations are defined as

x⊕ y = min{x+ y, 1} and x∗ = 1− x.

For this reason  Lukasiewicz logic can be also seen as a member of the
family of fuzzy logics based on triangular norms [12] (i.e. binary, associative,
commutative, monotone operations over [0, 1] having 1 as a neutral element).
Indeed, the operation �, defined as x � y = (x∗ ⊕ y∗)∗ corresponds to the
t-norm x� y = max(x+ y− 1, 0), while x⇒ y = x∗ ⊕ y = min(1− x+ y, 1)
is the residual implication of �. The structure 〈[0, 1],�,⇒, 0, 1〉 is often
referred as the standard MV-algebra.

So the study of  Lukasiewicz logic has different and relevant interests. On
the one hand the study of its algebraic semantics has led to many important
results as well as links with other well established fields of mathematics.
Just to cite a few of them we recall Mundici’s categorical equivalence be-
tween MV-algebras and lattice ordered groups with strong unit [23], with
its plethora of consequences; and McNaughton Theorem [22], which gives
a description of the free MV-algebras as algebras of continuous piece-wise
linear functions, offering a geometrical interpretation of  Lukasiewicz logic.
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On the other hand  Lukasiewicz logic plays a central role in the formal
treatment of uncertainty and, in particular, in Hájek’s programmatic ap-
proach to a rigorous formulation of foundations for fuzzy logic. In this work
we try to give our contribute to the latter development, introducing tools
for the investigation of first order  Lukasiewicz logic.

While propositional  Lukasiewicz logic has been deeply studied from the
logical, algebraic, categorical, functional and computational point of view
(see [9], for an account on many of these topics), that is not the case for
 Lukasiewicz predicate logic. Indeed the predicate version of  Lukasiewicz
logic is not tame as the propositional fragment, as witnessed by the number
of negative results already present in the literature.

 Lukasiewicz predicate logic is not complete w.r.t. standard models and,
as shown in [25] (see also [12]), it is undecidable and its set of standard
tautologies is Π2-complete and hence it is not recursively axiomatizable [29].
In [2] it is proved that the Lindenbaum algebra of  Lukasiewicz predicate
logic is not semi-simple (for a refined analysis of completeness results in
 Lukasiewicz logic refer to [3]).

Nevertheless  Lukasiewicz predicate logic has raised interest since its in-
troduction, allowing, for instance, a coherent axiomatization of set theory
with full comprehension [7, 11]. The study of a set theory based on many-
valued logics has nowadays a renewed importance as a possible foundational
approach to fuzzy logic. This is witnessed by many studies on set theory
based on first order  Lukasiewicz logic [13, 16] and the more general first
order Basic logic [14, 15].

The notions we are going to introduce come from a generalization of
techniques used in model theory, which, in turn, generalize Cohen’s methods
in set theory. For this reason we expect our results to be of some interest
both to persons which are interested in the investigation of the semantics of
 L∀ and to people which work on set theory based on many-valued logic.

The reason why we have chosen the system  L∀ has to be found in its
involutive negation. As we will see further on, the forcing interpretation of
the negation it is a delicate matter. Of course the concepts, and hopefully the
results, contained in this paper can be further generalized to first order Basic
logic, however in our proofs the involutive property of the negation plays
often an important, hence such a generalization seems to be a challenging
task.

A previous knowledge of classical forcing is not required to understand
this article as we will build our definitions from scratch and fully detail the
proofs. However the reader familiar with either the forcing in set theory or,
better, the forcing in model theory will have a deeper comprehension of the
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motivations leading to such definitions and results.
In 1970 A. Robinson introduced finite and infinite forcing for classical

predicate logic (see [1, 26, 27]). Finite forcing is a syntactical notion inspired
by Cohen’s forcing in set theory (the terminology derives from the fact that
the conditions are finite sets of basic sentences).

A more general form of the finite forcing for infinitary logic was developed
by H. J. Keisler in [18]. One of the main tool offered by forcing in model
theory is the Generic Model Theorem which is a powerful method to con-
struct models verifying a given set of formulas. Applying the Generic Model
Theorem one can obtain new proofs of important results in classical model
theory such as: the completeness theorem, the omitting types theorem, the
interpolation theorems.

Infinite forcing is a semantical notion defined as a relation between struc-
tures and sentences; it provides classes of models that generalize the alge-
braic closed fields. For this reason it is a very useful tool to handle notions
as model-completion, model-companion and existentially closed structures.

In view of the important achievements given by the classical forcing we
would have had pleasure to give more applications of our results as well as
sharper characterizations; however, apart for the pioneering article [10], we
faced in many cases a surprising lack of basic notions in the model theory
of  L∀, which did not allowed us to even formulate problems or conjectures.
For this reason we hope that the positive results which we have found ex-
ploring the notion of forcing in  Lukasiewicz predicate logic will motivate a
more systematic study of its semantics also using methods of classical model
theory.

For reader ease we recall some notions and basic results on the classical
finite and infinite forcing.

Let L be a first order language (without equality), with the connectives
∨,¬,∃ as primitive logical symbols. Consider a countable set C of new
constants and denote by L(C) the language obtained from L by adding the
constants of C.

Definition 1.1 ([18]). A forcing property is a triple (P,≤, f), where (P,≤)
is a poset with a first element 0 and f is a function from P to the set of sets
of atomic sentences of L(C) such that for all p ≤ q in P we have f(p) ⊆ f(q).

The elements of P are called conditions.

Definition 1.2 ([18]). The forcing relation p 
 φ (p forces φ) between
conditions in P and sentences of L(C) is defined by induction:

• If φ is atomic then p 
 φ iff φ ∈ f(p);
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• p 
 ¬φ iff there is no q ≥ p such that q 
 φ;

• p 
 φ ∨ ψ iff p 
 φ or p 
 ψ;

• p 
 ∃xφ(x) iff p 
 φ(c), for some c ∈ C.

Definition 1.3 ([18]). A subset G of P is called generic if q ≤ p and p ∈ G
implies q ∈ G;

• For any p, q ∈ G there is r in G such that p ≤ r and q ≤ r;
• For any sentence φ in L(C) there is p ∈ P such that p 
 φ or p 
 ¬φ.

A structure A is generated by a generic set G if every sentence φ of L(C)
which is forced by some p ∈ G holds in A. A is generic for p ∈ P if it is
generated by a generic set G that contains p. A is generic if it is generic for
0.

Theorem 1.4 (Generic Model Theorem, [18]). Assume that the language L
is countable and C is countable. If (P,≤, f) is a forcing property and p ∈ P
then there exists a generic structure for p.

Now we shall present some basic material on Robinson infinite forcing.
Let L be an arbitrary first order language and Σ an inductive class of L-
structures. For a structure A, L(A) will denote the language obtained from
L by adding the elements of A as new constants.

Definition 1.5 ([27]). The infinite forcing relation A 
 φ between struc-
tures and sentences φ of L(A) is inductively as follows:

• If φ is atomic then A 
 φ iff A |= φ;

• A 
 ¬φ iff there is no extension B of A in Σ such that B 
 φ;

• A 
 φ ∨ ψ iff A 
 φ or A 
 ψ;

• A 
 ∃xφ(x) iff A 
 φ(a) for some a ∈ A.

A structure A in Σ is called infinitely generic (in Σ) if for any sentence
φ of L(A) we have A 
 φ or A 
 ¬φ.

Theorem 1.6 ([27]). Every structure A on Σ can be embedded in a infinitely
generic structure B in Σ.

For a succint survey on the results on forcing proved by Robinson and
Barwise see [19].

This paper is structured as follows. In the next section we provide some
basic notions and results on the syntax and the semantics of  L∞ and  L∀.
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Section 3 deals with the finite forcing for  L∀, a syntactical notion that
translates Keisler’s forcing [18] to our framework. After proving some prop-
erties regarding finite forcing we define the finitely generic structures and
prove a many-valued version Generic Model Theorem (Theorem 3.8).

In Section 4 we define the infinite forcing value of sentences in  Lukasie-
wicz predicate logic. This is a semantical concept arising from Robinson’s
infinite forcing in classical model theory [27]. A number of results of this sec-
tion describe the behavior of this new semantics w.r.t. the logical operations
of  L∀.

In Section 5 we introduce the infinitely generic structures and prove that
any  L∀ structure can be embedded in a generic one (Corollary 5.8). This
provides the existence of generic structures, as well as the existence of ex-
istentially complete structures. Finally, we obtain a global characterization
of the class of generic models (Theorem 5.10).

Section 6 contains a number of remarks and future lines of research.
We conclude our work with a brief appendix which describes some sup-

plementary properties of infinite forcing.

2. Propositional and Predicate  Lukasiewicz logic

In this section we recall some syntactical notions of  Lukasiewicz logic (lan-
guage, axiomatization, the deduction theorem, etc), as well as some elements
of its semantics (MV-algebras, truth value,  L∀ structures and models, theo-
ries, etc). The basic references are the books [9, 12].

 Lukasiewicz propositional logic,  L∞ for short, is defined from a countable
set V ar of propositional variables p1, p2, . . . , pn, . . . , and two connectives →
and ¬. The axioms of  L∞ are the following:

ϕ→ (ψ → ϕ); (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ));
((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ); (¬ϕ→ ¬ψ)→ (ψ → ϕ),

where ϕ,ψ and χ are formulas. Modus ponens is the only rule of inference.
The notions of proof and theorem are defined as usual.

The equivalent algebraic semantics for  L∞ (in the sense of [4]) is given
by the variety of MV-algebras, i.e. structures A = 〈A,⊕, ∗, 0〉 satisfying the
following equations (see [9]):

x⊕ (y ⊕ z) = (x⊕ y)⊕ z, x⊕ y = y ⊕ x, x⊕ 0 = x,

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, x∗∗ = x, x⊕ 0∗ = 0∗.



6 Name(s) of author(s)

Other operations are definable as follows:

x⇒ y = x∗ ⊕ y; x� y = (x∗ ⊕ y∗)∗;
ϕ ∨ ψ = (ϕ⇒ ψ)⇒ ψ; ϕ ∧ ψ = (ϕ∗ ∨ ψ∗)∗;
ϕ↔ ψ = (ϕ⇒ ψ)� (ψ ⇒ ϕ);
ϕn = ϕ� ...� ϕ︸ ︷︷ ︸

n times

; (n)ϕ = ϕ⊕ ...⊕ ϕ︸ ︷︷ ︸
n times

.

A  L∀ language L consists of the following primitive symbols:

• an infinite set V of variable symbols: w, x, y, z, ...;

• an arbitrary set of constant symbols;

• an arbitrary set of predicate symbols: with each predicate symbol P it
is associated a natural number ar(P ) ≥ 1 (the arity of P );

• the connectives →,¬;

• the existential quantifier ∃;
• the parentheses: (, ), [, ].

Often we shall say variable (resp. constant, predicate) instead of variable
symbol (resp. constant, symbol, predicate symbol).

A term of L is a variable or a constant. An atomic formula has the
form P (t1, ..., tn) where P is an n-ary predicate and t1, ..., tn are terms. The
formulas of L are defined by induction:

- the atomic formulas are formulas;

- if ϕ and ψ are formulas then ¬ϕ and ϕ→ ψ are formulas;

- if ϕ is a formula and x is a variable then ∃xϕ is a formula.

We shall denote by Form the set of formulas of L. We shall use the
following abbreviations:

ϕ�ψ = ¬(ϕ→ ¬ψ); ϕ⊕ψ = ¬ϕ→ ψ;
ϕ∨ψ = (ϕ→ ψ)→ ψ; ϕ∧ψ = ¬(¬ϕ∨¬ψ);
ϕ↔ ψ = (ϕ→ ψ)�(ψ → ϕ); ∀xϕ = ¬∃x¬ϕ;
ϕn = ϕ�...�ϕ︸ ︷︷ ︸

n times

; (n)ϕ = ϕ⊕...⊕ϕ︸ ︷︷ ︸
n times

.
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An occurrence of a variable x in a formula ϕ is free if x does not belong
to a subformula of ϕ having the form ∃xψ. Otherwise, an occurrence of x
in ϕ is bound. x is free in ϕ if some occurrence of x is free in ϕ. A sentence
is a formula without free variables. We shall write ϕ(x1, ..., xn) if all the
free variables of ϕ are among {x1, ..., xn}. FV (ϕ) will denote the set of free
variables of ϕ. If ϕ is a formula, x is a variable and t is a term then by ϕ(t)
we mean the formula obtained by replacing all free occurrences of x in ϕ by
t. A variable y is substitutable for x in ϕ if no subformula of ϕ having the
form ∃yψ contains a free occurrence of x in ϕ. A term t is substitutable for
x in ϕ if every variable of t is substitutable in ϕ.

The following are the axioms of  L∀:

(A0) the axioms of ∞-valued propositional  Lukasiewicz calculus L∞;

(A1) ∀xϕ→ ϕ(t), where the term t is substitutable for x in ϕ;

(A2) ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ), where x is not free in ϕ;

 L∀ has two rules of inference:

• Modus ponens: from ϕ and ϕ→ ψ, derive ψ;

• Generalization: from ϕ, derive ∀xϕ.

The notions of formal proof, formal theorems, etc., are defined as usual.
If ϕ is a formal theorem of  L∀ then we write ` ϕ. It is obvious that the

formal theorems of L∞ remain formal theorems of  L∀. A theory is a set of
formulas. If T is a theory and ϕ is a formula then the formal inference T ` ϕ
is defined in the usual way.

Notice that for  L∀, the following form of the Deduction Theorem holds.

Proposition 2.1 (Deduction Theorem). If T is a theory of  L∀, ϕ a sentence
and ψ a formula then the following equivalence holds:

T ∪ {ϕ} ` ψ iff T ` ϕn → ψ, for some integer n ≥ 1.

We review, now, the basic semantical notions for  L∀. Let L be a  L∀ lan-
guage andM an MV-algebra. AnM-structure has the form A = 〈A, (PA)P ,
(cA)C〉 where

A is a non-empty set (the universe of the structure);

for any n-ary predicate P of L, PA : An → M is an n-ary M-valued
relation on A;
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for any constant c of L, cA is an element of A.

Let A be anM-structure. An evaluation of L in A is a function e : V →
A. For two evaluations e, e′ of L in A and for x ∈ V we denote

e ≡x e′ iff e |V \{x}= e′ |V \{x} .

For any term t and for any evaluation of L in A we define the element
tA(e) of A:

if t is the variable x then tA(e) = e(x);

if t is the constant c then tA(e) = cA.

For any evaluation e : V → A and for any formula ϕ of L we define by
induction the element ‖ϕ(e)‖A of M (also indicated by ‖ϕ(e)‖ when there
is no danger of confusion), called the truth value of ϕ:

- if ϕ is of the form P (t1, ..., tn) then ‖ϕ(e)‖ = PA(tA1 (e), ..., tAn (e));

- if ϕ = ¬ψ then ‖ϕ(e)‖ = ‖ψ(e)‖∗;
- if ϕ = ψ → χ then ‖ϕ(e)‖ = ‖ψ(e)‖ ⇒ ‖χ(e)‖;
- if ϕ = ∃xψ then ‖ϕ(e)‖ =

∨
{‖ψ(e′)‖ | e′ ≡x e}.

We shall say that A is a safe M-structure if for any evaluation e : V → A
and for any formula ψ of  L∀, the supremum

∨
{‖ψ(e′)‖ | e′ ≡x e} exists in

M (in this case the infimum
∧
{‖ψ(e′)‖ | e′ ≡x e} also exists).

If ϕ is a sentence then ‖ψ(e)‖ does not depend on e: in this case we
denote ‖ϕ‖ = ‖ϕ(e)‖.

Let ϕ(x1, ..., xn) be a formula of L. Then ∀x1...∀xnϕ(x1, ..., xn) is a
sentence. We define

‖ϕ(x1, ..., xn)‖A = ‖∀x1...∀xnϕ(x1, ..., xn)‖A =
∧

a1,...,an∈A
‖ϕ(a1, ..., an)‖A .

A formula ϕ is a M-tautology if ‖ϕ‖A = 1 for all safe M-structures A.
A safe M-structure A is a model of a theory T if ‖ϕ‖A = 1 for all ϕ ∈ T .

A standard structure is a [0, 1]- structure. A standard structure is always
safe. A standard model of a theory T is a [0, 1]-structure which is a model
of T .

Proposition 2.2. The formal theorems of  L∀ are tautologies.

Proof. The usual induction on the length of a formal theorem.

Theorem 2.3. Any consistent theory T of  L∀ has a standard model.
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3. Finite Forcing

In this section we introduce the finite forcing value of a formula, we study
the finite generic structures and prove our Generic Model Theorem.

In order to compare the forcing value of a formula with its truth value
we will deal here only with standard structures, so henceforth we will call
structure any standard structure of  L∀. Nevertheless one might want to
consider a more general notion of forcing whose value ranges in an arbitrary
complete MV-algebra, in this case our results will still hold, the choice of
confining ourselves to standard structures has here only the purpose of a
smooth presentation.

In classical model theory, finite forcing is expressed by a binary relation
p 
 ϕ between the elements p of a poset P (conditions) and the sentences
of predicate logic. Traditionally, the conditions are particular finite sets of
sentences. In order to extend the finite forcing to  L∀, we shall replace the
forcing relation 
 by a binary [0, 1]-valued relation between the elements of
P and the sentences of  L∀.

We fix a  L∀ countable language L and we let C be a countable set of
new constants; we will denote by L(C) the language extended with the new
constants. Let E be set of sentences of L(C) and At its subset of atomic
sentences. Let (P,≤) be a poset, α a cardinal and {aξ : ξ < α} ⊆ P
such that for all ordinals ξ < η < α we have aξ ≤ aη. A set of the form
{aξ : ξ < α} having this property will be called an ordinal-indexed subset
of P .

Definition 3.1. A forcing property is a structure of the form 〈P,≤, 0, f〉
such that the following properties hold:

(i) (P,≤, 0) is a poset with a first element 0;
(ii) Any ordinal-indexed subset of P has an upper bound;
(iii) f : P × At → [0, 1] is a function such that for all p, q ∈ P and ϕ ∈ At

we have p ≤ q =⇒ f(p, ϕ) ≤ f(q, ϕ).

The elements of P are called conditions.

This definition generalizes the one given by Keisler in [18]. Notice that
the requirement in (i) of the existence of a minimum element 0 is not nec-
essary for our purposes in this article; nevertheless the concept of forcing
property arises as a generalization of an arbitrary subset of the set of finite
theories of L(C), hence the explicit presence of a symbol interpreting the
empty set may turn to be usefull. This is easily seen if one thinks to clas-
sical forcing where the set of formulas weakly forced by the empty set plays
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a special role. Condition (ii) is a technical requirement which is essential to
deal with forcing properties which are more than countable.

Definition 3.2. Let 〈P,≤, 0, f〉 be a forcing property. For any p ∈ P and
ϕ ∈ E we define the real number [ϕ]p ∈ [0, 1] by induction on the complexity
of ϕ:

(1) if ϕ ∈ At then [ϕ]p = f(p, ϕ);

(2) if ϕ = ¬ψ then
[ϕ]p =

∧
p≤q

[
ψ
]∗
q
;

(3) if ϕ = ψ → χ then
[ϕ]p =

∧
p≤q

([ψ]q ⇒ [χ]p);

(4) if ϕ = ∃xψ(x) then
[ϕ]p =

∨
c∈C

[ψ(c)]p.

The real number [ϕ]p is called the finite forcing value of ϕ at p.

The above definition is a generalization of Robinson forcing to the set-
ting of many-valued logic. Notice that the part that most differs form the
notion of evaluation of a formula is the definition of negation, it arises as a
generalization of Keisler’s definition for which a condition p forces the nega-
tion of a formula ¬ϕ if, and only if, ϕ is not forced by any condition greater
or equal then p. Notice also that, in the definition of the forcing value of a
formula of the form ψ → χ, the infimum effects only the antecedent because
ψ implicitly appears negatively in the formula.

On the one hand such a requirement for the forcing value of the nega-
tion of a formula guarantees the “coherence” of the notion of forcing. On
the other hand this requirement allows to define a kind of truth degree of
formulas by steps.

In next lemmas are summarized some basic properties of forcing which
make more explicit the difference w.r.t. the notion of evaluation.

Lemma 3.3. For any forcing property, any condition p in it and any sentence
ϕ, ψ and ∀xχ(x) of L(C) we have :

1.
[¬¬ϕ]p =

∧
p≤q

∨
q≤v

[ϕ]v;
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2.
[ϕ→ ψ]p = [¬ϕ]p ⊕ [ψ]p;

3.
[ϕ⊕ψ]p = [¬¬ϕ]p ⊕ [ψ]p;

4.
[∀xχ(x)]p =

∧
p≤q

∧
c∈C

∨
q≤r

[χ(c)]r.

Proof. 1. Obvious.

2.

[ϕ→ ψ]p =
∧
p≤q

([ϕ]q ⇒ [ψ]p) =
∧
p≤q

(
[
ϕ
]∗
q
⊕ [ψ]p)

=
( ∧
p≤q

[
ϕ
]∗
q

)
⊕ [ϕ]p = [¬ϕ]p ⊕ [ψ]q.

3. According to 2 we have

[ϕ⊕ψ]p = [¬ϕ→ ψ]p = [¬¬ϕ]⊕ [ψ]p.

4. Obvious.

Forcing can be seen then as the process of defining a “truth value” of
a formula by steps. Next lemma shows that such an assignment is weakly
increasing.

Lemma 3.4. For all p ≤ q and ϕ ∈ E we have [ϕ]p ≤ [ϕ]q.

Proof. By induction on the complexity of ϕ:

• if ϕ is atomic then [ϕ]p = f(p, ϕ) ≤ f(q, ϕ) = [ϕ]q.

• if ϕ = ¬ψ then

[ϕ]p =
∧
p≤r

[
ψ
]∗
r
≤
∧
q≤r

[
ψ
]∗
r

= [ϕ]q.

• Assume ϕ = ψ → χ. Using the induction hypothesis, [χ]p ≤ [χ]q, so
[ψ]r ⇒ [χ]p ≤ [ψ]r ⇒ [χ]q for all conditions r. Hence

[ϕ]p =
∧
p≤r

([ϕ]r ⇒ [χ]p) ≤
∧
q≤r

([ψ]r ⇒ [χ]q) = [ϕ]q.
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• Assume ϕ = ∃xψ(x), by the induction hypothesis [ψ(c)]p ≤ [ψ(c)]q for
all c ∈ C. Therefore

[ϕ]p =
∨
c∈C

[ψ(c)]p ≤
∨
c∈C

[ψ(c)]q = [ϕ]q.

Lemma 3.5. For any p ∈ P and ϕ ∈ E, we have

1. [ϕ]p ≤ [¬¬ϕ]p.

2. [¬ϕ]p = [¬¬¬ϕ]p.

Proof. 1. For any q ≥ p,

[ϕ]p ≤ [ϕ]q ≤
∨
q≤r

[ϕ]r,

therefore
[ϕ]p ≤

∧
p≤q

∨
q≤r

[ϕ]r = [¬¬ϕ]p.

2. We remark that
[¬¬¬ϕ]p =

∧
q≥p

∨
r≥q

∧
s≥r

[
ϕ]∗s.

Let q ≥ p. For any r ≥ q we have [ϕ]q ≤ [ϕ]r, therefore∧
s≥r

[
ϕ]∗s ≤

[
ϕ]∗r ≤

[
ϕ]∗q .

Thus, for any q ≥ p, we have∨
r≥q

∧
s≥r

[
ϕ]∗s ≤

[
ϕ]∗q ,

hence
[¬¬¬ϕ]p ≤

∧
q≥p

[
ϕ]∗q = [¬ϕ]p.

The converse inequality [¬ϕ]p ≤ [¬¬¬ϕ]p holds by the previous item.

We are ready now to give a definition which will allow us to establish a
link between forcing value and truth value of a formula. The forcing value
of a formula at some condition can be seen as a partial piece of information,
the following notion formalizes a way to complete this information.
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Definition 3.6. A non empty subset G of P is called generic if the following
conditions hold

(i) If p ∈ G and q ≤ p then q ∈ G,
(ii) For any p, g ∈ G there exists v ∈ G such that p, g ≤ v;
(iii) For any ϕ ∈ E there exists p ∈ G such that [ϕ]p ⊕ [¬ϕ]p = 1.

Definition 3.7. Given a forcing property 〈P,≤, 0, f〉, a model A is generated
by a generic set G if for all ϕ ∈ E and p ∈ G we have [ϕ]p ≤ ‖ϕ‖A.

A model A is generic for p ∈ P if it is generated by a generic subset G
which contains p. A is generic if it is generic for 0.

Although we gave the definition of a generic model for 0, we will not
explore here such a class of structures. Nevertheless it has, in the classical
case, peculiar and notable properties which might me extended to the many-
valued case. We leave this as an open problem now, in order to have space
to establish some more general results.

The notion of genericity is a bridge between the notions of forcing value
and truth value. Next theorem give a way to establish this link for any
forcing property in a canonical way.

Theorem 3.8 (Generic Model Theorem). Let 〈P,≤, 0, f〉 be a forcing prop-
erty and p ∈ P . Then there exists a generic model for p.

Proof. The proof is based on the following two lemmas (Lemmas 3.9 and
3.10).

Lemma 3.9. For any p ∈ P there exists a generic set G such that p ∈ G.

Proof. The set E is countable, then one can consider an enumeration
ϕ0, ϕ1... ϕn, ... of its elements. By induction, we shall construct a sequence
of conditions p = p0 ≤ p1 ≤ ... ≤ pn ≤ ... such that [ϕn]pn+1 ⊕ [¬ϕn]pn+1 = 1
for all n ∈ ω. Assume that there are p0 ≤ p1 ≤ ... ≤ pn with this property.
In order to define pn+1 we shall consider the following two cases:

(a) [ϕn]pn ⊕ [¬ϕn]pn = 1. We set pn+1 = pn.
(b) [ϕn]pn ⊕ [¬ϕn]pn < 1. By absurdum, we assume that

[ϕn]q ⊕ [¬ϕn]q < 1 for all q ≥ pn. (Abs)

Let us consider a cardinal k > 2ω. Using (Abs) we shall define, by
transfinite induction, an increasing sequence of conditions (pnα)α<k such
that

α < β < k =⇒ [ϕn]pnα < [ϕn]pnβ .

We shall distinguish the following three cases:
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• α = 0. We set pn0 = pn.

• α = β + 1 is a successor ordinal. Since the properties (Abs) holds for
pnβ , we have [ϕn]pnβ ⊕ [¬ϕn]pnβ < 1, hence∧

pnβ≤q

(
[ϕn]pnβ ⊕

[
ϕn
]∗
q

)
= [ϕn]pnβ ⊕

∧
pnβ≤q

[
ϕn
]∗
q
< 1.

Then there exists a condition g ≥ pnβ such that, by Lemma 3.3 (b)

[ϕn]g ⇒ [ϕn]pnβ = [ϕ
]∗
g
⊕ [ϕn]pnβ < 1,

hence [ϕn]g � [ϕn]pnβ , hence [ϕn]pnβ < [ϕn]g.
We define pnα = g.

• α is a limit ordinal. By construction, {pnβ | β < α} is ordinal-indexed,
so, by Definition 3.1, (ii), it has an upper bound q. We define pnα = q.
Let β < α, hence, according to Lemma 3.4, we have [ϕn]pnβ ≤ [ϕn]pnα .
We must prove then [ϕn]pnβ 6= [ϕn]pnα . Fix β and consider γ = β+1 < α

then [ϕn]pnβ < [ϕn]pnγ ≤ [ϕn]pnα = [ϕn]pnβ .
We have obtained a contradiction, then [ϕn]pnβ < [ϕn]pnα .

In this way, the construction of the sequence (pnα)α<k is complete. But then
k ≤ 2ω and this contradicts our choice of k. This contradiction shows that
(Abs) fails, i.e. [ϕn]q ⊕ [¬ϕn]q = 1 for some q ≥ pn. We set pn+1 = q. Then
we have proved the existence of the sequence (pn)n∈ω. If we denote

G = {q ∈ P | q ≤ pn for some n ∈ ω},

then it is easy to see that G is generic for p.

Lemma 3.10. Every generic set G generates a denumerable model.

Proof. For any ϕ ∈ E we denote

T (ϕ) =
∨
p∈G

[ϕ]p.

We shall define a structure whose universe M is the set of all constants of
the language L(C) (recall that C is a denumerable set of new constants).
If P (x1, ..., xn) is an atomic formula of L(C) and c1, ..., cn ∈ M then we
define P

M
(c1, ..., cn) = T (P (c1, ..., cn)). For any constant c of L(C) we take

cM = c. The function T : E → [0, 1] has the following properties:
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1. T (ϕ)⊕ T (¬ϕ) = 1, for all ϕ ∈ E;

2. T (ϕ)� T (¬ϕ) = 0, for all ϕ ∈ E;

3. T (¬ϕ) = T (ϕ)∗, for all ϕ ∈ E;

4. T (ϕ→ ψ) = T (ϕ)⇒ T (ψ), for all ϕ,ψ ∈ E;

5. T (ϕ⊕ψ) = T (ϕ)⊕ T (ψ), for all ϕ,ψ ∈ E;

6. T (∃xϕ(x)) =
∨
c∈C T (ϕ(c)), for all sentences of the form ∃xϕ(x).

Now we shall prove points 1 to 6.

1. We fix qo ∈ P . Then

T (ϕ)⊕ T (¬ϕ) =
( ∨
p∈G

[ϕ]p
)
⊕
( ∨
q∈G

[¬ϕ]q
)

=
( ∨
p∈G

[ϕ]p
)
⊕
( ∨
q∈G

∧
q≤r

[
ϕ
]∗
r

)
≥
( ∨
p∈G

[ϕ]p
)
⊕
( ∧
q0≤r

[
ϕ
]∗
r

)
=
∧
q0≤r

(( ∨
p∈G

[ϕ]p
)
⊕
[
ϕ
]∗
r

)
≥
∧
q0≤r

(
[ϕ]r ⊕

[
ϕ
]∗
r
) = 1.

2.

T (ϕ)� T (¬ϕ) =
( ∨
p∈G

[ϕ]p
)
�
( ∨
q∈G

[¬ϕ]q]
)

=
∨
p,q∈G

(
[ϕ]p �

∧
q≤r

[
ϕ
]∗
r

)
=
∨
p,q∈G

∧
q≤r

([ϕ]p �
[
ϕ
]∗
r
).

For any p, q ∈ G there exists r ∈ G such that p, q ≤ r, so [ϕ]p ≤ [ϕ]r,
therefore [ϕ]p� [ϕ]∗r ≤ [ϕ]p� [ϕ]∗p = 0. Thus we obtained T (ϕ)�T (¬ϕ) =
0.

3. By 1 and 2.
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4. We have

T (ϕ→ ψ) =
∨
p∈G

[ϕ→ ψ]p =
∨
p∈G

([¬ϕ]p ⊕ [ψ]p);

T (ϕ)⇒ T (ψ) = T (ϕ)∗ ⊕ T (ψ) = T (¬ϕ)⊕ T (ψ)

=
∨
q,r∈G

([¬ϕ]q ⊕ [ψ]r).

Thus T (ϕ → ψ) ≤ T (ϕ) ⇒ T (ψ). Let q, r,∈ G then q, r ≤ s for some
s ∈ G. Then [¬ϕ]q ⊕ [ψ]r ≤ [¬ϕ]s ⊕ [ψ]s ≤ T (ϕ → ψ). This inequality
holds for any q, r ∈ G, hence T (ϕ)⇒ T (ψ) ≤ T (ϕ→ ψ).

5. By 3 and 4 we have

T (ϕ⊕ψ) = T (¬ϕ→ ψ) = T (¬ϕ)⇒ T (ψ)
= T (ϕ)∗ ⇒ T (ψ) = T (ϕ)⊕ T (ψ).

6.

T (∃xϕ(x)) =
∨
p∈G

[∃xϕ(x)]p =
∨
p∈G

∨
c∈C

[ϕ(c)]p

=
∨
c∈C

∨
p∈G

[ϕ(c)]p =
∨
c∈C

T (ϕ(c)).

From 1-6 we get T (ϕ) = ‖ϕ‖M, for any ϕ ∈ E. Thus [ϕ]p ≤ ‖ϕ‖M, for all
ϕ ∈ E and p ∈ G, hence M is generated by G.

An easy inspection on the proof of the previous theorem shows that the
following corollary holds.

Corollary 3.11. If p belongs to some generic set G which has a maximum
g, then there exists M, generic model for p, such that [ϕ]g = ‖ϕ‖M

Corollary 3.12. For any ϕ ∈ E and p ∈ P we have

(]) [¬¬ϕ]p =
∧
{‖ϕ‖M |M is a generic structure for p}.

Proof. Let us denote by a the right member of (]). Let M be a generic
structure for p (by Theorem 3.8). Then, by definition, [¬¬ϕ]p ≤ ‖¬¬ϕ‖M =
‖ϕ‖M, hence [¬¬ϕ]p ≤ a.

Now we shall prove that a ≤ [¬¬ϕ]p. Let g ≥ p. By Theorem 3.8,
there exists a structure M, generic for g, since p belongs to every generic
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to which g belongs, M is also generic for p. Thus [¬ϕ]g ≤ ‖¬ϕ‖M, hence
‖ϕ‖M =

∥∥¬ϕ∥∥∗
M
≤
[
¬ϕ
]∗
g

for all g ≥ p. Therefore

a ≤ ‖ϕ‖M ≤
∧
p≤g

[
¬ϕ
]∗
g

= [¬¬ϕ]p.

Notice that both corollaries above give a sharp relation between forcing
value and truth value of a formula. This is not the case in Theorem 3.8 in
which the link is given only by an inequality.

4. Infinite Forcing and General Properties

In this section we deal with infinite forcing for models of  Lukasiewicz predi-
cate logic. Infinite forcing can be seen as a variation of finite forcing which is
tied to a given class of structures. It will be seen that in many cases infinite
forcing behaves similarly to the standard semantic, but they do not coincide.

Throughout this section we work with a fixed but arbitrary  L∀-language
L, again the word structure will be used to refer to a standard structure
of L, but the results can be applied to any structure, once the definition of
forcing is generalized to take values in an arbitrary complete MV-algebra.
For any structure A, we shall denote by L(A) the language obtained from L
by adding the elements of the universe A of A, as new constants.

We give now some basic generalizations of classical concepts of model
theory.

Definition 4.1.

• Let A and B be two structures. A is a substructure of B (or B is an
extension of A) if A ⊆ B, and for any atomic sentence ϕ of L(A) we have
‖ϕ‖A = ‖ϕ‖B. By A ⊆ B we mean that A is a substructure of B.

• A is a elementary substructure of B (or B is an elementary extension of
A) if A ⊆ B and for any sentence ϕ of L(A) we have ‖ϕ‖A = ‖ϕ‖B (in
this case we denote A 4 B).

A class Σ of structures is model-complete if for any structures A,B ∈ Σ,
A ⊆ B implies A 4 B.

Let Σ1,Σ2 be two classes of structures. Σ1 is model-consistent with Σ2

if Σ1 ⊆ Σ2 and for any A2 ∈ Σ2 there exists A1 ∈ Σ1 such that A1 ⊆ A2.
An existential sentence ϕ of L has the form ∃x1...∃xnϕ(x1, ..., xn), where

ϕ(x1, ..., xn) is a quantifier-free formula of L.
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Let α be a cardinal and 〈Aξ : ξ < α〉 a chain of structures, i.e., Aξ ⊆ Aη

for all ordinals ξ, η such that ξ < η < α. Now we shall define the union
A =

⋃
ξ<α Aξ of this chain. Let us denote A =

⋃
ξ<αAξ. Let ϕ(x1, ..., xn)

be an atomic formula L and a1, ..., an ∈ A, hence a1, ..., an ∈ Aξ for some
ordinal ξ < α. Then we set ‖ϕ(a1, ..., an)‖A = ‖ϕ(a1, ..., an)‖Aξ . It is easy to
see that ‖ϕ(a1, ..., an)‖A is well defined. We observe that if c is a constant
of L, then cA = cAξ for any ξ < α.

A class Σ of structures is inductive if it closed under the unions of chains
of structures.

Let 〈Aξ : ξ < α〉 be a chain of structures. We say that 〈Aξ : ξ < α〉 is an
elementary chain if Aξ 4 Aη for all ordinals ξ < η < α.

Lemma 4.2. Let 〈Aξ : ξ < α〉 be an elementary chain and A =
⋃
ξ<α Aξ.

Then Aξ 4 A for all ξ < α.

Proof. We shall prove, by induction on the complexity of formulas, that
for all ξ < α and for all sentences ϕ of L(Aξ) we have ‖ϕ‖Aξ = ‖ϕ‖A.

We shall treat only the case ϕ = ∃xψ(x). Let ξ < α. By induction
hypothesis, ‖ψ(a)‖Aξ = ‖ψ(a)‖A for any a ∈ Aξ.

Let b ∈ A then there exists η < α such that b ∈ Aη. Suppose that ξ < η,
hence

‖ψ(b)‖A = ‖ψ(b)‖Aη ≤ ‖∃xψ(x)‖Aη = ‖∃xψ(x)‖Aξ .

Where the last equality holds because Aξ 4 Aη. This inequality holds
for any b ∈ A, therefore

‖∃xψ(x)‖A =
∨
b∈A
‖ψ(b)‖A ≤ ‖∃xψ(x)‖Aξ .

The converse inequality follows immediately:

‖∃xψ(x)‖Aξ =
∨
b∈Aξ

‖ψ(b)‖Aξ ≤
∨
b∈A
‖ψ(b)‖A = ‖∃xψ(x)‖A.

In what follows all structures will be assumed to be members of a fixed,
but arbitrary, inductive class Σ of structures in a common language L.

Definition 4.3. For any structure A ∈ Σ and for any sentence ϕ of L(A)
we shall define by induction the real number [ϕ]ΣA ∈ [0, 1]:

1. If ϕ is an atomic sentence then

[ϕ]ΣA = ||ϕ||A;
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2. If ϕ = ¬ψ then
[ϕ]ΣA =

∧
A⊆B

[ψ]∗B;

3. If ϕ = ψ → χ then

[ϕ]ΣA =
∧

A⊆B

([ψ]B ⇒ [χ]A);

4. If ϕ = ∃xψ(x) then
[ϕ]ΣA =

∨
a∈A

[ψ(a)]A.

[ϕ]ΣA will be called the forcing value of ϕ in A. We define A 
 ϕ (A forces
ϕ) if [ϕ]ΣA = 1.

Notice that the forcing value of a formula depends on the class Σ that
we are considering and this motivates the upper-script in our definition,
nevertheless we fixed an arbitrary class Σ and we will henceforth drop the
upper-script.

As finite forcing, also infinite forcing can be viewed as another kind of
semantic. The main difference consists in the behavior w.r.t. the negation.
Note however that as far as ϕ is a quantifier-free formula [ϕ]A = ‖ϕ‖A.

A natural question is whether [ϕ]A = 1 for any formal theorem ϕ of  L∀.
The following example shows that the answer is negative:

Example 4.4. Let us consider a language L′ of  L∀ with a unique unary
predicate symbol R. We define two standard structures A and B by putting

A = {a, b}, RA(a) = 1/2, RA(b) = 1/3

B = {a, b, c}, RB(a) = 1/2, RB(b) = 1/3, RB(c) = 1.

Of course A is a substructure of B. Let us take Σ = {A,B} and consider
the following sentence of L′

∃xR(x)→ ∃xR(x).

This sentence is a formal theorem of  L∀ (identity principle). We remark that

[∃xR(x)]A = [R(a)]A ∨ [R(b)]A = max(1/2, 1/3) = 1/2
[∃xR(x)]B = [R(a)]B ∨ [R(b)]B ∨ [R(c)]B = max(1/2, 1/3, 1) = 1.

Applying Definition 4.3 we get

[∃xR(x)→ ∃xR(x)]A = [∃xR(x)]B ⇒ [∃xR(x)]A = 1→ 1/2 = 1/2.
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The following lemmas show some properties which infinite forcing has in
common with finite forcing.

Lemma 4.5. For any structure A and for any sentences ϕ, ψ and ∀xχ(x) of
L(A) the following equalities hold:

1.
[¬¬ϕ]A =

∧
A⊆B

∨
B⊆C

[ϕ]C;

2.
[ϕ→ ψ]A = [¬ϕ]A ⊕ [ψ]A;

3.
[ϕ⊕ψ]A = [¬¬ϕ]A ⊕ [ψ]A;

4.
[∀xχ(x)]A =

∧
A⊆B

∧
b∈B

∨
B⊆C

[χ(b)]C.

Proof. 1.

[¬¬ϕ]A =
∧

A⊆B

[¬ϕ]∗B =
∧

A⊆B

( ∧
B⊆C

[ϕ]∗C
)∗ =

∧
A⊆B

∨
B⊆C

[ϕ]C.

2.

[ϕ→ ψ]A =
∧

A⊆B

([ϕ]B ⇒ [ψ]A) =
∧

A⊆B

([ϕ]∗B ⊕ [ψ]A)

= (
∧

A⊆B

[ϕ]∗B)⊕ [ψ]A = [¬ϕ]A ⊕ [ψ]A.

3. According to 2 we have:

[ϕ⊕ψ]A = [¬ϕ→ ψ]A = [¬¬ϕ]A ⊕ [ψ]A.

4. Similarly.

Lemma 4.6. If A ⊆ B and ϕ is a sentence of L(A) then [ϕ]A ≤ [ϕ]B.

Proof.

• If ϕ is atomic then [ϕ]A = ‖ϕ‖A = ‖ϕ‖B = [ϕ]B.
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• If ϕ = ¬ψ then

[ϕ]A =
∧

A⊆C

[
ψ
]∗
C
≤
∧

B⊆C

[
ψ
]∗
C

= [ϕ]B.

• Assume ϕ = ψ → χ. By the induction hypothesis, [χ]A ≤ [χ]B, therefore
[ψ]C ⇒ [χ]A ≤ [ψ]C ⇒ [χ]B for all structures C. Then

[ϕ]A =
∧

A⊆C

(
[ψ]C ⇒ [χ]A

)
≤
∧

B⊆C

(
[ψ]C ⇒ [χ]B

)
= [ϕ]B.

• Assume ϕ = ∃xψ(x) and [ψ(a)]A ≤ [ψ(a)]B for any a ∈ A. Then

[ϕ]A =
∨
a∈A

[ψ(a)]A ≤
∨
b∈B

[ψ(b)]B = [ϕ]B.

The following lemma shows how the interpretation of formulas given by
infinite forcing has a behavior which is less strict on negative formulas, in a
way similar to the one of intuitionistic logic.

Lemma 4.7. For any formula ϕ and A ∈ Σ:

1. [ϕ]A � [¬ϕ]A = 0.

2. [ϕ]A ≤ [¬¬ϕ]A.

3. [¬ϕ]A = [¬¬¬ϕ]A.

Proof. 1. According to

[¬ϕ]A =
∧

A⊆B

[
ϕ
]∗
B
≤
[
ϕ
]∗
A
.

we get [ϕ]A � [¬ϕ]A = 0.

2. For any structure B such that A ⊆ B we have

[ϕ]A ≤ [ϕ]B ≤
∨

B⊆C

[ϕ]C,

hence
[ϕ]A ≤

∧
A⊆B

∨
B⊆C

[ϕ]C = [¬¬ϕ]A.
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3. By Lemma 4.5, 1, we have

[¬¬¬ϕ]A =
∧

A⊆B

∨
B⊆C

[¬ϕ]C =
∧

A⊆B

∨
B⊆C

∧
C⊆D

[
ϕ
]∗
D
.

Let A ⊆ B ⊆ C. By Lemma 4.6, [ϕ]B ≤ [ϕ]C, therefore∨
C⊆D

[
ϕ
]∗
D
≤
[
ϕ
]∗
C
≤
[
ϕ
]∗
B
.

Hence for all structures B such that A ⊆ B we get∧
B⊆C

∨
C⊆D

[
ϕ
]∗
D
≤
[
ϕ
]∗
B
.

Thus
[¬¬¬ϕ]A ≤

∧
A⊆B

[
ϕ
]∗
B

= [¬ϕ]A.

The converse inequality [¬ϕ]A ≤ [¬¬¬ϕ]A follows by the previous item.

Proposition 4.8.

1. [∃x∃yϕ(x, y)]A = [∃y∃xϕ(x, y)]A;

2. [∃x∀yϕ(x, y)]A ≤ [∀y∃xϕ(x, y)]A.

Proof. 1. The equality follows directly from the clause 4 of Definition 4.3.
2. Let B an extension of A, a ∈ A and b ∈ B. Then

[∀xϕ(a, y)]A =
∧

A⊆D

∧
d∈D

∨
D⊆E

[ϕ(a, d)]E

≤
∨

C⊇B

([ϕ(a, b)]C)

≤
∨

C⊇B

∨
c∈C

([ϕ(a, c)]C)

=
∨

C⊇B

([∃xϕ(x, b)]C) .

Therefore

[∃x∀yϕ(x, y)]A =
∨
a∈A

([∀yϕ(a, y)]A) ≤
∨

C⊇B

([∃xϕ(x, b)]C) .
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This last inequality holds for all extensions B of A and b ∈ B, hence

[∃x∀yϕ(x, y)]A ≤
∧

B⊇A

∧
b∈B

∨
C⊇B

[∃xϕ(x, b)]C = [∀x∃yϕ(x, y)]A.

Proposition 4.9. Given two formulas of L, ϕ and ψ(x), suppose that x is
not free in ϕ, then

1. [∀x(ϕ→ ψ(x))]A ≤ [ϕ]A ⇒ [∀xψ(x)]A;
2. [∃x(ϕ→ ψ(x)]A = [ϕ]A ⇒ [∃xψ(x)]A.

Proof. 1. Let B an extension of A, C an extension of B in Σ and b ∈ B.
By Lemmas 4.6 and 6.1:

[ϕ]A � [ϕ→ ψ(x)]C ≤ [ϕ]C � [ϕ→ ψ(x)]C
≤ [ϕ]C � ([ϕ]C → [ψ]C)
= [ϕ]C ∧ [ψ]C ≤ [ψ]C,

therefore

[ϕ]A �
∨

C⊇B

[ϕ→ ψ(b)]C =
∨

C⊇B

([ϕ]A � [ϕ→ ψ(b)]C) ≤
∨

C⊇B

[ψ(b)]C.

This is true for all extensions B of A and b ∈ B, hence

[ϕ]A � [∀x(ϕ→ ψ(x))]A = [ϕ]A �
∧

B⊇A

∧
b∈B

∨
C⊇B

[ϕ→ ψ(b)]C

=
∧

B⊇A

∧
b∈B

[ϕ]A �
∨

C⊇B

[ϕ→ ψ(b)]C


≤
∧

B⊇A

∧
b∈B

∨
C⊇B

[ψ(b)]C.

It follows that

[∀x(ϕ→ ψ(x))]A ≤ [ϕ]A ⇒ [∀xψ(x)]A.

2.

[∃x(ϕ→ ψ(x))]A =
∨
a∈A

[ϕ→ ψ(a)]A =
∨
a∈A

[¬ϕ]A ⊕ [ψ(a)]A

= [¬ϕ]A ⊕
∨
a∈A

[ψ(a)]A = [¬ϕ]A ⊕ [∃xψ(x)]A

= [ϕ→ ∃xψ(x)]A.
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We will give some other minor properties of infinite forcing in the ap-
pendix, at the end of the article.

5. Generic Structures

As we have seen in the previous section infinite forcing and standard seman-
tics do not coincide, nevertheless the structures in which they do coincide
enjoy remarkable properties.

Recall that we work on a fixed  L∀-language, L and a fixed inductive class
of structures Σ. The following result characterizes the members A of Σ for
which [ ]A and ‖ ‖A coincide.

Proposition 5.1. For any A ∈ Σ the following assertions are equivalent:

(1) ‖ϕ‖A = [ϕ]A, for all sentences L(A);

(2) ‖ϕ‖A = [¬¬ϕ]A, for all sentences L(A);

(3) [ϕ]A ⊕ [¬ϕ]A = 1, for all sentences L(A);

(4) [¬ϕ]A = [ϕ]∗A, for all sentences L(A);

Proof. (1) =⇒ (2) By (1) [¬¬ϕ]A = ‖¬¬ϕ‖A = ‖ϕ‖A
(2) =⇒ (3) We will prove, by induction on the length of the formula, that

[ϕ]A = ‖ϕ‖A, from this (3) follows trivially. If ϕ is atomic, then the claim
holds by definition. Suppose ϕ = ¬ψ, note that from (2) and Lemma 4.7
(item 3), we have ‖¬ϕ‖A = [¬¬¬ϕ]A = [¬ϕ]A. If ϕ = ψ → ξ, then by
Lemma 4.6

[ϕ]A = [ψ → ξ]A = [¬ψ]A ⊕ [ξ]A =
= ‖¬ψ‖A ⊕ ‖ξ‖A = ‖¬ψ⊕ξ‖A =
= ‖ϕ‖A.

Finally, if ϕ = ∃xψ(x) then the claim follows by definition and the in-
duction hypothesis.

(3) =⇒ (4) According to Lemma 4.7 (item 1), [ϕ]� [¬ϕ] = 0, therefore, by
using [ϕ]A ⊕ [¬ϕ]A = 1, we obtain [¬ϕ]A =

[
ϕ
]∗
A
.

(4) =⇒ (1) By induction on the complexity of ϕ. We shall treat only the
following two cases:

(i) ϕ = ¬ψ. By induction hypothesis, ‖ψ‖A = [ψ]A, therefore ‖ϕ‖A =
‖¬ψ‖A =

∥∥ψ∥∥∗
A

=
[
ψ
]∗
A

= [¬ψ]A = [ϕ]A.
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(ii) ϕ = ψ → χ. By induction hypothesis, ‖ψ‖A = [ψ]A and ‖χ‖A = [χ]A,
therefore, using Lemma 4.5, 2 and (i) above, we get [ϕ]A = [ψ →
χ]A = [¬ψ]A ⊕ [χ]A = ‖¬ψ‖A ⊕ ‖χ‖A = ‖¬ψ⊕χ‖A = ‖ψ → χ‖A =
‖ϕ‖A.

Definition 5.2. A structure A ∈ Σ which satisfies the equivalent conditions
of Proposition 5.1 will be called Σ-generic.

Theorem 5.3. Any structure A ∈ Σ is a substructure of a Σ-generic struc-
ture.

Proof. Let λ be a cardinal such that max(card(L), card(A), 2ω) < λ. Con-
sider an enumeration {ϕα : α < λ} of the sentences of L(A). We shall
construct by transfinite induction on the ordinals α a chain of structures
〈Aα : α < λ〉 such that the following condition holds:[

ϕα
]
Aα+1

⊕
[
¬ϕα

]
Aα+1

= 1,

for all α < λ. We must consider the following cases:

• α = 0. We take A0 = A.

• α = β + 1 is a successor ordinal. The induction hypothesis asserts
that the chain 〈Aξ : ξ ≤ β〉 there was constructed such that

[
ϕξ
]
Aξ+1

⊕[
¬ϕξ

]
Aξ+1

= 1 for all ξ < β. By absurdum, let us assume that

[ϕβ]B ⊕ [¬ϕβ]B < 1 for all B ∈ Σ such that Aβ ⊆ B. (b)

Let us consider a cardinal k > 2ω. We shall define, by transfinite induc-
tion on the ordinals ξ, a chain of structures 〈Aβξ : ξ < k〉 such that the
following condition holds:

ξ < η < k =⇒ [ϕβ]Aβξ < [ϕβ]Aβη . (c)

We must take in account the following cases:

– ξ = 0. We set Aβ0 = A.

– ξ = η+1 is a successor ordinal. By (b) we have [ϕβ]Aβη⊕[¬ϕβ]Aβη < 1,
hence ∧

Aβη⊆C

([ϕβ]Aβη ⊕
[
ϕβ
]∗
C
) = [ϕβ]Aβη ⊕

∧
Aβη⊆C

[
ϕβ
]∗
C
< 1.
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Thus there exists an extension C of Aβη such that

[ϕβ]C ⇒ [ϕβ]Aβη =
[
ϕβ
]∗
C
⊕ [ϕβ]Aβη < 1,

hence [ϕβ]C 
 [ϕβ]Aβη , i.e. [ϕβ]Aβη < [ϕβ]C.
Then we define Aβξ = C.

– ξ is a limit ordinal. Set

Aβξ =
⋃
η<ξ

Aβη.

We must prove that [ϕβ]Aβη < [ϕβ]Aβξ for all ordinals η < ξ. By
absurdum, we suppose that there exists η < ξ such that [ϕβ]Aβη =
[ϕβ]Aβξ . If we consider the ordinal ν = η + 1 then

[ϕβ]Aβη < [ϕβ]Aβν ≤ [ϕβ]Aβξ = [ϕβ]Aβη .

We have obtained a contradiction, therefore [ϕβ]Aβη < [ϕβ]Aβξ . In
this way, the construction of the chain 〈Aβξ : ξ < k〉 is finished.
From (c) one infers that 2ω ≥ k. This contradiction shows that (b)
fails, i.e. [ϕβ]C⊕ [¬ϕβ]C = 1 for some extension C of Aβ. Then we set
Aα = C.

• α is a limit ordinal. We define

Aα =
⋃
β<α

Aβ.

Let us denote
A(1) =

⋃
α<λ

Aα.

Then we get [ϕ]A(1) ⊕ [¬ϕ]A(1) = 1 for all sentences ϕ of L(A). Using this
procedure we obtain a chain of structures A ⊆ A(1) ⊆ ... ⊆ A(n) ⊆ ...
such that [ϕ]A(n+1) ⊕ [¬ϕ]A(n+1) = 1 for all sentences ϕ of L(A(n)). Let
us denote

Aω =
⋃
n<ω

A(n).

If ϕ is a sentence of L(Aω) then there exists n ∈ ω such that ϕ is in the
language L(An), hence

[ϕ]Aω ⊕ [¬ϕ]Aω ≥ [ϕ]A(n+1) ⊕ [¬ϕ]A(n+1) = 1.

Thus Aω is a Σ-generic structure and A ⊆ Aω.
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We will now characterize the class of Σ-generic structures. The following
definition will turn out to be relevant to our interests.

Definition 5.4. A structure A ∈ Σ is said to be Σ-existentially complete if
for any extension B ∈ Σ of A and for any existential sentence ϕ of L(A), we
have ‖ϕ‖A = ‖ϕ‖B.

Lemma 5.5. If A, B are two Σ-generic structures such that A ⊆ B then
A � B.

Proof. According to Lemma 4.6, we have for any sentence ϕ of L(A):

‖ϕ‖A = [ϕ]A ≤ [ϕ]B = ‖ϕ‖B,
‖ϕ‖∗A = ‖¬ϕ‖A = [¬ϕ]A ≤ [¬ϕ]B = ‖¬ϕ‖B = ‖ϕ‖∗B,

therefore ‖ϕ‖A = ‖ϕ‖B.

In the previous section we noticed that although not completely, infi-
nite forcing value and truth value are similar. Next lemma formalizes this
similarity until the level of existential formulas.

Lemma 5.6. Let A ∈ Σ. For any existential sentence ϕ of L(A) we have
[ϕ]A = ‖ϕ‖A.

Proof. First we shall prove that for any quantifier-free formula ϕ(x1, ..., xn)
of L and for any a1, ..., an ∈ A we have [ϕ(a1, ..., an)]A = ‖ϕ(a1, ..., an)‖A.
This assertion follows by induction on the complexity of the formula ϕ.

• If ϕ is atomic then we apply Definition 4.3, 1.

• ϕ = ¬ψ(x1, ..., xn). By induction hypothesis we have [ψ(a1, ..., an)]B =
‖ψ(a1, ..., an)‖B for all B ∈ Σ. Thus

[ϕ(a1, ..., an)]A =
∧

A⊆B

[ψ(a1, ..., an)]∗B =
∧

A⊆B

‖ψ(a1, ..., an)‖∗B

=
∧

A⊆B

‖¬ψ(a1, ..., an)‖B = ‖¬ψ(a1, ..., an)‖A

= ‖ϕ(a1, ..., an)‖,

where we used the fact that A ⊆ B
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• ϕ = ψ(x1, ..., xn) → χ(x1, ..., xn). According to Lemma 4.5, 2 and the
previous point we get

[ϕ(a1, ..., an)]A = [¬ψ(a1, ..., an)]A ⊕ [χ(a1, ..., an)]A
= ‖¬ψ(a1, ..., an)‖A ⊕ ‖χ(a1, ..., an)‖A
= ‖ϕ(a1, ..., an)‖A.

Now we consider an existential sentence ∃x1, ..., xnϕ(x1, ..., xn). By applying
the previous remark one obtains

[∃x1...∃xnϕ(x1, ..., xn)]
A

=
∨{

[ϕ(a1, ..., an)]A | a1, ..., an ∈ A
}

=
∨{
‖ϕ(a1, ..., an)‖A | a1, ..., an ∈ A

}
= ‖∃x1...∃xnϕ(x1, ..., xn)‖A.

Proposition 5.7. Any Σ-generic structure A is Σ-existentially-complete.

Proof. Consider an extension B ∈ Σ of A and ϕ an existential sentence
of L(A). Since [ϕ]B � [¬ϕ]B = 0 and [¬ϕ]A ≤ [¬ϕ]B it follows that [ϕ]B �
[¬ϕ]A = 0. A is Σ-generic, so [¬ϕ]A = [ϕ]∗A, hence [ϕ]B � [ϕ]∗A = 0, i.e.
[ϕ]B ≤ [ϕ]A. By Lemma 4.6, we get [ϕ]A = [ϕ]B. Using Lemma 5.6, we
obtain ‖ϕ‖A = ‖ϕ‖B, so A is Σ-existentially complete.

Corollary 5.8. Any structure A ∈ Σ is a substructure of an Σ-existentially
complete structure.

Proof. By Theorem 5.3 and Proposition 5.7.

Let use denote by GΣ the class of Σ-generic structures.

Proposition 5.9. GΣ is an inductive class.

Proof. Let < Aξ : ξ < λ > be a chain of Σ-generic structures and

A =
⋃
ξ<λ

Aξ.

Let us consider a sentence ϕ of L(A). Then there exists an ordinal ξ < λ such
that ϕ is a sentence of L(Aξ). Since Aξ is Σ-generic, we get [ϕ]Aξ⊕[¬ϕ]Aξ = 1.
By Lemma 4.6 it follows that [ϕ]A ⊕ [¬ϕ]A = 1, hence A is Σ-generic.
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Theorem 5.10. GΣ is the unique subclass of Σ satisfying the following prop-
erties:

(1) it is model-consistent with Σ;

(2) it is model-complete;

(3) it is maximal with respect to (1) and (2).

Proof. By Lemma 5.5 and Theorem 5.3, GΣ satisfies (1) and (2). Assume
that Σ′ satisfies (1) and (2). We must prove Σ′ ⊆ GΣ. Let A ∈ Σ′, then, by
(1) there is an extension A1 in Σ, which in turn has an extension A2 in GΣ.
Reiterating this process we end up with an infinite chain of structures:

A = A0 ⊆ A1 ⊆ ... ⊆ An ⊆ ...,

which can be reduced to a chain of structures belonging either to Σ′ or GΣ:

A = A0 ⊆ A2 ⊆ ... ⊆ A2n ⊆ ... .

By (2), the subchains 〈A4n〉n∈N ∈ Σ′ and 〈A4n+2〉n∈N ∈ GΣ, are both ele-
mentary. We set

Aω =
⋃
n∈ω

A4n =
⋃
n∈ω

A4n+2.

By Proposition 5.9, Aω ∈ GΣ, hence by point (2) in Proposition 5.1, for any
ϕ of L(Aω), [¬¬ϕ]Aω = ‖ϕ‖Aω . But if ψ is a L(A) formula, by Lemma 4.6,
[¬¬ψ]A ≤ [¬¬ψ]Aω and ‖ψ‖A = ‖ψ‖Aω because A � Aω, whence [¬¬ψ]A ≤
‖ψ‖A.

Let now B ∈ Σ be an extension of A. Let us build a chain of structures
using (1) as above:

A ⊆ B ⊆ B′ ⊆ A1 ⊆ ... ⊆ An ⊆ ...,

with B′ ∈ Σ′, A1 ∈ Σ, A2 ∈ GΣ, etc., then if ψ is a L(A) formula:

[ψ]B ≤ [ψ]A2 = ‖ψ‖A2 = ‖ψ‖Aω = ‖ψ‖A.

The inequality [ψ]B ≤ ‖ψ‖A holds for any extension B ∈ Σ of A, there-
fore [

¬ψ
]∗
A

=
( ∧

A⊆B

[
ψ
]∗
B

)∗ =
∨

A⊆B

[ψ]B ≤ ‖ψ‖A.

Then
∥∥ψ∥∥∗

A
≤ [¬ψ]A. Therefore for any sentence ψ of L(A) we have ‖ψ‖A =

‖¬¬ψ‖A =
∥∥¬ψ∥∥∗

A
≤ [¬¬ψ]A, i.e. A is Σ-generic (by Proposition 5.1, (2)).
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Notice that in the classical case a class Λ of structures which is model
consistent with σ and model-complete (both concepts here are intended in
their classical meaning), then Λ is called the model companion of Σ.

In the classical case the model companion is always unique, whereas in
our case we were not able to prove such a result, indeed our characterization
asks for a maximal class w.r.t. these properties. Whence the necessity of
such a maximality requirement in Theorem 5.10 is an open problems.

The interested reader will find other questions which arose during our
research as well as some expected applications of the results presented so far
in the next section.

6. Final Remarks and Future Works

We have shown that, in the particular case of  Lukasiewicz predicate logic, the
classical notion of model theoretic forcing can be extended to many-valued
logic. Given the absence of standard completeness for the first order versions
of those logics, such kind of result can be very useful to study standard
structures by model theoretic tools. Of course the plethora of techniques
used in model theory have to be, where this is possible, readapted to many-
valued logics. The lack of such notions is an obstacle also to understand
how far the technique introduced in this article can go and which classical
results may have a role also in this framework. Such a study could give new
information about a part of logic which is so far mainly unknown.

In classical model theory, Keisler’s Generic Model Theorem is an efficient
tool for obtaining alternative proofs of some fundamental theorems (com-
pleteness, omitting types, interpolation, etc). An open problem is to use
Theorem 3.8 to prove similar results in model theory of  Lukasiewicz logic
or Pavelka logic. Particularly, it would be interesting to study whether the
omitting types theorem of [24] can be derived using Theorem 3.8.

In the case of infinite forcing, we proved that any  L∀-structure can be
embedded in a generic one (Theorem 5.3). This is a strong property, from
which we derive that any structure can be embedded in an existentially-
complete structure, generalizing an important theorem from classical model
theory and algebra (see [17]). In the meantime, from Theorem 5.3 it fol-
lows a global characterization of the class of generic structures in terms of
model-consistency and model-completeness. This again extends a Robin-
son’s theorem of [26].

A new proof of Chang’s omitting types theorem [8] was obtained by
Lablanquie [20] by Robinson infinite forcing technique. An open problem is
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to use our infinite forcing machinery to prove a similar result in the frame-
work of  Lukasiewicz and Pavelka logics.

Appendix

We give here some other properties of infinite forcing. Such results will
help to understand better how the infinite forcing behave in respect to the
connectives.

Lemma 6.1.

1. [ϕ�ψ]A =
∧

A⊆B

(
[¬ϕ]∗B � [¬ψ]∗B

)
;

2. [ϕ�ψ]A ≤ [ϕ]A � [ψ]A;

3. [ϕ�ϕ]A = [¬¬ϕ]A � [¬¬ϕ]A;

4. [ϕ→ ψ]A ≤ [ϕ]A ⇒ [ψ]A.

5. [ψ]A ≤ [ϕ→ ψ]A;

6. [ϕ�(ϕ→ ψ)]A ≤ [ψ]A;

7. [ϕ→ ψ]A � [ψ → ξ]A ≤ [ϕ→ ξ]A;

8. [ϕ→ (ψ → ξ)]A = [ψ → (ϕ→ ξ)]A.

Proof. 1.

[ϕ�ψ]A = [¬(ϕ→ ¬ψ)]A =
∧

A⊆B

[ϕ→ ¬ψ]∗B

=
∧

A⊆B

(
[¬ϕ]B ⊕ [¬ψ]B

)∗
=
∧

A⊆B

(
[¬ϕ]∗B � [¬ψ]∗B

)
.

2. Let B be an extension of A. By Lemmas 4.6 and 4.7 (item 1):

[ϕ]A � [¬ϕ]B ≤ [ϕ]B � [¬ϕ]B = 0;

hence [ϕ]A ≤ [¬ϕ]∗B. Similarly, [ψ]A ≤ [¬ψ]∗B, hence

[ϕ]A � [ψ]B ≤ [¬ϕ]∗B � [¬ψ]∗B.

This last inequality holds for any extension B of A, therefore, by 1 we
obtain the inequality 2.
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3. By (1):

[ϕ�ϕ]A =
∧

A⊆B

(
[¬ϕ]∗B � [¬ϕ]∗B

)
= (

∧
A⊆B

[¬ϕ]∗B)� (
∧

A⊆B

[¬ϕ]∗B)

= [¬¬ϕ]A � [¬¬ϕ]A.

4.

[ϕ]A � [ϕ→ ψ]A = [ϕ]A �
∧

A⊆B

([ϕ]B ⇒ [ψ]A)

≤ [ϕ]A � ([ϕ]A ⇒ [ψ]A)
≤ [ψ]A.

Thus the desired inequality follows.

5. For any B ∈ Σ, [ψ]A ≤ [ϕ]B ⇒ [ψ]A, hence

[ψ]A ≤
∧

B⊇A

([ϕ]B ⇒ [ψ]A) = [ϕ→ ψ]A.

6. According to point 2 and 5 we get

[ϕ� (ϕ→ ψ)]A ≤ [ϕ]A � [ϕ→ ψ]A ≤ [ϕ]A � ([ϕ]A ⇒ [ψ]A) ≤ [ψ]A.

7. By Lemma 4.6 [ϕ]B ⇒ [ψ]A ≤ [ϕ]B ⇒ [ψ]B. Then

[ϕ→ ψ]A � [ψ → ξ]A =

 ∧
B⊇A

([ϕ]B ⇒ [ψ]A)

�
 ∧

B⊇A

([ψ]B ⇒ [ξ]A


≤

 ∧
B⊇A

([ϕ]B ⇒ [ψ]B)

�
 ∧

B⊇A

([ψ]B ⇒ [ξ]A)


≤
∧

B⊇A

(
([ϕ]B ⇒ [ψ]B)� ([ψ]B ⇒ [ξ]A)

)
≤
∧

B⊇A

([ϕ]B ⇒ [ξ]A)

= [ϕ→ ξ]A.
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8.

[ϕ→ (ψ → ξ)]A =
∧

B⊇A

([ϕ]B ⇒ [ψ → ξ]A)

=
∧

B⊇A

[ϕ]B ⇒
∧

C⊇A

([ψ]C ⇒ [ξ]A)


=

∧
B,C⊇A

(
[ϕ]B ⇒ ([ψ]C ⇒ [ξ]A)

)
=

∧
B,C⊇A

([ϕ]B � [ψ]C ⇒ [ξ]A) .

A similar computation shows that [ψ → (ϕ→ ξ)]A has the same value.

We say that a class Σ has the amalgamation property (AP) if for any
two extensions B and C of A there exists a common extension D of B and
C.

Proposition 6.2. Assume that Σ satisfies AP. Then for any formulas ϕ(x)
and ψ(x) of  L∀, the following inequalities hold:

1. [∀x(ϕ(x)→ ψ(x))]A ≤ [∀xϕ(x)]A ⇒ [∀xψ(x)]A;
2. [∀x(ϕ(x)→ ψ(x))]A � [∀x(ψ(x)→ ξ(x))]A ≤ [∀x(ϕ(x)⇒ ξ(x))]A.

Proof. 1. Let B an extension of A and b ∈ B. Assume C and D two
arbitrary extensions of B, hence, by AP, there is a common extension of
C and D, let us call it F. Then, by Lemmas 4.6 and 6.1

[ϕ(b)]C � [ϕ(b)→ ψ(b)]D ≤ [ϕ(b)]F � [ϕ(b)→ ψ(b)]F ≤

≤ [ψ(b)]F ≤
∨

H⊇B

[ψ(b)]H.

These inequalities hold for any extension C or D of B, hence

[∀x(ϕ(x)→ ψ(x))]A�[∀xϕ(x)]A ≤

≤

 ∨
C⊇B

[ϕ(b)]C

�
 ∨

D⊇B

[ϕ(b)→ ψ(b)]D

 =

=
∨

C,D⊇B

([ϕ(b)]C � [ϕ(b)→ ψ(b)]D) ≤

≤
∨

H⊇B

[ψ(b)]H.
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Then we get

[∀x(ϕ(x)→ ψ(x))]A � [∀xϕ(x)]A ≤
∧

B⊇A

∧
b∈B

∨
H⊇B

[ψ(b)]H = [∀xψ(x)]A.

Thus the desired inequality holds.

2. Let B be an extension of A in Σ and b ∈ B. Consider two extensions C

and D of B in Σ, hence, by AP, there exists a common extension F of C

and D in Σ. Therefore, by Lemma 4.6 we have:

[ϕ(b)→ ψ(b)]C � [ψ(b)→ ξ(b)]D ≤ [ϕ(b)→ ψ(b)]F � [ψ(b)→ ξ(b)]F
≤ [ϕ(b)→ ξ(b)]F

≤
∨

([ϕ(b)→ ξ(b)]H | H ⊇ B) .

It follows that for any extension B of A and b ∈ B we get

[∀x(ϕ(x)→ ψ(x))]A � [∀x(ψ(x)→ ξ(x))]A

≤
∨

C⊇B

([ϕ(b)→ ψ(b)]C)�
∨

D⊇B

([ψ(b)→ ξ(b)]D)

=
∨

C,D⊇B

([ϕ(b)→ ψ(b)]C � [ψ(b)→ ξ(b)]D)

≤
∧
B

∧
b∈B

∨
H⊇B

([ϕ(b)→ ξ(b)]H)

= [∀x(ϕ(x)→ ξ(x))]A.
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[24] P. Murinová and V. Novák. Omitting types in fuzzy predicate logic. In Proc. of 26th

Linz Seminar on Fuzzy Set Theory, 2007.

[25] M. E. Ragaz. Arithmetische Klassification von Formelnmenge der unendlichwertigen

Logik. PhD thesis, ETH Zrich, 1981.

[26] A. Robinson. Forcing in model theory. In Actes du Congrès International des

Mathématiciens, Nice, volume 1, pages 145–150, Paris, 1970. Gauthier-Villars.

[27] A. Robinson. Infinite forcing in model theory. In Proceedings of the Second Scandi-

navian Logic Symposium (Oslo, 1970), volume 63 of Studies in Logic and the Foun-

dations of Mathematics, pages 317–340, Amsterdam, 1971. North-Holland.



36 Name(s) of author(s)

[28] A. Rose and J. B. Rosser. Fragments of many-valued statement calculi. Transactions

of the American Mathematical Society, 87(1):1–53, January 1958.

[29] B. Scarpellini. Die Nichtaxiomatisierbarkeit des unendlichwertigen Pradikatenkalkuls

von  Lukasiewicz. Journal of Symbolic Logic, 27(2):159–170, 1962.

Antonio Di Nola
Department of Mathematics and Computer Science,
University of Salerno
Via Ponte don Melillo
84084 Fisciano (SA), Italy
adinola@unisa.it

George Georgescu
Faculty of Mathematics and Computer Science,
University of Bucharest
Str. Academiei nr.14, sector 1,
010014, Bucuresti, Romania
ggeorgescu@rdslink.ro

Luca Spada
Department of Mathematics and Computer Science,
University of Salerno
Via Ponte don Melillo
84084 Fisciano (SA), Italy
lspada@unisa.it


