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Back&Forth method

The back&forth method is a method for showing
isomorphism between countably infinite structures.

» Any two countably infinite densely ordered sets without
endpoints are isomorphic.

» Any two countably infinite atomless Boolean algebras
are isomorphic.

> Any two elementary equivalent countable atomic
models of a theory are isomorphic.
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Ehrenfeucht-Fraissé games

The Ehrenfeucht—Fraissé game is a method for determining
whether two structures are elementarily equivalent.

» In the game there are two structures and two players
(Spoiler and Duplicator).

» A round proceeds as follows: Spoiler chooses any
element from one of the structures, and Duplicator
chooses an element from the other structure.
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Ehrenfeucht-Fraissé games

The Ehrenfeucht—Fraissé game is a method for determining
whether two structures are elementarily equivalent.

» In the game there are two structures and two players
(Spoiler and Duplicator).

» A round proceeds as follows: Spoiler chooses any
element from one of the structures, and Duplicator
chooses an element from the other structure.

» Duplicator wins if, at any round, there exists an
isomorphism between the substructures generated by
the elements chosen that connects exactly each pair
found in each round.
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The Ehrenfeucht—Fraissé game is a method for determining
whether two structures are elementarily equivalent. Introduction

» In the game there are two structures and two players Motivations

(Spoiler and Duplicator). Preliminaries
» A round proceeds as follows: Spoiler chooses any

element from one of the structures, and Duplicator

chooses an element from the other structure. “‘PPI“?"’“‘"”‘*

~1
I'heorem

» Duplicator wins if, at any round, there exists an
isomorphism between the substructures generated by
the elements chosen that connects exactly each pair
found in each round.

Theorem

Suppose the language is finite. Duplicator has a winning
strategy iff the two structures are elementarily equivalent
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Directed diagrams

» A set | partially ordered by < is (upward) directed if for
any i, j € | there exists k € | with i,j < k.

» A directed diagram in C is a pair (B}, bjj), where
» [ is a directed set, and i,j € /,
» B,'s are C-object for each i € |,
» bjj: B; — B;is a C-arrow for each i < .
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Directed diagrams

» A set | partially ordered by < is (upward) directed if for
any i, j € | there exists k € | with i,j < k.

» A directed diagram in C is a pair (B}, bjj), where
» [ is a directed set, and i,j € /,
» B,'s are C-object for each i € |,
» bjj: B; — B;is a C-arrow for each i < .

B
b,‘ bjk

B; B;

We call the bj's the transition morphisms (or maps).
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Cocones

A cocone for (B;, bj;) is a C-object B equipped with C-arrows
b;: B — B such that

b,-:T)job,-j, for each i, j € Iwith i <.
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A colimit in C of the diagram (B, bjj) is a universal cocone Introduction
(B, b;), i.e. for any other cocone (B',;), there is a unique
C-arrow f: B— B satisfying Ej- = fo b; for each i € I.
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The C-arrows b; are called the colimit morphisms, and B is
the colimit object.
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F‘initelg Presentecl object somert

Definition .
Introductio
An object A in C is finitely presentable if for any arrow finto redHeren

a colimit C of a diagram (B, b;):

Preliminaries

There is g: A— Bysuch that f=bog.  (F) | SN

If g: A— B;is such that f= bjo g, then P"fj;ﬂ:cf

anda nnite f]

there is j > i such that bjjo g = bjjo g. (E) generated
o’ obieds

Theorem
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F‘initelg generate& objects

Remark
Finitely presented objects are a special case of finitely
generated objects.
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F‘initelg generatecﬂ objects

Remark

Finitely presented objects are a special case of finitely
generated objects. They can be characterised as the ones
that enjoy properties (E) and (F) above with regard to
colimits in which all arrows are mono.
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» Ind-completions are essentially a categorical Introduction
generalisation of ideal completions.
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» An ind-object of a category C is a formal directed
colimit of objects of C. The category of ind-objects of C

is written ind-C. Finitely
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» Directed diagrams of objects in C are regarded to and finitely
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lnd—completions

Ind-completions are essentially a categorical
generalisation of ideal completions.

An ind-object of a category C is a formal directed
colimit of objects of C. The category of ind-objects of C
is written ind-C.

Directed diagrams of objects in C are regarded to
converge to an object in ind-C, even if that object does
not exist in C itself.

Ind-categories allow one to handle “big things in terms
of small things”.
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lnd—completions

Ind-completions are essentially a categorical
generalisation of ideal completions.

An ind-object of a category C is a formal directed
colimit of objects of C. The category of ind-objects of C
is written ind-C.

Directed diagrams of objects in C are regarded to
converge to an object in ind-C, even if that object does
not exist in C itself.

Ind-categories allow one to handle “big things in terms
of small things”.

Arrows between ind-objects are defined as

ind-C(F, G) := limgep colimecg C(Fd, Ge).
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Definition (Comquent sequences)

Two sequences (A;, a;)ien and (Bx, bx)ken are confluent if
there exist integers

0< it <ip<--- 0< ki < kg <--- |
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Definition (Comquent sequences)

Two sequences (A;, a;)ien and (Bx, bx)ken are confluent if
there exist integers

O<h<ipg<--- 0< ki < kg <--- |
and arrows
fn: Ai, = By, and gn: B, — Ai, |,

for each n € N,
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Comquence

Definition (Comquent sequences)

Two sequences (A;, a;)ien and (Bx, bx)ken are confluent if
there exist integers

O<ih <ip<:--- 0< ki < kg <--- |
and arrows
fn: Ai, = By, and gn: B, — Ai, |,

for each n € N, such that the following commutativity
relations hold:

aini17+1 - gn © fn

bkokns1 = fnt1 0 &n
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Conﬂuence

djy djy ajs ajy
Ah Aj2 Aj:; Aj4 Aj4
B B, B, B, B
b, by, by by,
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fn
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Two !Summrphlsm

criteria
Luc
Introduction
Preliminaries

Theorem

Confluence

»\H)Ilcgamms




Conﬂuence

aj, djs aj3 ajy
Ah Aj2 Aj:; Aj4 Aj4
fn 8n
B B, B, B, B,
" by, . by, b by, . b, b

Two !Summrphlsm

criteria
Luc
Introduction
Preliminaries

Theorem

Confluence

»\H)Ilcgamms




Conﬂuence

a; djs aj: aj
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The main theorem

Theorem

Let C be any locally small category. Suppose two sequences
(Aj, ai)ien and (B, bk)ken in C admit colimit objects A and
B in C, respectively.
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The main theorem

Theorem

Let C be any locally small category. Suppose two sequences
(Aj, ai)ien and (B, bk)ken in C admit colimit objects A and
B in C, respectively.

If one of the following applies

1. All A; and By are finitely presentable.
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The main theorem

Theorem

Let C be any locally small category. Suppose two sequences
(Aj, ai)ien and (B, bk)ken in C admit colimit objects A and
B in C, respectively.

If one of the following applies

1. All A; and By are finitely presentable.

2. All A; and By are finitely generated, and all a; and by
are monomorphisms.
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The main theorem

Theorem

Let C be any locally small category. Suppose two sequences
(Aj, ai)ien and (B, bk)ken in C admit colimit objects A and
B in C, respectively.

If one of the following applies

1. All A; and By are finitely presentable.

2. All A; and By are finitely generated, and all a; and by
are monomorphisms.

Then A and B are isomorphic if, and only if, the two
sequences are confluent.

Two !Summrphlsm

criteria

Introduction
Preliminaries
Theorem

The main
theorem

»\H)Ilcgamms




A non example Teoisonorphism

criteria

Luc

Introduction

In Set, write N as a colimit of the sequence N [ S

(/) — {1} — {1,2, .. } — ... N. Theorem

The main
theorem

»\H)Ilcgamms




A non example

In Set, write N as a colimit of the sequence
—{1} —-{1,2,...} —--- N.
Further write N as the colimit of the constant sequence
N—-N-=—=- - N,

where each arrow is the identicaltity function.
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A non example

In Set, write N as a colimit of the sequence
—{1} —-{1,2,...} —--- N.
Further write N as the colimit of the constant sequence
N—-N-=—=- - N,

where each arrow is the identicaltity function.
The two sequences are not confluent.
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A non example

In Set, write N as a colimit of the sequence
—{1} —-{1,2,...} —--- N.
Further write N as the colimit of the constant sequence
N—-N-=—=- - N,

where each arrow is the identicaltity function.

The two sequences are not confluent. The second sequence
does not consist of finitely presentable or finitely generated
objects.

Two !SumurPhlsm

Introduction
Preliminaries
Theorem

The main
theorem

»“aﬂ)lwnﬁuns




Twu 1SOMOr] 1}11.5m
Proof i

criteria
Luc
Introduction
Preliminaries
The right-to-left direction (confluence = iso) holds in Theorem
general i.e. no need for finitely presented objects.

Proof

»\H)Ilcgamms




Twu 1SOMOr] 1}11.5m
Proof i

criteria

Introduction

Preliminaries

. . . . . heorerm

The right-to-left direction (confluence = iso) holds in Fheorem
general i.e. no need for finitely presented objects.

The left-to-right direction (iso = confluence) crucially uses Proof
the finite nature of the objects (as seen in the previous
example).
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Proof of “conﬂuence = 150"

Ai L it A
fn 8n foi1
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The main result of

» M.Busaniche, L. Cabrer, and D. Mundici. Confluence
and combinatorics in finitely generated unital
lattice-ordered abelian groups, Forum Mathematicum,
24 (2012), 253-271.

is as follows:

Theorem b 2%)
Given direct systems S and T of finitely presented unital
{-groups with surjective connecting unital ~homomorphisms
let (G, u) and (H, v) denote their respective direct limits.
Then the following conditions are equivalent:

1. (G,u) = (H,v)

2. S and T are confluent.
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MV-al gebras

Aslo in

» D. Mundici, Advanced tukasiewicz calculus and
MV-algebras, Trends in Logic, Vol. 35 Springer, New
York, (2011).

Coro”arg 8.8

Let D= Ay —» A; - As... and E= By - B; — Bs..., be
direct systems of finitely presented MV-algebras with
surjective homomorphisms. Let A and B denote their
respective direct limits. Then the following conditions are
equivalent:

. A~ B

2. D and E are confluent.
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» Choose a Z-module bases and represent each group
homomorphism in the confluence as a matrix with
integer entries

» Write down the commutativity conditions in the
confluence in terms of products of such matrices,

» Obtain an equivalence relation on sequences of matrices.
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