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Back&Forth method

The back&forth method is a method for showing
isomorphism between countably infinite structures.

.

.a0. b0.

a0, a1

.

b0, b1

.

a0, a1, a2

.

b0, b1, b2

.....

▶ Any two countably infinite densely ordered sets without
endpoints are isomorphic.

▶ Any two countably infinite atomless Boolean algebras
are isomorphic.

▶ Any two elementary equivalent countable atomic
models of a theory are isomorphic.
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Ehrenfeucht-Fraïssé games

The Ehrenfeucht–Fraïssé game is a method for determining
whether two structures are elementarily equivalent.

▶ In the game there are two structures and two players
(Spoiler and Duplicator).

▶ A round proceeds as follows: Spoiler chooses any
element from one of the structures, and Duplicator
chooses an element from the other structure.

▶ Duplicator wins if, at any round, there exists an
isomorphism between the substructures generated by
the elements chosen that connects exactly each pair
found in each round.

.
Theorem..

......
Suppose the language is finite. Duplicator has a winning
strategy iff the two structures are elementarily equivalent
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Directed diagrams

▶ A set I partially ordered by ⩽ is (upward) directed if for
any i, j ∈ I there exists k ∈ I with i, j ⩽ k.

.

.i. j.

k

..

▶ A directed diagram in C is a pair (Bi, bij), where
▶ I is a directed set, and i, j ∈ I,
▶ Bi’s are C-object for each i ∈ I,
▶ bij : Bi → Bj is a C-arrow for each i ⩽ j.

.

.Bi. Bj.

Bk

.

bik

.

bjk

We call the bij’s the transition morphisms (or maps).
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.
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A cocone for (Bi, bij) is a C-object B equipped with C-arrows
bi : Bi → B such that

bi = bj ◦ bij, for each i, j ∈ I with i ⩽ j .

..Bi.
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...
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A colimit in C of the diagram (Bi, bij) is a universal cocone
(B, bi),

i.e. for any other cocone (B′,′ i), there is a unique
C-arrow f : B → B′ satisfying b′i = f ◦ bi for each i ∈ I.

..Bi.

Bj

.

...

.

B

.

B′

.
bij

.

bj

.

bi

.

b′i
.

b′j

.

f

The C-arrows bi are called the colimit morphisms, and B is
the colimit object.
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An object A in C is finitely presentable if for any arrow f into
a colimit C of a diagram (B, bi):

There is g : A → Bi such that f = bi ◦ g. (F)
If g′ : A → Bi is such that f = bi ◦ g′, then
there is j ⩾ i such that bij ◦ g = bij ◦ g′.

(E)

..

..A ..B

. ..Bj

. ..Bi

.

bij

.

f

.
g

.
g′

.
bijg = bijg′

.
bj

. bi
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Finitely presented objects are a special case of finitely
generated objects.

They can be characterised as the ones
that enjoy properties (E) and (F) above with regard to
colimits in which all arrows are mono.
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Ind-completions

▶ Ind-completions are essentially a categorical
generalisation of ideal completions.

▶ An ind-object of a category C is a formal directed
colimit of objects of C. The category of ind-objects of C
is written ind-C.

▶ Directed diagrams of objects in C are regarded to
converge to an object in ind-C, even if that object does
not exist in C itself.

▶ Ind-categories allow one to handle “big things in terms
of small things”.

▶ Arrows between ind-objects are defined as

ind-C(F,G) := limd∈D colime∈E C(Fd,Ge).
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▶ Directed diagrams of objects in C are regarded to
converge to an object in ind-C, even if that object does
not exist in C itself.

▶ Ind-categories allow one to handle “big things in terms
of small things”.

▶ Arrows between ind-objects are defined as

ind-C(F,G) := limd∈D colime∈E C(Fd,Ge).
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fn : Ain → Bkn and gn : Bkn → Ain+1

for each n ∈ N, such that the following commutativity
relations hold:

ainin+1 = gn ◦ fn (1)
bknkn+1 = fn+1 ◦ gn (2)
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The main theorem

.
Theorem..

......

Let C be any locally small category. Suppose two sequences
(Ai, ai)i∈N and (Bk, bk)k∈N in C admit colimit objects A and
B in C, respectively.

If one of the following applies

1. All Ai and Bk are finitely presentable.
2. All Ai and Bk are finitely generated, and all ai and bk

are monomorphisms.

Then A and B are isomorphic if, and only if, the two
sequences are confluent.
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A non example

In Set, write N as a colimit of the sequence

∅ ↪→ {1} ↪→ {1, 2, . . .} ↪→ · · · N.

Further write N as the colimit of the constant sequence

N → N → · · · N,

where each arrow is the identicaltity function.
The two sequences are not confluent. The second sequence
does not consist of finitely presentable or finitely generated
objects.
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......
The right-to-left direction (confluence ⇒ iso) holds in
general i.e. no need for finitely presented objects.

.

......

The left-to-right direction (iso ⇒ confluence) crucially uses
the finite nature of the objects (as seen in the previous
example).
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3. But, by the universal property, there can be only one

arrow with this property, so g ◦ f = idA.
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MV-algebras

Torsion-free
Abelian
groups

Dimension
groups

uℓ-groups

The main result of
▶ M.Busaniche, L. Cabrer, and D. Mundici. Confluence

and combinatorics in finitely generated unital
lattice-ordered abelian groups, Forum Mathematicum,
24 (2012), 253-271.

is as follows:
.
Theorem 3.3..

......

Given direct systems S and T of finitely presented unital
ℓ-groups with surjective connecting unital ℓ-homomorphisms
let (G, u) and (H, v) denote their respective direct limits.
Then the following conditions are equivalent:

1. (G, u) ∼= (H, v)
2. S and T are confluent.
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MV-algebras

Aslo in
▶ D. Mundici, Advanced Łukasiewicz calculus and

MV-algebras, Trends in Logic, Vol. 35 Springer, New
York, (2011).

.
Corollary 8.8
..

......

Let D = A0 ↠ A1 ↠ A2... and E = B0 ↠ B1 ↠ B2..., be
direct systems of finitely presented MV-algebras with
surjective homomorphisms. Let A and B denote their
respective direct limits. Then the following conditions are
equivalent:

1. A ∼= B.
2. D and E are confluent.
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uℓ-groups

MV-algebras

Torsion-free
Abelian
groups

Dimension
groups

Torsion-free Abelian groups

Derry, Kurosh, and Mal’cev’s isomorphisms invariants for
countable torsion-free Abelian groups.

▶ Represent each countable torsion-free Abelian group as
the directed colimit of some sequence

Zr1 ι1−→ Zr2 ι2−→ · · ·Zri ιi−→ · · ·

▶ Choose a Z-module bases and represent each group
homomorphism in the confluence as a matrix with
integer entries

▶ Write down the commutativity conditions in the
confluence in terms of products of such matrices,

▶ Obtain an equivalence relation on sequences of matrices.
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Dimension groups

.
The Bratteli-Elliott Isomorphism Criterion
..

......

Two sequences of simplicial groups and order-preserving
group homomorphisms have isomorphic colimit dimension
groups if, and only if, they are confluent.
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