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Embedding spaces

It is well known that

every compact Hausdorff space X can be embedded
in some hypercube [0, 1]? for some index set J.

Suppose that X is now endowed with a function §: X — N.

Problem

Given a pair (X,0), is there a continuous embedding
v: X — [0,1)7 in such a way that the denominators of the
points in [ X] agree with 67

Let us assume that “agree” means that d(x) = den(¢(x)).
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Denominators

Recall that N forms a complete lattice under the divisibility
order: the top being 0 and the bottom being 1.

Let Jbe a set and p € [0,1])7. If p € Q7 we define its
denominator to be the natural number

den(p) = lcd{p; | i€ J}

where 1cd stands for the least common denominator. If
p ¢ Q7 we set den(p) = 0.

1. A function f: [0,1]7 — [0, 1] preserves denominators if
for any x € [0,1]7, den(f(x)) = den(x).

2. A function f: [0,1]7 — [0, 1] respects denominators if
for any x € [0,1]7, den(f(x)) | den(x).
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An easy counter-exa m]:Le

Consider X = [0, 1] with its Euclidean topology and endow it
with a constant :

Vxe X §(x)=1.

The only points with denominator equal 1 in [0, 1]7 are the
so-called lattice points i.e., points whose coordinates are
either 0 or 1.

The only way ¢ could agree with 9§ is to send all points in one
lattice point —failing injectivity— or by sending the points
in different lattice points —failing continuity.
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MV-algebras

The above mentioned problem is crucial in the duality theory
of MV-algebras —the equivalent algebraic semantics of
tukasiewicz logic.

An MV-algebra is a structure (A, @, -, 0) such that

(A,®,0) is a commutative monoid,
——X = X,

—0® x= -0

(x@y) By =(-y®x) B x.

The interval [0, 1] in the real numbers has a natural
MV-structure given by the truncated sum
x®y=min{x+y,1} and =x =1 — x. The importance of
this structure comes from the fact that it generates the
whole variety of MV-algebras.
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Mv-algebras ana compact spaces

Theoreme (Marra, S. 2012)

Semisimple MV-algebras with their homomorphisms form a
category that is dually equivalent to the category of compact
Hausdorff spaces embedded in some hypercube, with
Z-maps among them.

Definition

For I, J arbitrary sets, a map from R/ into R” is called Z-map
if it is continuous and piecewise (affine) linear map, where
each (affine) linear piece has integer coefficients.

Remark

Since every Z-map f acts on each point as an linear function
with integer coefficients, it respect denominators i.e.,

den(f(x)) | den(x).
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Mundict’s functor

An abelian ¢-group with order unit (uf-group, for short), is a
partially ordered Abelian group G whose order is a lattice,
and that possesses an element u such that

for all g € G, there exists n € N such that (n)u > g.

The functor I' that takes an ul-group (G, u) to its unital
interval [0, u] with operation & and — defined as follows:

x@® y =min{u, x+ y} and X = Uu-— X,
is full, faithful, and dense hence it has a quasi-inverse = and

Theorem (Mundict 198¢6)

The pair I', = gives an equivalence of categories between the
category of MV-algebras with their morphisms, and the
category of ul-groups with ordered group morphisms
preserving the order unit.
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Norm tnduced b5 the order untt

Definition
Let (G, u) be a ul-group. The order unit u induces a
seminorm || ||, defined as folows:

[P
gllu == 1nf{q €Q|p,geN,g#0and qlg < pU}

The seminorm || ||,: G— R* is in fact a norm if, and only
if, G is archimedean. Any semisimple MV-algebra A inherits
a norm from its enveloping (archimedean) group Z(A).

Pefinition
An norm-complete MV-algebra is a semisimple MV-algebra
which is Cauchy-complete w.r.t. its induced norm.
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Stone-Yosida-Kakutani duality

Theorem (Stone-Yosida-Kakutani dua Litg 1941)

A unital real vector space (V, u) is isomorphic to (C(X), 1)
for some compact Hausdorff space X, if, and only if, V is
archimedean and norm-complete (with respect to the norm
| || induced by the unit).

Ruestion
What if we want to substitute uf-group for real vector space
in the above statements?

Remark

An answer was already given by Stone: compact Hausdorff
spaces correspond to archimedean, complete and divisible
ul-groups.
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Denominator presewiwg mMaps

Theorem (Goodearl-Handelman 1980)

Let X be a compact Hausdorff space. For any x € X choose
A to be either Ay =R or Ay = (1)Z. Then, the algebra of
functions

{fe c(X) | ix) € A, for all x € X},

is a norm-complete ul-group and every such a group can be
represented in this way.

As a corollary we obtain

Corolla ry

The norm-completion of the algebra of Z-maps is given by
all continuous maps which respect denominators.
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Denominator
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Let MV be the category whose objects are semisimple

MV-algebras and arrows are MV-homomorphisms. Norm-
complete

Mv-algebras

The category A

Let A be the category whose objects are pairs (X, d), where spaces
X is a compact Hausdorff space and ¢ is a map from X into
N. An arrow between two objects (X, d) and (Y,¢') is a
continuous map f: X — Y such that

8'(f(x)) < 0(x).
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A duality for worm-complete Mv-algebras

The functor £
Let .Z: A — MV be an assignment that associates to every
object (X, ) in A the MV-algebra

Z ((X,0)) = {gec(X)[Vxe X den(g(x)|d(x)},

and to any A-arrow f: (X,0) — (Y,0’) the MV-arrow that
sends each h € Z((Y,d’)) into the map ho f.
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A duality for worm-complete Mv-algebras

The functor A

Let 4 : MV — A be the assignment that associates to each
MV-algebra A, the pair (Max(A),d4), where Max(A) is
maximal spectrum of A and, for any m € Max(A),

5 a(m) n if A/m has n+ 1 elements
m) =
A 0 otherwise.

Let also .# assign to every MV-homomorphism h: A — B
the map that sends every m € .Z(B) into its inverse image
under h, in symbols .# (h)(m) = h~![m] € Max(A).
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A duality for worm-complete Mv-algebras

Theorem
The functors £ and .# form a contravariant adjunction.

So, what is left to do in order to find a duality is to
characterise the fixed points on each side.

It is quite easy to see the the fixed points on the algebraic
side are exactly the norm-complete MV-algebras.
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A duality for worm-complete Mv-algebras

Cownjecture

Let (X,0) be an object in N. There exist a set J and a
continuous embedding v: X — [0,1]7 such that
den(i(x)) = d(x) if, and only if,

For pair of points x, y € X such that x # y, defin-
ing d = ﬁ if 6(y) # 0 or d = 1 otherwise, there
exists a family of open sets

{Oq | q€(0,d)NQ}

such that for any p,q € (0,d) N Q and n € N

1. p<q imp/ieL o
{x} € Op - Op - Oq C Oq C {y}©

2. 07'[{n}] € U{0, | den(p) | n}.
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Sketceh of the proof

The key step in the proof is to show that there are enough
good functions to separate points:

Theorem

Let (X,0) be an N-space satisfying the aforementioned
condition. For any pair of distinct points x,y € X there
exists a denominator respecting, continuous function

f: X — [0,1] such that

L jfé(y) eN
f(x) = 0 and fly) = { °W) o) o
1 otherwise
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Sketceh of the proof

Then we can use
Theorem (KcLLeg's Embedding lemma)

Let X and Y be topological spaces and F be a family of
functions from X to Y. Suppose that all functions in F are
continuous and that they separate points. Then the
evaluation map ev: X — Y7 given by

ev(x) = (X)) e 5

is continuous and injective.

It is immediate to see that if all functions in F respect
denominators, then so does ev. Finally, since for all x € X,
the value ﬁ is attained by some fon x, in fact the function
ev preserves §.
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Sketceh of the proof

Theorem

Let X be a compact Hausdorff space and §: X < [0, 1]" be a
homeomorphism of X into its image. Let §(x) = den(d(x)).
The pair (X,0) is in A and is a-separated.

This completes the proof that (X, ) can be embedded in
some [0, 1]7 preserving the prescriptions given by d if, and
only if, it is a-separated.
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Kakutant duaLL‘cg, for groups

corollary (of the conjecture)

The category of norm-complete archimedean ul-groups is
dually equivalent to the full subcategory of A given by all
a-separated spaces.

Thanks for Your attention!
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