DENOMINATOR RESPECTING MAPS Based on a joint work V. Marra (University of Milano).

Luca Spada

Department of Mathematics University of Salerno http://logica.dmi.unisa.it/lucaspada

XXVI Incontro AILA Padova, 26th September 2017. Denominator respecting maps Luca Spada The problem Motivations a-Separated

Embedding spaces

It is well known that

every compact Hausdorff space X can be embedded in some hypercube $[0, 1]^J$ for some index set J.

Suppose that X is now endowed with a function $\delta \colon X \to \mathbb{N}$.

Problem

Given a pair $\langle X, \delta \rangle$, is there a continuous embedding $\iota \colon X \to [0,1]^J$ in such a way that the denominators of the points in $\iota[X]$ agree with δ ?

Let us assume that "agree" means that $\delta(x) = den(\iota(x))$.

Denominator respecting maps

Luca Spada

Denomínators

Recall that \mathbb{N} forms a complete lattice under the divisibility order: the top being 0 and the bottom being 1.

Let J be a set and $\overline{p} \in [0,1]^J$. If $\overline{p} \in \mathbb{Q}^J$ we define its denominator to be the natural number

 $\operatorname{den}(\overline{p}) = \operatorname{lcd}\{p_i \mid i \in J\}$

where lcd stands for the least common denominator. If $\overline{p} \notin \mathbb{Q}^J$ we set $den(\overline{p}) = 0$.

- 1. A function $f: [0,1]^J \to [0,1]$ preserves denominators if for any $\overline{x} \in [0,1]^J$, $\operatorname{den}(f(x)) = \operatorname{den}(x)$.
- 2. A function $f: [0,1]^J \to [0,1]$ respects denominators if for any $\overline{x} \in [0,1]^J$, den(f(x)) | den(x).

Denominator respecting maps Luca Spada

An easy counter-example

Consider X = [0, 1] with its Euclidean topology and endow it with a constant δ :

 $\forall x \in X \quad \delta(x) = 1.$

The only points with denominator equal 1 in $[0, 1]^J$ are the so-called lattice points i.e., points whose coordinates are either 0 or 1.

The only way ι could agree with δ is to send all points in one lattice point —failing injectivity— or by sending the points in different lattice points —failing continuity.

Denominator respecting maps Luca Spada

MV-algebras

The above mentioned problem is crucial in the duality theory of $MV\mathcal{-algebras}$ —the equivalent algebraic semantics of Łukasiewicz logic.

An MV-algebra is a structure $\langle A, \oplus, \neg, 0 \rangle$ such that

1. $\langle {\cal A}, \oplus, 0 \rangle$ is a commutative monoid,

2. $\neg \neg x = x$,

- **s**. $\neg 0 \oplus x = \neg 0$
- **4.** $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$

Example

The interval [0, 1] in the real numbers has a natural MV-structure given by the **truncated sum** $x \oplus y = \min\{x + y, 1\}$ and $\neg x = 1 - x$. The importance of this structure comes from the fact that it generates the whole variety of MV-algebras.

respecting maps Luca Spada The problem Motivations MV-algebras a-Separated

MV-algebras and compact spaces

Theorem (Marra, S. 2012)

Semisimple MV-algebras with their homomorphisms form a category that is dually equivalent to the category of compact Hausdorff spaces embedded in some hypercube, with Z-maps among them.

Definition

For I, J arbitrary sets, a map from \mathbb{R}^I into \mathbb{R}^J is called \mathbb{Z} -map if it is continuous and piecewise (affine) linear map, where each (affine) linear piece has integer coefficients.

Remark

Since every \mathbb{Z} -map f acts on each point as an linear function with integer coefficients, it respect denominators i.e.,

 $den(f(x)) \mid den(x).$

Denominator respecting maps

Luca Spada

The problem Motivations MV-algebras

Normcomplete MV-algebras **a-Separated**

spaces

Mundící's functor

An abelian ℓ -group with order unit (u ℓ -group, for short), is a partially ordered Abelian group *G* whose order is a lattice, and that possesses an element *u* such that

for all $g \in G$, there exists $n \in \mathbb{N}$ such that $(n)u \ge g$.

The functor Γ that takes an $u\ell$ -group $\langle G, u \rangle$ to its unital interval [0, u] with operation \oplus and \neg defined as follows:

$$x \oplus y = \min\{u, x + y\}$$
 and $\neg x = u - x$,

is full, faithful, and dense hence it has a quasi-inverse Ξ and

Theorem (Mundící 1986)

The pair Γ, Ξ gives an equivalence of categories between the category of MV-algebras with their morphisms, and the category of $u\ell$ -groups with ordered group morphisms preserving the order unit.

respecting maps Luca Spada The problem Motivations MV-algebras a-Separated

Norm induced by the order unit

Definition

Let (G, u) be a $u\ell$ -group. The order unit u induces a seminorm $\| \|_u$ defined as follows:

$$\|g\|_u := \inf \left\{ rac{p}{q} \in \mathbb{Q} \mid p, q \in \mathbb{N}, q \neq 0 \text{ and } q|g| \leq pu
ight\}$$

The seminorm $\| \|_{u} \colon G \to R^{+}$ is in fact a norm if, and only if, *G* is archimedean. Any semisimple MV-algebra *A* inherits a norm from its enveloping (archimedean) group $\Xi(A)$.

Definition

An **norm-complete MV-algebra** is a semisimple MV-algebra which is Cauchy-complete w.r.t. its induced norm.

Denominator respecting maps Luca Spada The problem MotiVations MV-algebras Normcomplete MV-algebras

a-Separated

Stone-Yosída-Kakutaní dualíty

Theorem (Stone-Yosída-Kakutaní dualíty 1941)

A unital real vector space (V, u) is isomorphic to (C(X), 1) for some compact Hausdorff space X, if, and only if, V is archimedean and norm-complete (with respect to the norm $\| \|_u$ induced by the unit).

Question

What if we want to substitute $u\ell$ -group for real vector space in the above statements?

Remark

An answer was already given by Stone: compact Hausdorff spaces correspond to archimedean, complete and divisible $u\ell$ -groups.

Denomina respecting maps Luca Spada The problem Motivations Normcomplete MV-algebras a-Separated

Denominator preserving maps

Theorem (Goodearl-Handelman 1980)

Let X be a compact Hausdorff space. For any $x \in X$ choose A_x to be either $A_x = \mathbb{R}$ or $A_x = (\frac{1}{n})\mathbb{Z}$. Then, the algebra of functions

$$\{f \in C(X) \mid f(x) \in A_x \text{ for all } x \in X\},\$$

is a norm-complete ul-group and every such a group can be represented in this way.

As a corollary we obtain

Corollary

The norm-completion of the algebra of \mathbb{Z} -maps is given by all continuous maps which respect denominators.

respecting maps Luca Spada The problem Motivations Normcomplete MV-algebras a-Separated

The category \mathbb{MV}

Let \mathbb{MV} be the category whose objects are semisimple \mathbb{MV} -algebras and arrows are \mathbb{MV} -homomorphisms.

The category \mathbb{A}

Let \mathbb{A} be the category whose objects are pairs $\langle X, \delta \rangle$, where X is a compact Hausdorff space and δ is a map from X into \mathbb{N} . An arrow between two objects $\langle X, \delta \rangle$ and $\langle Y, \delta' \rangle$ is a continuous map $f: X \to Y$ such that

 $\delta'(f(x)) \le \delta(x).$

Denominat respecting maps Luca Spada The problem Motivations Normcomplete MV-algebras a-Separated

The functor $\mathcal L$

Let $\mathscr{L}: \mathbb{A} \to \mathbb{MV}$ be an assignment that associates to every object $\langle X, \delta \rangle$ in \mathbb{A} the MV-algebra

 $\mathscr{L}\left(\langle X,\delta\rangle\right):=\{g\in \mathtt{C}(X)\mid \forall x\in X\quad \mathtt{den}(g(x))\mid \delta(x)\},$

and to any A-arrow $f: \langle X, \delta \rangle \to \langle Y, \delta' \rangle$ the MW-arrow that sends each $h \in \mathscr{L}(\langle Y, \delta' \rangle)$ into the map $h \circ f$.

Denominator respecting maps Luca Spada The problem Motivations Normcomplete MV-algebras a-Separated

The functor M

Let $\mathscr{M}: \mathbb{MV} \to \mathbb{A}$ be the assignment that associates to each MV-algebra A, the pair $\langle \operatorname{Max}(A), \delta_A \rangle$, where $\operatorname{Max}(A)$ is maximal spectrum of A and, for any $\mathfrak{m} \in \operatorname{Max}(A)$,

 $\delta_{\mathcal{A}}(\mathfrak{m}) := \begin{cases} n & \text{if } \mathcal{A}/\mathfrak{m} \text{ has } n+1 \text{ elements} \\ 0 & \text{otherwise.} \end{cases}$

Let also \mathscr{M} assign to every MV-homomorphism $h: A \to B$ the map that sends every $\mathfrak{m} \in \mathscr{M}(B)$ into its inverse image under h, in symbols $\mathscr{M}(h)(\mathfrak{m}) = h^{-1}[\mathfrak{m}] \in Max(A)$.

Deva ovarí va at respecting maps Luca Spada The problem Motivations Normcomplete MV-algebras a-Separated

Theorem

The functors \mathcal{L} and \mathcal{M} form a contravariant adjunction.

So, what is left to do in order to find a duality is to characterise the fixed points on each side.

It is quite easy to see the the fixed points on the algebraic side are exactly the norm-complete MV-algebras.

Denominator respecting maps Luca Spada The problem Motivations MV-algebras

Normcomplete MV-algebras a-Separated spaces

Conjecture

Let $\langle X, \delta \rangle$ be an object in \mathbb{N} . There exist a set J and a continuous embedding $\iota \colon X \to [0,1]^J$ such that $\operatorname{den}(\iota(x)) = \delta(x)$ if, and only if,

For pair of points $x, y \in X$ such that $x \neq y$, defining $d = \frac{1}{\delta(y)}$ if $\delta(y) \neq 0$ or d = 1 otherwise, there exists a family of open sets

 $\{O_q \mid q \in (0, d) \cap \mathbb{Q}\}$

such that for any $p, q \in (0, d) \cap \mathbb{Q}$ and $n \in \mathbb{N}$

1. p < q implies $\{x\} \subseteq O_p \subseteq \overline{O_p} \subseteq O_q \subseteq \overline{O_q} \subseteq \{y\}^c$. 2. $\delta^{-1}[\{n\}] \subseteq \bigcup \{O_p \mid \operatorname{den}(p) \mid n\}$. Denominator respecting maps

Luca Spada

Sketch of the proof

The key step in the proof is to show that there are enough good functions to separate points:

Theorem

Let $\langle X, \delta \rangle$ be an \mathbb{N} -space satisfying the aforementioned condition. For any pair of distinct points $x, y \in X$ there exists a denominator respecting, continuous function f: $X \rightarrow [0, 1]$ such that

$$f(x) = 0 \text{ and } f(y) = \begin{cases} \frac{1}{\delta(y)} & \text{if } \delta(y) \in \mathbb{N} \\ 1 & \text{otherwise} \end{cases}$$

Denominator respecting maps Luca Spada The problem Motivations a-Separated

spaces

Sketch of the proof

Then we can use

Theorem (Kelley's Embedding lemma)

Let X and Y be topological spaces and \mathcal{F} be a family of functions from X to Y. Suppose that all functions in \mathcal{F} are continuous and that they separate points. Then the evaluation map $ev: X \to Y^{\mathcal{F}}$ given by

$$\operatorname{ev}(x) = (f(x))_{f \in \mathcal{F}}$$

is continuous and injective.

It is immediate to see that if all functions in \mathcal{F} respect denominators, then so does ev. Finally, since for all $x \in X$, the value $\frac{1}{\delta(x)}$ is attained by some f on x, in fact the function ev preserves δ .

Denominator respecting maps Luca Spada The problem Motivations a-Separated spaces

Sketch of the proof

Theorem

Let X be a compact Hausdorff space and $\tilde{\delta} \colon X \hookrightarrow [0,1]^{\kappa}$ be a homeomorphism of X into its image. Let $\delta(x) = \operatorname{den}(\tilde{\delta}(x))$. The pair $\langle X, \delta \rangle$ is in \mathbb{A} and is a-separated.

This completes the proof that $\langle X, \delta \rangle$ can be embedded in some $[0,1]^J$ preserving the prescriptions given by δ if, and only if, it is a-separated.

Denominator respecting maps Luca Spada

Kakutaní dualíty, for groups

Corollary (of the conjecture)

The category of norm-complete archimedean $u\ell$ -groups is dually equivalent to the full subcategory of \mathbb{A} given by all a-separated spaces.

Thanks for your attention!

Denominator respecting maps

Luca Spada

The problem

Motivations

a-Separated spaces