$\mathbf{E} \Pi_{q}$ algebras and Quasifields

Luca Spada
Dipartimento di Matematic
Via del Capitano, 15
53100 Siena (Italy)
e-mail: spada@unisi.it

Preliminary Definitions

Definition 1. A PMV-algebra is an algebra $\mathcal{A}=\langle A, \oplus, \neg, \cdot, 0,1\rangle$ such that
$\langle A, \oplus, \neg, 0,1\rangle$ is a MV-algebra
$\langle A, \cdot, 1\rangle$ is a commutative monoid
For all $x, y, z \in \mathcal{A}$ one has: $x \cdot(y \ominus z)=(x \cdot y) \ominus(x \cdot z)$, where $x \ominus y=\neg(\neg x \oplus y)$.
Definition 2. A $\llcorner\Pi$-algebra is an algebra

$$
\mathcal{A}=\left\langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0,1\right\rangle
$$

such that $\langle A, \oplus, \neg, \cdot, 0,1\rangle$ is a PMV-algebra, $\left\langle A, \cdot, \rightarrow_{\pi}, 0,1\right\rangle$ is a bounded hoop, and letting $\neg_{\pi} x=x \rightarrow_{\pi}$ 0 and $\Delta(x)=\neg_{\pi} \neg x$, the following equations hold

- $x \rightarrow_{\pi} y \leq x \rightarrow y$.
- $x \wedge \neg_{\pi} x=0$
- $\Delta(x) \odot \Delta(x \rightarrow y) \leq \Delta(y)$
- $\Delta(x) \leq x$
- $\Delta(\Delta(x))=\Delta(x)$
- $\Delta(x \vee y)=\Delta(x) \vee \Delta(y)$
- $\Delta(x) \vee \neg \Delta(x)=1$
- $\Delta(x \rightarrow y) \leq x \rightarrow_{\pi} y$.

Definition 3. A $£ \Pi \frac{1}{2}$-algebra is a $£ \Pi$-algebra with an additional constant $\frac{1}{2}$ satisfying $\frac{1}{2}=\neg \frac{1}{2}$

Definitions

Definition 1. [MS03]. A $£ \Pi_{q}$-algebra is a structure

$$
\mathcal{A}=\left\langle A, \oplus, \neg, \cdot, \rightarrow_{q}, q, 0,1\right\rangle
$$

where $\langle A, \oplus, \neg, \cdot, 0,1\rangle$ is a PMV-algebra, q is a constant, and \rightarrow_{q} is a binary operation such that the following conditions hold:
(A1) $q \leq \neg q$
(A2) $x \rightarrow_{q} y=(x \vee q) \rightarrow_{q} y$
(A3) $(x \vee q)\left(x \rightarrow_{q} y\right)=(x \vee q) \wedge y$
(A4) $q \rightarrow_{q}(x q)=x$
(A5) If $x^{2}=0$ then $x=0$
Notation. We use $u(a)$ to denote $(a \vee 0) \wedge 1$.
Definition 2. A f-quasifield is a structure

$$
\langle K,+,-, \times, / q, \vee, \wedge, 0,1, q\rangle
$$

where $\langle K,+,-, \times, \vee, \wedge, 0,1, q\rangle$ is a c-s-u-f-ring with strong unit $1, q$ is a constant and $/_{q}$ is a binary operation such that the following conditions are satisfied:
(K1) $0 \leq q \leq 1-q$
(K2) $x /{ }_{q} y=u(x) /{ }_{q} u(y)=u(x) / q(u(y) \vee q)$
(K3) $(u(x) \vee q) \times\left(u(y) /{ }_{q} u(x)\right)=(u(x) \vee q) \wedge u(y)$
K4) $(u(x) \times q) / q q=u(x)$
K5) If $x \times x=0$ then $x=0$.

Definition 3. Let $\mathbf{L P}_{q}$ and $\mathbf{F Q}$ denote the category of $E \Pi_{q}$-algebras and the category of f-quasifields respectively, with morphisms the homomorphisms in the sense of Universal Algebra.

We define a functor Π_{q} from $\mathbf{F Q}$ into $\mathbf{L P}$ as follows:
(a) For every f-quasifield \mathcal{F} we define a structure $\Pi_{q}(\mathcal{F})$ whose domain $\Pi_{q}(F)$ is $[0,1]=\{x \in \mathcal{F}: 0<$ $x \leq 1\}$, whose constants 0,1 and q are those of \mathcal{F}, and whose operations \oplus, \neg, \cdot and \rightarrow_{q} of $\Pi_{q}(F)$ are defined as follows:
(a1) $x \oplus y=(x+y) \wedge 1, \neg x=1-x$, and $x \rightarrow_{q} y=y /{ }_{q} x$.
(a2) The operation \cdot is the restriction of \times to $[0,1]$.
(b) For every morphism Φ from a f-quasifield \mathcal{F} into a f-quasifield \mathcal{K}, we define $\Pi_{q}(\Phi)$ to be the restriction of Φ to $\Pi_{q}(\mathcal{F})$

Now we define a functor $\Pi_{q}^{-1} \mathbf{L P}$ into FQ as follows:
(a) For every $\mathrm{E} \Pi_{q}$-algebra \mathcal{A}, the c-s-u-f-ring subreduct of $\Pi_{q}^{-1}(\mathcal{A})$ is $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))$. Moreover the constant q is interpreted as $q_{0}=i_{\mathbf{F}(\mathcal{A})}\left(q^{\mathcal{A}}\right)$, where $q^{\mathcal{A}}$ is the interpretation of q in \mathcal{A}.
Note that the domain of $\Gamma_{\mathbf{R}}\left(\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))\right)$ is contained into the domain of $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))$, therefore $i_{\mathbf{F}(\mathcal{A})}\left(q^{\mathcal{A}}\right) \in \Pi_{q}^{-1}(\mathcal{A})$
Moreover we define

$$
x /_{q} y=i_{\mathbf{F}(\mathcal{A})}\left(\left(i_{\mathbf{F}(\mathcal{A})}\right)^{-1}(u(y)) \rightarrow_{q}\left(i_{\mathbf{F}(\mathcal{A})}\right)^{-1}(u(x))\right)
$$

(b) If ϕ is a morphism of $£ \Pi$-algebras from \mathcal{A} into \mathcal{B}, then $\Pi_{q}^{-1}(\phi)=\Gamma^{-1}(\mathbf{F}(\phi))$

Main Results
Theorem 1. Let $\mathcal{K}=\left\langle K,+,-, \times, /_{q}, \vee, \wedge, 0,1, q\right\rangle$ be a linearly ordered quasifield. The following are equivalent:
(i) There are no infinitesimal in \mathcal{K} (i.e. $(\forall \varepsilon>0)(\exists n \in \mathbf{N})(n \varepsilon>1-\varepsilon))$
(ii) \mathcal{K} is Archimedean (i.e. $\forall b \forall a>0 \exists n \in \mathbf{N}(n a \geq b)$).
(iii) $\langle K,+,-, \times, 0,1\rangle$ is a field.

Corollary 2. If \mathcal{F} is a f-quasifield, then the ring of rationals \mathbf{Q} can be embedded into the ring-reduct of \mathcal{F}.
Theorem 3. The categories of $E \Pi_{q}$-algebras and of f-quasifields are equivalent via the functors Π_{q} and Π_{q}^{-1}

Corollary 4. Every f-quasifield is isomorphic to a subdirect product of a family of linearly ordered f-quasifields.
Corollary 5. f-quasifields constitute a quasivariety, but not a variety

Examples

Example. Let \mathbf{R}^{\star} be any non-trivial ultrapower of the ordered field \mathbf{R} of real numbers, and let ε be any strictly positive infinitesimal. Then for all $n \in \mathbf{N}, n<\frac{1}{\varepsilon}$. So 1 is not a strong unit and for any choice of $q \in\left(0, \frac{1}{2}\right],\left\langle\mathbf{R}^{\star},+,-, \times, /_{q}, \vee, \wedge,, 0,1, q\right\rangle$ (where \times denotes product and $\left.x / q y=\frac{u(x)}{u(y) \vee q}\right)$ is not a f-quasifield although $\left\langle\mathbf{R}^{\star},+,-, \times, 0,1,\right\rangle$ is a field
Example. Let \mathbf{R}^{\star} be as before, let $q=\frac{1}{2}$ and let

$$
\mathbf{R}_{f i n}^{\star}=\left\{x \in \mathbf{R}^{\star}: \exists n \in \mathbf{N}(|x| \leq n)\right\} .
$$

It is easy to see that $\mathbf{R}_{\text {fin }}^{\star}$ is a c-s-u-f-ring. Now let $x, y \in\left[\frac{1}{2}, 1\right]$ be such that $x \leq y$, and let $z=\frac{x}{y}$ Then $\frac{1}{2} \leq z \leq 1$, therefore $z \in \mathbf{R}_{f i n}^{\star}$.
It follows that, letting $a /{ }_{q} b=\frac{u(a)}{(u(b) \vee q)}, \mathbf{R}_{f i n}^{\star}$ is closed under $/ q$, and $/{ }_{q}$ makes $\mathbf{R}_{f i n}^{\star}$ a f-quasifield Nevertheless $\mathbf{R}_{f i n}^{\star}$ is not a field, because if $\varepsilon \in \mathbf{R}_{f i n}^{\star}$ is a strictly positive infinitesimal, then $\frac{1}{\varepsilon} \notin \mathbf{R}_{f i n}^{\star}$

Proofs

Proof of theorem 1
(i) \Rightarrow (ii) Let $h=q / q(q+q)$. Then $h(q+q)=q$, which immediately implies that $2 h=1$. It follows that $2 h z=z$ for every $z \in \mathcal{K}$. Now let $x \in \mathcal{K} \backslash\{0\}$, and let us prove that there is a $y \in \mathcal{K}$ such that $y x=1$. Without los of generality we may assume that $x>0$. Let k be minimal such that $x \leq 2^{k}$ (such a k exists because \mathcal{K} is $k=0$). Hence $q \leq h<h^{k} x<1$, and by axiom (K3) there is a $z \in \mathcal{K}$ such that $h^{k} x z=h$. Now let $y=h^{k-1} z$. Then $y x=h^{k-1} z x=2 h^{k} z x=2 h=1$. Hence y is the desired element.
(ii) \Rightarrow (i) Let by contradiction \mathcal{K} be a linearly ordered f-quasifield such that for some $a, b \in \mathcal{K}$ one has $a>0$ and $n a<b$ for every $n \in \mathbf{N}$. Then for every $n \in \mathbf{N}$ we have $n<b a^{-1}$, against the fact that 1 is a strong unit of \mathcal{K}
Proof of theorem ?? (i). That $i_{\mathbf{F}(\mathcal{A})}$ is an isomorphism of PMV-algebras follows from Lemma ??. That $i_{\mathbf{F}(\mathcal{A})}$ preserves the constant q follows from the definition of Π_{q} and of Π^{-1}.
We prove that $i_{\mathbf{F}(\mathcal{A}}$ preserves \rightarrow_{q}. Let \Rightarrow_{q} denote
since $u(a)=a$ and $u(b)=b$, from (\star) we obtain:

$$
a \Rightarrow_{q} b=i_{\mathbf{F}(\mathcal{A})}\left(\left(i_{\mathbf{F}(\mathcal{A})}\right)^{-1}(a) \rightarrow_{q}\left(i_{\mathbf{F}(\mathcal{A})}\right)^{-1}(b)\right)
$$

Now for $x, y \in \mathcal{A}$, substituting $i_{\mathbf{F}(\mathcal{A})}(x)$ for a and $i_{\mathbf{F}(\mathcal{A})}(y)$ for b in equation (1), we obtain:

$$
i_{\mathbf{F}(\mathcal{A})}(x) \Rightarrow_{q} i_{\mathbf{F}(\mathcal{A})}(y)=i_{\mathbf{F}(\mathcal{A})}\left(x \rightarrow_{q} y\right),
$$

and the claim is proved
(ii). Let us denote $\Pi_{q}(\mathcal{F})$ by \mathcal{B}. That $j_{\mathbf{S}(\mathcal{F})}$ is an isomorphism of c-s-u-f-rings follows from Lemma ??. In order to prove that $\boldsymbol{j}_{\mathbf{S}(\mathcal{F})}$ preserves q, note that the interpretation of q is the same in \mathcal{F} and in $\Pi_{q}(\mathcal{F})=\mathcal{B}$. Moreover in $\Pi_{q}^{-1}(\mathcal{B})$ q is interpreted as $\tau_{\mathbf{F}(\mathcal{B})}\left(q^{\mathcal{B}}\right)$, where $q^{\mathcal{B}}$ is the interpretation of q in both \mathcal{B} and \mathcal{F}. Therefore we only need to prove that $i_{\mathbf{F}(\mathcal{B})}\left(q^{\mathcal{B}}\right)=j_{\mathbf{S}(\mathcal{F})}\left(q^{\mathcal{B}}\right)$. Now by Lemma ??, $i_{\mathbf{F}(\mathcal{B})}\left(q^{\mathcal{B}}\right)=\Gamma_{\mathbf{R}}\left(j_{\mathcal{F}}\left(q^{\mathcal{B}}\right)\right)=j_{\mathcal{F}}\left(q^{\mathcal{B}}\right)$, and the claim follows
Finally we prove that $j_{\mathbf{S}(\mathcal{F})}$ preserves $/_{q}$. Let $/ /_{q}$ denote the interpretation of $/_{q}$ in $\Pi_{q}^{-1}\left(\Pi_{q}(\mathcal{F})\right.$) (and let us identify $/_{q}$ with its realization in $\left.\mathcal{F}\right)$. Let $x, y \in \mathcal{F}$, and let us prove that $j_{\mathbf{S}_{(\mathcal{F})}(x / q y)}=j_{\mathbf{S}(\mathcal{F})}(x) / /_{q} j_{\mathbf{S}(\mathcal{F})}(y)$. Since $x /_{q} y=$ $u(x) / q u(y)$ and $j \mathbf{j}(\mathcal{F})$ preserves the operation u, we may assume without loss of generality that $u(x)=x$ and $u(y)=y$ Thus recalling the last claim of Lemma ?? and the definition of Π_{-1}^{-1} we obtain.
$\begin{aligned} j_{\mathbf{S}(\mathcal{F})}(x) / /_{q} j_{\mathbf{S}(\mathcal{F})}(y) & =i_{\mathbf{F}_{(\mathcal{D}}(x) / /_{q} i_{\mathbf{F}(\mathcal{D})}(y)=i_{\mathbf{F}(\mathcal{D})}\left(y \rightarrow_{q} x\right)=}=\dot{j}_{\mathbf{S}(\mathcal{F})}(y \rightarrow q)=j_{\mathbf{S}(\mathcal{F})}(x / q),\end{aligned}$
and (ii) is proved. $\quad=j_{\mathbf{S}(\mathcal{F})}\left(y \rightarrow_{q} x\right)=j_{\mathbf{S}(\mathcal{F})}\left(x /_{q} y\right)$,
(iii). Set $\mathcal{F}=\Pi_{q}^{-1}(\mathcal{A}), \mathcal{K}=\Pi_{q}^{-1}(\mathcal{B}), \psi=\Gamma^{-1}(\mathbf{F}(\phi))$. That ψ is a homomorphism of c-s-u-f-rings follows from Lemma ??. We prove that ψ preserves q. The interpretation of q in \mathcal{F} is $q^{\mathcal{F}}=i_{\mathbf{F}(\mathcal{A})}\left(q^{\mathcal{A}}\right)$, and the interpretation of q in \mathcal{K} is ??. We prove that ψ preserves q. The interpretation of q in \mathcal{F} is q =
$q^{\mathcal{K}}=i_{\mathbf{F}(\mathcal{B})}\left(q^{\mathcal{B}}\right)$. Now by Lemma ??, $\Gamma_{\mathbf{R}}(\psi) \circ i_{\mathbf{F}(\mathcal{A})}=i_{\mathbf{F}(\mathcal{B})} \circ \phi$, therefore

$$
\begin{aligned}
\psi\left(q^{\mathcal{F}}\right) & =\Gamma(\psi)\left(q^{\mathcal{F}}\right)=\left(\Gamma(\psi) \circ i_{\mathbf{F}(\mathcal{A})}\right)\left(q^{\mathcal{A}}\right)= \\
& =\left(i_{\mathbf{F}(\mathcal{B})} \circ \phi\right)\left(q^{\mathcal{A}}\right)=i_{\mathbf{F}(\mathcal{B})}\left(q^{\mathcal{B}}\right)= \\
& =q^{\mathcal{K}} .
\end{aligned}
$$

Finally we prove that ψ preserves $/_{q}$. Let $/ /_{q}$ denote the interpretation of $/_{q}$ in \mathcal{K}, and let us identify the symbol and its realization in \mathcal{F}. Let $x, y \in \mathcal{F}$. Since $x / q y=u(x) /{ }_{q} u(y)$, and since ψ preserves u, we can assume without los of generality that $x=u(x)$ and $y=u(y)$. Then by clause (\star) in the definition of Π_{q}^{-1} we have:

$$
\begin{equation*}
x / q y=i_{\mathbf{F}(\mathcal{A})}\left(\left(i_{\mathbf{F}(\mathcal{A})}\right)^{-1}(y) \rightarrow_{q}\left(i_{\mathbf{F}(\mathcal{A})}\right)^{-1}(y)\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\psi(x) / /_{q} \psi(y)=i_{\mathbf{F}(\mathcal{B})}\left(\left(i_{\mathbf{F}(\mathcal{B})}\right)^{-1}(\psi(y)) \rightarrow_{q}\left(i_{\mathbf{F}(\mathcal{B})}\right)^{-1}(\psi(x))\right) . \tag{3}
\end{equation*}
$$

Note that by Lemma ??, $\left.\Gamma_{\mathbf{R}}\left(\Gamma_{\mathbf{R}}^{-1}(\phi)\right)\right)=i_{\mathbf{F}(\mathcal{B})} \circ \phi \circ i_{\mathbf{F}(\mathcal{A})}^{-1}$. Therefore, for all $z \in \Gamma_{\mathbf{R}}(\mathcal{F})$, we have:

$$
\begin{equation*}
\psi(z)=\left(\Gamma_{\mathbf{R}}(\psi)\right)(z)=\left(\Gamma_{\mathbf{R}}\left(\Gamma_{\mathbf{R}}^{-1}(\phi)\right)\right)(z)=i_{\mathbf{F}(\mathcal{B})}\left(\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(z)\right)\right), \tag{4}
\end{equation*}
$$

In particular, $\psi(x)=i_{\mathbf{F}(\mathcal{B})}\left(\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)\right)\right)$ and $\psi(y)=i_{\mathbf{F}(\mathcal{B})}\left(\phi i_{\mathbf{F}_{(\mathcal{A})}^{-1}}^{-1}(y)\right)$), therefor

$$
\begin{equation*}
\left(i_{\mathbf{F}(\mathcal{B})}\right)^{-1}(\psi(y))=\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)\right) \text { and }\left(i_{\mathbf{F}(\mathcal{B})}\right)^{-1}(\psi(x))=\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)\right) \tag{5}
\end{equation*}
$$

Substituting in eq. (3), recalling that ϕ and $i_{\mathbf{F}(\mathcal{A})}^{-1}$ are homomorphisms of $\mathrm{E} \Pi_{q^{-}}$-algebras and using eq. (4) and eq. (2), we obtain

$$
\begin{aligned}
\psi(x) / /{ }_{q} \psi(y) & =i_{\mathbf{F}(\mathcal{B})}\left(\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)\right) \rightarrow_{q} \phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)\right)\right)= \\
& =i_{\mathbf{F}(\mathcal{B})}\left(\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}(y) \rightarrow_{q} i_{\mathbf{F}(\mathcal{A})}^{-1}(x)\right)\right) \\
& =i_{\mathbf{F}(\mathcal{B})}\left(\phi\left(i_{\mathbf{F}(\mathcal{A})}^{-1}\left(y \rightarrow_{q} x\right)\right)\right) \\
& =\psi\left(y \rightarrow_{q} x\right) \\
& =\psi\left(x /{ }_{q} y\right) .
\end{aligned}
$$

This concludes the proof of the lemma

References

BF00] W.J. Blok and I.M.A. Ferreirim, On the structure of hoops, Algebra Universalis 43 2000, 233-257.
BKW77] A. Bigard, K. Keimel and S. Wolfenstein, Groupes at anneaux reticulés, Lecture Notes in Mathematics, 608 Springer Verlag, Berlin 1977.
C02] P. Cintula, The $E \Pi$ and $E \Pi \frac{1}{2}$ propositional and predicate logics, Technical Report 2001
DND01] A. Di Nola, A. Dvurecenskij, Product MV-algebras, Multi. Val. Logic, 6,193-215, (2001). Theorem 4.2.
EGM01] F. Esteva, L. Godo, F. Montagna, $Е \Pi$ and $E \Pi \frac{1}{2}$: two fuzzy logics joining Lukasiewicz and Product logics, Archive for Mathematical Logic 40 (2001), pp. 39-67.
EGHH96] F. Esteva, L. Godo, P. Hájek, A complete may-valued logic with product conjunction, Archive for Mathematica Logic 35 (1996), 191-208
[H98] P. НÁJeк, Metamathematics of Fuzzy Logic, Kluwer, 1988.
[Mo00] F. Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9 (2000), 91-124
[Mo02] F. Montagna, Subreducts of MV-algebras with product and product residuation, Preprint 2002.
[MS03] F. Montagna, L. Spada, Continuous approximations of MV-algebras with product and product residuation Preprint 2003.
[Mu86] D. Mundici, Interpretations of AF C^{\star} algebras in Eukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15-63.

