Computer Science Logic and 8th Kurt Gdel Colloquium Vienna, Austria $25^{th}-30^{th}~{\rm August}~2003$

$L\Pi_q$ algebras and Quasifields

Luca Spada Dipartimento di Matematica Via del Capitano, 15 53100 Siena (Italy) e-mail: spada@unisi.it

Preliminary Definitions

Definition 1. A PMV-*algebra* is an algebra $\mathcal{A} = \langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ such that:

 $\langle A, \oplus, \neg, 0, 1 \rangle$ is a MV-algebra.

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid.

For all $x, y, z \in \mathcal{A}$ one has: $x \cdot (y \ominus z) = (x \cdot y) \ominus (x \cdot z)$, where $x \ominus y = \neg(\neg x \oplus y)$.

Definition 2. A $L\Pi$ -algebra is an algebra

$$\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$$

such that $\langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ is a PMV-algebra, $\langle A, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$ is a bounded hoop, and letting $\neg_{\pi} x = x \rightarrow_{\pi} 0$ and $\Delta(x) = \neg_{\pi} \neg x$, the following equations hold:

• $x \to_{\pi} y \leq x \to y$.

• $x \wedge \neg_{\pi} x = 0$

- $\Delta(x) \odot \Delta(x \to y) \le \Delta(y)$
- $\Delta(x) \le x$
- $\Delta(\Delta(x)) = \Delta(x)$
- $\Delta(x \lor y) = \Delta(x) \lor \Delta(y)$
- $\Delta(x) \lor \neg \Delta(x) = 1$
- $\Delta(x \to y) \le x \to_{\pi} y.$

Definition 3. A $L\Pi_{\frac{1}{2}}^{\frac{1}{2}}$ -algebra is a $L\Pi$ -algebra with an additional constant $\frac{1}{2}$ satisfying $\frac{1}{2} = \neg_{\frac{1}{2}}^{\frac{1}{2}}$.

Definitions

Definition 1. [MS03]. A $L\Pi_q$ -algebra is a structure

$$\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_q, q, 0, 1 \rangle$$

where $\langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ is a PMV-algebra, q is a constant, and \rightarrow_q is a binary operation such that the

Definition 3. Let \mathbf{LP}_q and \mathbf{FQ} denote the category of $L\Pi_q$ -algebras and the category of f-quasifields respectively, with morphisms the homomorphisms in the sense of Universal Algebra.

We define a functor Π_q from **FQ** into **LP** as follows:

(a) For every f-quasifield \mathcal{F} we define a structure $\Pi_q(\mathcal{F})$ whose domain $\Pi_q(F)$ is $[0,1] = \{x \in \mathcal{F} : 0 \le x \le 1\}$, whose constants 0, 1 and q are those of \mathcal{F} , and whose operations \oplus , \neg , \cdot and \rightarrow_q of $\Pi_q(F)$ are defined as follows:

(a1) $x \oplus y = (x+y) \wedge 1$, $\neg x = 1-x$, and $x \to_q y = y/qx$.

- (a2) The operation \cdot is the restriction of \times to [0, 1].
- (b) For every morphism Φ from a *f*-quasifield \mathcal{F} into a *f*-quasifield \mathcal{K} , we define $\Pi_q(\Phi)$ to be the restriction of Φ to $\Pi_q(\mathcal{F})$.

Now we define a functor $\Pi_a^{-1} \mathbf{LP}$ into \mathbf{FQ} as follows:

(a) For every $\mathbb{L}\Pi_q$ -algebra \mathcal{A} , the c-s-u-f-ring subreduct of $\Pi_q^{-1}(\mathcal{A})$ is $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))$. Moreover the constant q is interpreted as $q_0 = i_{\mathbf{F}(\mathcal{A})}(q^{\mathcal{A}})$, where $q^{\mathcal{A}}$ is the interpretation of q in \mathcal{A} . Note that the domain of $\Gamma_{\mathbf{R}}(\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A})))$ is contained into the domain of $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))$, therefore $i_{\mathbf{F}(\mathcal{A})}(q^{\mathcal{A}}) \in \Pi_q^{-1}(\mathcal{A})$. Moreover we define:

 $x/_{q}y = i_{\mathbf{F}(\mathcal{A})}((i_{\mathbf{F}(\mathcal{A})})^{-1}(u(y)) \to_{q} (i_{\mathbf{F}(\mathcal{A})})^{-1}(u(x))).$

(b) If ϕ is a morphism of LII-algebras from \mathcal{A} into \mathcal{B} , then $\Pi_a^{-1}(\phi) = \Gamma^{-1}(\mathbf{F}(\phi))$.

Main Results

Theorem 1. Let $\mathcal{K} = \langle K, +, -, \times, /_q, \vee, \wedge, 0, 1, q \rangle$ be a linearly ordered quasifield. The following are equivalent:

(i) There are no infinitesimal in \mathcal{K} (i.e. $(\forall \varepsilon > 0) \ (\exists n \in \mathbf{N}) (n\varepsilon > 1 - \varepsilon))$

(ii) \mathcal{K} is Archimedean (i.e. $\forall b \forall a > 0 \exists n \in \mathbf{N} (na \ge b))$.

(iii) $\langle K, +, -, \times, 0, 1 \rangle$ is a field.

following conditions hold:

(A1) $q \leq \neg q$

(A2) $x \to_q y = (x \lor q) \to_q y$

(A3) $(x \lor q)(x \to_q y) = (x \lor q) \land y$

(A4) $q \rightarrow_q (xq) = x$

(A5) If $x^2 = 0$ then x = 0

Notation. We use u(a) to denote $(a \lor 0) \land 1$.

Definition 2. A *f*-quasifield is a structure

 $\langle K,+,-,\times,/_q,\vee,\wedge,0,1,q\rangle$

where $\langle K, +, -, \times, \vee, \wedge, 0, 1, q \rangle$ is a c-s-u-f-ring with strong unit 1, q is a constant and $/_q$ is a binary operation such that the following conditions are satisfied:

 $(\mathrm{K1}) \ 0 \le q \le 1 - q$

(K2) $x/_q y = u(x)/_q u(y) = u(x)/_q (u(y) \lor q).$

(K3) $(u(x) \lor q) \times (u(y)/_q u(x)) = (u(x) \lor q) \land u(y)$

(K4) $(u(x) \times q)/_q q = u(x)$

(K5) If $x \times x = 0$ then x = 0.

Corollary 2. If \mathcal{F} is a *f*-quasifield, then the ring of rationals \mathbf{Q} can be embedded into the ring-reduct of \mathcal{F} .

Theorem 3. The categories of $L\Pi_q$ -algebras and of f-quasifields are equivalent via the functors Π_q and Π_q^{-1} .

Corollary 4. Every f-quasifield is isomorphic to a subdirect product of a family of linearly ordered f-quasifields.

Corollary 5. f-quasifields constitute a quasivariety, but not a variety.

Examples

1

Example. Let \mathbf{R}^* be any non-trivial ultrapower of the ordered field \mathbf{R} of real numbers, and let ε be any strictly positive infinitesimal. Then for all $n \in \mathbf{N}$, $n < \frac{1}{\varepsilon}$. So 1 is not a strong unit and for any choice of $q \in (0, \frac{1}{2}]$, $\langle \mathbf{R}^*, +, -, \times, /_q, \vee, \wedge, 0, 1, q \rangle$ (where \times denotes product and $x/_q y = \frac{u(x)}{u(y)\vee q}$) is not a *f*-quasifield although $\langle \mathbf{R}^*, +, -, \times, 0, 1, \rangle$ is a field. **Example**. Let \mathbf{R}^* be as before, let $q = \frac{1}{2}$ and let

$$\mathbf{R}_{fin}^{\star} = \{ x \in \mathbf{R}^{\star} : \exists n \in \mathbf{N} (\mid x \mid \leq n) \}.$$

It is easy to see that \mathbf{R}_{fin}^{\star} is a c-s-u-f-ring. Now let $x, y \in [\frac{1}{2}, 1]$ be such that $x \leq y$, and let $z = \frac{x}{y}$. Then $\frac{1}{2} \leq z \leq 1$, therefore $z \in \mathbf{R}_{fin}^{\star}$.

It follows that, letting $a/qb = \frac{u(a)}{(u(b)\vee q)}$, \mathbf{R}_{fin}^{\star} is closed under $/_q$, and $/_q$ makes \mathbf{R}_{fin}^{\star} a *f*-quasifield. Nevertheless \mathbf{R}_{fin}^{\star} is not a field, because if $\varepsilon \in \mathbf{R}_{fin}^{\star}$ is a strictly positive infinitesimal, then $\frac{1}{\varepsilon} \notin \mathbf{R}_{fin}^{\star}$.

Proofs

Proof of theorem 1

- (i) \Rightarrow (ii) Let h = q/q(q+q). Then h(q+q) = q, which immediately implies that 2h = 1. It follows that 2hz = z for every $z \in \mathcal{K}$. Now let $x \in \mathcal{K} \setminus \{0\}$, and let us prove that there is a $y \in \mathcal{K}$ such that yx = 1. Without loss of generality we may assume that x > 0. Let k be minimal such that $x \leq 2^k$ (such a k exists because \mathcal{K} is Archimedean). Then $h^k x \leq 1$. Moreover by the minimality of k we have $h^{k-1}x > 1$ (where we put $h^{k-1} = 2$ if k = 0). Hence $q \leq h < h^k x \leq 1$, and by axiom (K3) there is a $z \in \mathcal{K}$ such that $h^k xz = h$. Now let $y = h^{k-1}z$. Then $yx = h^{k-1}zx = 2h^k zx = 2h = 1$. Hence y is the desired element.
- (ii) \Rightarrow (i) Let by contradiction \mathcal{K} be a linearly ordered f-quasifield such that for some $a, b \in \mathcal{K}$ one has a > 0 and na < b for every $n \in \mathbf{N}$. Then for every $n \in \mathbf{N}$ we have $n < ba^{-1}$, against the fact that 1 is a strong unit of \mathcal{K} .

Proof of theorem ?? (i). That $i_{\mathbf{F}(\mathcal{A})}$ is an isomorphism of PMV-algebras follows from Lemma ??. That $i_{\mathbf{F}(\mathcal{A})}$ preserves the constant q follows from the definition of Π_q and of Π_q^{-1} .

We prove that $i_{\mathbf{F}(\mathcal{A})}$ preserves \rightarrow_q . Let \Rightarrow_q denote the interpretation of \rightarrow_q in $\Pi_q(\Pi_q^{-1}(\mathcal{A}))$. Thus $a \Rightarrow_q b = b/qa$, and since u(a) = a and u(b) = b, from (\bigstar) we obtain:

 $a \Rightarrow_q b = i_{\mathbf{F}(\mathcal{A})}((i_{\mathbf{F}(\mathcal{A})})^{-1}(a) \rightarrow_q (i_{\mathbf{F}(\mathcal{A})})^{-1}(b)).$

Now for $x, y \in \mathcal{A}$, substituting $i_{\mathbf{F}(\mathcal{A})}(x)$ for a and $i_{\mathbf{F}(\mathcal{A})}(y)$ for b in equation (1), we obtain:

$$\mathbf{F}_{\mathbf{F}(\mathcal{A})}(x) \Rightarrow_{q} i_{\mathbf{F}(\mathcal{A})}(y) = i_{\mathbf{F}(\mathcal{A})}(x \to_{q} y),$$

and the claim is proved.

(ii). Let us denote $\Pi_q(\mathcal{F})$ by \mathcal{B} . That $j_{\mathbf{S}(\mathcal{F})}$ is an isomorphism of c-s-u-f-rings follows from Lemma ??. In order to prove that $j_{\mathbf{S}(\mathcal{F})}$ preserves q, note that the interpretation of q is the same in \mathcal{F} and in $\Pi_q(\mathcal{F}) = \mathcal{B}$. Moreover in $\Pi_q^{-1}(\mathcal{B})$, q is interpreted as $i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}})$, where $q^{\mathcal{B}}$ is the interpretation of q in both \mathcal{B} and \mathcal{F} . Therefore we only need to prove that $i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}}) = j_{\mathbf{S}(\mathcal{F})}(q^{\mathcal{B}})$. Now by Lemma ??, $i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}}) = \Gamma_{\mathbf{R}}(j_{\mathcal{F}}(q^{\mathcal{B}})) = j_{\mathcal{F}}(q^{\mathcal{B}})$, and the claim follows. Finally we prove that $j_{\mathbf{S}(\mathcal{F})}$ preserves /q. Let //q denote the interpretation of /q in $\Pi_q^{-1}(\Pi_q(\mathcal{F}))$ (and let us identify

Finally we prove that $j_{\mathbf{S}(\mathcal{F})}$ preserves $/_q$. Let $//_q$ denote the interpretation of $/_q$ in $\Pi_q^{-1}(\Pi_q(\mathcal{F}))$ (and let us identify $/_q$ with its realization in \mathcal{F}). Let $x, y \in \mathcal{F}$, and let us prove that $j_{\mathbf{S}(\mathcal{F})}(x/_q y) = j_{\mathbf{S}(\mathcal{F})}(x)//_q j_{\mathbf{S}(\mathcal{F})}(y)$. Since $x/_q y = u(x)/_q u(y)$ and $j_{\mathbf{S}(\mathcal{F})}$ preserves the operation u, we may assume without loss of generality that u(x) = x and u(y) = y. Thus letting $\mathcal{D} = \Pi_q(\mathcal{F})$, we have $x, y \in \mathcal{D}$, and $j_{\mathbf{S}(\mathcal{F})}(x) = \Pi_q(j_{\mathbf{S}(\mathcal{F})}(x)) = i_{\mathbf{F}(\mathcal{D})}(x)$. Similarly, $j_{\mathbf{S}(\mathcal{F})}(y) = i_{\mathbf{F}(\mathcal{D})}(y)$. Thus recalling the last claim of Lemma ?? and the definition of Π_q^{-1} , we obtain:

$$\begin{split} j_{\mathbf{S}(\mathcal{F})}(x)//_{q} j_{\mathbf{S}(\mathcal{F})}(y) &= i_{\mathbf{F}(\mathcal{D})}(x)//_{q} i_{\mathbf{F}(\mathcal{D})}(y) = i_{\mathbf{F}(\mathcal{D})}(y \rightarrow_{q} x) = \\ &= j_{\mathbf{S}(\mathcal{F})}(y \rightarrow_{q} x) = j_{\mathbf{S}(\mathcal{F})}(x/_{q}y), \\ \text{and (ii) is proved.} \end{split}$$

(iii). Set $\mathcal{F} = \Pi_q^{-1}(\mathcal{A})$, $\mathcal{K} = \Pi_q^{-1}(\mathcal{B})$, $\psi = \Gamma^{-1}(\mathbf{F}(\phi))$. That ψ is a homomorphism of c-s-u-f-rings follows from Lemma ??. We prove that ψ preserves q. The interpretation of q in \mathcal{F} is $q^{\mathcal{F}} = i_{\mathbf{F}(\mathcal{A})}(q^{\mathcal{A}})$, and the interpretation of q in \mathcal{K} is $q^{\mathcal{K}} = i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}})$. Now by Lemma ??, $\Gamma_{\mathbf{R}}(\psi) \circ i_{\mathbf{F}(\mathcal{A})} = i_{\mathbf{F}(\mathcal{B})} \circ \phi$, therefore

$$\psi(q^{\mathcal{F}}) = \Gamma(\psi)(q^{\mathcal{F}}) = (\Gamma(\psi) \circ i_{\mathbf{F}(\mathcal{A})})(q^{\mathcal{A}}) =$$
$$= (i_{\mathbf{F}(\mathcal{B})} \circ \phi)(q^{\mathcal{A}}) = i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}}) =$$
$$= q^{\mathcal{K}}.$$

Finally we prove that ψ preserves $/_q$. Let $//_q$ denote the interpretation of $/_q$ in \mathcal{K} , and let us identify the symbol $/_q$ and its realization in \mathcal{F} . Let $x, y \in \mathcal{F}$. Since $x/_q y = u(x)/_q u(y)$, and since ψ preserves u, we can assume without loss of generality that x = u(x) and y = u(y). Then by clause (\bigstar) in the definition of Π_q^{-1} we have:

 $x/_{q}y = i_{\mathbf{F}(\mathcal{A})}((i_{\mathbf{F}(\mathcal{A})})^{-1}(y) \to_{q} (i_{\mathbf{F}(\mathcal{A})})^{-1}(y))$ $\tag{2}$

$$\psi(x)//_q \psi(y) = i_{\mathbf{F}(\mathcal{B})}((i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(y)) \to_q (i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(x))).$$
(3)

Note that by Lemma ??, $\Gamma_{\mathbf{R}}(\Gamma_{\mathbf{R}}^{-1}(\phi)) = i_{\mathbf{F}(\mathcal{B})} \circ \phi \circ i_{\mathbf{F}(\mathcal{A})}^{-1}$. Therefore, for all $z \in \Gamma_{\mathbf{R}}(\mathcal{F})$, we have:

$$\psi(z) = (\Gamma_{\mathbf{R}}(\psi))(z) = (\Gamma_{\mathbf{R}}(\Gamma_{\mathbf{R}}^{-1}(\phi)))(z) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(z))).$$

References

[BF00] W.J. Blok and I.M.A. Ferreirim, On the structure of hoops, Algebra Universalis 43 2000, 233-257.

- [BKW77] A. Bigard, K. Keimel and S. Wolfenstein, Groupes at anneaux reticulés, Lecture Notes in Mathematics, 608, Springer Verlag, Berlin 1977.
- [C02] P. Cintula, The $L\Pi$ and $L\Pi^{\frac{1}{2}}$ propositional and predicate logics, Technical Report 2001.
- [DND01] A. Di Nola, A. Dvurecenskij, Product MV-algebras, Multi. Val. Logic, 6,193-215, (2001). Theorem 4.2.
- [EGM01] F. Esteva, L. Godo, F. Montagna, $L\Pi$ and $L\Pi \frac{1}{2}$: two fuzzy logics joining Lukasiewicz and Product logics, Archive for Mathematical Logic **40** (2001), pp. 39-67.
- [EGH96] F. Esteva, L. Godo, P. Hájek, A complete may-valued logic with product conjunction, Archive for Mathematical Logic 35 (1996), 191-208.
- [H98] P. HÁJEK, Metamathematics of Fuzzy Logic, Kluwer, 1988.
- [Mo00] F. Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9 (1) (2000), 91-124.
 - [Mo02] F. Montagna, Subreducts of MV-algebras with product and product residuation, Preprint 2002.
 - [MS03] F. Montagna, L. Spada, Continuous approximations of MV-algebras with product and product residuation, Preprint 2003.
 - [Mu86] D. Mundici, Interpretations of AF C^{*} algebras in Lukasiewicz sentential calculus, J. Funct. Analysis **65**, (1986), 15-63.

In particular, $\psi(x) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)))$ and $\psi(y) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)))$, therefore

$$(i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(y)) = \phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)) \text{ and } (i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(x)) = \phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)).$$

$$(5)$$

Substituting in eq. (3), recalling that ϕ and $i_{\mathbf{F}(\mathcal{A})}^{-1}$ are homomorphisms of $L\Pi_q$ -algebras and using eq. (4) and eq. (2), we obtain:

$$\psi(x)//_{q}\psi(y) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)) \rightarrow_{q} \phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(x))) =$$

$$= i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y) \rightarrow_{q} i_{\mathbf{F}(\mathcal{A})}^{-1}(x)))$$

$$= i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y \rightarrow_{q} x)))$$

$$= \psi(y \rightarrow_{q} x)$$

$$= \psi(x/_{q}y).$$
(6)

This concludes the proof of the lemma.

Computer Science Logic and 8th Kurt Gdel Colloquium Vienna, Austria $25^{th}-30^{th} \text{ August } 2003$

(4)