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Preliminary Definitions

Definition 1. A PMV-algebra is an algebra A = 〈A,⊕,¬, ·, 0, 1〉 such that:

〈A,⊕,¬, 0, 1〉 is a MV-algebra.

〈A, ·, 1〉 is a commutative monoid.

For all x, y, z ∈ A one has: x · (y 	 z) = (x · y)	 (x · z), where x	 y = ¬(¬x⊕ y).

Definition 2. A  LΠ-algebra is an algebra

A = 〈A,⊕,¬, ·,→π, 0, 1〉

such that 〈A,⊕,¬, ·, 0, 1〉 is a PMV-algebra, 〈A, ·,→π, 0, 1〉 is a bounded hoop, and letting ¬πx = x→π

0 and ∆(x) = ¬π¬x, the following equations hold:

• x→π y ≤ x→ y.

• x ∧ ¬πx = 0

• ∆(x)�∆(x→ y) ≤ ∆(y)

• ∆(x) ≤ x

• ∆(∆(x)) = ∆(x)

• ∆(x ∨ y) = ∆(x) ∨∆(y)

• ∆(x) ∨ ¬∆(x) = 1

• ∆(x→ y) ≤ x→π y.

Definition 3. A  LΠ1
2
-algebra is a  LΠ-algebra with an additional constant 1

2
satisfying 1

2
= ¬1

2
.

Definitions

Definition 1. [MS03]. A  LΠq-algebra is a structure

A = 〈A,⊕,¬, ·,→q, q, 0, 1〉

where 〈A,⊕,¬, ·, 0, 1〉 is a PMV-algebra, q is a constant, and →q is a binary operation such that the
following conditions hold:

(A1) q ≤ ¬q

(A2) x→q y = (x ∨ q)→q y

(A3) (x ∨ q)(x→q y) = (x ∨ q) ∧ y

(A4) q →q (xq) = x

(A5) If x2 = 0 then x = 0

Notation. We use u(a) to denote (a ∨ 0) ∧ 1.

Definition 2. A f -quasifield is a structure

〈K,+,−,×, /q,∨,∧, 0, 1, q〉

where 〈K,+,−,×,∨,∧, 0, 1, q〉 is a c-s-u-f-ring with strong unit 1, q is a constant and /q is a binary
operation such that the following conditions are satisfied:

(K1) 0 ≤ q ≤ 1− q

(K2) x/qy = u(x)/qu(y) = u(x)/q(u(y) ∨ q).

(K3) (u(x) ∨ q)× (u(y)/qu(x)) = (u(x) ∨ q) ∧ u(y)

(K4) (u(x)× q)/qq = u(x)

(K5) If x× x = 0 then x = 0.

Definition 3. Let LPq and FQ denote the category of  LΠq-algebras and the category of f -quasifields
respectively, with morphisms the homomorphisms in the sense of Universal Algebra.

We define a functor Πq from FQ into LP as follows:

(a) For every f -quasifield F we define a structure Πq(F) whose domain Πq(F ) is [0, 1] = {x ∈ F : 0 ≤
x ≤ 1}, whose constants 0, 1 and q are those of F , and whose operations ⊕, ¬, · and →q of Πq(F )
are defined as follows:

(a1) x⊕ y = (x+ y) ∧ 1, ¬x = 1− x, and x→q y = y/qx.

(a2) The operation · is the restriction of × to [0, 1].

(b) For every morphism Φ from a f -quasifield F into a f -quasifield K, we define Πq(Φ) to be the
restriction of Φ to Πq(F).

Now we define a functor Π−1
q LP into FQ as follows:

(a) For every  LΠq-algebraA, the c-s-u-f-ring subreduct of Π−1
q (A) is Γ−1

R (F(A)). Moreover the constant

q is interpreted as q0 = iF(A)(q
A), where qA is the interpretation of q in A.

Note that the domain of ΓR(Γ−1
R (F(A))) is contained into the domain of Γ−1

R (F(A)), therefore
iF(A)(q

A) ∈ Π−1
q (A).

Moreover we define:

x/qy = iF(A)((iF(A))
−1(u(y))→q (iF(A))

−1(u(x))).

(b) If φ is a morphism of  LΠ-algebras from A into B, then Π−1
q (φ) = Γ−1(F(φ)).

Main Results

Theorem 1. Let K = 〈K,+,−,×, /q,∨,∧, 0, 1, q〉 be a linearly ordered quasifield. The following are
equivalent:

(i) There are no infinitesimal in K (i.e. (∀ε > 0) (∃n ∈ N)(nε > 1− ε))

(ii) K is Archimedean (i.e. ∀b∀a > 0∃n ∈ N(na ≥ b)).

(iii) 〈K,+,−,×, 0, 1〉 is a field.

Corollary 2. If F is a f -quasifield, then the ring of rationals Q can be embedded into the ring-reduct
of F .

Theorem 3. The categories of  LΠq-algebras and of f -quasifields are equivalent via the functors Πq

and Π−1
q .

Corollary 4. Every f -quasifield is isomorphic to a subdirect product of a family of linearly ordered
f -quasifields.

Corollary 5. f -quasifields constitute a quasivariety, but not a variety.

Examples

Example. Let R? be any non-trivial ultrapower of the ordered field R of real numbers, and let ε be
any strictly positive infinitesimal. Then for all n ∈ N, n < 1

ε
. So 1 is not a strong unit and for any

choice of q ∈ (0, 1
2
], 〈R?,+,−,×, /q,∨,∧, , 0, 1, q〉 (where × denotes product and x/qy = u(x)

u(y)∨q ) is not

a f -quasifield although 〈R?,+,−,×, 0, 1, 〉 is a field.
Example. Let R? be as before, let q = 1

2
and let

R?
fin = {x ∈ R? : ∃n ∈ N(| x |≤ n)}.

It is easy to see that R?
fin is a c-s-u-f-ring. Now let x, y ∈ [1

2
, 1] be such that x ≤ y, and let z = x

y
.

Then 1
2
≤ z ≤ 1, therefore z ∈ R?

fin.

It follows that, letting a/qb = u(a)
(u(b)∨q) , R?

fin is closed under /q, and /q makes R?
fin a f -quasifield.

Nevertheless R?
fin is not a field, because if ε ∈ R?

fin is a strictly positive infinitesimal, then 1
ε
/∈ R?

fin.
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Proofs

Proof of theorem 1

(i)⇒(ii) Let h = q/q(q + q). Then h(q + q) = q, which immediately implies that 2h = 1. It follows that 2hz = z for
every z ∈ K. Now let x ∈ K \ {0}, and let us prove that there is a y ∈ K such that yx = 1. Without loss
of generality we may assume that x > 0. Let k be minimal such that x ≤ 2k (such a k exists because K is
Archimedean). Then hkx ≤ 1. Moreover by the minimality of k we have hk−1x > 1 (where we put hk−1 = 2 if
k = 0). Hence q ≤ h < hkx ≤ 1, and by axiom (K3) there is a z ∈ K such that hkxz = h. Now let y = hk−1z. Then
yx = hk−1zx = 2hkzx = 2h = 1. Hence y is the desired element.

(ii)⇒(i) Let by contradiction K be a linearly ordered f -quasifield such that for some a, b ∈ K one has a > 0 and na < b for
every n ∈ N. Then for every n ∈ N we have n < ba−1, against the fact that 1 is a strong unit of K.

Proof of theorem ?? (i). That iF(A) is an isomorphism of PMV-algebras follows from Lemma ??. That iF(A)

preserves the constant q follows from the definition of Πq and of Π−1q .
We prove that iF(A) preserves →q. Let ⇒q denote the interpretation of →q in Πq(Π−1q (A)). Thus a ⇒q b = b/qa, and
since u(a) = a and u(b) = b, from (F) we obtain:

a⇒q b = iF(A)((iF(A))
−1(a)→q (iF(A))

−1(b)). (1)

Now for x, y ∈ A, substituting iF(A)(x) for a and iF(A)(y) for b in equation (1), we obtain:

iF(A)(x)⇒q iF(A)(y) = iF(A)(x→q y),

and the claim is proved.

(ii). Let us denote Πq(F) by B. That jS(F) is an isomorphism of c-s-u-f-rings follows from Lemma ??. In order to
prove that jS(F) preserves q, note that the interpretation of q is the same in F and in Πq(F) = B. Moreover in Π−1q (B),

q is interpreted as iF(B)(q
B), where qB is the interpretation of q in both B and F . Therefore we only need to prove that

iF(B)(q
B) = jS(F)(q

B). Now by Lemma ??, iF(B)(q
B) = ΓR(jF (qB)) = jF (qB), and the claim follows.

Finally we prove that jS(F) preserves /q. Let //q denote the interpretation of /q in Π−1q (Πq(F)) (and let us identify
/q with its realization in F). Let x, y ∈ F , and let us prove that jS(F)(x/qy) = jS(F)(x)//qjS(F)(y). Since x/qy =
u(x)/qu(y) and jS(F) preserves the operation u, we may assume without loss of generality that u(x) = x and u(y) = y.
Thus letting D = Πq(F), we have x, y ∈ D, and jS(F)(x) = Πq(jS(F)(x)) = iF(D)(x). Similarly, jS(F)(y) = iF(D)(y).
Thus recalling the last claim of Lemma ?? and the definition of Π−1q , we obtain:

jS(F)(x)//qjS(F)(y) = iF(D)(x)//qiF(D)(y) = iF(D)(y →q x) =
= jS(F)(y →q x) = jS(F)(x/qy),

and (ii) is proved.

(iii). Set F = Π−1q (A), K = Π−1q (B), ψ = Γ−1(F(φ)). That ψ is a homomorphism of c-s-u-f-rings follows from Lemma

??. We prove that ψ preserves q. The interpretation of q in F is qF = iF(A)(q
A), and the interpretation of q in K is

qK = iF(B)(q
B). Now by Lemma ??, ΓR(ψ) ◦ iF(A) = iF(B) ◦ φ, therefore

ψ(qF ) = Γ(ψ)(qF ) = (Γ(ψ) ◦ iF(A))(q
A) =

= (iF(B) ◦ φ)(qA) = iF(B)(q
B) =

= qK.

Finally we prove that ψ preserves /q. Let //q denote the interpretation of /q in K, and let us identify the symbol /q
and its realization in F . Let x, y ∈ F . Since x/qy = u(x)/qu(y), and since ψ preserves u, we can assume without loss
of generality that x = u(x) and y = u(y). Then by clause (F) in the definition of Π−1q we have:

x/qy = iF(A)((iF(A))
−1(y)→q (iF(A))

−1(y)) (2)

ψ(x)//qψ(y) = iF(B)((iF(B))
−1(ψ(y))→q (iF(B))

−1(ψ(x))). (3)

Note that by Lemma ??, ΓR(Γ−1R (φ))) = iF(B) ◦ φ ◦ i−1F(A). Therefore, for all z ∈ ΓR(F), we have:

ψ(z) = (ΓR(ψ))(z) = (ΓR(Γ−1R (φ)))(z) = iF(B)(φ(i−1F(A)(z))). (4)

In particular, ψ(x) = iF(B)(φ(i−1F(A)(x))) and ψ(y) = iF(B)(φ(i−1F(A)(y))), therefore

(iF(B))
−1(ψ(y)) = φ(i−1F(A)(y)) and (iF(B))

−1(ψ(x)) = φ(i−1F(A)(x)). (5)

Substituting in eq. (3), recalling that φ and i−1F(A) are homomorphisms of  LΠq-algebras and using eq. (4) and eq. (2),

we obtain:

ψ(x)//qψ(y) = iF(B)(φ(i−1F(A)(y))→q φ(i−1F(A)(x))) =

= iF(B)(φ(i−1F(A)(y)→q i
−1
F(A)(x)))

= iF(B)(φ(i−1F(A)(y →q x)))

= ψ(y →q x)

= ψ(x/qy).

(6)

This concludes the proof of the lemma.
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