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Part |

A generalization of Baker-Beynon duality



Baker-Beynon duality



Definition

@ An (abelian) f-group is an abelian group A equipped with a lattice
order such that a < b implies a+ ¢ < b+ ¢ for every a, b, c € A.

@ A Riesz space V is an R-vector space equipped with a lattice order
such that it is an ¢-group and 0 < r and 0 < v imply rv > 0 for each
reRand veV.

f-groups and Riesz spaces can be axiomatized by equations, and so they
form varieties.

Definition

@ A map between /-groups is an /-group homomorphism if it is a group
and a lattice homomorphism.

@ An /-group homomorphism between Riesz spaces is a Riesz space
homomorphism if it is a linear map.

1/49



Examples of Riesz spaces

o R

o RX for a set X

o RXR (lexicographic product)

e C(X,R) for a topological space X
e LP(RM)

A,

Examples of /-groups

@ All the examples above
Z

ZX for a set X

ZX7

Q

A\,
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@ A continuous function f: R — R is piecewise linear (homogeneous)
if there exist g1,...,8n: R® — R linear homogeneous functions (each
in finitely many variables) such that for each x € R” we have
f(x) = gi(x) for some i =1,...,n.

@ We say that a piecewise linear function f has integer coefficients, if it
is defined by g1, ..., g, with integer coefficients.
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@ A continuous function f: R — R is piecewise linear (homogeneous)
,&n: R — R linear homogeneous functions (each

if there exist g1, ...
in finitely many variables) such that for each x € R” we have

f(x) = gi(x) forsome i=1,...,n
@ We say that a piecewise linear function f has integer coefficients, if it
is defined by g1, ..., g, with integer coefficients.
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We denote by
e PWL(R") the Riesz space of piecewise linear functions 7: R" — R;

o PWLz(R") the ¢-group of piecewise linear functions f: R® — R with

integer coefficients.

Theorem (Baker 1968)

Let k be a cardinal number.
@ The free Riesz space on k generators is isomorphic to PWL(RF).

@ The free (-group on k generators is isomorphic to PWLz(R").

@ The element [t] of the free algebra correspond to the piecewise linear
function that maps x € R” to t(x) € R.

@ The free generators of the free algebra correspond to the projections
maps onto each coordinate.
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If X C R*, we denote
e PWL(X) = {f|x with f € PWL(R")},
o PWLz(X) = {f|x with f € PWLz(R")}.

Which Riesz spaces (¢-groups) are isomorphic to PWL(X) (PWLz(X)) for
some X C R*? J
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Congruences in £-groups and Riesz spaces correspond to /-ideals.

Definition

An (-ideal in a Riesz space (¢-group) is a subgroup / that is convex, i.e.
la| < |b| and b € [ imply a € I.

l-ideals in Riesz spaces are automatically vector subspaces.
Definition

@ A proper /-ideal is called maximal if it is maximal wrt inclusion.

@ A nontrivial Riesz space (¢-group) A is simple if {0} and A are the
only /-ideals of A.

@ A Riesz space (¢-group) is semisimple if the intersection of all its
maximal ¢-ideals is {0}.
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Proposition

o An (-group is simple iff it embeds into R.
@ A Riesz space is simple iff it is isomorphic to R.

@ An {-group or Riesz space is semisimple iff it can be embedded into a
power of R.

o RXR and ZX7Z with the lexicographic order are not semisimple (and
hence not simple).

@ R is simple as a /-group and as a Riesz space.

@ 7 and Q are simple ¢-groups.

e C(X,R) is semisimple for any topological space X.

e PWL(X) and PWLz(X) are semisimple for any X C R".
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Theorem (Baker 1968)

o Every semisimple Riesz space is isomorphic to PWL(X) for some
X C R~

e Every semisimple {-group is isomorphic to PWLz(X) for some
X C R".
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Theorem (Baker 1968)

e Every semisimple Riesz space is isomorphic to PWL(C) for some
closed cone C C R”.

e Every semisimple {-group is isomorphic to PWLz(C) for some closed
cone C C R*.

.

Definition

A nonempty subset C C R” is a closed cone if it is closed under
multiplication by nonnegative scalars and it is closed in R* with the
euclidean topology.

) 4
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Let %, be the free Riesz space (¢-group) over k generators.
For any T C %, and S C R*, we define the following operators.

V(T)={x e R" | t(x) =0forall [t] e T}
I(S) ={[t] € #. | t(x) =0 for all x € S}.

Galois connection

TCI(S) iff SCV(T).

e V(T) is always a closed cone of R”.

@ I(S) is always an (-ideal of .#
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What are the fixpoints of the Galois connection?

S=VI(S) iff S is a closed cone in R”. |

S is a fixpoint iff S = V(T) for some T C .7, = PWL(R"). It can be
shown that closed cones are exactly the vanishing sets of families of
piecewise linear functions (with integer coefficients) on R”.

T =1V(T) iff T is a (-ideal of .Z; that is intersection of maximal E—ideals.J

T is a fixpoint iff T =1(S) for some S C R*iff T = N{I(x) | x € S}. The
proper (-ideals of the form I(x) for some x € R" are exactly the maximal
ideals of .%,; (follows from the characterization of simple algebras).

Proposition

The poset of {-ideals of .7 ,; that are intersections of maximal {-ideals is
dually isomorphic to the poset of closed cones in R*.
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We can extend this dual isomorphism to a dual equivalence of categories
between the category of semisimple Riesz spaces (¢-groups) and the
category of closed cones.

On objects:

Let A be a semisimple Riesz space (¢-group), then A= %, /J, where J is
an intersection of maximal /-ideals of .% . Then map

A V(J),

where V(J) is a closed cone in R”.

Let C be a closed cone in R®. Then map
C — PWL(C),

which is semisimple and isomorphic to .%, /I(C). (In the case of ¢-groups
map C to PWLz(C).)

11/49



On morphisms:
Let h: A— B be a Riesz space (¢-group) homomorphism with
A=, /Jaand B= %, /Jg. Then map
h fh,
with f,: V(Jg) — V(Ja) the piecewise linear map whose i" component is
given by h([a;]) € .7, /Jg where a; is the it" generator of .F .
Let f: C — D be a piecewise linear function (with integer coefficients)
between closed cones. Then map

f—)hf,

where hg: PWL(D) — PWL(C) is given by hs(g) = g o f (in the case of
(-groups we have hs: PWLz(D) — PWLz(C)).
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These functors yield the Baker-Beynon duality:

Theorem (Beynon 1974)
@ The category of semisimple Riesz spaces is dually equivalent to the
category of closed cones in R* and piecewise linear maps with real
coefficients.
@ The category of semisimple {-groups is dually equivalent to the
category of closed cones in R" and piecewise linear maps with integer
coefficients. )
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R (as a Riesz space) is dual to the semiline {x € R | x > 0}.

v
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R (as a Riesz space) is dual to the semiline {x € R | x > 0}.
Indeed, R =2 PWL({x € R | x > 0}).

v

14 /49



Fa2/{(x—y) Ay A0)isdual to {(x,y) €R? |0 <y <x}.
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Generalizing Baker-Beynon duality beyond semisimplicity
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In the definition of the operators

V(T)={x e R"| t(x) =0forall [t] € T} with T C %,
I(S) ={[t] € #« | t(x) =0 for all x € S} with S C R".

we can replace R with any Riesz space (¢-group) A and still get a Galois
connection.
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In the definition of the operators

V(T)={xe€ A" | t(x) =0forall [t] € T} with T C .7,
I(S) ={[t] € Z« | t(x) =0 for all x € S} with S C A".

we can replace R with any Riesz space (¢-group) A and still get a Galois
connection.

Caramello, Marra, and Spada (2021) observed that this can be done for
any variety of algebras by replacing R with any algebra in that variety.
They also show that this approach also works in a more categorical setting.

Our goal is to replace R with a Riesz space that guarantees more /-ideals
of .7 to be fixpoints of V. In this way we extend Baker-Beynon duality
beyond semisimple Riesz spaces and ¢-groups.
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It is not possible to obtain a Riesz space (¢-group) A such that for any x
the fixpoints of 1V are all the /-ideals of .% . This is a consequence of the
fact that there are subdirectly irreducible Riesz spaces (¢-groups) of
arbitrarily large cardinality.

However, if we fix a cardinal «, we will see that we can find A such that
for any k < « the fixpoints of 1V are all the ideals of % .

We will see how this yields a duality for all Riesz spaces (¢-groups) that
are k-generated (i.e. generated by a set of cardinality at most k) with
k < «. In particular, we obtain a duality for all finitely generated Riesz
spaces ((-groups) by taking a = w.
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We will replace maximal ¢-ideals with prime /-ideals.

Definition

An /l-ideal | is prime if aA b € [ impliesa€ [or b e |.

e A/l is linearly ordered iff | is prime.
o Every (-ideal is intersection of prime {-ideals.

o Every Riesz space ((-group) is subdirect product of linearly ordered
ones.

We fix a cardinal o and we look for a Riesz space (¢-group) A into which

all the k-generated with k < « linearly ordered Riesz spaces (¢-groups)
embed.
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Theorem (C., Lapenta, Spada)

Let a be a cardinal. There exists an ultrapower U of R in which all
k-generated (with k < «) linearly ordered Riesz spaces and (-groups
embed.

Proof sketch.

@ The theory of nontrivial linearly ordered Riesz spaces is complete. So,
each lin. ordered Riesz space A # 0 is elementarily equivalent to R.

@ Thus, for any cardinal 3 there is an ultrapower of R into which all the
linearly ordered Riesz spaces of cardinality less than 5 embed.

@ Since a Riesz space that is k-generated has cardinality at most
max(k, 2¥), it is sufficient to take § = max(a, 2*). O

For o = w we have can pick U as follows:

Proposition

Let U be any ultrapower of R over a nonprincipal ultrafilter of a countably
infinite set. Then every finitely generated linearly ordered Riesz space and
{-group embeds into U.

1840
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Fix a cardinal @ and U/ an ultrapower of R in which all k-generated with
k < «a linearly ordered Riesz spaces and /-groups embed. k will denote an
arbitrary cardinal smaller than «.
We consider the operators:
V(T)={x eU" | t(x) =0forall [t] € T} with T C .Z,
I(S) ={[t] € #« | t(x) =0 for all x € S} with S CU".

Galois connection

TCI(S) iff SCV(T).

o T =1V(T)iff T is an (-ideal of .Z,.
e We call S CU" such that S = VI(S) a generalized closed cone
(Z-generalized closed cone).

Proposition
The poset of (-ideals of .7, is dually isomorphic to the poset of
generalized closed cones (Z-generalized closed cones) in U".
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e We say that a map U" — U is definable (Z-definable) if its
components are defined by terms in the language of Riesz spaces
(¢-groups).

e If X CU", we denote by Def(X) and Defz(X) the sets of definable
maps and Z-definable maps f: X — U.

The functors A= .7, /J — V(J) and C — Def(C) = %, /1(C) induce:
Theorem (C., Lapenta, Spada)

@ The category of k-generated Riesz spaces (with k < «) is dually
equivalent to the category of generalized closed cones in U" (with
k < a) and definable maps.
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e We say that a map U" — U is definable (Z-definable) if its
components are defined by terms in the language of Riesz spaces
(¢-groups).

e If X CU", we denote by Def(X) and Defz(X) the sets of definable
maps and Z-definable maps f: X — U.

The functors A= .7, /J — V(J) and C — Defz(C) = .%,. /I(C) induce:

Theorem (C., Lapenta, Spada)

@ The category of k-generated Riesz spaces (with k < «) is dually
equivalent to the category of generalized closed cones in U" (with
k < a) and definable maps.

@ The category of k-generated (-groups (with k < ) is dually
equivalent to the category of Z-generalized closed cones in U" (with
Kk < «) and Z-definable maps.
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Consequences and applications of the duality
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Proposition

o The generalized closed cones in U" (together with &) form the closed
of a topology on U". The closure of a nonempty X C U" is V I(X).

@ R” js a subset of U™ and the closed subsets of R* with the subspace
topology are exactly the closed cones (and @ ).

We obtain the following correspondences:

7, S G
maximal f-ideals | half-lines closures of points of R”
from the origin | (except the origin)

intersections of | closed cones closures of nonempty

maximal /-ideals subsets of R”

prime {-ideals irreducible closed subsets
= closures of points of U"
(except the origin)

(-ideals generalized closed cones
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If Ais a Riesz space (¢-group), then Spec(A) = {prime (-ideals of A} is
called the spectrum of A and is naturally equipped with the Zariski
topology generated by the closed subsets {P € Spec(A) | a € P}, where a
ranges in A.

If Pis a prime (-ideal of .%,;, then V(P) is the closure of a point of ",
Choose one such point xp € U* for each P € Spec(.#,). Let

& Spec(F,.) — U" be defined by &(P) = xp.

Theorem (C., Lapenta, Spada)

e & is a topological embedding.
o &1 is a complete lattice isomorphism between Op(U*~ \ {O}) and
Op(Spec(Zx)).

The spectrum of each Riesz space (¢-group) is a generalized spectral
space, i.e. it is Tp, sober, the compact open subsets form a basis, and the
intersection of two compact opens is compact.

Theorem (C., Lapenta, Spada)
U\ {O} is a generalized spectral space.
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&: Spec(F,) — U" can be thought of as a coordinatization of
Spec(.# ) with coordinates in U.

By the correspondence theorem, if A= %, /J, then we can think of
Spec(A) as a subspace of Spec(.#,). So, & restricts to an embedding of
Spec(A) into U" whose image is &[Spec(.Z )] N V(J).

While the spectrum as a topological space is not sufficient to recover the
original Riesz space, the coordinatization is enough:

Theorem (C., Lapenta, Spada)
A = Def(&[Spec(A)]) for any Riesz space A.

An analogous result holds for ¢-groups.

In part Il we will see how &[Spec(.# )] looks like when & is finite.
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Recall that a Riesz space (¢-group) is semisimple if the intersection of all
its maximal (-ideals is {0}.

Theorem (C., Lapenta, Spada)

Let A be a Riesz space (¢-group) and C C U" its dual generalized closed
cone (Z-generalized closed cone).
A is semisimple iff C =V I(C NR¥), i.e. C is the closure of C NR" in U".

Note that C N R" is the closed cone in R* corresponding to A under
Baker-Beynon duality.
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Let A, B be two Riesz spaces (¢-groups) dual to the generalized closed
cones (Z-generalized closed cones) C C U" and D C U*.

@ The product A x B is dual to (C x {O}) U ({0} x D) CU~T+.
@ The coproduct A® B is dual to C x D C UXTH.

@ The lexicographic product RXB (Z?B in the case of (-groups) is
dual to

{(x,y) €U x D |0 < x, y/x has all infinitesimal coordinates} U {O}.
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Part |l

Using non-standard tools
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From now on we will assume a = w.

Let also assume that ¢/ is an ultrapower of R defined as ¢/ = RY/F with
F a nonprincipal ultrafilter of P(N).

We have seen that U induces dualities for finitely generated Riesz spaces

and /-groups.

@ The category of all finitely generated Riesz spaces is dually equivalent
to the category of generalized closed cones in U" (with n € N).

@ The category of all finitely generated ¢-groups is dually equivalent to
the category of 7.-generalized closed cones in U" (with n € N).
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It follows from Lo$'s theorem that the algebraic structure of R lifts to U:

Proposition

@ U is a linearly ordered field.

e U" is a U-vector space.

The elements of U are equivalence classes [(r;);en] of N-indexed sequences
(ri)ien of real numbers. Where

(ri)ien ~ (si)ien iff {ieN|r=s}¢c7.

We identify each r € R with [(rj)ien] € U such that r; = r for all i € N.

Proposition

@ R embeds into U as a sub-lattice-ordered field.

@ U" is an R-vector space containing R" as a vector subspace.

We will identify R and R” with their isomorphic copies in U and U".
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Some notions from non-standard analysis
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As it is common in non-standard analysis, we call the elements of U/
hyperreal numbers. Among the hyperreal numbers we have:
@ real numbers

[(1,1,1,...)], [(175175175)] (G

e infinitesimal numbers (absolute value smaller than any 0 < r € R)

)] (b)) [bd)]

@ unlimited numbers (absolute value greater than any r € R)

[(1,2,3,...)], [(1,22,32,...)], [(1,22,23,...)],...

@ limited numbers (not limited, i.e. between —r and r for some r € R)

et [0 2] (23 L))

The operations behave like the limits in analysis:
@ limited -+ limited = limited, unlimited + limited = unlimited, . ...

@ limited x limited = limited, unlimited x infinitesimal = 7, ....
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Definition
o If AC R”, its enlargement *A C U/" is defined as follows:

([(D), - [(M]) € *Aif and only if {i € N | (..., ) € A} € F.

o fACR" and f: A — R, then the enlargement *f: *A — U of f is
given by

e AC*A.
o If A is finite, then A = *A.

e If A is infinite, then *A must contain some elements of U" outside R".

For example, *N contains the unlimited element [(1,2,3,...)].
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Let .Z be a first-order language and (R, (P,), (f2))) an Z-structure,
where the P,'s and f,’s are the interpretations of the predicate and
function symbols of . in R. Then (U, (*Py), (*f»))) is also an
Z-structure.

Theorem (Transfer principle)

Let ¢ be a first-order .£-sentence. Then ¢ is true in (R, (Py), (f2)) if and
only ¢ is true in (U, (*Py), (*fa))-

In other words, a first-order condition holds in R iff the condition obtained
by replacing all the relations and functions with their enlargements holds
in U. (For simplicity of notation, we just write + instead of *+ and
similarly for the other lattice-ordered field operations.)

This allows to transfer first-order properties of functions and subsets from
R” to 4" and back.
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Let ST = {(x,y) € R? | x2 + y? = 1} be the unit circle in R2,
Since
Vx,y ((x,y) € St & x*> +y? =1)

is a first-order condition that holds in R, then
Vx,y ((x,y) € *(51) & X2 +y2 =1)

holds in U by transfer. So, "(S*) = {(x,y) € U? | x*> + y? = 1}.

It is easy to get a geometric intuition of the enlargements of subsets of R”
defined by first-order sentences.

st (sh)

R2 u2
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1 €
V1+e2/1+¢2

If 0 < e € U is infinitesimal, then x = (

) e (sh\ st
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1 €
V1+e2/1+¢2

If 0 < e € U is infinitesimal, then x = (

o
N

) e (sh\ st

2

N
v

33/49



1 €
V1+e2/1+¢2

If 0 < e € U is infinitesimal, then x = (

o
N

) e (sh\ st

~
juz
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1 €
V1+e2/1+¢2

7T
N

u2

If 0 < e € U is infinitesimal, then x = (

) e (sh\ st
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If f: R" — R is a function, then the graph of *f: U" — U is just the

enlargement of the graph of f.

R2

The enlargement of f can be used to compute limits. For example,

*f

u2

lim f(x) =0 < *f(x) infinitesimal for all x infinitesimal.

x—0
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Definable maps and piecewise linear functions
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Let g: U™ — U be definable, i.e. there is a term t such that g(x) = t(x)
for all x e U".

If f: R" — R is the piecewise linear function defined by the same term,
i.e. f(x) = t(x) for all x € R", then the transfer principle yields

Ux € R™(F(x) = t(x)) iff ¥x € U(*F(x) = t(x)).

Thus, g = *f, and so g is the enlargement of a piecewise linear function.

Proposition

Let C CU" be a generalized closed cone. Then
Def(C) = {(*f)|c | f: R" — R piecewise linear}.

fR2 SR < U2 U

Definable functions naturally generalize piecewise linear functions.
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Let RXR. Then its dual generalized closed cone is

C={(x,y) €eU?| x>0, y>0, and y/x is infinitesimal} U {(0,0)}.

So,

RXR = Def(C) = {("f)ic | f: R? — R piecewise linear}
={("fic | f: R? — R linear}.
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Indexes and irreducible closed subsets
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Recall from part | that f.g. linearly ordered Riesz spaces correspond to the
irreducible closed subsets of U", i.e. the closures of the points of I/".

We want to understand how these subsets of &/” look like (for simplicity
we only consider the case of Riesz spaces).

Theorem (Orthogonal decomposition)
If x eUU", then x = aiyvy + - - - + ag vk where aa,...,ax € U are positive,
ajt1/«; is infinitesimal for each i < k, and vq,...,vx € R" are
orthonormal vectors. Furthermore, this decomposition is unique.

Definition
@ We call a finite sequence (vi, ..., vk) of orthonormal vectors in R” an
index.
@ We denote by ¢(x) the index (vi, ..., vk) made of the vectors

appearing in the orthogonal decomposition of x € U".

@ Let v, w be two indexes. We write v < w when v is a truncation of w,
ie. v=(v1,...,vp) and w = (vq,...,v) for h < k.
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Definition
If v is an index, let Cone(v) =={y e U" | 1(y) < v}

Theorem (C., Lapenta, Spada)

The closure of x in U" is Cone(¢(x)).

The proof uses the fact that if f: R" — R is a linear function and x € U"
with ¢(x) = (v1,..., vk), then the sign of *f(x) is determined by the real
numbers f(v1), ..., f(vk).

If x € U", then

Def(Cone(i(x))) = {*f(x) €U | f: R" — R piecewise linear}
={"f(x)eU | f: R" — R linear}.
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Let x = (1,0) € U?. Then ¢(x) = (v1) with v; = (1,0). We have
y € Cone(e(x)) iff y=a31(1,0) with 0 < ag €U.

Thus, the closure of x in U? is {(a1,0) | 0 < a3 € U}, which is the
enlargement of the positive x-semiaxis.

v

u x=(1,0)

The dual Riesz space is R. Indeed,

Def(Cone(t(x))) = {*f(1,0) | f: R?> — R linear} = R.
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Let £ € U be a positive infinitesimal and x = (1,¢). Then
x = 1(1,0) + £(0,1)

is the orthogonal decomposition of x. Thus, ¢(x) = (v1, v2) with
vi =(1,0) and v, = (0,1). We have
y € Cone(u(x)) iff y=0, or

y = a1(1,0) (orthogonal decomposition), or

y = a1(1,0) + a2(0,1) (orthogonal decomposition)
Then Cone((x)), i.e. the closure of x in U? is

{(a1,2) €U?| a1 >0, ap > 0 and aa/ay is infinitesimal} U {O}.

o amaldx = (1,¢)

The dual Riesz space is R?R. Indeed,
Def(Cone(t(x))) = {*f(1,¢e) | f: R" — R linear}
—{at+becl|abeR} XRXR. w04



Theorem (C., Lapenta, Spada)

The mapping Cone: v — Cone(v) induces an order-isomorphism between
the set of indexes ordered by truncation and the set of irreducible closed
subsets of U" ordered by inclusion.

.

Corollary

| o Cone: v — I(Cone(v)) induces an order-isomorphism between the set of
nonempty indexes ordered by truncation and Spec(.%#,) ordered by reverse
inclusion.

v

That nonempty indexes correspond to prime ideals of .%,, was proved by
Panti (1999) using different techniques.
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Embedding Spec(.%,) into U"
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Recall from part |: if we choose for each irreducible closed subset
C CU"\ {0} a point x € U" such that C is the closure of x, then we can
define an embedding &: Spec(%#,) — U".

Indexes allow us to choose x for every C in a canonical way. Fix a positive
infinitesimal ¢ € U. If C = Cone(v) is an irreducible closed with
v =(vi,..., V), then we pick x € Cone(v) defined as

x:v1+€vz+-~~+€k*1vk.

Since v = ¢(x), we have that Cone(v) is the closure of x.

Therefore, we obtain an embedding &: Spec(.%#,) — U" that maps a
prime ideal P = I(Cone(v)) to the point v; +evp + - - - + kL.
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Spec(.#1)

We have &[Spec(.#1)] = {-1,1} CU.

Note that Spec(.#1) = MaxSpec(%1).
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Spec(.%>)

We have &[MaxSpec(.#5)] = St C R? C U2,

f;l
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Spec(.%>)

We have &[Spec(.#,)] C U? consists of points infinitesimally close to St.
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Spec(.%>)

We have &[Spec(.#,)] C U? consists of points infinitesimally close to St.
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Spec(.%>)

We have &[Spec(.#,)] C U? consists of points infinitesimally close to St.
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Spec(.%>)
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Spec(.#3)

We have &[MaxSpec(#3)] = S? C R3 C 5.
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Spec(.#3)

We have &[Spec(.#3)] C U3 consists of points infinitesimally close to S2.
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Bonus slides



Characterization of prime ideals in %,
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We have seen that | o Cone induces an order-isomorphism between indexes
and prime ideals of .% ,. Recall that .#, = PWL(R")

|(Cone(v)) correspond to the prime ideal of PWL(R") given by

{f € PWL(R") | *f vanishes on Cone(v)}.

Is there a way to avoid mentioning the enlargement?

Definition
Let v=(w1,..., vk) be an index. We say that a closed cone C C R" is a
v-cone if there exist real numbers 0 < ry, ..., r € R such that C is the

positive span of

{nvi, nvi+nw, ... nvi+-+nowd

Theorem (C., Lapenta, Spada)

Cone(v) is the intersection of the enlargements of all v-cones.
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Let v = (v1, v2) with vy = (1,0) and v» = (0, 1).
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Let v = (v1, v2) with vi = (1,0) and v» = (0, 1).

RZ
N{C | Cis a v-cone} is the positive x-semiaxis.
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Let v = (v1, v2) with vy = (1,0) and v» = (0, 1).

u2
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Let v = (v1, v2) with vy = (1,0) and v» = (0, 1).

u2
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Let v = (v1, v2) with vi = (1,0) and v» = (0, 1).
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Let v = (v1, v2) with vi = (1,0) and v» = (0, 1).

u2
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Let v = (v1, v2) with vi = (1,0) and v» = (0, 1).

{*C | Cis a v-cone} = Cone(v).
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Theorem (C., Lapenta, Spada)

*f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.

@ By transfer, if f vanishes on a v-cone C, then *f vanishes on *C. So,
*f vanishes on Cone(v) because Cone(v) C *C.
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Theorem (C., Lapenta, Spada)

*f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.

@ By transfer, if f vanishes on a v-cone C, then *f vanishes on *C. So,
*f vanishes on Cone(v) because Cone(v) C *C.

o If *f vanishes on Cone(v), then there are 0 < a,...,ax € U such
that the positive span S of {agv1, ..., a1vi + -+ + agwk}, is
contained in Cone(v).
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Theorem (C., Lapenta, Spada)

*f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.

@ By transfer, if f vanishes on a v-cone C, then *f vanishes on *C. So,
*f vanishes on Cone(v) because Cone(v) C *C.

o If *f vanishes on Cone(v), then there are 0 < a,...,ax € U such
that the positive span S of {agv1, ..., a1vi + -+ + agwk}, is
contained in Cone(v).

@ Thus, *f vanishes on S. By the transfer principle, there are
0< rn,...,r € R such that f vanishes on the positive span of
{nwv1, ..., nvi +--- 4 revg}, which is a v-cone.

Ol

We obtain the characterization of prime ideals of .% , due to Panti (1999).

|(Cone(v)) = {f € PWL(R") | f vanishes on a v-cone}.
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Additional slides



Let a < 2% be a cardinal. There exists an ultrapower U of R such that
every linearly ordered Riesz space an {-groups of cardinality less than «
embeds U.

@ All nontrivial linearly ordered Riesz spaces are elementarily equivalent:

their theory has quantifier elimination, and hence it is model
complete. Since R embeds into every non-trivial Riesz space, the

theory of linearly ordered Riesz Spaces is complete because it is model

complete and has an algebraically prime model.

@ By a model-theoretic fact any a-regular ultrapower I/ of R is such

that all linearly ordered groups of cardinality less or equal to ac embed

into U.

@ Since a < 2% (the cardinality of the language of Riesz spaces),

another model theoretic fact tells us that every ¢-group of cardinality

less than o embeds into /.

O
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Definition (Panti (1999))
@ We call a subspace of R” rational if it admits a basis made of vectors
from Q".
e If S CR”, then its rational envelope (S) denotes the smallest rational
subspace of R" containing S
o We say that an index v = (vi,..., vk) is Z-reduced if v; € (v;)* for
any i # j.

Given an index v there is a canonical way to associate a Z-reduced index
red(v).

Theorem (C., Lapenta, Spada)
@ The closure of x in U" with the topology of the Z-generalized closed
cones is | J{Cone(v) | red(v) < red(c(x))}.
@ There is an order isomorphism between Z-reduced indexes and
irreducible closed subsets of U" with the topology of the
Z-generalized closed cones.
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Definition
Let A be a Riesz space (¢-group) and 0 < a € A.

@ ais a strong order-unit if for each b € A there exists n € N such that
b < na.

@ ais a weak order-unit of A if aA |b| = 0 implies b =0 for each b € A.

Let A be a nontrivial Riesz space (¢-group) and C C U" its dual
generalized closed cone (Z-generalized closed cone).

@ A has a strong order-unit iff C \ {O} is compact.

@ A has a weak order-unit iff C \ {O} contains a dense compact open
subset.
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For any natural number n let 7,: ¥ — U™+ be the map that sends
(Xi)iew to (Xo,Xl, - ,X,,).

Theorem (C., Lapenta, Spada)

Let A be an w-generated Riesz space ((-group) and C C UY its dual
generalized closed cone (Z-generalized closed cone).
Then A is archimedean iff

€= () 7 VIV I(malCT) N R4,
n=0

where the subsets 7, [V I(V I(7,[C]) NR™1)] form a decreasing sequence
of generalized closed cones in U“.

When x > w, the decreasing sequence is substituted by a downdirected
family of generalized closed cones in U/*.
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