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Part I
A generalization of Baker-Beynon duality



Baker-Beynon duality



Definition
An (abelian) ℓ-group is an abelian group A equipped with a lattice
order such that a ≤ b implies a + c ≤ b + c for every a, b, c ∈ A.
A Riesz space V is an R-vector space equipped with a lattice order
such that it is an ℓ-group and 0 ≤ r and 0 ≤ v imply rv ≥ 0 for each
r ∈ R and v ∈ V .

ℓ-groups and Riesz spaces can be axiomatized by equations, and so they
form varieties.

Definition
A map between ℓ-groups is an ℓ-group homomorphism if it is a group
and a lattice homomorphism.
An ℓ-group homomorphism between Riesz spaces is a Riesz space
homomorphism if it is a linear map.
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Examples of Riesz spaces
R
RX for a set X
R−→×R (lexicographic product)
C(X ,R) for a topological space X
Lp(Rn)

Examples of ℓ-groups
All the examples above
Z
ZX for a set X
Z−→×Z
Q
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Definition
A continuous function f : Rκ → R is piecewise linear (homogeneous)
if there exist g1, . . . , gn : Rκ → R linear homogeneous functions (each
in finitely many variables) such that for each x ∈ Rκ we have
f (x) = gi (x) for some i = 1, . . . , n.
We say that a piecewise linear function f has integer coefficients, if it
is defined by g1, . . . , gn with integer coefficients.
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We denote by
PWL(Rκ) the Riesz space of piecewise linear functions f : Rκ → R;
PWLZ(Rκ) the ℓ-group of piecewise linear functions f : Rκ → R with
integer coefficients.

Theorem (Baker 1968)
Let κ be a cardinal number.

The free Riesz space on κ generators is isomorphic to PWL(Rκ).
The free ℓ-group on κ generators is isomorphic to PWLZ(Rκ).

The element [t] of the free algebra correspond to the piecewise linear
function that maps x ∈ Rκ to t(x) ∈ R.
The free generators of the free algebra correspond to the projections
maps onto each coordinate.
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If X ⊆ Rκ, we denote
PWL(X ) = {f |X with f ∈ PWL(Rκ)},
PWLZ(X ) = {f |X with f ∈ PWLZ(Rκ)}.

Which Riesz spaces (ℓ-groups) are isomorphic to PWL(X ) (PWLZ(X )) for
some X ⊆ Rκ?
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Congruences in ℓ-groups and Riesz spaces correspond to ℓ-ideals.

Definition
An ℓ-ideal in a Riesz space (ℓ-group) is a subgroup I that is convex, i.e.
|a| ≤ |b| and b ∈ I imply a ∈ I.

ℓ-ideals in Riesz spaces are automatically vector subspaces.

Definition
A proper ℓ-ideal is called maximal if it is maximal wrt inclusion.
A nontrivial Riesz space (ℓ-group) A is simple if {0} and A are the
only ℓ-ideals of A.
A Riesz space (ℓ-group) is semisimple if the intersection of all its
maximal ℓ-ideals is {0}.
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Proposition
An ℓ-group is simple iff it embeds into R.
A Riesz space is simple iff it is isomorphic to R.
An ℓ-group or Riesz space is semisimple iff it can be embedded into a
power of R.

Examples
R−→×R and Z−→×Z with the lexicographic order are not semisimple (and
hence not simple).
R is simple as a ℓ-group and as a Riesz space.
Z and Q are simple ℓ-groups.
C(X ,R) is semisimple for any topological space X .
PWL(X ) and PWLZ(X ) are semisimple for any X ⊆ Rκ.
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Theorem (Baker 1968)
Every semisimple Riesz space is isomorphic to PWL(X ) for some
X ⊆ Rκ.
Every semisimple ℓ-group is isomorphic to PWLZ(X ) for some
X ⊆ Rκ.

Definition
A nonempty subset C ⊆ Rκ is a closed cone if it is closed under
multiplication by nonnegative scalars and it is closed in Rκ with the
euclidean topology.

This representation result extends to Baker-Beynon duality.

8 / 49



Theorem (Baker 1968)
Every semisimple Riesz space is isomorphic to PWL(C) for some
closed cone C ⊆ Rκ.
Every semisimple ℓ-group is isomorphic to PWLZ(C) for some closed
cone C ⊆ Rκ.

Definition
A nonempty subset C ⊆ Rκ is a closed cone if it is closed under
multiplication by nonnegative scalars and it is closed in Rκ with the
euclidean topology.

This representation result extends to Baker-Beynon duality.

8 / 49



Let F κ be the free Riesz space (ℓ-group) over κ generators.
For any T ⊆ F κ and S ⊆ Rκ, we define the following operators.

V(T ) ={x ∈ Rκ | t(x) = 0 for all [t] ∈ T}
I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S}.

Galois connection

T ⊆ I (S) iff S ⊆ V (T ) .

V(T ) is always a closed cone of Rκ.
I(S) is always an ℓ-ideal of F κ.
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What are the fixpoints of the Galois connection?

S = V I(S) iff S is a closed cone in Rκ.

S is a fixpoint iff S = V(T ) for some T ⊆ F κ
∼= PWL(Rκ). It can be

shown that closed cones are exactly the vanishing sets of families of
piecewise linear functions (with integer coefficients) on Rκ.

T = I V(T ) iff T is a ℓ-ideal of F κ that is intersection of maximal ℓ-ideals.

T is a fixpoint iff T = I(S) for some S ⊆ Rκ iff T =
⋂

{I(x) | x ∈ S}. The
proper ℓ-ideals of the form I(x) for some x ∈ Rκ are exactly the maximal
ideals of F κ (follows from the characterization of simple algebras).

Proposition
The poset of ℓ-ideals of F κ that are intersections of maximal ℓ-ideals is
dually isomorphic to the poset of closed cones in Rκ.
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We can extend this dual isomorphism to a dual equivalence of categories
between the category of semisimple Riesz spaces (ℓ-groups) and the
category of closed cones.

On objects:

Let A be a semisimple Riesz space (ℓ-group), then A ∼= F κ /J , where J is
an intersection of maximal ℓ-ideals of F κ. Then map

A 7→ V(J),

where V(J) is a closed cone in Rκ.

Let C be a closed cone in Rκ. Then map

C 7→ PWL(C),

which is semisimple and isomorphic to F κ / I(C). (In the case of ℓ-groups
map C to PWLZ(C).)
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On morphisms:

Let h : A → B be a Riesz space (ℓ-group) homomorphism with
A ∼= F κ /JA and B ∼= F µ /JB. Then map

h 7→ fh,

with fh : V(JB) → V(JA) the piecewise linear map whose i th component is
given by h([ai ]) ∈ F µ /JB where ai is the i th generator of F κ.

Let f : C → D be a piecewise linear function (with integer coefficients)
between closed cones. Then map

f → hf ,

where hf : PWL(D) → PWL(C) is given by hf (g) = g ◦ f (in the case of
ℓ-groups we have hf : PWLZ(D) → PWLZ(C)).
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These functors yield the Baker-Beynon duality:

Theorem (Beynon 1974)
The category of semisimple Riesz spaces is dually equivalent to the
category of closed cones in Rκ and piecewise linear maps with real
coefficients.
The category of semisimple ℓ-groups is dually equivalent to the
category of closed cones in Rκ and piecewise linear maps with integer
coefficients.
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R (as a Riesz space) is dual to the semiline {x ∈ R | x ≥ 0}.

Indeed, R ∼= PWL({x ∈ R | x ≥ 0}).

0
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F 2 /⟨(x − y) ∧ y ∧ 0⟩ is dual to {(x , y) ∈ R2 | 0 ≤ y ≤ x}.
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Generalizing Baker-Beynon duality beyond semisimplicity
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In the definition of the operators

V(T ) ={x ∈ Rκ | t(x) = 0 for all [t] ∈ T} with T ⊆ F κ

I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S} with S ⊆ Rκ.

we can replace R with any Riesz space (ℓ-group) A and still get a Galois
connection.

Caramello, Marra, and Spada (2021) observed that this can be done for
any variety of algebras by replacing R with any algebra in that variety.
They also show that this approach also works in a more categorical setting.

Our goal is to replace R with a Riesz space that guarantees more ℓ-ideals
of F κ to be fixpoints of I V. In this way we extend Baker-Beynon duality
beyond semisimple Riesz spaces and ℓ-groups.
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It is not possible to obtain a Riesz space (ℓ-group) A such that for any κ
the fixpoints of I V are all the ℓ-ideals of F κ. This is a consequence of the
fact that there are subdirectly irreducible Riesz spaces (ℓ-groups) of
arbitrarily large cardinality.

However, if we fix a cardinal α, we will see that we can find A such that
for any κ < α the fixpoints of I V are all the ideals of F κ.

We will see how this yields a duality for all Riesz spaces (ℓ-groups) that
are κ-generated (i.e. generated by a set of cardinality at most κ) with
κ < α. In particular, we obtain a duality for all finitely generated Riesz
spaces (ℓ-groups) by taking α = ω.
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We will replace maximal ℓ-ideals with prime ℓ-ideals.

Definition
An ℓ-ideal I is prime if a ∧ b ∈ I implies a ∈ I or b ∈ I.

Theorem
A/I is linearly ordered iff I is prime.
Every ℓ-ideal is intersection of prime ℓ-ideals.
Every Riesz space (ℓ-group) is subdirect product of linearly ordered
ones.

We fix a cardinal α and we look for a Riesz space (ℓ-group) A into which
all the κ-generated with κ < α linearly ordered Riesz spaces (ℓ-groups)
embed.
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Theorem (C., Lapenta, Spada)
Let α be a cardinal. There exists an ultrapower U of R in which all
κ-generated (with κ < α) linearly ordered Riesz spaces and ℓ-groups
embed.

Proof sketch.
The theory of nontrivial linearly ordered Riesz spaces is complete. So,
each lin. ordered Riesz space A ̸= 0 is elementarily equivalent to R.
Thus, for any cardinal β there is an ultrapower of R into which all the
linearly ordered Riesz spaces of cardinality less than β embed.
Since a Riesz space that is κ-generated has cardinality at most
max(κ, 2ω), it is sufficient to take β = max(α, 2ω).

For α = ω we have can pick U as follows:

Proposition
Let U be any ultrapower of R over a nonprincipal ultrafilter of a countably
infinite set. Then every finitely generated linearly ordered Riesz space and
ℓ-group embeds into U .
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Fix a cardinal α and U an ultrapower of R in which all κ-generated with
κ < α linearly ordered Riesz spaces and ℓ-groups embed. κ will denote an
arbitrary cardinal smaller than α.
We consider the operators:

V(T ) ={x ∈ Uκ | t(x) = 0 for all [t] ∈ T} with T ⊆ F κ

I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S} with S ⊆ Uκ.

Galois connection

T ⊆ I (S) iff S ⊆ V (T ) .

T = I V(T ) iff T is an ℓ-ideal of F κ.
We call S ⊆ Uκ such that S = V I(S) a generalized closed cone
(Z-generalized closed cone).

Proposition
The poset of ℓ-ideals of F κ is dually isomorphic to the poset of
generalized closed cones (Z-generalized closed cones) in Uκ.
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Definition
We say that a map Uκ → Uµ is definable (Z-definable) if its
components are defined by terms in the language of Riesz spaces
(ℓ-groups).
If X ⊆ Uκ, we denote by Def(X ) and DefZ(X ) the sets of definable
maps and Z-definable maps f : X → U .

The functors A ∼= F κ /J 7→ V(J) and C 7→ Def(C) ∼= F κ / I(C) induce:

Theorem (C., Lapenta, Spada)
The category of κ-generated Riesz spaces (with κ < α) is dually
equivalent to the category of generalized closed cones in Uκ (with
κ < α) and definable maps.

The category of κ-generated ℓ-groups (with κ < α) is dually
equivalent to the category of Z-generalized closed cones in Uκ (with
κ < α) and Z-definable maps.
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Consequences and applications of the duality
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Proposition
The generalized closed cones in Uκ (together with ∅) form the closed
of a topology on Uκ. The closure of a nonempty X ⊆ Uκ is V I(X ).
Rκ is a subset of Uκ and the closed subsets of Rκ with the subspace
topology are exactly the closed cones (and ∅).

We obtain the following correspondences:

F κ Rκ Uκ

maximal ℓ-ideals half-lines closures of points of Rκ

from the origin (except the origin)
intersections of closed cones closures of nonempty
maximal ℓ-ideals subsets of Rκ

prime ℓ-ideals irreducible closed subsets
= closures of points of Uκ

(except the origin)
ℓ-ideals generalized closed cones
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If A is a Riesz space (ℓ-group), then Spec(A) = {prime ℓ-ideals of A} is
called the spectrum of A and is naturally equipped with the Zariski
topology generated by the closed subsets {P ∈ Spec(A) | a ∈ P}, where a
ranges in A.
If P is a prime ℓ-ideal of F κ, then V(P) is the closure of a point of Uκ.
Choose one such point xP ∈ Uκ for each P ∈ Spec(F κ). Let
E : Spec(F κ) → Uκ be defined by E (P) = xP .

Theorem (C., Lapenta, Spada)
E is a topological embedding.
E −1 is a complete lattice isomorphism between Op(Uκ \ {O}) and
Op(Spec(F κ)).

The spectrum of each Riesz space (ℓ-group) is a generalized spectral
space, i.e. it is T0, sober, the compact open subsets form a basis, and the
intersection of two compact opens is compact.

Theorem (C., Lapenta, Spada)
Uκ \ {O} is a generalized spectral space.
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E : Spec(F κ) → Uκ can be thought of as a coordinatization of
Spec(F κ) with coordinates in U .

By the correspondence theorem, if A ∼= F κ /J , then we can think of
Spec(A) as a subspace of Spec(F κ). So, E restricts to an embedding of
Spec(A) into Uκ whose image is E [Spec(F κ)] ∩ V(J).

While the spectrum as a topological space is not sufficient to recover the
original Riesz space, the coordinatization is enough:

Theorem (C., Lapenta, Spada)
A ∼= Def(E [Spec(A)]) for any Riesz space A.

An analogous result holds for ℓ-groups.

In part II we will see how E [Spec(F κ)] looks like when κ is finite.
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Recall that a Riesz space (ℓ-group) is semisimple if the intersection of all
its maximal ℓ-ideals is {0}.

Theorem (C., Lapenta, Spada)
Let A be a Riesz space (ℓ-group) and C ⊆ Uκ its dual generalized closed
cone (Z-generalized closed cone).
A is semisimple iff C = V I(C ∩ Rκ), i.e. C is the closure of C ∩ Rκ in Uκ.

Note that C ∩ Rκ is the closed cone in Rκ corresponding to A under
Baker-Beynon duality.
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Let A, B be two Riesz spaces (ℓ-groups) dual to the generalized closed
cones (Z-generalized closed cones) C ⊆ Uκ and D ⊆ Uµ.

Theorem
The product A × B is dual to (C × {O}) ∪ ({O} × D) ⊆ Uκ+µ.
The coproduct A ⊕ B is dual to C × D ⊆ Uκ+µ.
The lexicographic product R−→×B (Z−→×B in the case of ℓ-groups) is
dual to

{(x , y) ∈ U × D | 0 < x , y/x has all infinitesimal coordinates} ∪ {O}.
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Part II
Using non-standard tools
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From now on we will assume α = ω.

Let also assume that U is an ultrapower of R defined as U = RN/F with
F a nonprincipal ultrafilter of P(N).

We have seen that U induces dualities for finitely generated Riesz spaces
and ℓ-groups.

Theorem
The category of all finitely generated Riesz spaces is dually equivalent
to the category of generalized closed cones in Un (with n ∈ N).
The category of all finitely generated ℓ-groups is dually equivalent to
the category of Z-generalized closed cones in Un (with n ∈ N).
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It follows from  Loś’s theorem that the algebraic structure of R lifts to U :

Proposition
U is a linearly ordered field.
Un is a U-vector space.

The elements of U are equivalence classes [(ri )i∈N] of N-indexed sequences
(ri )i∈N of real numbers. Where

(ri )i∈N ∼ (si )i∈N iff {i ∈ N | ri = si} ∈ F .

We identify each r ∈ R with [(ri )i∈N] ∈ U such that ri = r for all i ∈ N.

Proposition
R embeds into U as a sub-lattice-ordered field.
Un is an R-vector space containing Rn as a vector subspace.

We will identify R and Rn with their isomorphic copies in U and Un.
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Some notions from non-standard analysis
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As it is common in non-standard analysis, we call the elements of U
hyperreal numbers. Among the hyperreal numbers we have:

real numbers

[(1, 1, 1, . . . )] ,

[(15
7 ,

15
7 ,

15
7 , . . .

)]
, [(π, π, π, . . . )] , . . .

infinitesimal numbers (absolute value smaller than any 0 < r ∈ R)[(
1,

1
2 ,

1
3 , . . .

)]
,

[(
1,

1
22 ,

1
32 , . . .

)]
,

[(
1,

1
22 ,

1
23 , . . .

)]
, . . .

unlimited numbers (absolute value greater than any r ∈ R)

[(1, 2, 3, . . . )] ,
[(

1, 22, 32, . . .
)]

,
[(

1, 22, 23, . . .
)]

, . . .

limited numbers (not limited, i.e. between −r and r for some r ∈ R)

[(1, 1, 1, . . . )] ,

[(
1,

1
2 ,

1
3 , . . .

)]
,

[(1
2 ,

2
3 ,

3
4 , . . . , 1 − 1

n , . . .

)]
, . . .

The operations behave like the limits in analysis:
limited + limited = limited, unlimited + limited = unlimited, . . . .
limited × limited = limited, unlimited × infinitesimal = ?, . . . .
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Definition
If A ⊆ Rn, its enlargement ∗A ⊆ Un is defined as follows:(

[(r1
i )], . . . , [(rn

i )]
)

∈ ∗A if and only if {i ∈ N | (r1
i , . . . , rn

i ) ∈ A} ∈ F .

If A ⊆ Rn and f : A → R, then the enlargement ∗f : ∗A → U of f is
given by

∗f ([(r1
i )], . . . , [(rn

i )]) := [(f (r1
i , . . . , rn

i ))].

Proposition
A ⊆ ∗A.
If A is finite, then A = ∗A.
If A is infinite, then ∗A must contain some elements of Un outside Rn.

For example, ∗N contains the unlimited element [(1, 2, 3, . . . )].
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Let L be a first-order language and (R, (Pα), (fα))) an L -structure,
where the Pα’s and fα’s are the interpretations of the predicate and
function symbols of L in R. Then (U , (∗Pα), (∗fα))) is also an
L -structure.

Theorem (Transfer principle)
Let φ be a first-order L -sentence. Then φ is true in (R, (Pα), (fα)) if and
only φ is true in (U , (∗Pα), (∗fα)).

In other words, a first-order condition holds in R iff the condition obtained
by replacing all the relations and functions with their enlargements holds
in U . (For simplicity of notation, we just write + instead of ∗+ and
similarly for the other lattice-ordered field operations.)

This allows to transfer first-order properties of functions and subsets from
Rn to Un and back.
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Let S1 = {(x , y) ∈ R2 | x2 + y2 = 1} be the unit circle in R2.
Since

∀x , y ((x , y) ∈ S1 ⇔ x2 + y2 = 1)

is a first-order condition that holds in R, then

∀x , y ((x , y) ∈ ∗(S1) ⇔ x2 + y2 = 1)

holds in U by transfer. So, ∗(S1) = {(x , y) ∈ U2 | x2 + y2 = 1}.

It is easy to get a geometric intuition of the enlargements of subsets of Rn

defined by first-order sentences.

S1

R2

∗(S1)

U2
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If 0 < ε ∈ U is infinitesimal, then x =
( 1√

1 + ε2
,

ε√
1 + ε2

)
∈ ∗(S1) \ S1.

∗(S1)

U2

x
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If 0 < ε ∈ U is infinitesimal, then x =
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ε√
1 + ε2

)
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U2

x

33 / 49



If 0 < ε ∈ U is infinitesimal, then x =
( 1√

1 + ε2
,

ε√
1 + ε2

)
∈ ∗(S1) \ S1.

∗(S1)

U2

x

33 / 49



If 0 < ε ∈ U is infinitesimal, then x =
( 1√

1 + ε2
,

ε√
1 + ε2

)
∈ ∗(S1) \ S1.

∗(S1)

U2

x

33 / 49



If f : Rn → R is a function, then the graph of ∗f : Un → U is just the
enlargement of the graph of f .

R2

f

U2

∗f

The enlargement of f can be used to compute limits. For example,

lim
x→0

f (x) = 0 ⇔ ∗f (x) infinitesimal for all x infinitesimal.
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Definable maps and piecewise linear functions

34 / 49



Let g : Un → U be definable, i.e. there is a term t such that g(x) = t(x)
for all x ∈ Un.
If f : Rn → R is the piecewise linear function defined by the same term,
i.e. f (x) = t(x) for all x ∈ Rn, then the transfer principle yields

∀x ∈ Rn(f (x) = t(x)) iff ∀x ∈ Un(∗f (x) = t(x)).
Thus, g = ∗f , and so g is the enlargement of a piecewise linear function.

Proposition
Let C ⊆ Un be a generalized closed cone. Then
Def(C) = {(∗f )|C | f : Rn → R piecewise linear}.

f : R2 → R ∗f : U2 → U
Definable functions naturally generalize piecewise linear functions.
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Let R−→×R. Then its dual generalized closed cone is

C = {(x , y) ∈ U2 | x > 0, y ≥ 0, and y/x is infinitesimal} ∪ {(0, 0)}.

So,

R−→×R ∼= Def(C) = {(∗f )|C | f : R2 → R piecewise linear}
= {(∗f )|C | f : R2 → R linear}.
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Indexes and irreducible closed subsets
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Recall from part I that f.g. linearly ordered Riesz spaces correspond to the
irreducible closed subsets of Un, i.e. the closures of the points of Un.

We want to understand how these subsets of Un look like (for simplicity
we only consider the case of Riesz spaces).

Theorem (Orthogonal decomposition)
If x ∈ Un, then x = α1v1 + · · · + αkvk where α1, . . . , αk ∈ U are positive,
αi+1/αi is infinitesimal for each i < k, and v1, . . . , vk ∈ Rn are
orthonormal vectors. Furthermore, this decomposition is unique.

Definition
We call a finite sequence (v1, . . . , vk) of orthonormal vectors in Rn an
index.
We denote by ι(x) the index (v1, . . . , vk) made of the vectors
appearing in the orthogonal decomposition of x ∈ Un.
Let v, w be two indexes. We write v ≤ w when v is a truncation of w,
i.e. v = (v1, . . . , vh) and w = (v1, . . . , vk) for h ≤ k.
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Definition
If v is an index, let Cone(v) := {y ∈ Un | ι(y) ≤ v}

Theorem (C., Lapenta, Spada)
The closure of x in Un is Cone(ι(x)).

The proof uses the fact that if f : Rn → R is a linear function and x ∈ Un

with ι(x) = (v1, . . . , vk), then the sign of ∗f (x) is determined by the real
numbers f (v1), . . . , f (vk).

Corollary
If x ∈ Un, then

Def(Cone(ι(x))) ∼= {∗f (x) ∈ U | f : Rn → R piecewise linear}
= {∗f (x) ∈ U | f : Rn → R linear}.
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Let x = (1, 0) ∈ U2. Then ι(x) = (v1) with v1 = (1, 0). We have

y ∈ Cone(ι(x)) iff y = α1(1, 0) with 0 ≤ α1 ∈ U .

Thus, the closure of x in U2 is {(α1, 0) | 0 ≤ α1 ∈ U}, which is the
enlargement of the positive x -semiaxis.

x = (1, 0)U2

The dual Riesz space is R. Indeed,

Def(Cone(ι(x))) ∼= {∗f (1, 0) | f : R2 → R linear} ∼= R.
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Let ε ∈ U be a positive infinitesimal and x = (1, ε). Then
x = 1(1, 0) + ε(0, 1)

is the orthogonal decomposition of x . Thus, ι(x) = (v1, v2) with
v1 = (1, 0) and v2 = (0, 1). We have
y ∈ Cone(ι(x)) iff y = O, or

y = α1(1, 0) (orthogonal decomposition), or
y = α1(1, 0) + α2(0, 1) (orthogonal decomposition)

Then Cone(ι(x)), i.e. the closure of x in U2 is
{(α1, α2) ∈ U2 | α1 > 0, α2 ≥ 0 and α2/α1 is infinitesimal} ∪ {O}.

x = (1, ε)

The dual Riesz space is R−→×R. Indeed,
Def(Cone(ι(x))) ∼= {∗f (1, ε) | f : Rn → R linear}

= {a + bε ∈ U | a, b ∈ R} ∼= R−→×R. 40 / 49



Theorem (C., Lapenta, Spada)
The mapping Cone: v 7→ Cone(v) induces an order-isomorphism between
the set of indexes ordered by truncation and the set of irreducible closed
subsets of Un ordered by inclusion.

Corollary
I ◦ Cone: v 7→ I(Cone(v)) induces an order-isomorphism between the set of
nonempty indexes ordered by truncation and Spec(F n) ordered by reverse
inclusion.

That nonempty indexes correspond to prime ideals of F n was proved by
Panti (1999) using different techniques.
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Embedding Spec(F n) into Un
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Recall from part I: if we choose for each irreducible closed subset
C ⊆ Un \ {O} a point x ∈ Un such that C is the closure of x , then we can
define an embedding E : Spec(F n) → Un.

Indexes allow us to choose x for every C in a canonical way. Fix a positive
infinitesimal ε ∈ U . If C = Cone(v) is an irreducible closed with
v = (v1, . . . , vk), then we pick x ∈ Cone(v) defined as

x = v1 + εv2 + · · · + εk−1vk .

Since v = ι(x), we have that Cone(v) is the closure of x .

Therefore, we obtain an embedding E : Spec(F n) → Un that maps a
prime ideal P = I(Cone(v)) to the point v1 + εv2 + · · · + εk−1vk .

42 / 49



Spec(F 1)

We have E [Spec(F 1)] = {−1, 1} ⊆ U .

−1 1

Note that Spec(F 1) = MaxSpec(F 1).
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Spec(F 2)

We have E [MaxSpec(F 2)] = S1 ⊆ R2 ⊆ U2.
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Spec(F 2)

We have E [Spec(F 2)] ⊆ U2 consists of points infinitesimally close to S1.
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Spec(F 2)
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Spec(F 2)
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Spec(F 2)
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Spec(F 3)

We have E [MaxSpec(F 3)] = S2 ⊆ R3 ⊆ U3.

S2

ε
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Spec(F 3)

We have E [Spec(F 3)] ⊆ U3 consists of points infinitesimally close to S2.
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Spec(F 3)
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Spec(F 3)

We have E [Spec(F 3)] ⊆ U3 consists of points infinitesimally close to S2.
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Bonus slides



Characterization of prime ideals in F n
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We have seen that I ◦ Cone induces an order-isomorphism between indexes
and prime ideals of F n. Recall that F n ∼= PWL(Rn)

I(Cone(v)) correspond to the prime ideal of PWL(Rn) given by

{f ∈ PWL(Rn) | ∗f vanishes on Cone(v)}.

Is there a way to avoid mentioning the enlargement?

Definition
Let v = (v1, . . . , vk) be an index. We say that a closed cone C ⊆ Rn is a
v-cone if there exist real numbers 0 < r1, . . . , rk ∈ R such that C is the
positive span of

{r1v1, r1v1 + r2v2, . . . r1v1 + · · · + rkvk}.

Theorem (C., Lapenta, Spada)
Cone(v) is the intersection of the enlargements of all v-cones.
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)

R2

U2
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)

R2

U2
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)

R2

U2
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)

R2

U2

⋂
{C | C is a v-cone} is the positive x -semiaxis.
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)
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U2
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)
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U2

47 / 49



Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)

R2

U2
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Let v = (v1, v2) with v1 = (1, 0) and v2 = (0, 1).

Cone(v)

R2

U2

⋂
{∗C | C is a v-cone} = Cone(v).
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Theorem (C., Lapenta, Spada)
∗f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.
By transfer, if f vanishes on a v-cone C , then ∗f vanishes on ∗C . So,
∗f vanishes on Cone(v) because Cone(v) ⊆ ∗C .

If ∗f vanishes on Cone(v), then there are 0 < α1, . . . , αk ∈ U such
that the positive span S of {α1v1, . . . , α1v1 + · · · + αkvk}, is
contained in Cone(v).
Thus, ∗f vanishes on S. By the transfer principle, there are
0 < r1, . . . , rk ∈ R such that f vanishes on the positive span of
{r1v1, . . . , r1v1 + · · · + rkvk}, which is a v-cone.

We obtain the characterization of prime ideals of F n due to Panti (1999).

Corollary
I(Cone(v)) = {f ∈ PWL(Rn) | f vanishes on a v-cone}.
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Additional slides



Theorem
Let α ≤ 2ω be a cardinal. There exists an ultrapower U of R such that
every linearly ordered Riesz space an ℓ-groups of cardinality less than α
embeds U .

Proof.
All nontrivial linearly ordered Riesz spaces are elementarily equivalent:
their theory has quantifier elimination, and hence it is model
complete. Since R embeds into every non-trivial Riesz space, the
theory of linearly ordered Riesz Spaces is complete because it is model
complete and has an algebraically prime model.
By a model-theoretic fact any α-regular ultrapower U of R is such
that all linearly ordered groups of cardinality less or equal to α embed
into U .
Since α ≤ 2ω (the cardinality of the language of Riesz spaces),
another model theoretic fact tells us that every ℓ-group of cardinality
less than α embeds into U .
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Definition (Panti (1999))
We call a subspace of Rn rational if it admits a basis made of vectors
from Qn.
If S ⊆ Rn, then its rational envelope ⟨S⟩ denotes the smallest rational
subspace of Rn containing S
We say that an index v = (v1, . . . , vk) is Z-reduced if vi ∈ ⟨vj⟩⊥ for
any i ̸= j .

Given an index v there is a canonical way to associate a Z-reduced index
red(v).

Theorem (C., Lapenta, Spada)
The closure of x in Un with the topology of the Z-generalized closed
cones is

⋃
{Cone(v) | red(v) ≤ red(ι(x))}.

There is an order isomorphism between Z-reduced indexes and
irreducible closed subsets of Un with the topology of the
Z-generalized closed cones.
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Definition
Let A be a Riesz space (ℓ-group) and 0 < a ∈ A.

a is a strong order-unit if for each b ∈ A there exists n ∈ N such that
b ≤ na.
a is a weak order-unit of A if a ∧ |b| = 0 implies b = 0 for each b ∈ A.

Theorem
Let A be a nontrivial Riesz space (ℓ-group) and C ⊆ Uκ its dual
generalized closed cone (Z-generalized closed cone).

A has a strong order-unit iff C \ {O} is compact.
A has a weak order-unit iff C \ {O} contains a dense compact open
subset.

48 / 49



For any natural number n let πn : Uω → Un+1 be the map that sends
(xi )i∈ω to (x0, x1, . . . , xn).

Theorem (C., Lapenta, Spada)
Let A be an ω-generated Riesz space (ℓ-group) and C ⊆ Uω its dual
generalized closed cone (Z-generalized closed cone).
Then A is archimedean iff

C =
∞⋂

n=0
π−1

n [V I(V I(πn[C ]) ∩ Rn+1)],

where the subsets π−1
n [V I(V I(πn[C ]) ∩ Rn+1)] form a decreasing sequence

of generalized closed cones in Uω.

When κ > ω, the decreasing sequence is substituted by a downdirected
family of generalized closed cones in Uκ.
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