A uniform version of Di Nola Theorem

a joint work with A. Di Nola and G. Lenzi

Luca Spada Dipartimento di Matematica e Informatica Università di Salerno

http://logica.dmi.unisa.it/lucaspada

MV-algebras

MV-algebras are the equivalent algerbraic semantics of Lukasiewicz logic.

A structure $A = (A, \oplus, \neg, 0)$ is an MV-algebra if Asatisfies the following equations, for every $x, y, z \in A$: (i) $(x \oplus y) \oplus z = x \oplus (y \oplus z);$ (ii) $x \oplus y = y \oplus x;$ (iii) $x \oplus 0 = x;$ (iv) $x \oplus \neg 0 = \neg 0;$ (v) $\neg \neg x = x;$ (vi) $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x.$

Representations of MV algebras

The main general tools in representation theory of MV-algebras are

- Chang representation Theorem,
- McNaughton Theorem and
- Di Nola representation Theorem.

The main result

The main result in this talk gives a non-standard representation of any MV-algebra *A* depending only on the cardinality of *A*.

Theorem: For any infinite cardinal α , there exists an ultrapower of [0,1]*, such that all MV-algebras of cardinality smaller or equal than α embed in an MV-algebra of functions with values in [0,1]*.

Controlling the cardinality

lemma. Let *A* be an MV-algebra and (*G*,*u*) an lu-group such that $A \approx \Gamma(G, u)$. Let α be an infinite cardinal then $|A| = \alpha$ if, and only if, $|G| = \alpha$.

lemma. Let *G* be an abelian l-group and α be an infinite cardinal such that $|G| = \alpha$. Then *G* can be embedded into an abelian divisible l-group D_G such that $|D_G|$

 $= \alpha$.

α -regular filters

definition. Let α be a cardinal. A proper filter D over I is said to be α -regular if there exists a subset E of D such that $|E| = \alpha$ and each $i \in I$ belongs to only finitely many $e \in E$.

definition. Given a cardinal α , we say that a model A is α -universal if for every model B we have:

 $\mathfrak{B} \equiv \mathfrak{A}$ and $|\mathfrak{B}| < \alpha$ implies $\mathfrak{B} \hookrightarrow_{el} \mathfrak{A}$.

α^+ -universal ultrapowers

Theorem. [Chang-Keisler] Let $|\mathcal{L}| \leq \alpha$ and D be an ultrafilter which is α -regular. Then, for every model A, the ultrapower $\Pi_D A$ is α^+ -universal.

Lemma. For any sentence ψ the language of MV algebras there is a formula with only one free variable $\phi(v)$ in the language of lu-group such that for any MV-algebra *A* we have:

 $A \models \psi$ if, and only if, $G \models \psi[u]$, for any abelian l-group *G* and u > 0 in *G* such that $A \approx \Gamma(G, u)$.

The additive group of reals

Since any non-trivial divisible totally ordered l-group is elementarily equivalent to the real numbers seen as an additive group, from the previous result we get:

Proposition. Any non-trivial divisible MV-chain is elementarily equivalent to $\Gamma(R,1) = [0,1]$.

Representing MV-chains

Proposition. Let α be an infinite cardinal and A be an MV-chain such that $|A| = \alpha$. Then A can be embedded into an ultrapower of the MV-algebra [0,1] via an ultrafilter α -regular over α which does not depend on A.

A sketch of the proof

Proof. Let *A* be an infinite MV-chain such that $|A| = \alpha$ and $A \approx \Gamma(G, u)$. Then *G* is an ordered abelian group with strong unit *u* and $|G| = \alpha$.

So (G, u) can be embedded into a divisible ordered group D_G with strong unit u_D ; in addition $|D_G| = \alpha$. Now let $A_d \approx \Gamma(D_G, u_D)$: then A embeds in A_d and A_d is a divisible MV-algebra; so A_d is elementarily equivalent to [0,1]. Let *F* be a α -regular ultrafilter over α ; then $\Pi_{\rm F}[0,1]$ is α^+ -universal, hence A_d embeds in $\Pi_F[0,1]$. Combining the embeddings we get that A can be embedded into the ultrapower $\Pi_{\rm F}[0,1]$.

The general case

Proposition. Let *A* be an MV-algebra such that $|A| = \alpha$, with α an infinite cardinal. Then there exists a set *X* such that *A* can be embedded into an MV-algebra of functions from *X* to an ultrapower of the MV-algebra [0,1] via an α -regular ultrafilter over α which does not depend on A.

Proof.

$$A \hookrightarrow \Pi_{P \in Spec(A)} A / P.$$

Corollary. For any infinite cardinal α there exists a single MV-algebra of functions such that every MV-algebra of cardinality smaller or equal than α embeds into it.

Extimating the cardinality

It is also possible to give a sharp bound on the cardinality of the target algebra, based on following fact, which is part of the classical literature on the subject.

Proposition. [Chang-Keisler] Let *F* be a α -regular ultrafilter of α , with α infinite cardinal, then $|\Pi_F A| = |A|^{\alpha}$.

A "canonical" MV-algebra

The above construction gives no information on the target algebra, it only asserts its existence.

We will see now how it is possible to *construct* such an algebra in ZFC

The key tool in this construction are iterated ultrapowers.

Introducing Iterated Ultrapowers

An iterated ultrapower can be roughly described as a structure obtained from a linearly ordered set of ultrapowers and such that all these ultrapowers are embedded into it.

We sketch here such a construction:

- Let A be a first order structure
- *I* be a set
- (*X*,<) a linear order
- $D = \langle D_x \rangle_{x \in X}$ a l.o. sequence of ultrafilters on *I*

Functions that live on a finite set

Let $K=I^X$ be the set of all functions from X to I. Let Z be a subset of X. We say that a **function** f with domain K **lives on** Z if, for every function $i \in K$, f(i) depends only on $i_{|Z}$.

We say that a **subset of** K **lives on** Z if its characteristic function lives on Z.

Let hereafter *K* be finite

The ultrafilter associated

To any *Z* we associate an ultrafilter D_Z on I^Z as follows:

 $D_{Z} = \{s \subseteq B_{Z} : D_{x1}y_{1} \dots D_{xn}y_{n} \cdot \{(x_{1}, y_{1}), \dots, (x_{n}, y_{n})\} \in s\},\$

where $D_x y.\phi(y)$ means $\{y:\phi(y)\} \in D_x$. Consider the set

 $E(D) = \{ s \subseteq K : \exists Z. s \text{ lives on } Z \text{ and } s \not Z \in D_Z \},\$

where $s \not\mid Z$ is the set of all restrictions to Z of the members of *s*.

Iterated Ultrapowers I

Proposition. [Chang-Keisler] The subsets of *K*, living on some finite subset of *X*, form a Boolean algebra *S*. The set E(D) is an ultrafilter in S.

E(D) can be considered as an infinitary product of the ultrafilters D_x (although it is not an ultrafilter on K as one could expect).

Iterated Ultrapowers II

Definition. Let A be a first order structure, *I* be a set, and *D* be a linearly ordered sequence of ultrafilters on *I* indexed by the linear order (*X*,<). The iterated ultrapower of A on *D*, denoted $\Pi_D A$, is a first order structure over the same language as A.

The domain of Π_D A is the set of all functions *f* from $K(=B^X)$ to A which live on some finite subset of *X*, modulo the equivalence =_D given by:

 $f=_D g$ if, and only if, $\{i \in K : f(i)=g(i)\} \in E(D)$. If *R* is any predicate symbol in the language of A then

A final stratagem

Lemma. For every $x \in X$, $\Pi_{Dx}A$ embeds elementarily in Π_DA .

So, for our aim, it is sufficient to find a definable linear order of all ultrafilter on a given ordinal.

V. Kanovei and S. Shelah. A definable nonstandard model of the reals. *Journal of Symbolic Logic*, **69**(1):159–164, 2004.

A final stratagem

Let $P(\alpha)$ be the powerset of α . $P(\alpha)$ has a natural "lexicographic" linear order: given $E,F \subseteq \alpha$, we let E < F if E and F are different, and the least element of α where E and F differ belongs to F.

Let X be the set of all maps $x : |P(\alpha)| \rightarrow P(\alpha)$ such that the image of x is an ultrafilter on α . Note that every ultrafilter on α appears as image of some (actually infinitely many) elements of X.

The set X is totally ordered by setting x < x' if there is an ordinal $\xi < |P(\alpha)|$ such that $x | \xi = x' | \xi$ (that is, x and x' coincide on all the ordinals less than ξ) and $x(\xi)$ $< x'(\xi)$ in the lexicographic order of P(α).

A Canonical Representation

Theorem. For every infinite cardinal α there is an iterated ultrapower Π_{α} of [0,1], definable in α , where every MV-chain of cardinality α embeds.

Corollary. For every infinite cardinal α there is an iterated ultrapower Π_{α} of [0,1], definable in α , such that every MV-algebra of cardinality α embeds in an algebra of functions with values in Π_{α} .

Thank you!