Some consequences of compactness in Łukasiewicz Predicate Logic

Luca Spada

Department of Mathematics and Computer Science University of Salerno www.logica.dmi.unisa.it/lucaspada

7th Panhellenic Logic Symposium 2009. Patras, 16 July 2009.

Continuous t-norm based logics

Łukasiewicz logic is just one possibility in the myriad of infinite-valued generalisations of classical logic.

Among those generalisations some are meaningless, for they have very little in common with a *logic*. Yet, when one requires a few natural properties to be fulfilled, the systems arising allow deep mathematical investigations.

This is the case for **continuous t-norm based logics**. In these systems the conjunction is interpreted in an associative, commutative and weakly-increasing continuous function from $[0, 1]^2$ to [0, 1], which behaves accordingly to classical conjunction in the limit cases 0 and 1. Such functions are **called continuous t-norm**.

As a matter of fact the most important many-valued logics studied in mathematics are based on continuous t-norms; this is the case, for instance, of Łukasiewicz logic or Gödel logic. The logical system **BL** encompasses all logics based on continuous t-norms.

The setting based on continuous t-norm, or equivalently BL, has been quite successful, for it provides a general mathematical framework for investigations on many-valued logics and offers an utter bridge towards fuzzy set theory and fuzzy logic, as t-norms are a pivotal tool in fuzzy logic.

Peculiar properties of Łukasiewicz logic

Yet Łukasiewicz logic stands out among those logics because of some of its properties. Indeed, Łukasiewicz logic is the **only** one, among continuous t-norm based logics, with a continuous implication and therefore the only logic whose whole set of formulae can be interpreted as continuous functions.

Furthermore the Łukasiewicz negation is **involutive**, namely it is such that $\neg \neg \varphi \leftrightarrow \varphi$.

Those two features, inherited from classical logic, makes Łukasiewicz logic a promising setting to test how far the methods of model theory can reach in the realm of many-valued logics.

A model theory inside many-valued logic

A model theoretic study of many-valued logic is especially important in the light of the negative results already obtained in the first order theory of these logics: the predicate version BL has a (standard) tautology problem whose complexity is not arithmetical, the same problem is Π_2 -complete for Łukasiewicz logic.

Thus the favourable duality between syntax and semantics vanishes when switching to t-norm based logics and new tools must be developed.

The results so far are encouraging: recently the Robinson finite and infinite forcing were generalised to Łukasiewicz logic; here some basic results for a model theory of Łukasiewicz logic are presented and used to settle an open problem left therein.

Łukasiewicz logic

The language of the infinite-valued Łukasiewicz propositional logic, Ł, is built from a countable set of propositional variables, $Var = \{p_1, p_2, \dots, p_n, \dots\}$, and two connectives \rightarrow and \neg .

The axioms of Ł are the following:

$$\begin{split} \varphi &\to (\psi \to \varphi); & (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)); \\ ((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi); & (\neg \varphi \to \neg \psi) \to (\psi \to \varphi), \end{split}$$

Modus ponens is the only rule of inference. The notions of proof and tautology are defined as usual.

The equivalent algebraic semantics for L is given by the variety of MV-algebras.

An MV-algebra is a structure $\mathcal{A} = \langle A, \oplus, *, 0 \rangle$ such that:

- $\mathcal{A} = \langle A, \oplus, 0
 angle$ is a commutative monoid,
- * is an involution and
- the following equations hold: $x \oplus 0^* = 0^*$ and $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$

An ${\bf t}\forall$ language ${\cal L}$ is defined similarly to a language for classical first order logic, without functional symbols, taking as primitive the connectives: $\rightarrow, \neg, \forall.$

This allows the syntactical concepts of term, (atomic) formula, free or bounded variable, substitutable variable for a term, formal proof, formal theorems, etc. to be defined just as usual.

The set $V = \{x, y, z, ...\}$ is a fixed set of variables and **Form** will be used to indicate the set of formulae of \mathcal{L} .

The axioms of $L\forall$ are:

 (i) All the axioms of the infinite-valued propositional Łukasiewicz calculus;

(ii) $\forall x \varphi \to \varphi(t)$, where the term *t* is substitutable for *x* in φ ; (iii) $\forall x(\varphi \to \psi) \to (\varphi \to \forall x \psi)$, where *x* is not free in φ ; The inference rules are *Modus ponens*: from φ and $\varphi \to \psi$, derive ψ ; *Generalisation*: from φ , derive $\forall x \varphi$. Structures for predicate Łukasiewicz logic

Let \mathcal{L} be a $\mathbb{L}\forall$ language with *n* predicate symbols and *m* constant symbols. Let *A* be an MV-algebra. An *A*-structure has the form

$$\mathcal{M} = \langle M, P_1^{\mathcal{M}}, ..., P_n^{\mathcal{M}}, c_1^{\mathcal{M}}, ..., c_m^{\mathcal{M}} \rangle$$

where M is a non-empty set (called the universe of the structure).

If P_i is a predicate symbol in \mathcal{L} of arity k then $P_i^{\mathcal{M}}$ is a k-ary A-valued relation on A, namely a function

$$P_i^{\mathcal{M}}: M^k \to A;$$

if c_j is a constant symbol in \mathcal{L} then $c_i^{\mathcal{M}}$ is an element of M.

Evaluations

Let \mathcal{M} be an A-structure. An **evaluation** of \mathcal{L} in \mathcal{M} is a function $e: V \to M$.

Given any two evaluations e, e' of \mathcal{L} and for $x \in V$ let $e \equiv_x e'$ iff $e \mid_{V \setminus \{x\}} = e' \mid_{V \setminus \{x\}}$. For any term t of \mathcal{L} and any evaluation in \mathcal{M} let

$$t^{\mathcal{M}}(e) = egin{cases} e(x) & ext{if } t ext{ is a variable } x \ c^{\mathcal{M}} & ext{if } t ext{ is a constant } c \end{cases}$$

Truth values

Given any evaluation in \mathcal{M} , e and any formula φ of \mathcal{L} , the element $\|\varphi(e)\|_{\mathcal{M}}$ of A is defined by induction, and it is called the **truth** value of φ :

if
$$\varphi = P(t_1, ..., t_n)$$
 then
 $\|\varphi(e)\| = P^{\mathcal{M}}(t_1^{\mathcal{M}}(e), ..., t_n^{\mathcal{M}}(e));$
if $\varphi = \neg \psi$ then $\|\varphi(e)\| = \|\psi(e)\|^*;$
if $\varphi = \psi \rightarrow \chi$ then $\|\varphi(e)\| = \|\psi(e)\| \Rightarrow \|\chi(e)\|;$
if $\varphi = \forall x \psi$ then $\|\varphi(e)\| = \bigwedge\{\|\psi(e')\| \mid e' \equiv_x e\}.$

An evaluation $e: V \to M$ is called **safe** if for any formula ψ of \mathcal{L} , the supremum $\bigvee \{ \|\psi(e')\| \mid e' \equiv_x e \}$ exists in A (in this case the infimum $\bigwedge \{ \|\psi(e')\| \mid e' \equiv_x e \}$ also exists).

If $\|\varphi\|_{\mathcal{M}}^{A} = 1$ then φ is said to be true in \mathcal{M} , this can be alternatively written as $\mathcal{M} \models_{A} \varphi$. An A-structure \mathcal{M} is a model of a theory T if $\mathcal{M} \models_{A} \varphi$ for all $\varphi \in T$.

Logical consequence and satisfiability

Definition

A standard structure is a [0,1]-structure, any valuation is safe on a standard structure.

A **standard model** of a theory T is a [0, 1]-structure which is a model of T.

A formula φ is called *A*-logical consequence of a theory *T*, in symbols $T \models_A \varphi$, if every *A*-model of *T* is also an *A*-model of φ . In particular, when this is true for standard models then I write $T \models_{[0,1]} \varphi$ or $T \models \varphi$.

Definition

A formula φ is generally satisfiable if there exists a model \mathcal{M} such that $\|\varphi\|_{\mathcal{M}} = 1$. If the model can be taken standard then φ is called just satisfiable. The previous definitions naturally generalise to theories. A theory T is consistent if $T \not\vdash \bot$.

Weak completeness and compactness

All the main results in this talk hinge on the following theorems.

Theorem (Weak Completeness (Belluce and Chang 1963)) Any consistent theory T of $t \forall$ has a standard model.

Theorem (Compactness)

- Let T be a theory in $k \forall$:
 - (i) If T is finitely generally satisfiable then T is generally satisfiable.
 - (ii) If T is finitely satisfiable then T is satisfiable.
- (iii) If for any MV-algebra A, $T \models_A \varphi$ then there exists a finite $T_0 \subseteq T$ such that for any MV-algebra A $T_0 \models_A \varphi$
- (iv) If $T \models_{[0,1]} \varphi$ then in general it is false that there exists a finite $T_0 \subseteq T$ such that $T_0 \models_{[0,1]} \varphi$.

A hierarchy on formulae

Henceforth $\mathcal L$ is assumed to be a fixed language of $L\forall$ and all structures are standard.

Definition

A formula of \mathcal{L} belongs to the set Σ_n (Π_n , respectively) if it is equivalent to a formula with *n* blocks of quantifier, where each block is either empty or constituted of an uninterrupted sequence of the same quantifier, \exists or \forall , and the first block is made of \exists 's (\forall 's respectively).

As in the classical case one has $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$.

Relations among models

Let \mathcal{M} be an structure, $\mathcal{L}(\mathcal{M})$ is the expansion of the language \mathcal{L} with a new constant symbol for each element of M.

The diagram of \mathcal{M} , i.e. the set of atomic formulae φ in $\mathcal{L}(\mathcal{M})$ such that $\|\varphi\|_{\mathcal{M}} = 1$, is indicated by $D(\mathcal{M})$; Th (\mathcal{M}) is the set of formulae φ such that $\|\varphi\|_{\mathcal{M}} = 1$.

Definition

If $\mathcal{M}_1 \subseteq \mathcal{M}_2$ are two structures and for any $\varphi \in D(\mathcal{M}_1)$, $\mathcal{M}_1 \models \varphi$ iff $\mathcal{M}_2 \models \varphi$ then \mathcal{M}_1 is a **substructure of** \mathcal{M}_2 , in symbols $\mathcal{M}_1 \leq \mathcal{M}_2$. If the same is true for *any* sentence of $\mathcal{L}(\mathcal{M}_1)$ than \mathcal{M}_1 is an **elementary substructure of** \mathcal{M}_2 , written $\mathcal{M}_1 \preceq \mathcal{M}_2$

Łoś-Tarski Theorem for Łukasiewicz logic

Proposition

Let T be a theory, let T_{\forall} be the set of logical consequences of T which are in Π_1 and let K be the class of all substructures of models of T. Then K is the class of models of T_{\forall} .

Proof.

$$\begin{split} \mathcal{M} &\in \mathbf{K} \text{ then } \mathcal{M} \models T_\forall \text{ is straightforward. Let } \mathcal{M} \models T_\forall, \text{ then } \\ D_\forall(\mathcal{M}) \cup T \text{ is finitely satisfiable (if it were not then } \\ &\wedge \Psi \models_{[0,1]} \neg \land \Phi, \text{ but } \neg \land \Phi \in \Pi_1 \ \frac{1}{7} .) \\ \text{So there exists } \mathcal{N} \models D_\forall(\mathcal{M}) \cup T \text{ whence } \mathcal{M} \hookrightarrow \mathcal{N} \text{ and } \\ &\mathcal{M} \in \mathbf{K} \end{split}$$

Corollary (Łoś-Tarski Theorem for Łukasiewicz logic)

A theory is preserved under substructure if, and only if, it is equivalent to a universal (i.e. Π_1) theory.

(Elementary) chains

Definition

Let α be an ordinal and $(\mathcal{M}_{\lambda})_{\lambda \in \alpha}$ a family of \mathcal{L} -structure. The structures $(\mathcal{M}_{\lambda})_{\lambda \in \alpha}$ are a **chain** if for any $\lambda_1 \leq \lambda_2 < \alpha$, $\mathcal{M}_{\lambda_1} \leq \mathcal{M}_{\lambda_2}$. If for any $\lambda_1 \leq \lambda_2 < \alpha$, $\mathcal{M}_{\lambda_1} \preceq \mathcal{M}_{\lambda_2}$ then $(\mathcal{M}_{\lambda})_{\lambda \in \alpha}$ is called **elementary chain**.

Lemma

Let $(\mathcal{M}_{\lambda})_{\lambda \in \alpha}$ be an elementary chain. Then for every $\lambda \in \alpha$, $\mathcal{M}_{\lambda} \leq \bigcup_{\lambda \in \alpha} \mathcal{M}_{\lambda}$

T is an **inductive** theory if it is closed under unions of chains.

Theorem (Chang-Łoś-Suszko Theorem for Łukasiewicz logic)

A theory is inductive if, and only if, it is equivalent to a Π_2 theory.

Proof.

If $T \in \Pi_2$ then it is straightforward to prove that T is inductive. Let T be inductive. If $\mathcal{M} \models T_{\forall_2}$ then $T \cup \text{Th}_{\exists}(\mathcal{M})$ is finitely satisfiable (if not $\bigwedge \Phi \models_{[0,1]} \neg \bigwedge \Psi$, but then $\neg \bigwedge \Psi \in T_{\forall} \frac{1}{7}$.) So there exists $\mathcal{N} \models T \cup \text{Th}_{\exists}(\mathcal{M})$ s.t. $\mathcal{M} \hookrightarrow \mathcal{N}$. Every existential sentence of $L(\mathcal{M})$ which is true in \mathcal{N} holds in \mathcal{M} , hence $D(\mathcal{N}) \cup \text{Th}(\mathcal{M})$ is satisfiable, so it has a model \mathcal{M}_1 which is an extension of \mathcal{N} and an elementary extension of \mathcal{M} .

$$\mathcal{M} \leq \mathcal{N} \leq \mathcal{M}_1 \leq \mathcal{N}_1 \leq \dots$$

Let \mathcal{O} be the limit of this chain. $\mathcal{O} \models T$, for T is inductive; furthermore \mathcal{O} is an elementary extension of \mathcal{M} , because the chain $\{\mathcal{M}_i\}_{i \in \omega}$ is elementary. Therefore $\mathcal{M} \models T$.

Model companions

The above characterisation is extremely useful, when dealing with model complete theories.

Corollary

When the model companion of a theory is axiomatisable, it is equivalent to a $\forall \exists$ theory.

Proof.

In a model companion every chain is elementary.

From this it is also easy to see that

Corollary

There exists at most one model companion of a theory.

Generic models

Recently the notion of model theoretic forcing was extended to Łukasiewicz logic, leading to the study of the class of *generic models*, $\mathfrak{G}_{\mathbf{K}}$, contained in a given class \mathbf{K} .

The class $\mathfrak{G}_{\mathbf{K}}$ was proved to contain the subclass of existentially closed models of \mathbf{K} . The Chang-Łoś-Suszko theorem for Łukasiewicz logic enables to complete this result.

Proposition

Given a theory T, if $\mathfrak{G}_{Mod(T)}$ is axiomatisable then it is the class of existentially closed models of T.

Proof.

Let \mathcal{M} be a existentially closed model of \mathcal{T} , then it embeds in a model $\mathcal{N} \in \mathfrak{G}_{\mathsf{Mod}(\mathcal{T})}$. The class $\mathfrak{G}_{\mathsf{Mod}(\mathcal{T})}$ is inductive, so if it is axiomatisable then it is equivalent to a Π_2 theory. Since \mathcal{M} is existentially closed, it is easy to see that it satisfies the same Π_2 formulae of \mathcal{N} , whence $\mathcal{M} \in \mathfrak{G}_{\mathsf{Mod}(\mathcal{T})}$.

Further reading

Belluce, L.P., Chang, C.C.:

A weak completeness theorem for infinite valued first-order logic. Journal of Symbolic Logic 28(1) (1963) 43-50

Chang, C. C.:

Omitting types of prenex formulas, Journal of Symbolic Logic 32 (1967) 61-74

Cignoli, R., D'Ottaviano, I., Mundici, D.:

Algebraic Foundations of Many-valued Reasoning. Volume 7 of Trends in Logic, Studia Logica Library.

Kluwer Academic (2000)

Di Nola, A., Georgescu, G., Spada, L.: Forcing in Łukasiewicz predicate logic. Studia Logica 89(1) (May 2008) 111-145

Hájek, P.:

Metamathematics of Fuzzy Logic. Volume 4 of Trends in Logic, Studia Logica Library.

Kluwer Academic, Berlin (1998)

Robinson, A .:

Forcing in model theory.

In: Actes du Congrès International des Mathématiciens, Nice. Volume 1., Paris, Gauthier-Villars (1970) 145-150