Geometric aspects of MV-algebras

Luca Spada Università di Salerno

TACL 2017

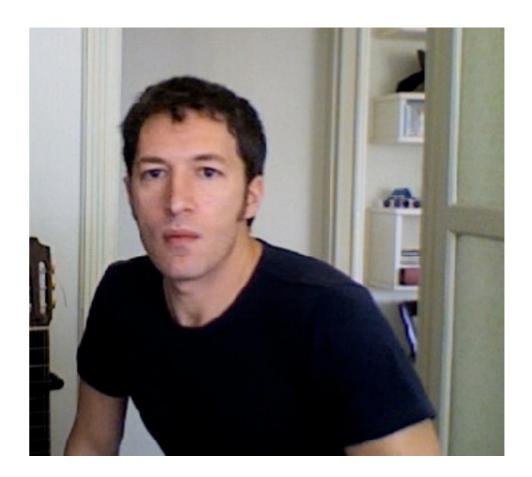
TACL 2003

Tbilisi, Georgia.

Contents

- Crash tutorial on MV-algebras.
- Dualities for semisimple MV-algebras.
- Non semisimple MV-algebras.
- Ind and pro completions with an application to MValgebras.

This work is based on results obtained with



L. Cabrer and V. Marra.

Lukasiewicz logic

It is a logic L in which the formulas may take **any truth value in the real interval** [0,1].

- L can defined in terms of \rightarrow as **the only one** such that
- It is closed under Modus Ponens.
- The connective \rightarrow is **continuous**.
- The order of premises is irrelevant.
- For any truth-values x, $y \in [0,1]$,

 $x \rightarrow y$ equals 1 precisely when $x \leq y$.

MV-algebras

An MV-algebra is a structure $(A, \oplus, \neg, 0)$ such that $(A, \oplus, 0)$ is a **commutative monoid** and the following axioms hold:

2. $\neg \neg x = x$

3.
$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$$

Any MV-algebra has a **lattice structure** given by setting $\neg(\neg x \oplus y) \oplus y = x \lor y$

Examples of MV-algebras

1. Any Boolean algebra is an MV-algebra where \oplus satisfies $x \oplus x = x$.

2. Consider [0,1] with the operations:

 $x \oplus y := \min\{x+y, 1\}$ and $\neg x := 1-x$

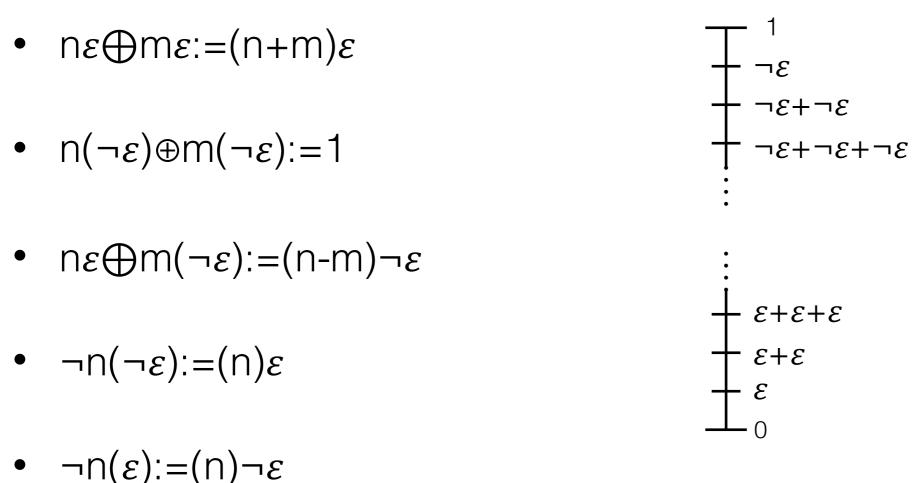
(Example: $0.3 \oplus 0.2 = 0.5$ but $0.7 \oplus 0.8 = 1$)

 $([0,1], \oplus, \neg, 0)$ is an MV-algebra.

Theorem 1: The algebra [0,1] generates the variety of MV-algebras.

Examples of MV-algebras

3. Let ε be just a symbol, consider {n ε , n($\neg \varepsilon$) | n $\in \mathbb{N}$ } endowed with the operations:



This is called the **Chang's algebra**. It is **not semisimple**.

Simple and semisimple MValgebras

Simple MV-algebra = only trivial congruences = subalgebra of [0,1] = IS([0,1])

Theorem 2: An MV-algebra is **simple** if, and only if, it is a **subalgebra** of [0,1].

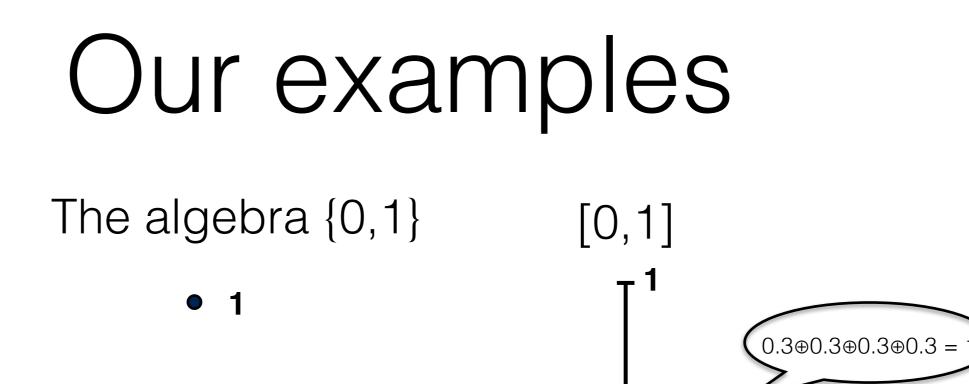
Semisimple MV-algebra = subdirect product of simple algebras = ISP([0,1]).

Ideals

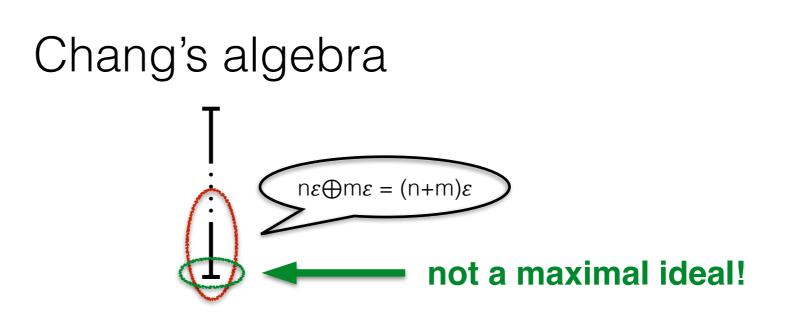
If A is an MV-algebra, a non empty P⊆A is called **ideal** if

- P is downward closed,
- a,b∈P implies avb∈P,
- a,b∈P implies a⊕b∈P.

P is called **maximal** if it is maximal among the proper ideals w.r.t. the inclusion order.



They are indistinguishable by simply using their maximal ideals. • 0



0.3

Two different things

These are two **different phenomena**, and it is important to keep them distinct.

To begin with let us concentrate only on **semisimple** MV-algebras.

Part I: Semisimple MV-algebras

Finite MV-algebras

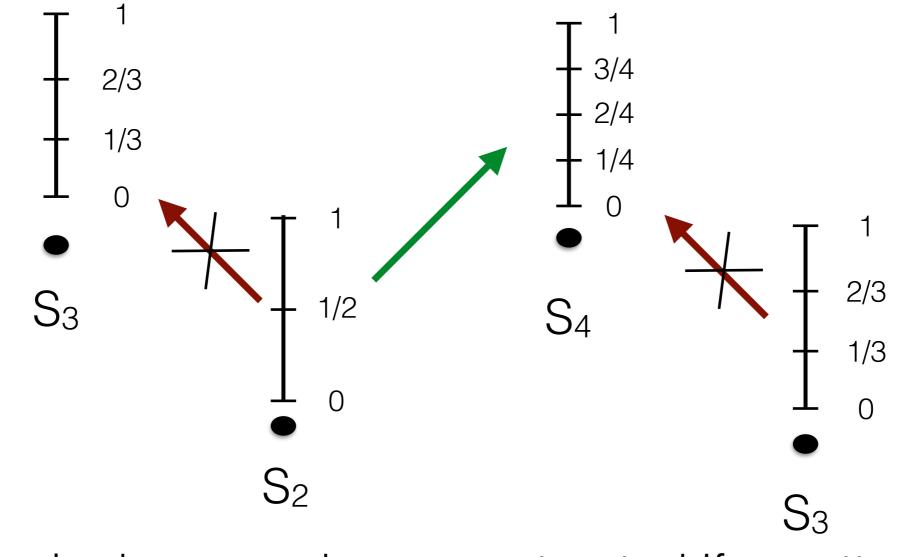
- Finite MV-algebras are products of finite linearly ordered MV-algebras.
- All finite linearly ordered MV-algebras are simple.

$S_n = \{0, 1/n, 2/n, ..., (n-1)/n, 1\}$

with operations inherited from the MV-algebra [0,1].

• $S_2 = \{0, 1/2, 1\}, S_3 = \{0, 1/3, 2/3, 1\}, etc.$

The duals of finite MValgebras



The algebras can be reconstructed if we attach natural numbers to points.

A duality for "finitely valued" MV-algebras.

Niederkorn (2001) using the theory of *Natural Dualities* proves that

is dual to

 $\mathbb{ISP}(S_n)$

 (X, D_1, \ldots, D_n)

X: Stone space

D₁,...,D_n: unary predicates [...]

A duality for locally finite MValgebras.

Cignoli-Dubuc-Mundici (2004), using ind- and procompletions, prove that

 $(X, f: X \rightarrow s\mathbb{N})$

Locally finite MValgebras

are dual to

- X: Stone space
- f: continuous map into the "super natural numbers"

A further extension

However, the situation is more complex, indeed:

Theorem 3. Every compact Hausdorff space is homeomorphic to Max(A), for some MV-algebra A.

- How can we attach natural numbers to the points of an abstract compact Hausdorff space?
- How can we use those numbers to recover the structure of the MV-algebra?

The following definition is CRUCIAL.

Z-maps

Let C, D be sets. A continuous map

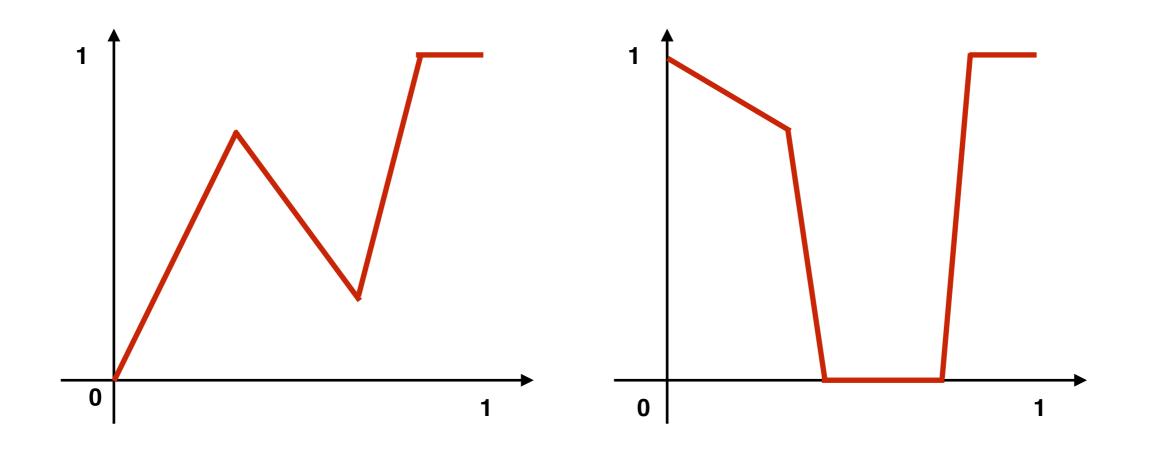
$$z = (z_{d \in D}) : [0,1]^C \longrightarrow [0,1]^D$$

is called a \mathbb{Z} -map if for each $d \in D$, z_d is **piecewise linear** with **integer coefficients**.

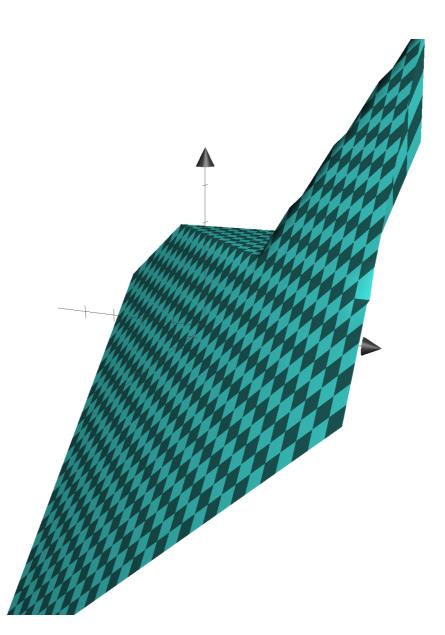
If $P \subseteq [0,1]^C$ and $Q \subseteq [0,1]^D$, a \mathbb{Z} -map $z : P \rightarrow Q$ is a simply a **restriction** of \mathbb{Z} -map from $[0,1]^C$ into $[0,1]^D$.

Let **T** be the **category of subspaces** of $[0,1]^{C}$, for any set C, and \mathbb{Z} -maps among them.

\mathbb{Z} -maps from [0,1] into [0,1]



A \mathbb{Z} -map from $[0,1]^2$ to [0,1]



 \mathbb{Z} -maps have interesting properties, e.g., they respect denominators.

 $\{n \cdot 1/2 \mid n \in \mathbb{N}\} = \{0, 1/2, 1\}$ $\{n \cdot 1/6 \mid n \in \mathbb{N}\} = \{0, 1/6, 1/3, 1/2, 2/3, 5/6, 1\}$

McNaughton theorem

Theorem 4 (McNaughton) The MV-terms in *n* variables interpreted on the MValgebra $[0,1]^n$ are exactly the \mathbb{Z} -maps from $[0,1]^n$ into [0,1].

Corollary (to be used later) The free *n*-generated MV-algebra is isomorphic to the algebra of \mathbb{Z} -maps from [0,1]ⁿ into [0,1].

The framework of natural dualities

- On the one hand we have $MV_{ss} = \mathbb{ISP}([0,1])$,
- On the other hand, $\mathbf{T} = \mathbb{IS}_{\mathbf{c}} \mathbb{P}([0,1])$.
- In fact, [0,1] plays both the role of an MV-algebra and of an element of T.
- The functors hom_T(, [0,1]) and hom_{MV}(—, [0,1])
 form a contravariant adjunction.

The (contravariant) hom functors

hom_{MV}(A, [0,1]) is bijective to Max(A), and since

hom**mv**(A, [0,1]) ⊆ [0,1]^A

it inherits the product topology.

Do not forget it!

The space **hom_{MV}(A, [0,1])** with the **product topology** is homeomorphic to **Max(A)** with the **Zariski topology**.

hom_T(X, [0,1]) has MV-operations defined point-wise. I will often write $\mathbb{Z}(X)$ for hom_T(X, [0,1]).

A representation as algebras of \mathbb{Z} -maps

For any semisimple MV-algebra, $A \cong \mathbb{Z}(Max(A))$ For any closed $X \subseteq [0,1]^{C}$, $X \cong_{\mathbb{Z}} Max(\mathbb{Z}(X))$

Theorem 5 The category of semisimple MV-algebras with their homomorphisms is dually equivalent to the category of **closed subspaces of [0,1]**^A, with *A* any set, and \mathbb{Z} -maps as arrows.

Finitely presented MValgebras

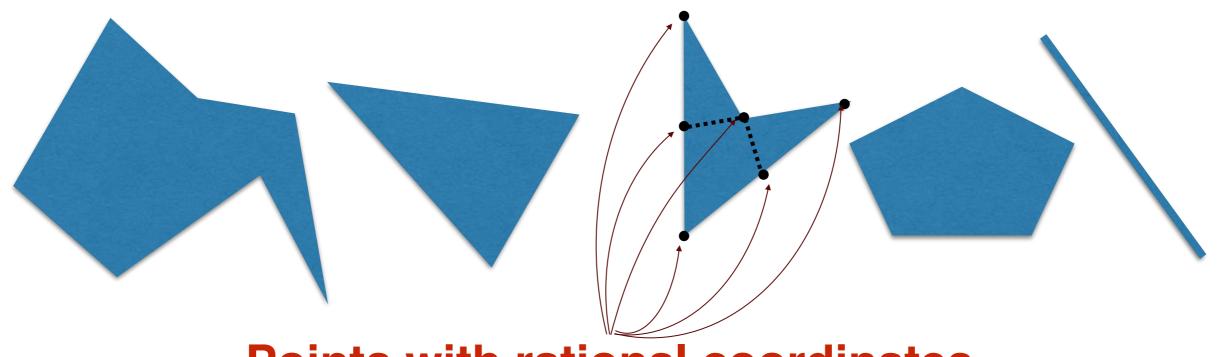
A finitely presented algebra is the quotient of a finitely generated free algebra over a finitely generated ideal.

$$Free(x_{1,\ldots,}x_n) < f(x_1,\ldots,x_n) >_{id}$$

The equation $f(x_1,...,x_n) = 0$ defines a closed subspace of $[0,1]^n$

Rational polyhedra

In the case of MV-algebras, those equations define a **rational polyhedron**.



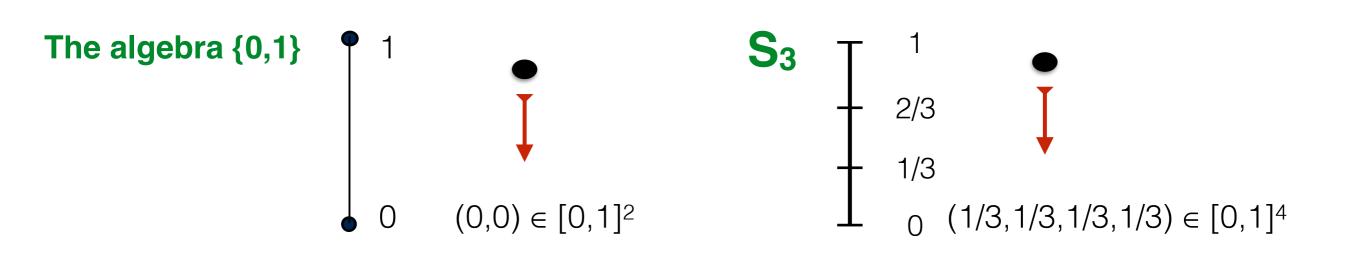
Points with rational coordinates

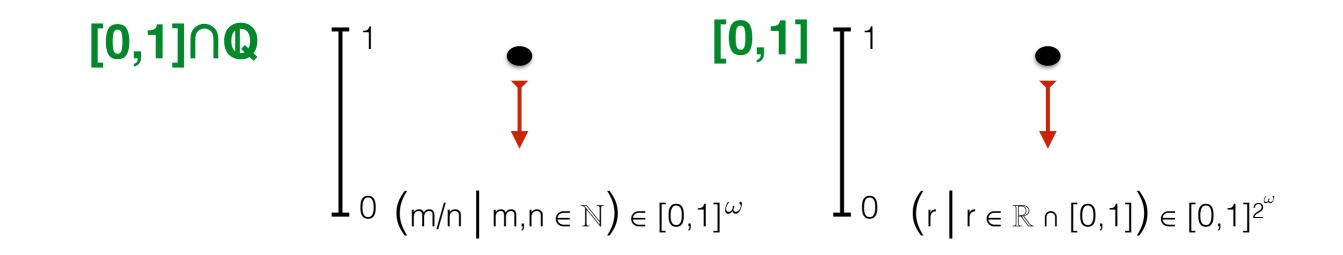
More precisely, a rational polyhedron is a finite union of convex hulls of rational points in [0,1]ⁿ.

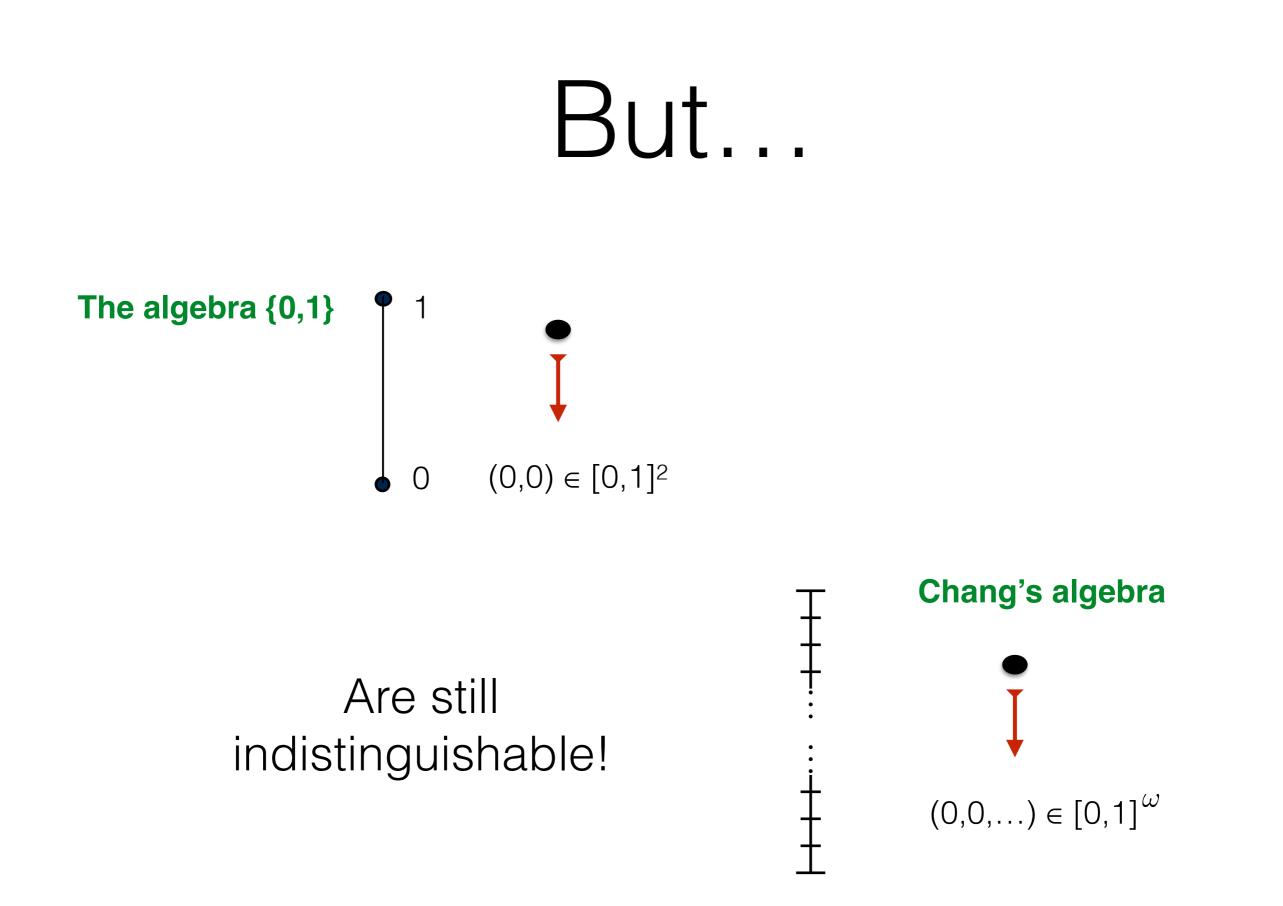
The duality for finitely presented MV-algebras

Corollary (sort of) The category of finitely presented MV-algebras with their homomorphisms is dually equivalent to the category Pz of rational polyhedra and Zmaps.

Our examples



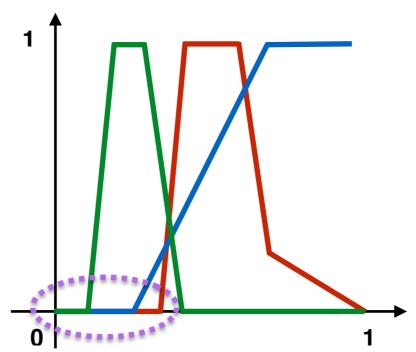




Part 2: Non semisimple

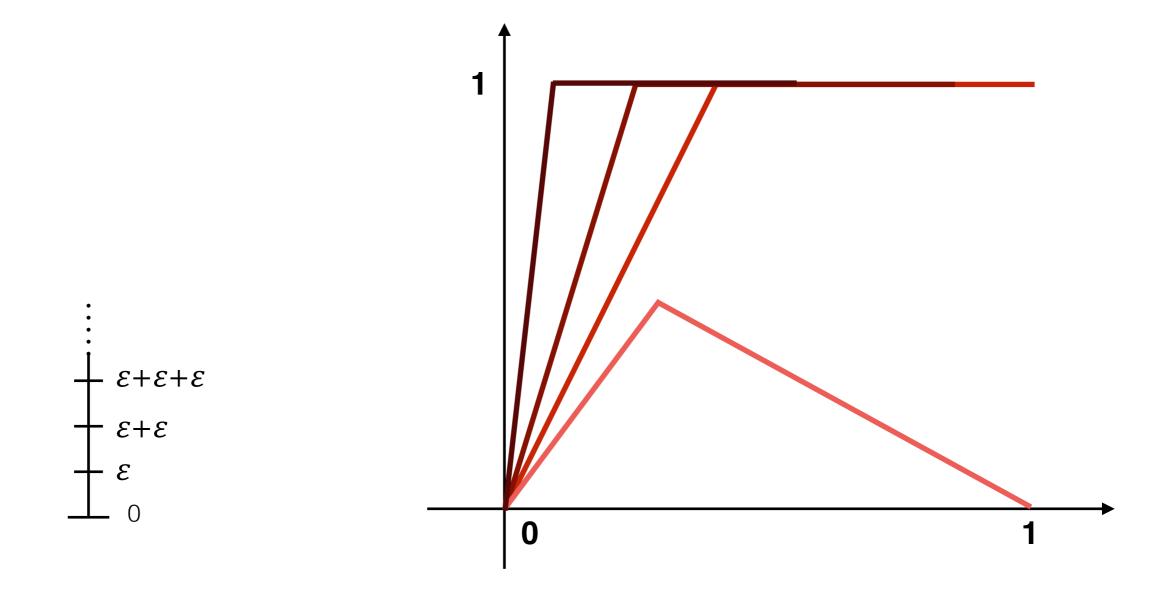
Chang's algebra revisited

Consider the set of \mathbb{Z} -maps from [0,1] into [0,1] for which there exists a neighbour of the point 0, in which they vanish.

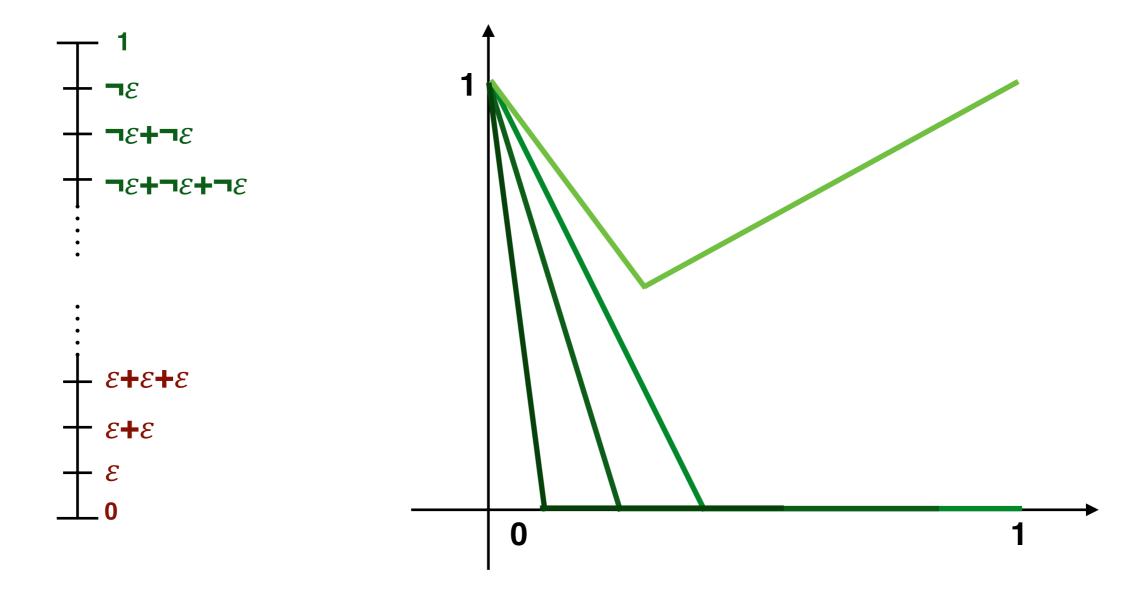


Take the quotient of Free(1), by this ideal.

Chang's algebra



Chang's algebra

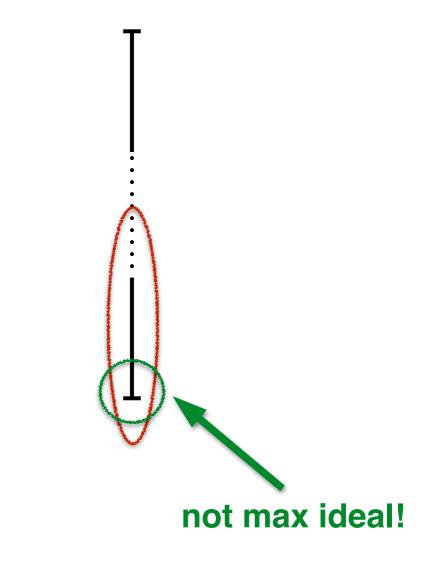


Max(A) and Spec(A)

Maximal ideals correspond to points in the dual.

• Prime ideals

correspond to some sort of **neighbourhood systems** of the maximal ideal that contains them. Chang's algebra



How can we concretely describe this additional piece of information?

Johnstone's approach

In *Stone Spaces* P. Johnstone uses **ind-** and **procompletions** to prove some classical dualities..

- Start with the duality between finite sets and finite
 Boolean algebras. Take all directed limits in the first case and all directed colimits in the second case....
- Start with Birkhoff's duality between finite distributive lattices and finite posets. Take again (directed) limits and colimits....

Ind- and pro- completions

- The ind-completion of a category C is a new category whose objects are directed diagrams in C.
- Arrows in ind-C are families of equivalence
 classes of arrows in C. (We'll get back to this later.)
- The **pro-completion** is formed similarly.

Corollary

If A is a finitary algebraic category, then there is an equivalence Ind- $A_{fp} \simeq A$.

An application to MV

Let B and C be two categories,

if $B \simeq C$ then ind- $B \simeq (pro-C^{op})^{op}$.

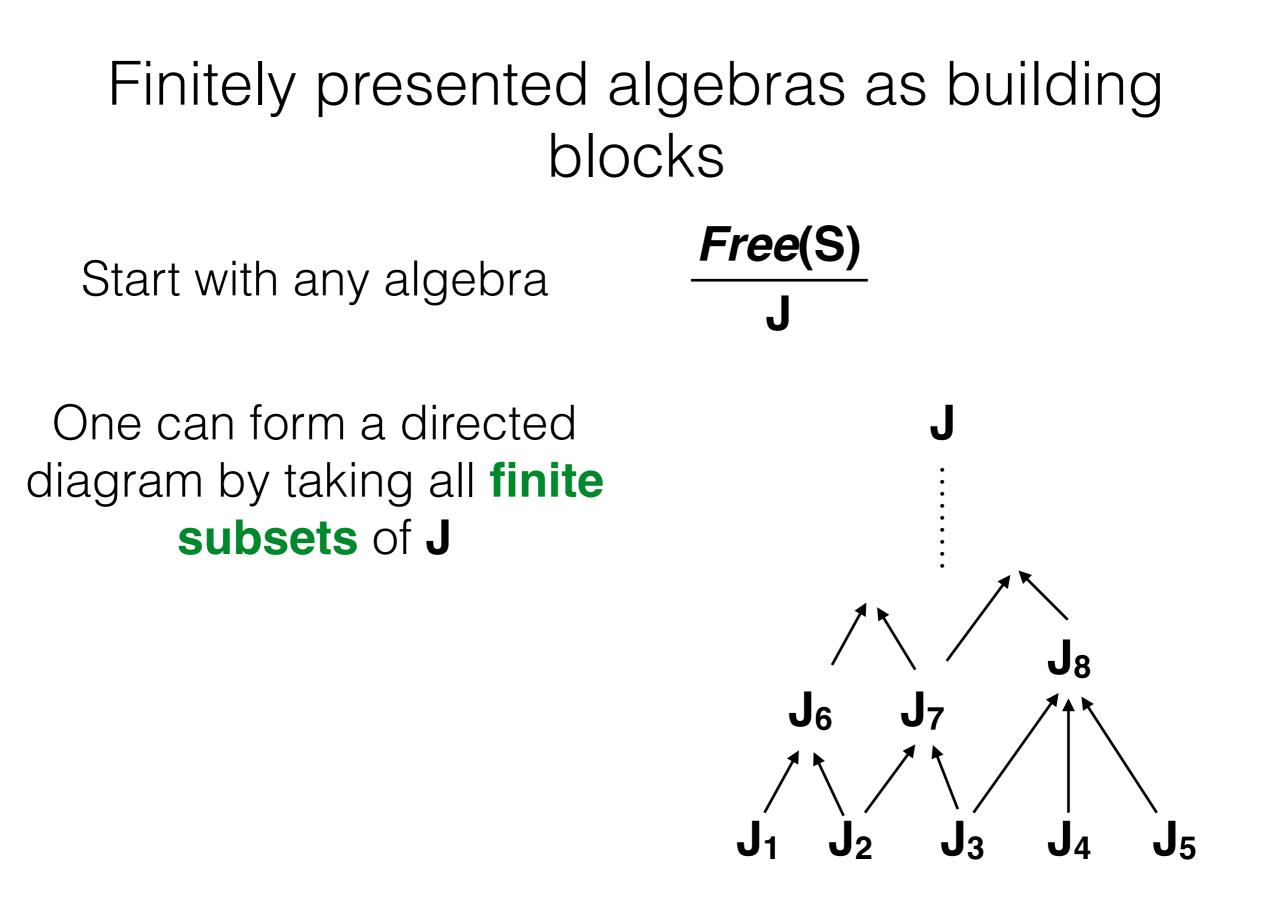
Now, **MV**_{fp} **≃ (P_z)**^{op}, so

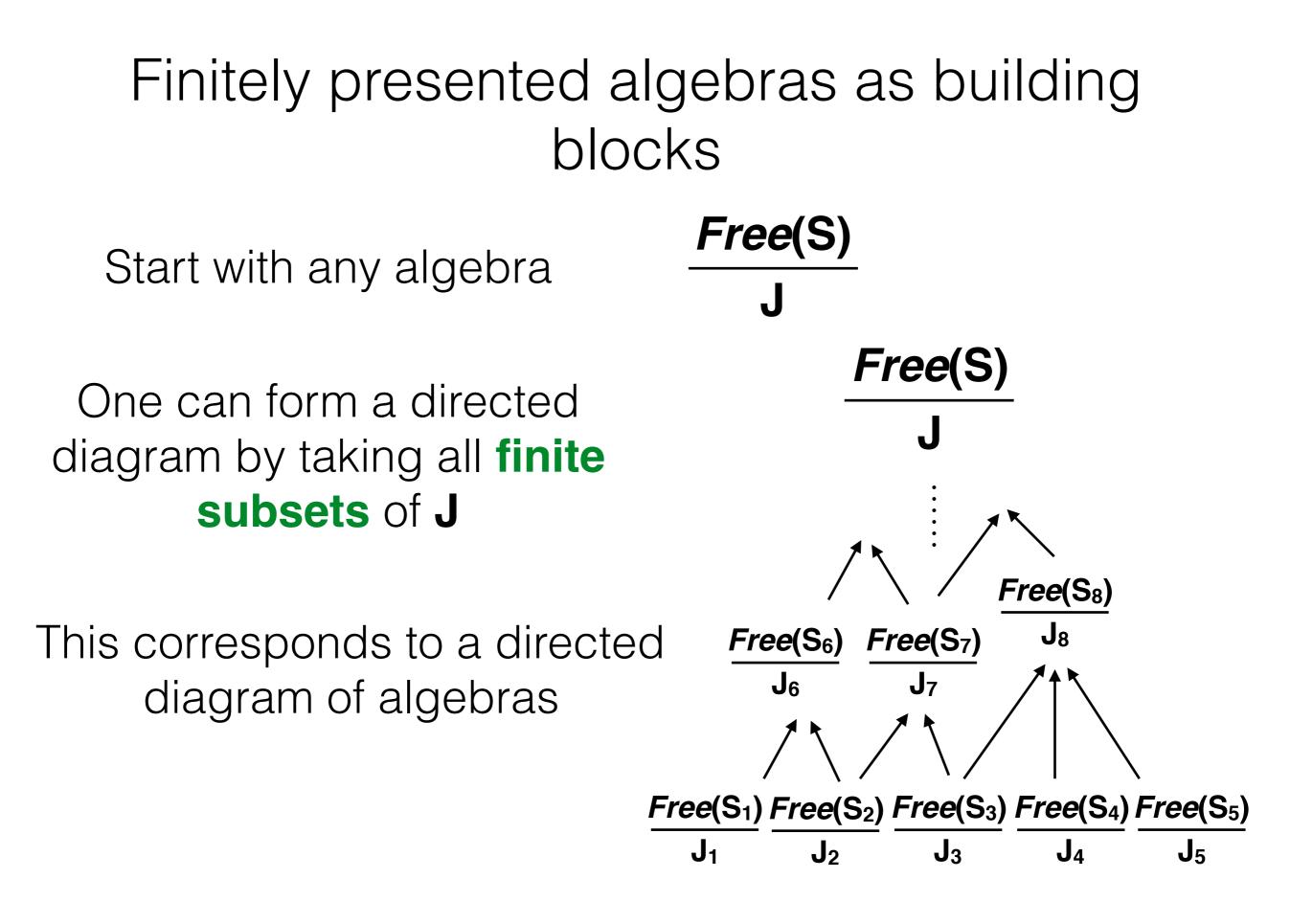
 $MV \simeq ind-MV_{fp} \simeq ((pro-(P_Z)^{op})^{op})^{op} = (pro-P_Z)^{op}.$

Theorem 6: MV ~ (pro-P_z)^{op}

MV-algebras (general case)

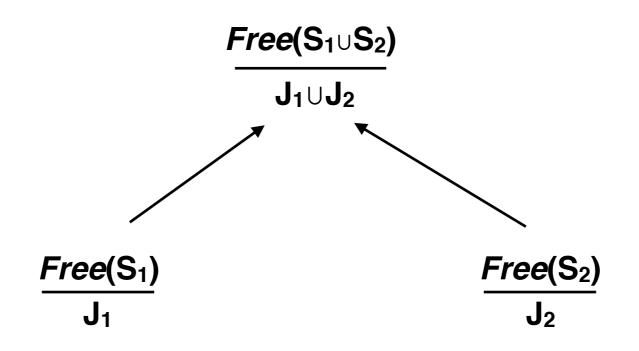
Any algebra is the quotient of a free algebra over some ideal.

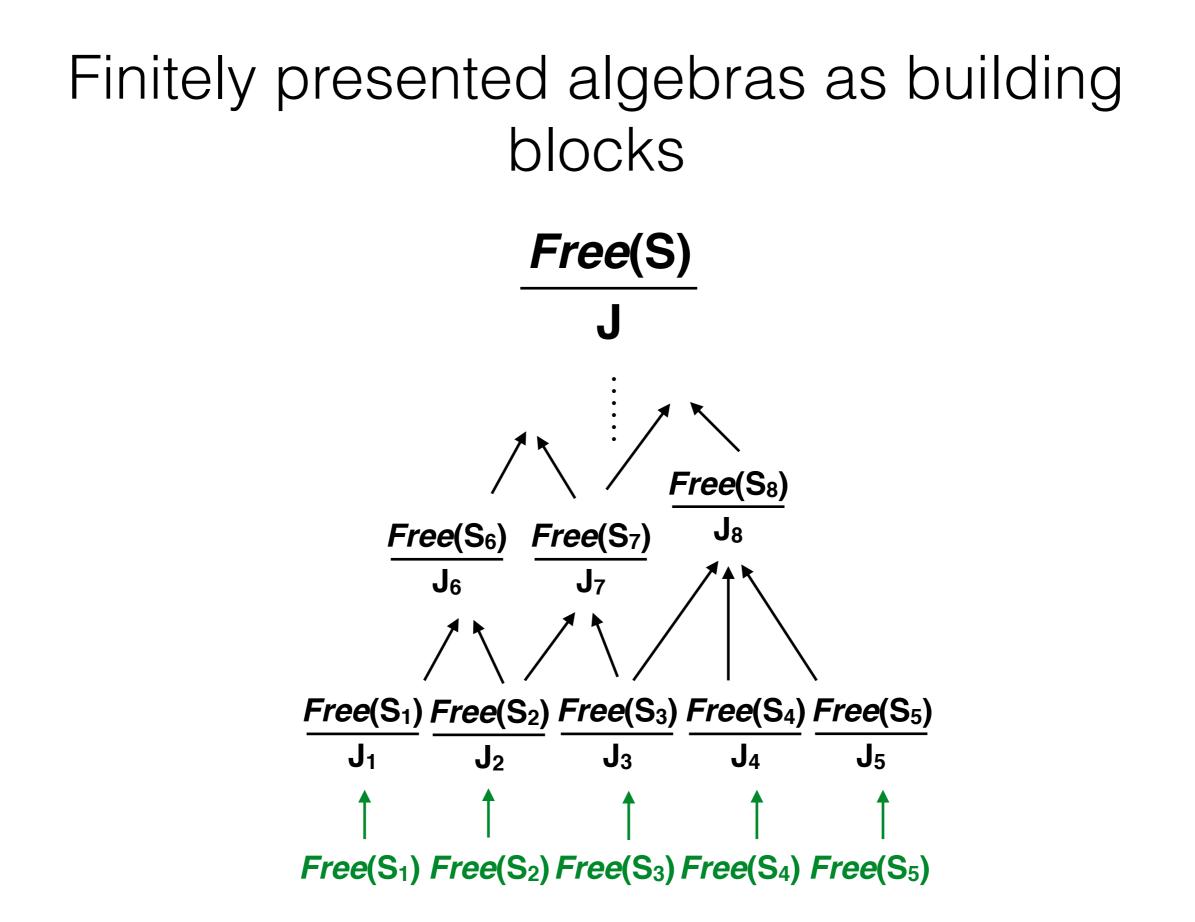




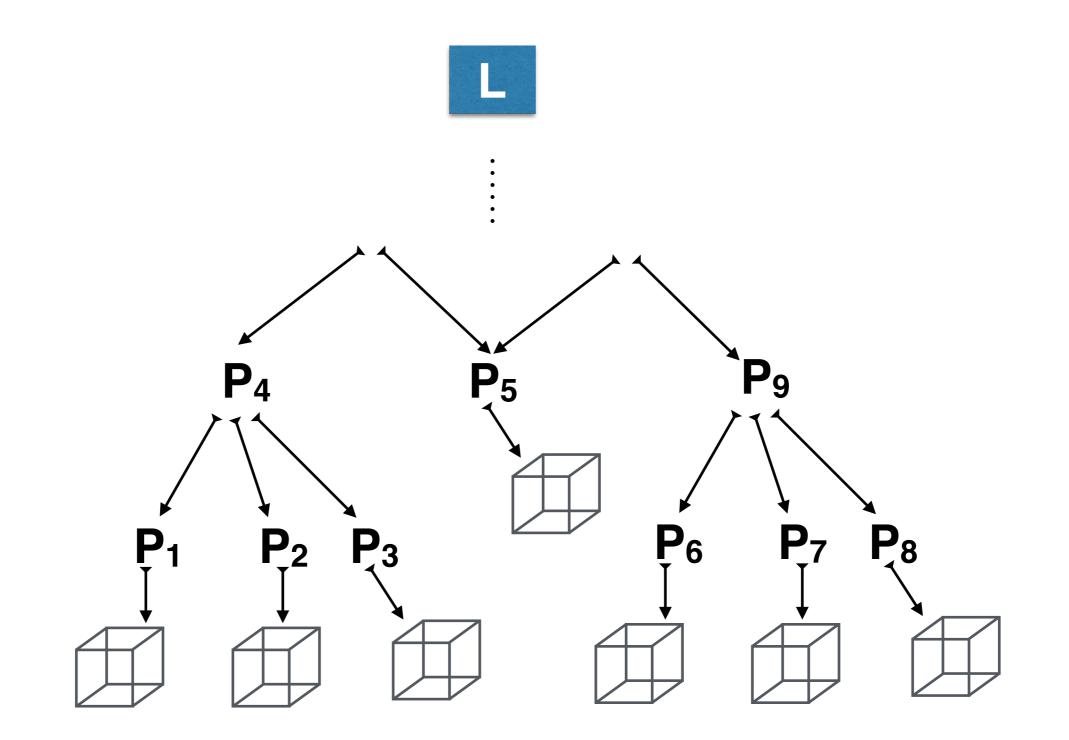
Directness of the diagram

It is clear that the diagram is directed

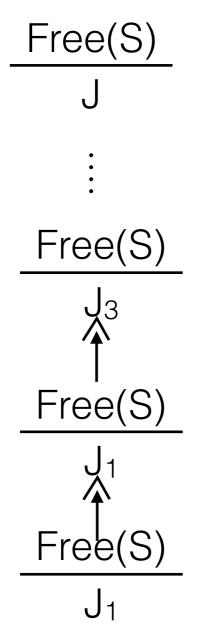




Limits of rational polyhedra



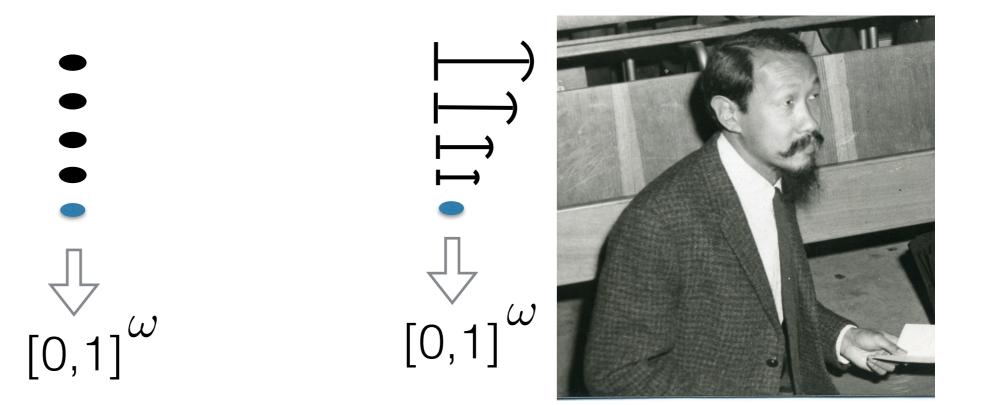
Finitely generated MValgebras



For finitely generated

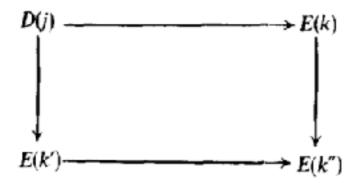
MV-algebra, it is enough to consider diagrams that have the order type of ω

Recognising Chang



Stone spaces, pag. 225

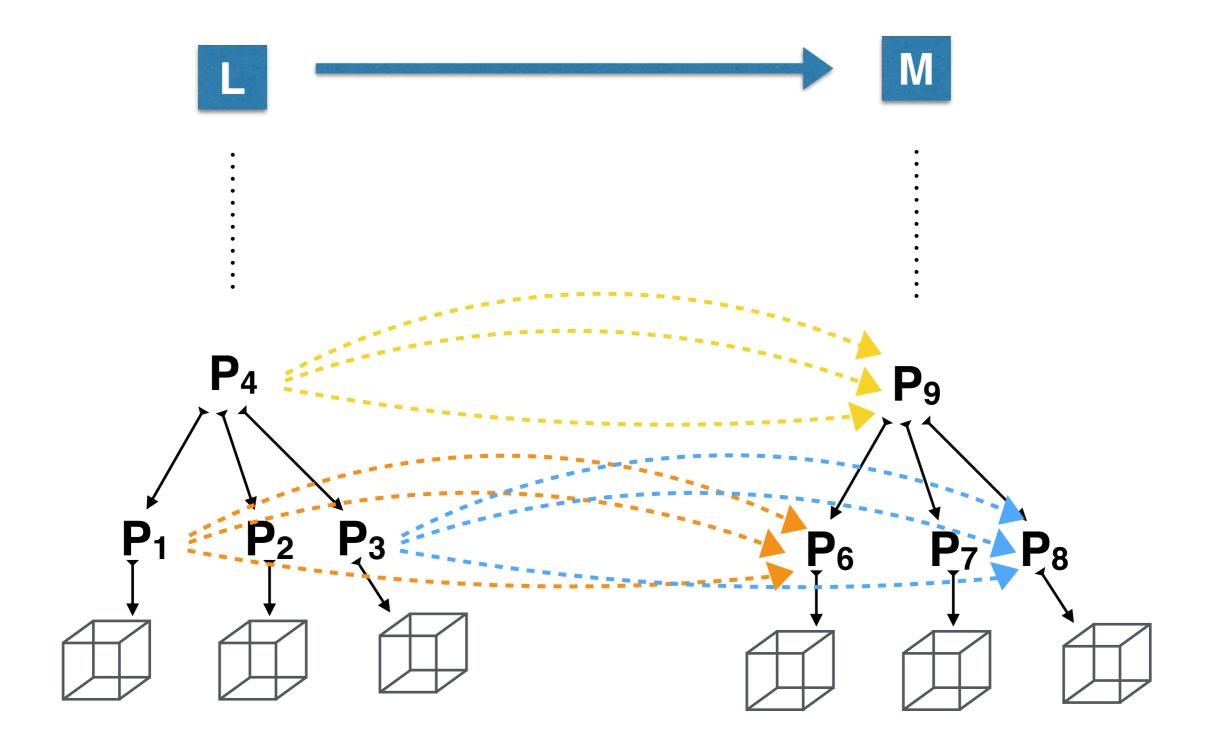
hom $(D : \mathbf{J} \to \mathbf{C}, E : \mathbf{K} \to \mathbf{C}) \cong [\lim_{J} \lim_{K} \hom_{\mathbf{C}} (D(j), E(k)).$ (*) Explicitly, a morphism $f : D \to E$ of ind-objects is a family $(f_j | j \in \text{ob } \mathbf{J})$, where each f_j is an equivalence class of morphisms from D(j) to objects in the image of E (two such morphisms $D(j) \to E(k)$ and $D(j) \to E(k')$ being equivalent iff there exist morphisms $k \to k''$ and $k' \to k''$ in \mathbf{K} such that



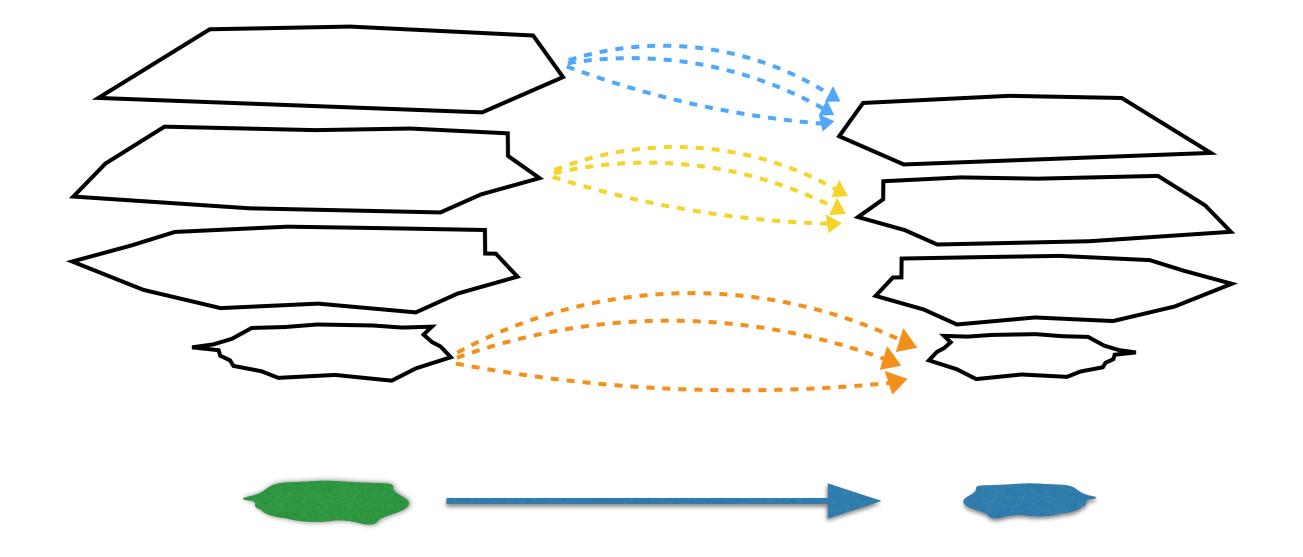
commutes), satisfying the compatibility condition that if $j \rightarrow j'$ is a morphism of J and $D(j') \rightarrow E(k)$ belongs to $f_{j'}$, then the composite $D(j) \rightarrow D(j') \rightarrow E(k)$ belongs to f_j . We leave it to the reader to work out the appropriate definition of composition for these morphisms.

Fortunately, we shall not have to use this explicit description of morphisms of ind-objects very often; but the 'double-limit' description (*) of its hom-sets will be useful in elucidating many of the properties of the category Ind-C of ind-objects of C. From the process by which we arrived at (*), we have an immediate

Arrows in the pro-completion



Arrows in the finitely generated case

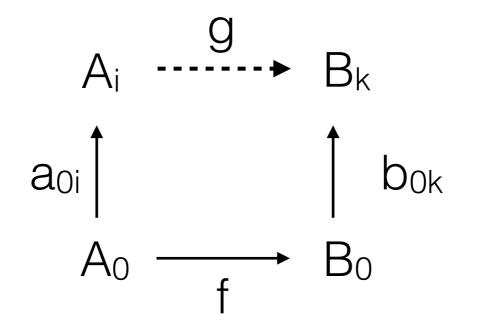


Compatible arrows

 $\{(A_i, a_{ij}) \mid i, j \in \omega\}$ Diagrams of f.p. algebras

 $\{(B_k, b_{kl}) \mid k, l \in \omega\}$ $A_0 = [0, 1]^n, B_0 = [0, 1]^m.$

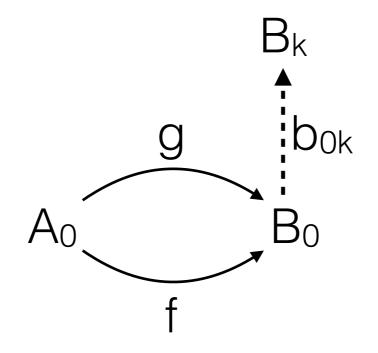
The family of **compatible arrows** C(A,B) is given by all arrows f : $A_0 \longrightarrow B_0$ such that:



Eventually equal maps

Define an equivalence relation E (to be read as f and g being **eventually equal**) on C(A,B) as follows.

Two arrows f, $g \in C(A,B)$ are in E, if

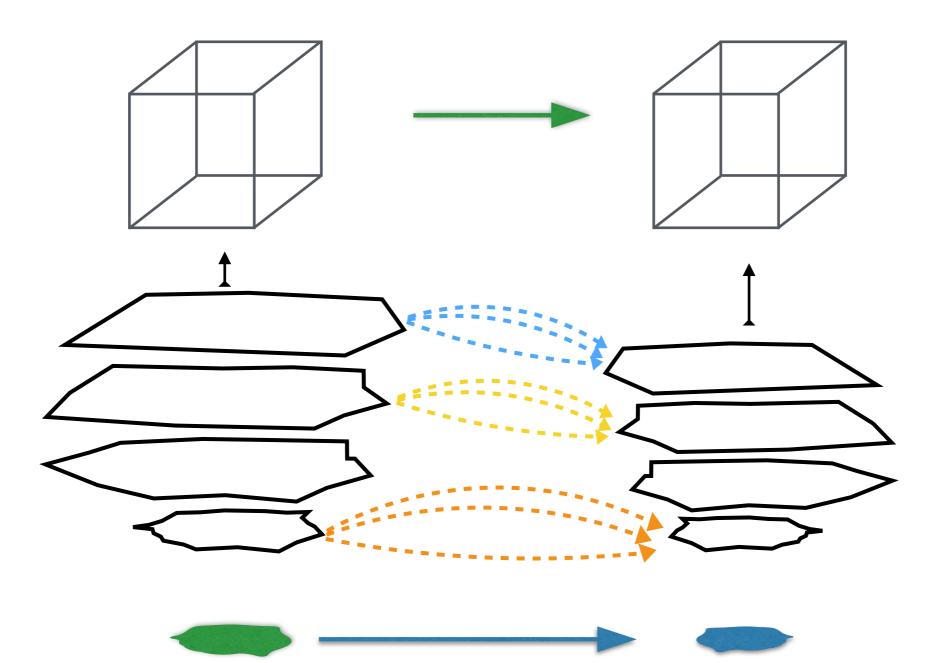


The case of finitely generated algebras

Theorem Let $\{(A_i, a_{ij}) \mid i, j \in I\}$ and $\{(B_{kl}, b_{kl}) \mid k, l \in K\}$ be diagrams of order type ω in a category C, A and B their respective limits in ind-C, and suppose that the arrows a_{ij} and b_{kl} are epic.

- 1. For any \mathcal{E} -equivalence class C in $\mathcal{C}(A, B)$ of arrows $f: A_0 \to B_0$ there is a corresponding arrow ϕ_C between A and B in ind-C.
- 2. Vice-versa, for any arrow $\phi = {\phi_i}_{i \in I}$ in ind-C between A and B, there is an \mathcal{E} -equivalence class C_{ϕ} of arrows $f: A_0 \to B_0$ in $\mathcal{C}(A, B)$.
- 3. The above associations are such that $C = C_{\phi_C}$ and $\phi = \phi_{C_{\phi}}$.

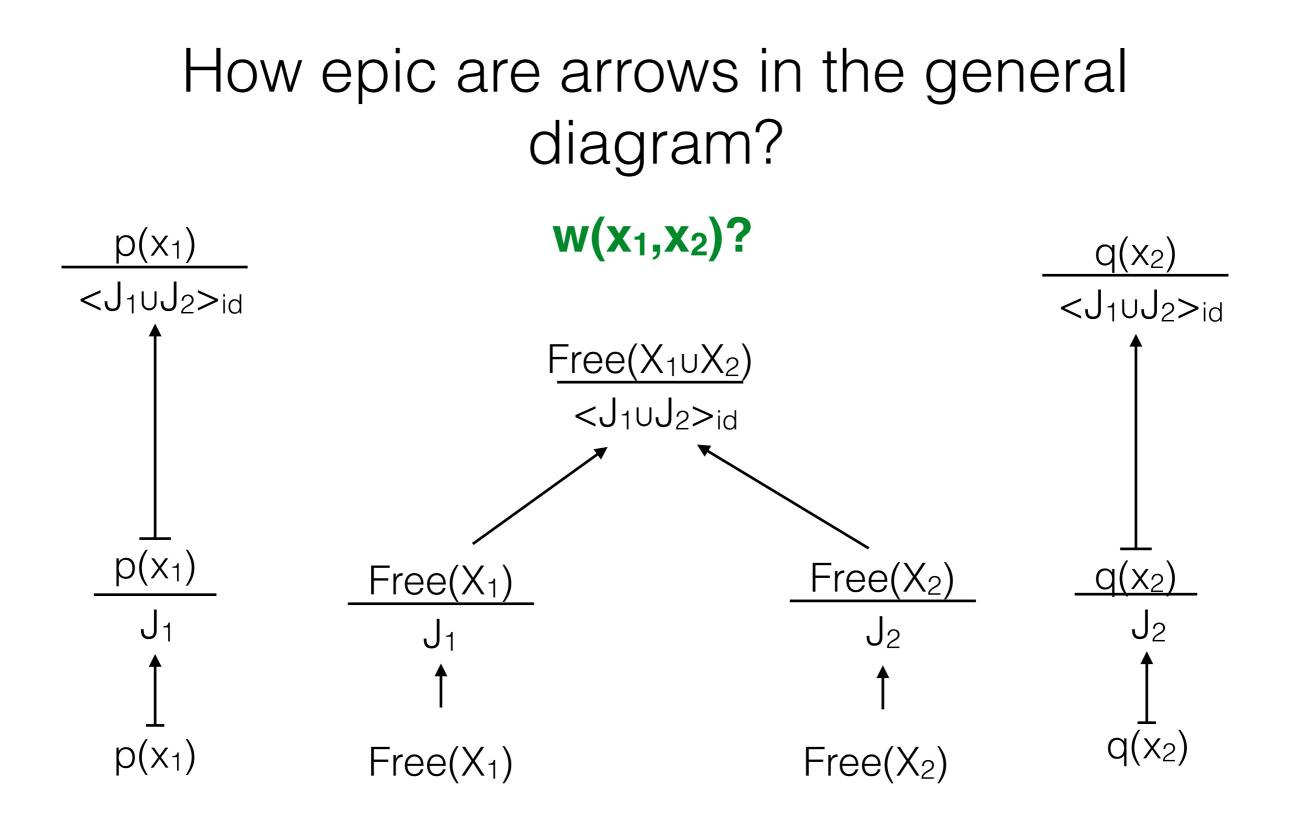
Arrows in the finitely generated case



The case of finitely generated algebras

Theorem Let $\{(A_i, a_{ij}) \mid i, j \in I\}$ and $\{(B_{kl}, b_{kl}) \mid k, l \in K\}$ be diagrams of order type ω in a category C, A and B their respective limits in ind-C, and suppose that the arrows a_{ij} and b_{kl} are epic.

- 1. For any \mathcal{E} -equivalence class C in $\mathcal{C}(A, B)$ of arrows $f: A_0 \to B_0$ there is a corresponding arrow ϕ_C between A and B in ind-C.
- 2. Vice-versa, for any arrow $\phi = {\phi_i}_{i \in I}$ in ind-C between A and B, there is an \mathcal{E} -equivalence class C_{ϕ} of arrows $f: A_0 \to B_0$ in $\mathcal{C}(A, B)$.
- 3. The above associations are such that $C = C_{\phi_C}$ and $\phi = \phi_{C_{\phi}}$.



Arrows are *jointly* epic

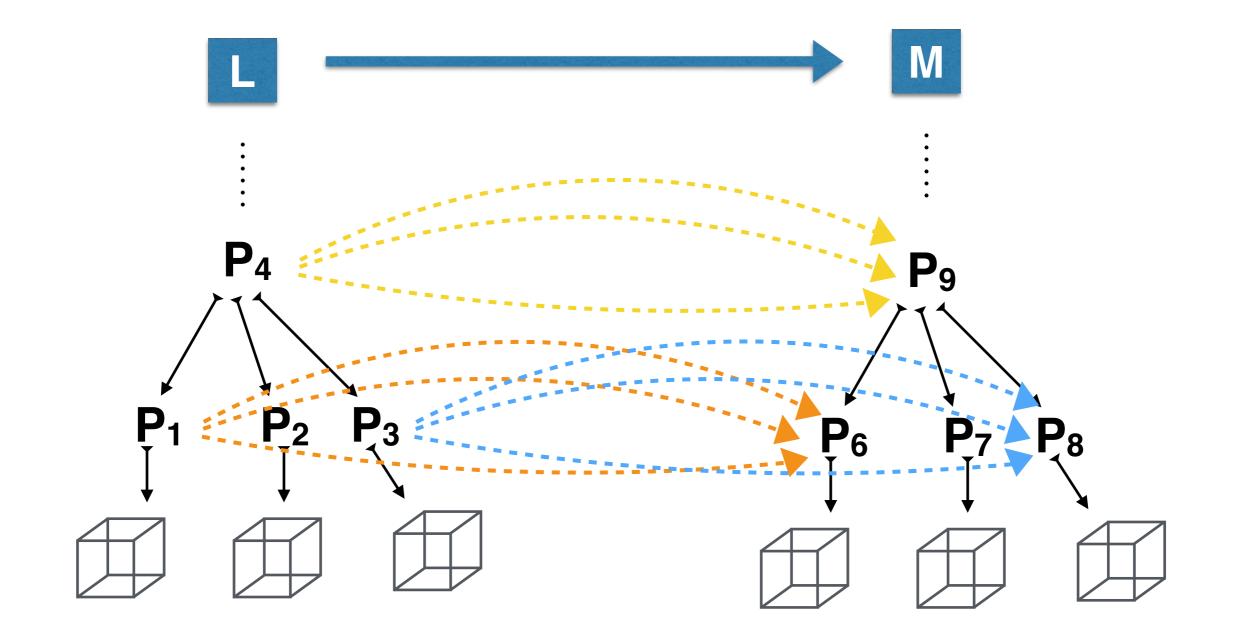
The case of finitely generated algebras

Let us call **inceptive** the objects in a diagram who are not the codomain of any arrow in the diagram

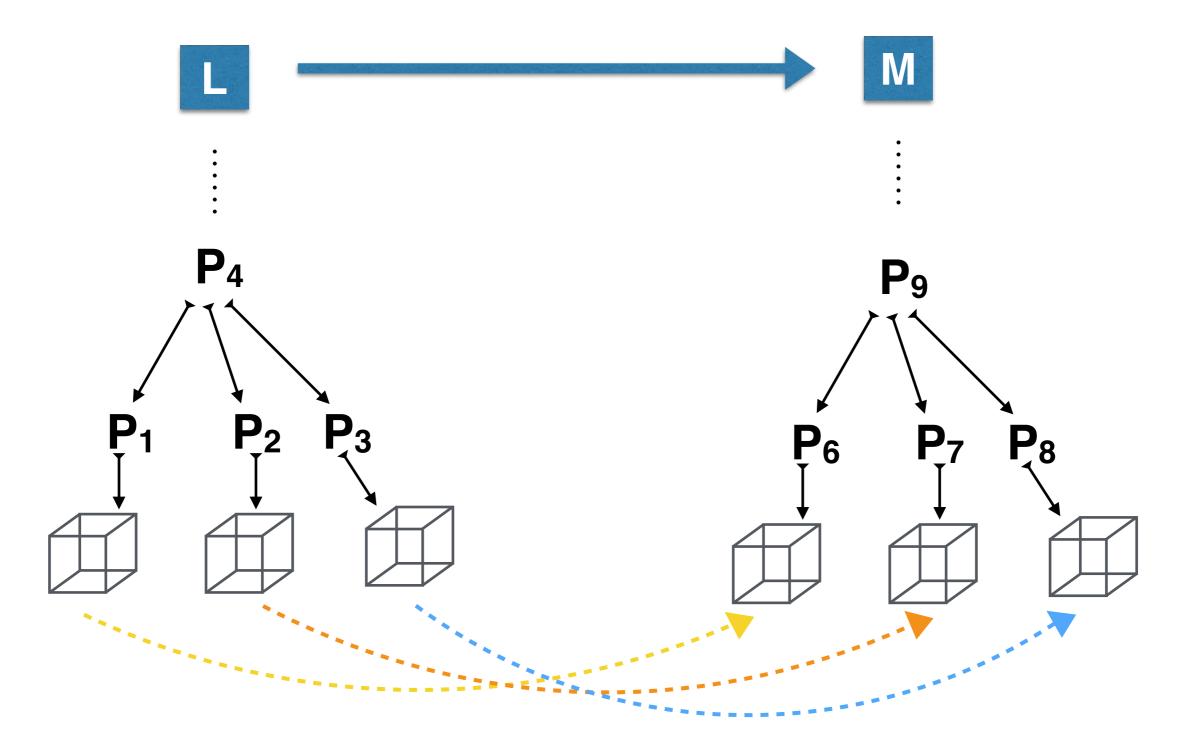
Lemma.

Let C be a finitary algebraic category. Every directed diagram in C_{fp} is isomorphic to a diagram where the **inceptive objects are free algebras** and **transition maps are jointly epic**.

Arrows in the pro-completion



Arrows in the pro-completion



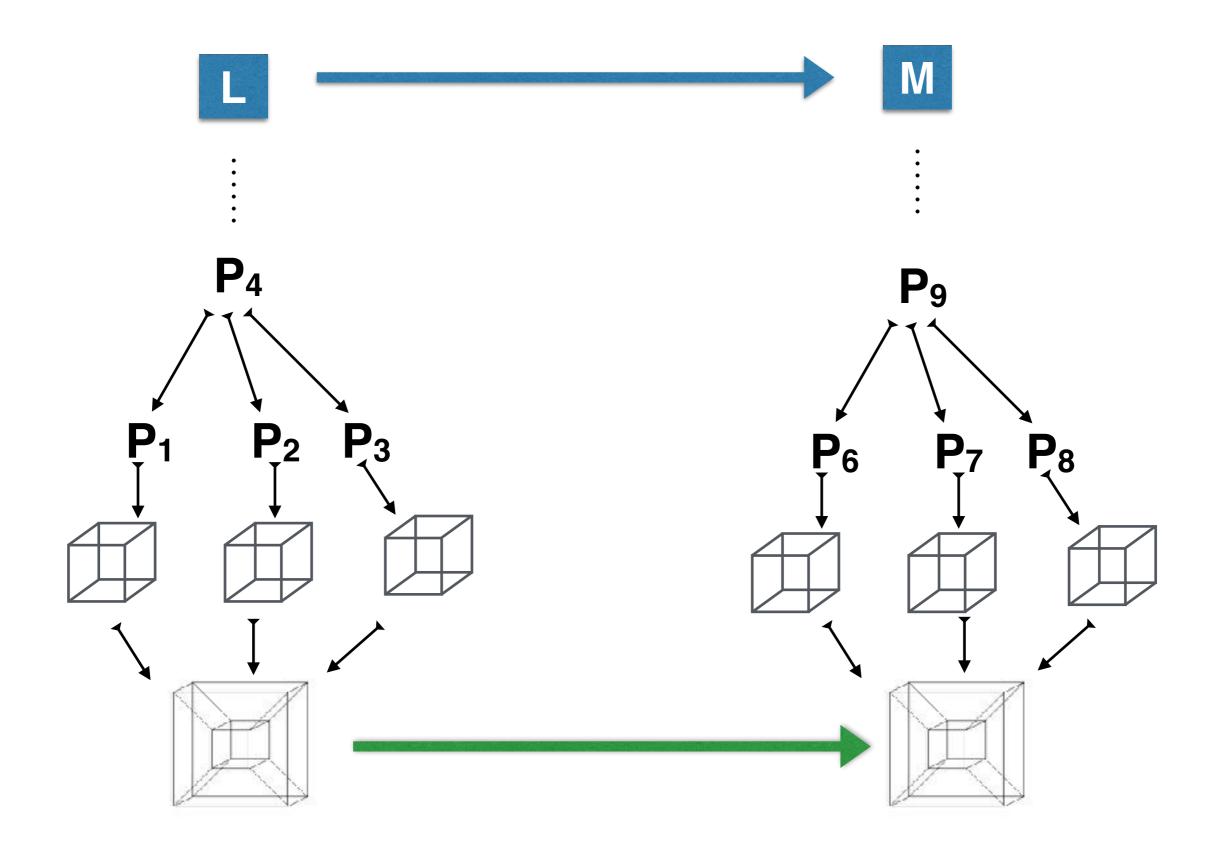
A duality for all MV-algebras

Theorem: The category of MV-algebras

is dually equivalent to

the category whose objects are **directed diagrams** of rational polyhedra and arrows are \mathbb{Z} -maps between their inceptive objects.

Arrows in the pro-completion



Open problems

- Can these approximating diagrams be given a more concrete description? (Ongoing research with Sara Lapenta on piecewise geometry on ultrapowers of R.)
- Can the embedding into Tychonoff cubes be made more intrinsic? (Recent joint research with Vincenzo Marra on axioms for *arithmetic separation*.)
- Characterise the topological spaces that arise as the spectrum of prime ideals of MV-algebras. (See the recent preprint by Fred Wehrung solving the problem for second countable spaces.)
- Is it decidable whether two arbitrary finitely presented MV-algebras are isomorphic? (See the work of Daniele Mundici in the last years aiming at attaching computable invariants to rational polyhedra.)