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 This work is based on results obtained with



Lukasiewicz logic
It is a logic L in which the formulas may take any truth value in 
the real interval [0,1]. 

L can defined in terms of →  as the only one such that 

• It is closed under Modus Ponens. 

• The connective → is continuous.  

• The order of premises is irrelevant. 

• For any truth-values x, y ∈ [0,1],  

x → y equals 1 precisely when x ≤ y. 



MV-algebras
An MV-algebra is a structure (A,⊕,¬,0) such that (A,⊕,
0) is a commutative monoid and the following 
axioms hold: 

1. ¬0⊕x = ¬0 

2. ¬ ¬x = x  

3. ¬(¬ x⊕y)⊕y = ¬(¬ y⊕x)⊕x

Any MV-algebra has a lattice structure given by setting  
¬(¬ x⊕y)⊕y = x∨y



Examples of MV-algebras
1. Any Boolean algebra is an MV-algebra where ⊕ satisfies x⊕x=x.

Theorem 1: The algebra [0,1] generates the variety 
of MV-algebras.

2. Consider [0,1] with the operations: 

x⊕y := min{x+y,1}     and     ¬x := 1-x 

(Example:    0.3⊕0.2 = 0.5    but    0.7⊕0.8 = 1) 

([0,1], ⊕, ¬, 0) is an MV-algebra.



Examples of MV-algebras
3. Let 𝜀 be just a symbol, consider {n𝜀, n(¬𝜀) | n∈ℕ} endowed with the 
operations: 

𝜀
0

𝜀+𝜀
𝜀+𝜀+𝜀

¬𝜀+¬𝜀+¬𝜀
¬𝜀+¬𝜀
¬𝜀
1• n𝜀⊕m𝜀:=(n+m)𝜀 

• n(¬𝜀)⊕m(¬𝜀):=1 

• n𝜀⊕m(¬𝜀):=(n-m)¬𝜀 

• ¬n(¬𝜀):=(n)𝜀 

• ¬n(𝜀):=(n)¬𝜀 

This is called the Chang’s algebra. It is not semisimple.



Simple and semisimple MV-
algebras

Simple MV-algebra = only trivial congruences

Theorem 2: An MV-algebra is simple if, and only if, it 
is a subalgebra of [0,1].

Semisimple MV-algebra = subdirect product of 
simple algebras = 𝕀𝕊ℙ([0,1]).

= subalgebra of [0,1] = 𝕀𝕊([0,1])



Ideals
If A is an MV-algebra, a non empty P⊆A is called 
ideal if 

• P is downward closed, 

• a,b∈P   implies   a∨b∈P, 

• a,b∈P   implies   a⊕b∈P. 

P is called maximal if it is maximal among the proper 
ideals w.r.t. the inclusion order.



Our examples

0

1

The algebra {0,1}

Chang’s algebra

not a maximal ideal!

[0,1]
1

0
0.3

0.3⊕0.3⊕0.3⊕0.3 = 1

n𝜀⊕m𝜀 = (n+m)𝜀

They are 
indistinguishable 
by simply using 
their maximal 

ideals.



Two different things

These are two different phenomena, and it is 
important to keep them distinct.

To begin with let us concentrate only on semisimple 
MV-algebras.



Part I:  
Semisimple MV-algebras



Finite MV-algebras
• Finite MV-algebras are products of finite linearly 

ordered MV-algebras. 

• All finite linearly ordered MV-algebras are simple. 

Sn = {0, 1/n, 2/n,…, (n-1)/n, 1} 

with operations inherited from the MV-algebra [0,1]. 

• S2 ={0, 1/2, 1}, S3 ={0, 1/3, 2/3, 1}, etc.



The duals of finite MV-
algebras

S2

0

1/2

1

S4

0

2/4

1
3/4

1/4

S3

0

1

2/3

1/3
S3

0

1

2/3

1/3

The algebras can be reconstructed if we attach 
natural numbers to points.



A duality for “finitely valued” 
MV-algebras.

Niederkorn (2001) using the theory of Natural 
Dualities proves that 

𝕀𝕊ℙ(Sn)  is dual to 

(X, D1,…,Dn)

X: Stone space  

D1,…,Dn: unary 
predicates […]



A duality for locally finite MV-
algebras.

Cignoli-Dubuc-Mundici (2004), using ind- and pro- 
completions, prove that

Locally finite MV-
algebras are dual to 

(X, f: X ➝ sℕ)

X: Stone space  

f: continuous map 
into the “super 

natural numbers”



A further extension
However, the situation is more complex, indeed:

Theorem 3.     Every compact Hausdorff space is 
homeomorphic to Max(A), for some MV-algebra A.

• How can we attach natural numbers to the 
points of an abstract compact Hausdorff space? 

• How can we use those numbers to recover the 
structure of the MV-algebra?

The following definition is CRUCIAL.



ℤ-maps
Let C, D be sets.  A continuous map  

z = (zd∈D) : [0,1]C —> [0,1]D  

is called a ℤ-map if for each d∈D, zd  is piecewise linear 
with integer coefficients.   

If P ⊆ [0,1]C and Q ⊆ [0,1]D, a ℤ-map z : P ➝ Q is a simply a 
restriction of ℤ-map from [0,1]C into [0,1]D. 

Let T be the category of subspaces of [0,1]C, for any set C, 
and ℤ-maps among them.



ℤ-maps from [0,1] into [0,1]

1 1

1 100



A ℤ-map from [0,1]2 to [0,1]



ℤ-maps
ℤ-maps have interesting properties, e.g., they respect 

denominators.
1 1

1 100 1/2

1/2 1/2

1/2

{n⋅1/2 | n ∈ ℕ} = {0, 1/2, 1}    
{n⋅1/6 | n ∈ ℕ} = {0, 1/6, 1/3, 1/2, 2/3, 5/6, 1}   



McNaughton theorem
Theorem 4 (McNaughton)
The MV-terms in n variables interpreted on the MV-
algebra [0,1]n are exactly the ℤ-maps from [0,1]n into 
[0,1].

Corollary (to be used later)
The free n-generated MV-algebra is isomorphic to the 
algebra of ℤ-maps from [0,1]n into [0,1].



The framework of natural 
dualities

• On the one hand we have MVss = 𝕀𝕊ℙ([0,1]), 

• On the other hand, T = 𝕀𝕊cℙ([0,1]). 

• In fact, [0,1] plays both the role of an MV-algebra 
and of an element of T.  

• The functors homT( — , [0,1]) and homMV( —, [0,1]) 
form a contravariant adjunction.



The (contravariant) hom 
functors

homMV(A, [0,1]) is bijective to Max(A), and since  

homMV(A, [0,1]) ⊆ [0,1]A  

it inherits the product topology. 

The space homMV(A, [0,1]) with the product topology 
is homeomorphic to Max(A) with the Zariski topology.  

homT( X, [0,1]) has MV-operations defined point-wise. 
I will often write ℤ(X) for homT( X, [0,1]).

Do not forget it!



A representation as algebras 
of ℤ-maps

Theorem 5 
The category of semisimple MV-algebras with their 
homomorphisms 

 is dually equivalent  
to the category of closed subspaces of [0,1]A, with A any 
set, and ℤ-maps as arrows.

For any semisimple MV-algebra,  
A ≅ ℤ(Max(A)) 

For any closed X ⊆ [0,1]C,  
X ≅ℤ Max(ℤ(X)) 



Finitely presented MV-
algebras

A finitely presented algebra is the quotient of a 
finitely generated free algebra over a finitely 
generated ideal.

The equation f (x1,…,xn) = 0 defines a closed 
subspace of [0,1]n

Free(x1,…,xn)
< f (x1,…,xn) >id



Rational polyhedra
In the case of MV-algebras, those equations 
define a rational polyhedron.

More precisely, a rational polyhedron is a finite 
union of convex hulls of rational points in [0,1]n.

Points with rational coordinates



The duality for finitely 
presented MV-algebras

Corollary (sort of)
The category of finitely presented MV-algebras with 
their homomorphisms 

is dually equivalent  
to the category PZ of rational polyhedra and ℤ-
maps.



Our examples

0

1The algebra {0,1}

[0,1]∩ℚ [0,1]

S3

0

1

2/3

1/3
(0,0) ∈ [0,1]2 (1/3,1/3,1/3,1/3) ∈ [0,1]4

(m/n | m,n ∈ ℕ) ∈ [0,1]�0

1

0

1

(r | r ∈ ℝ ∩ [0,1]) ∈ [0,1]2�



But…

0

1The algebra {0,1}

(0,0) ∈ [0,1]2

Chang’s algebra

(0,0,…) ∈ [0,1]�

Are still 
indistinguishable!



Part 2: 
Non semisimple



Chang’s algebra revisited
Consider the set of ℤ-maps from [0,1] into [0,1] for which 
there exists a neighbour of the point 0, in which they 
vanish.

1

10

Take the quotient of Free(1), by this ideal.



Chang’s algebra

𝜀
0

𝜀+𝜀
𝜀+𝜀+𝜀

0

1

1



Chang’s algebra

𝜀
0

𝜀+𝜀
𝜀+𝜀+𝜀

¬𝜀+¬𝜀+¬𝜀
¬𝜀+¬𝜀
¬𝜀
1

0

1

1



Max(A) and Spec(A)
• Maximal ideals 

correspond to points in 
the dual. 

• Prime ideals 
correspond to some 
sort of neighbourhood 
systems of the 
maximal ideal that 
contains them.

Chang’s algebra

not max ideal!



How can we concretely 
describe this additional 
piece of information?



Johnstone’s approach

• Start with the duality between finite sets and finite 
Boolean algebras.  Take all directed limits in the first 
case and all directed colimits in the second case…. 

• Start with Birkhoff’s duality between finite 
distributive lattices and finite posets.  Take again 
(directed) limits and colimits….

In Stone Spaces P. Johnstone uses ind- and pro- 
completions to prove some classical dualities..



Ind- and pro- completions
• The ind-completion of a category C is a new 

category whose objects are directed diagrams in 
C. 

• Arrows in ind-C are families of equivalence 
classes of arrows in C. (We’ll get back to this later.)   

• The pro-completion is formed similarly.



An application to MV
Let B and C be two categories,

Now, MVfp ≃ (PZ)op, so 

MV ≃ ind-MVfp ≃ ((pro-(PZ)op)op)op = (pro-PZ)op.

Theorem 6:  MV ≃ (pro-PZ)op

if B ≃ C   then  ind-B ≃ (pro-Cop)op.



MV-algebras (general case)

Any algebra is the quotient of a free algebra over 
some ideal.

Free(S)
J



Finitely presented algebras as building 
blocks 

Start with any algebra

One can form a directed 
diagram by taking all finite 

subsets of J

Free(S)
J

J

J1 J2 J3 J4 J5

J6 J7
J8



Finitely presented algebras as building 
blocks 

Start with any algebra

One can form a directed 
diagram by taking all finite 

subsets of J

Free(S)
J

Free(S)
J

Free(S6)
J6

Free(S1)
J1

Free(S2)
J2

Free(S3)
J3

Free(S4)
J4

Free(S5)
J5

Free(S7)
J7

Free(S8)
J8This corresponds to a directed 

diagram of algebras



Directness of the diagram 

Free(S1)
J1

Free(S2)
J2

Free(S1∪S2)
J1⋃J2

It is clear that the diagram is directed



Finitely presented algebras as building 
blocks 
Free(S)

J

Free(S1) Free(S2)Free(S3)Free(S4) Free(S5)

Free(S6)
J6

Free(S2)
J2

Free(S3)
J3

Free(S4)
J4

Free(S5)
J5

Free(S7)
J7

Free(S8)
J8

Free(S1)
J1



Limits of rational polyhedra 

P1 P2 P3

P4 P5

L

P6 P7 P8

P9



Finitely generated MV-
algebras

For finitely generated 
MV-algebra, it is 

enough to consider 
diagrams that have 

the order type of  �Free(S)
J1

Free(S)
J1

Free(S)
J3

Free(S)
J



Recognising Chang

[0,1]�[0,1]�



Stone spaces, pag. 225



Arrows in the pro-completion 

P1 P2 P3

P4

L

P6 P7 P8

P9

M



Arrows in the finitely 
generated case



Compatible arrows

The family of compatible arrows C(A,B) is given by 
all arrows f : A0 —> B0 such that:

{(Ai,aij) | i,j ∈ ω }  

{(Bk,bkl) | k,l ∈ ω}

Diagrams of f.p. algebras 

A0=[0,1]n,  B0=[0,1]m. 

A0 B0

Ai

f

a0i

Bk

b0k

g



Eventually equal maps

Define an equivalence relation E (to be read as f and 
g being eventually equal) on C(A,B) as follows.  

Two arrows f, g ∈ C(A,B) are in E, if

A0 B0

f

g

Bk

b0k



The case of finitely 
generated algebras



Arrows in the finitely 
generated case



The case of finitely 
generated algebras



How epic are arrows in the general 
diagram? 
w(x1,x2)?

Arrows are jointly epic

Free(X2)Free(X1)

Free(X1)
J1

Free(X2)
J2

Free(X1∪X2)
<J1∪J2>id

p(x1) q(x2)

p(x1) q(x2)

q(x2)p(x1)

J1 J2

<J1∪J2>id<J1∪J2>id



The case of finitely 
generated algebras

Let us call inceptive the objects in a diagram who 
are not the codomain of any arrow in the diagram

Lemma.
Let C be a finitary algebraic category.  Every directed 
diagram in Cfp is isomorphic to a diagram where the 
inceptive objects are free algebras and transition 
maps are jointly epic.



Arrows in the pro-completion 

P1 P2 P3

P4

L

P6 P7 P8

P9

M



Arrows in the pro-completion 

P1 P2 P3

P4

L

P6 P7 P8

P9

M



A duality for all MV-algebras

Theorem:  
The category of MV-algebras  

is dually equivalent to 

the category whose objects are directed diagrams 
of rational polyhedra and arrows are ℤ-maps 
between their inceptive objects.



Arrows in the pro-completion 

P1 P2 P3

P4

L

P6 P7 P8

P9

M



Open problems
• Can these approximating diagrams be given a more concrete 

description? (Ongoing research with Sara Lapenta on piecewise 
geometry on ultrapowers of ℝ.) 

• Can the embedding into Tychonoff cubes be made more intrinsic? 
(Recent joint research with Vincenzo Marra on axioms for arithmetic 
separation.) 

• Characterise the topological spaces that arise as the spectrum of 
prime ideals of MV-algebras. (See the recent preprint by Fred 
Wehrung solving the problem for second countable spaces.) 

• Is it decidable whether two arbitrary finitely presented MV-algebras 
are isomorphic? (See the work of Daniele Mundici in the last years 
aiming at attaching computable invariants to rational polyhedra.)


