Lukasiewicz logic, with coefficients

Based on a joint work with A. Di Nola, G. Lenzi and V. Marra.

Luca Spada

Department of Mathematics
University of Salerno
http://logica.dmi.unisa.it/lucaspada

Logic Colloquium Stockholm, 17th August 2017. Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Píecewíse línear geometry

Łukasiewicz logic

Łukasiewicz infinite-valued propositional logic is a system in which:

- 1. truth values are allowed to range in the real interval [0,1],
- **2.** connectives are \vee , \wedge , *, \rightarrow , \neg .
- **3.** all connectives are continuous (w.r.t. the Euclidean topology on [0,1]).

ukasiewicz logic, with coefficients

Luca Spada

Introduction

Łukasiewicz logic

MV-algebras

Píecewise linear geometry

The idea in a nutshell

- ► The main aim is to enhance the expressive power of Łukasiewicz logic by adding truth modifiers to the language.
- ► They can be understood as linguistic modifiers such as very, particularly, really, etc.
- ► E.g.

This tower is high \mapsto This tower is very high.

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Łukasiewicz logic

MV-algebras

Píecewise linear geometry

Rational polyhedra

Remark.

Łukasiewicz logic is the logic of rational polyhedra, in the sense that there is an (effective) bijective correspondence between finite theories in Łukasiewicz logic and rational polyhedra.

A rational polytope is the convex hull of a finite set of rational points in some Euclidean space \mathbb{R}^n . Rational polyhedra are finite unions of rational polytopes.

_ukasiewicz logic, with coefficients

Luca Spada

Introduction

Łukasiewicz logic

MV-algebro

Píecewise linear geometry

MV-algebras

Remark

MV-algebras are the equivalent algebraic semantics of Łukasiewicz logic.

An MV-algebra is a structure $\langle A, \oplus, \neg, 0 \rangle$ such that

- **1.** $\langle A, \oplus, 0 \rangle$ is a commutative monoid,
- 2. $\neg \neg x = x$
- \mathbf{z} . $\neg 0 \oplus \mathbf{x} = \neg 0$
- **4**. $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Łukasiewicz logic

MV-algebras

Píecewise linear geometry

Mundíci's functor

An abelian ℓ -group with order unit ($u\ell$ -group, for short), is an ordered Abelian group G whose order is a lattice and that possesses an element u such that

for all $g \in G$, there exists $n \in \mathbb{N}$ such that $(n)u \geq g$.

The functor Γ that takes an $\mathfrak{u}\ell$ -group $\langle G, u \rangle$ to its **unital** interval [0, u] with operation \oplus and \neg defined as follows:

$$x \oplus y = \min\{u, x + y\}$$
 and $\neg x = u - x$,

is full, faithful, and dense; hence

Theorem (Mundící 1986)

The category of MV-algebras with their morphisms is equivalent to the category of $u\ell$ -groups with ordered group morphisms preserving the order unit.

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Łukasiewicz logic

MV-algebras

Píecewise linear geometry

Introduction

Píecewise linear geometry

Maín results

Definition

A \mathbb{Z} -map is a continuous and piecewise (affine) linear map from \mathbb{R}^I into \mathbb{R}^J , for I,J arbitrary sets, such that each (affine) linear piece has integer coefficients.

Theorem (Marra, -2012)

The category of finitely presented MV-algebras and the category of rational polyhedra with \mathbb{Z} -maps among them are dually equivalent.

So, MV-algebras provide an equational theory to deal with polyhedral geometry, as long as we consider maps with integer coefficients.

Piecewise linear geometry with coefficients in $\mathbb{Z} \subseteq R \subseteq \mathbb{R}$

Rings	alg. closed field k	Algebraic varieties	Polynomial maps
Boolean algebras	{0,1}	Stone spaces	Continuous maps
Riesz spaces	\mathbb{R}	Polyhedra	Piecewise linear maps
MV-algebras	\mathbb{Z}	Rational polyhedra	\mathbb{Z} -maps
??MVC-algebras	$\mathbb{Z}\subseteq R\subseteq \mathbb{R}$??R ^q -Polyhedra	??R-maps

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Píecewise linear geometry

eorem

Let, for the rest of the talk, R be a fixed but arbitrary ring such that $\mathbb{Z} \subseteq R \subseteq \mathbb{R}$ and let $C := \Gamma(R, 1)$.

Definition

An MVC-algebra is an MV-algebra $\langle A, \oplus, \neg, 0 \rangle$ endowed with a family of unary operations $\{f_c \mid c \in C\}$ satisfying the following axioms for all $a, b \in C$ and for all $x, y \in A$.

- $\mathbf{1.} \ f_{\mathsf{a}}(\mathsf{x} \ominus \mathsf{y}) = f_{\mathsf{a}}(\mathsf{x}) \ominus f_{\mathsf{a}}(\mathsf{y}).$
- **2.** $f_{a\ominus b}(x) = f_a(x) \ominus f_b(x)$.
- **3.** $f_a(f_b(x)) = f_{a \cdot b}(x)$.
- **4.** $f_1(x) = x$.

Where \ominus is a derived operation defined as $x \ominus y := \neg(\neg x \oplus y)$

Extending the functor Γ

Theorem

The functor Γ from $u\ell$ -groups to MV-algebras can be extended to a functor from $u\ell$ -modules over R to MVC-algebras. The extended Γ functor form an equivalence of categories.

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Piecewise linear geometry

results

Main

Extending Γ

Generalised

McNaughton

Completeness

Theorem

Let R^q be the field of quotients of R and let $C^q = \Gamma(R^q, 1)$. The variety of MVC-algebras is generated by C^q .

idea of the proof

- ▶ If $A \not\models s \approx t$ for an MVC-algebra A, then also $M \not\models s \approx t$ with $\Gamma(M, u) = A$. W.l.o.g. take A l.o.
- ▶ The $u\ell$ -module M embeds in a torsion free, R-divisible, totally ordered module.
- ► The first order theory of these *R*-modules enjoys EQ and it is complete, hence all its models are elementarily equivalent.
- ▶ The failure of an equation in M can be encoded in a first order formula, hence the equation also fails in the $u\ell$ -module R^q . So it fails in C^q .

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Píecewíse línear geometry

Maín results

Extending Γ

completeness

Generalised McNaughton

McNaughton theorem for MVC-algebras

McNaughton showed that the terms definable in n in the language of MV-algebras are exactly the \mathbb{Z} -maps from $[0,1]^n$ into [0,1].

Theorem

The free k-generated MVC-algebra is isomorphic to the algebra of piecewise linear functions from $[0,1]^k$ into [0,1] such that each affine linear piece has coefficients in R.

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Píecewise linear geometry

Main results

Extending Γ

Completeness

Generalised McNaughton theorem

Duality

Lukasiewicz logic, with coefficients

Luca Spada

Introduction

Píecewise linear geometry

Maín results

Extending Γ

Completeness

Generalised McNaughton

Duality

Theorem

There is a categorical duality between

MVC-algebras,

MVC-homomorphisms

and

Polyhedra with vertices in R^q ,

Piecewise linear functions with coefficients in R.

Thank you for your attention!