Dualities for MV-algebras

In memoriam Leo Esakia.

Luca Spada

Joint work with Vincenzo Marra.

Dipartimento di Matematica
Università di Salerno
http://logica.dmi.unisa.it/lucaspada

Ordered Groups and Lattices in Algebraic Logic. Tbilisi, Georgia. $22^{\text {d }}$ September, 2011

The basic
adjunction

Semi-simple
MV-algebras

Finitely
presented
MV-algebras

Aim of the talk

Either it is soft or not.
If an apple is red or yellow, then put it in the first basket.

The higher a men is, the easier is that he is blond
Semi-simple MV-algebras

If is too cold increase heating a bit.

Aim of the talk

Dualities for MV-algebras

MV-algebras

The functors
\mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Aim of the talk

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

Categorical duality

Either it is soft or not.

The higher a men is, the easier is that he is blond

The functors
\mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras
If is too cold increase heating a bit.

Finitely
presented
MV-algebras

Space and numbers

Dualities for MV-algebras

Introduction

MV-algebras

The functors \mathscr{I} and \mathscr{V}

There exists a correspondence between points in the space and tuples of numbers.

The basic
adjunction

Semi-simple MV-algebras

René Descartes 1596-1650

Finitely
presented
MV-algebras

An formal correspondence

The correspondence can be lifted to subspaces and set of equations.

The functors \mathscr{I} and \mathscr{V}

The basic
adjunction
David Hilbert
1862-1943
$\mathbb{V}(p(\bar{x})=q(\bar{x}))=\left\{\left(a_{1}, . ., a_{n}\right) \mid p\left(a_{1}, . ., a_{n}\right)=p\left(a_{1}, . ., a_{n}\right)\right\}$
and
Semi-simple MV-algebras

Finitely
presented
MV-algebras

Totally disconnected spaces

Every boolean algebra is isomorphic to the algebra of clopen sets of a totally disconnected, compact, Hausdorff space.

MV-algebras

The functors \mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple
MV-algebras
1903-1989

$$
A \mapsto \operatorname{Spec}(A)=\{M \subseteq A \mid M \text { is an maximal filter }\} .
$$

Finitely
presented
MV-algebras

Totally disconnected spaces

Dualities for MV-algebras

Introduction

MV-algebras

Every boolean algebra is isomorphic to the algebra of clopen sets of a totally disconnected, compact, Hausdorff space.

Marshall Stone 1903-1989

$$
\frac{\mathcal{F}_{\mu}}{l} \cong A \mapsto\left\{a \in\{0,1\}^{\mu} \mid t(a) \approx 1 \text { for any } t \in I\right\}
$$

The functors \mathscr{I} and \mathscr{y}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

MV-algebras

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Łukasiewicz logic

Jan Łukasiewicz 1878-1956

Łukasiewicz logic is a many-valued logical system involving the basic connectives \rightarrow (implication) and \neg (negation), and axiomatised by the four axiom schemata:

$$
\begin{aligned}
& \text { 1. } \alpha \rightarrow(\beta \rightarrow \alpha) \text {, } \\
& \text { 2. }(\alpha \rightarrow \beta) \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma)) \text {, } \\
& \text { 3. }((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \text {, } \\
& \text { 4. }(\neg \alpha \rightarrow \neg \beta) \rightarrow(\beta \rightarrow \alpha),
\end{aligned}
$$

with modus ponens as the only deduction rule.

MV-algebras

The functors \mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Semantics of Łukasiewicz logic

Łukasiewicz logic is a subsystem of classical logic and has a many-valued semantics: assignments μ to atomic formulæ range in the unit interval $[0,1] \subseteq \mathbb{R}$.
They are extended compositionally to compound formulæ via

$$
\begin{gathered}
\mu(\neg \alpha)=1-\mu(\alpha), \\
\mu(\alpha \rightarrow \beta)=\min \{1,1-\mu(\alpha)+\mu(\beta)\}
\end{gathered}
$$

The functors \mathscr{F} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras

Tautologies are defined as those formulæ that evaluate to 1 under every such assignment.

Finitely
presented
MV-algebras

In 1958 Chang considered the Tarski-
Lindenbaum algebras of Łukasiewicz logic and called them MV-algebras.

Chen Chung Chang 19?? -

Definition

An MV-algebra is a structure $\mathcal{A}=\left\langle A, \oplus,{ }^{*}, 0\right\rangle$ such that:

- $\mathcal{A}=\langle A, \oplus, 0\rangle$ is a comm. monoid,
${ }^{*}{ }^{*}$ is an involution, i.e. $\left(x^{*}\right)^{*}=x$,
- the rules of interaction between \oplus

MV-algebras

The functors \mathscr{F} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras and * are given by:

- $x \oplus 0^{*}=0^{*}$
- $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$

Finitely
presented
MV-algebras

Example 1: The standard MV-algebra

In modern terms one says that MV-algebras are the equivalent algebraic semantics of Łukasiewicz logic.

Example

Consider the set of real number $[0,1]$ endowed with the following operation:

The basic
adjunction

$$
\neg x=1-x \text { and } x \oplus y=\min \{1, x+y\} \text { (truncated sum). }
$$

Semi-simple

Then $\langle[0,1], \oplus, \neg, 0\rangle$ is an MV-algebra.
Actually the above algebra generates the variety of all MV-algebras. So the equations that hold for any MV-algebra are exactly the ones that hold in $[0,1]$.

Example 2: lattice ordered groups

A (commutative) lattice ordered group G, ℓ-group for short, is a (commutative) group $\langle G,+,-, 0\rangle$ with an order \leqslant which is compatible with the operation +, i.e.

MV-algebras

The functors \mathscr{I} and \mathscr{V}

$$
x \leqslant y \quad \text { implies } \quad x+z \leqslant y+z
$$

The basic
adjunction

If g is a positive element in G, then the interval $[0, g]$, endowed with the truncation of the operations is an MV-algebra. So, for instance, the MV-algebra above is obtained from the ℓ-group $\langle\mathbb{R},+,-, 0\rangle$ by taking $g=1$. Actually, every MV-algebra can be obtained as the interval of some ℓ-group.

Definable function

Definition

Given $S \subseteq[0,1]^{\mu}$ and $T \subseteq[0,1]^{\nu}$, a function $\lambda: S \rightarrow T$ is definable if there exists a ν-tuple of terms $\left(I_{\beta}\right)_{\beta<\nu}$, with $I_{\beta} \in \mathcal{F}_{\mu}$, such that

$$
\lambda(\mathbf{p})=\left(I_{\beta}(\mathbf{p})\right)_{\beta<\nu}
$$

for every $p \in S$. Any such ν-tuple is called a family of

The basic
adjunction

Semi-simple MV-algebras defining terms for λ.

The functors \mathscr{I} and \mathscr{V}

The functors \mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

The basic adjunction

I shall consider the category $\mathrm{T}_{\text {def } \mathbb{Z}}$ of subspaces of the Tychonoff cubes $[0,1]^{\mu}$, with definable maps as morphisms.

Further, let MV_{p} be the category of presented MV-algebras, i.e. $M V$-algebra of the form $\frac{\mathcal{F}_{\mu}}{\theta}$, where \mathcal{F}_{μ} is the free MV-algebra on some cardinal μ and θ is a congruence of \mathcal{F}_{μ}, together with their homomorphisms.
\mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple
MV-algebras

Finitely
presented
MV-algebras

The basic adjunction

Dualities for MV-algebras

My aim for the moment is to construct a pair of functors

$$
\mathscr{I}: \mathrm{T}_{\operatorname{def} \mathbb{Z}}^{o p} \longrightarrow \mathrm{MV}_{\mathrm{p}}, \quad \mathscr{V}: \mathrm{MV}_{\mathrm{p}} \longrightarrow \mathrm{~T}_{\operatorname{def} \mathbb{Z}}^{o p} .
$$

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

The functor $\mathscr{I}:$ Objects.

Given $S \subseteq[0,1]^{\mu}$, let, for arbitrary terms $s, t \in \mathcal{F}_{\mu}$,

$$
(s, t) \in \mathbb{I}(S) \text { if and only if }[0,1] \vDash s(p) \approx t(p)
$$

for every $p \in S \subseteq[0,1]^{\mu}$.

Remark

The basic
adjunction
The defining condition for $\mathbb{I}(S)$ is equivalent to for any $\forall p \in S \quad s(p)=t(p)$ as real numbers.

Semi-simple MV-algebras

As for any $S \subseteq[0,1]^{\mu}$, it is easy to check that $\mathbb{I}(S)$ is a congruence on \mathcal{F}_{μ} one may define

$$
\mathscr{I}(S)=\mathcal{F}_{\mu} / \mathbb{I}(S) .
$$

The functor \mathscr{I} : Arrows.

Given $S \subseteq[0,1]^{\mu}$ and $T \subseteq[0,1]^{\nu}$, let $\lambda: S \rightarrow T$ be a definable map, and let d be a ν-tuple of defining terms for λ. Then there is an induced function

$$
\mathscr{I}(\lambda): \mathscr{I}(T) \rightarrow \mathscr{I}(S)
$$

The basic
adjunction

Semi-simple
MV-algebras

$$
\frac{s(x)}{\mathbb{I}(T)} \in \mathscr{I}(T) \quad \stackrel{\mathscr{I}(\lambda)}{\longmapsto} \frac{s(x / d)}{\mathbb{I}(S)} \in \mathscr{I}(S) .
$$

Remark on well-definition

MV-algebras

Remark

1. There can be several distinct defining terms for a definable function $\lambda: S \rightarrow[0,1]$. However, d and d^{\prime} are defining terms for the same function λ if and only if $\left(d, d^{\prime}\right) \in \mathbb{I}(S)$.
2. Further, the definition of $\mathscr{I}(\lambda)$ above does not depend on the choice of the representing term s, for if s^{\prime} is another term such that $\left(s, s^{\prime}\right) \in \mathbb{I}(T)$, then $s\left(\left[X_{\beta} \backslash I_{\beta}\right]_{\beta<\nu}\right)$ is congruent to $s^{\prime}\left(\left[X_{\beta} \backslash I_{\beta}\right]_{\beta<\nu}\right)$ modulo $\mathbb{I}(S)$, because substitutions commute with congruences.

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

The functor \mathscr{V} : Objects.

Given $R=\left\{\left(s_{i}, t_{i}\right) \mid i \in I\right\} \subseteq \mathcal{F}_{\mu} \times \mathcal{F}_{\mu}$, for I an index set, the vanishing locus of R is

$$
\mathbb{V}(R)=\left\{p \in[0,1]^{\mu} \mid[0,1] \vDash s_{i}(p) \approx t_{i}(p) \text { for each } i \in I\right\} .
$$

As for any congruence θ on \mathcal{F}_{μ} we have $\mathbb{V}(\theta) \subseteq[0,1]^{\mu}$ we set

$$
\mathscr{V}\left(\mathcal{F}_{\mu} / \theta\right)=\mathbb{V}(\theta) .
$$

Finitely

The functor \mathscr{V} : Arrows.

For each $\alpha<\mu$, let π_{α} be the $\alpha^{\text {th }}$ projection term.
Let $h: \mathcal{F}_{\mu} / \theta_{1} \rightarrow \mathcal{F}_{\nu} / \theta_{2}$ be a homomorphism of MV-algebras.
Fix, for each α, an arbitrary $f_{\alpha} \in h\left(\pi_{\alpha} / \theta_{1}\right)$.
For any $\boldsymbol{p} \in \mathbb{V}\left(\theta_{2}\right)$, set

$$
\mathscr{V}(h)(\mathbf{p})=\left(f_{\alpha}(\mathbf{p})\right)_{\alpha<\mu} .
$$

Finitely
presented
MV-algebras

The basic adjunction

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

A Galois adjunction

MV-algebras

The functors \mathscr{I} and $\sqrt{2}$

The basic
adjunction

Semi-simple
MV-algebras

Finitelv

Consequences of the Galois adjunction

Corollary

Let $S_{1}, S_{2} \subseteq[0,1]^{\mu}$ and $R_{1}, R_{2} \subseteq \mathcal{F}_{\mu} \times \mathcal{F}_{\mu}$, then
a) The functions \mathbb{I} and \mathbb{V} are isotone i.e. $S_{1} \subseteq S_{2}$ implies $\mathbb{I}\left(S_{2}\right) \subseteq \mathbb{I}\left(S_{1}\right)$ and $R_{1} \subseteq R_{2}$ implies $\mathbb{V}\left(R_{2}\right) \subseteq \mathbb{V}\left(R_{1}\right)$.
b) The compositions $\mathbb{I} \mathbb{V}$ and $\mathbb{V} \mathbb{I}$ are extensive, i.e.

$$
S_{1} \subseteq \mathbb{V}\left(\mathbb{I}\left(S_{1}\right)\right) \text { and } R_{1} \subseteq \mathbb{I}\left(\mathbb{V}\left(R_{1}\right)\right)
$$

c) The compositions $\mathbb{I V}$ and $\mathbb{V} \mathbb{I}$ give fixed points, i.e.

$$
\mathbb{I}\left(\mathbb{V}\left(\mathbb{I}\left(S_{1}\right)\right)\right)=\mathbb{I}\left(S_{1}\right) \text { and } \mathbb{V}\left(\mathbb{I}\left(\mathbb{V}\left(R_{1}\right)\right)\right)=\mathbb{V}\left(R_{1}\right) .
$$

The basic
adjunction

Semi-simple
MV-algebras

Finitely
presented
MV-algebras

The unit

A unit $\eta: \mathbb{1}_{\mathrm{MV}_{\mathrm{p}}} \rightarrow \mathscr{I} \mathscr{V}$ exists

$$
\begin{gathered}
\mathscr{I} \mathscr{V}\left(\frac{\mathcal{F}_{\mu}}{\theta_{1}}\right) \xrightarrow{\mathscr{I} \mathscr{V}(h)} \mathscr{I} \mathscr{V}\left(\frac{\mathcal{F}_{\nu}}{\theta_{2}}\right) \\
\\
\eta_{\frac{\mathcal{F}_{\mu}}{\theta_{1}}} \prod_{\frac{\mathcal{F}_{\mu}}{\theta_{1}} \xrightarrow{h} \prod_{\frac{\mathcal{F}_{\nu}}{\theta_{2}}}} \quad \begin{array}{l}
\mathcal{F}_{\nu} \\
\theta_{2}
\end{array}
\end{gathered}
$$

The functors \mathscr{I} and \mathscr{V}

The basic adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

The co-unit

Dualities for MV-algebras

A a co-unit $\varepsilon: \mathscr{V} \mathscr{I} \rightarrow \mathbb{1}_{\mathrm{T}_{\text {def } \mathbb{Z}}^{\text {op }}}$ exists.

The functors \mathscr{I} and \mathscr{Y}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Naturality

Dualities for MV-algebras Luca Spada

Further, for any $A \in \mathrm{MV}_{\mathrm{p}}$:

$$
\mathscr{V}(A) \xrightarrow{\mathscr{V}\left(\eta_{A}\right)} \mathscr{V} \mathscr{I} \mathscr{V}(A) \xrightarrow{\varepsilon_{\mathscr{V}}(A)} \mathscr{V}(A)
$$

MV-algebras

The functors \mathscr{I} and \mathscr{V}

The basic adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

The basic adjunction

Theorem

$\mathscr{V} \dashv \mathscr{I}$, in words, the functor \mathscr{V} is left adjoint to the functor \mathscr{I}.

It should be noted at this point that subspaces of the cubes are in 1-1 correspondence with compact Hausdorff spaces. However, just as a concrete presentation of the MV-algebra is needed to associate the space, also a concrete embedding of a compact Hausdorff space into the cube is needed for presented definable functions to make sense.

Semi-simple MV-algebras

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Semi-simple MV-algebras

Definition

An algebra is called simple, if it has no non-trivial congruences (equivalently, if it is a quotient over a maximal congruence).

Further,

Definition

An algebra is called semi-simple if it is the subdirect product of simple algebras.

The fixed points of the adjunction

Point=Maximal congruence

For any set $S \subseteq[0,1]^{\mu}$, and for any congruence θ on \mathcal{F}_{μ}, the following hold.

1. If θ is a maximal congruence then $\mathbb{V}(\theta)$ is a singleton.
2. If S is a singleton then $\mathbb{I}(S)$ is a maximal congruence.

MV-algebras

The functors
\mathscr{I} and \mathscr{V}

The basic

Semi-simple
MV-algebras

Finitely
presented
MV-algebras
2. The algebra $\mathcal{F}_{\mu} / \theta$ is semi-simple if, and only if, $\mathbb{I}(\mathbb{V}(\theta))=\theta$.

The fixed points of the adjunction

Complete regularity by definable functions
For any point $p \in[0,1]^{\mu}$ and any closed set $K \subseteq[0,1]^{\mu}$ with $p \notin K$, there is a definable function $\lambda:[0,1]^{\mu} \rightarrow[0,1]$ that takes value 0 over K, and value >0 at p.

Co-Nullstellensatz

1. For any $S \subseteq[0,1]^{\mu}, \mathbb{V}(\mathbb{I}(S))=c l(S)$.
2. The set $S \subseteq[0,1]^{\mu}$ is closed if, and only if, $\mathbb{V}(\mathbb{I}(S))=S$.
lite functor's \mathscr{F} and \mathscr{V}

A duality for semi-simple MV-algebras

MV-algebras

The functors \mathscr{I} and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras

Finitely

presented
MV-algebras

Dualities for MV-algebras

MV-algebras

The functors
\mathscr{I} and $\sqrt{ }$

Finitely presented MV-algebras

adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Finitely presented MV-algebras

Definition

A (presented) MV-algebra $\mathcal{F}_{\mu} / \theta$ is finitely presented if μ is congruence, equivalently, θ is a compact element in the

The functors
\mathscr{I} and \mathscr{V}

THE DASIC
adjunction

Semi-simple MV-algebras

PIIItely
presented
MV-algebras

Wójcicki's Theorem

Every finitely presented MV-algebra is semi-simple.

Finitely definable sets

Definition

A subset $S \subseteq[0,1]^{\mu}$ is called finitely definable if there is a finite index set I, along with a set of pairs $R=\left\{\left(s_{i}, t_{i}\right) \in \mathcal{F}_{\mu} \times \mathcal{F}_{\mu} \mid i \in I\right\}$, such that $S=\mathbb{V}(R)$.

The full subcategory of $T_{\text {def } \mathbb{Z}}$ whose objects are finitely definable subsets of $[0,1]^{m}$, as m ranges over all non-negative integers, is denoted $D_{\text {def } \mathbb{Z}}$.

Finitely definable set=Compact congruence

1. If D is a finitely definable set, then $\mathbb{I}(D)$ is a finitely generated congruence.
2. If θ is a finitely generated congruence, then $\mathbb{V}(\theta)$ is a finitely definable set.

A duality for finitely presented MV-algebra

So one immediately gets

Theorem

The adjunction $\mathscr{V} \dashv \mathscr{I}$ restricts to an equivalence of categories between $\mathrm{MV}_{\mathrm{fp}}$ and $\mathrm{D}_{\operatorname{def} \mathbb{Z}}^{o p}$.

Dualities for MV-algebras

MV-algebras

The functors \mathscr{I} and \mathscr{Y}

The basic
adiunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

Rational polyhedral geometry

Finally, the category $\mathrm{D}_{\text {def } \mathbb{Z}}$ can be described in a concrete way.

Dualities for

MV-algebras

The functors \mathscr{I} and \mathscr{V}

Definition

A rational polytope is the convex hull of a finite set of rational points.

MV-algebras

Finitely
presented
MV-algebras

Rational polyhedral geometry [Cont.d]

Definition

MV-algebras
A rational polyhedron is the union of a finite number of rational polytopes.

The functors \mathscr{I} and \mathscr{Y}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented

Definition

A \mathbb{Z}-map is a continuous piecewise linear function with integer coefficients.

McNaughton theorem

MV-algebras
Theorem (McNaughton 1951)
Let $P \subseteq[0,1]^{m}$ be a rational polyhedron, and let $\lambda: P \rightarrow[0,1]$ be any function. Then λ is a \mathbb{Z}-map if, and only if, λ is a definable function.

Proposition (folklore)
A set $S \subseteq[0,1]^{m}$ is a rational polyhedron if, and only if, there is a \mathbb{Z}-map vanishing precisely on S.

The functors
arra

The basic
adjunction

SEIn-EITIpIE
MV-algebras

Duality for finitely presented MV-algebras

> Corollary
> The category $\mathrm{D}_{\mathrm{def} \mathbb{Z}}$ is the category of rational polyhedra and Z-maps.

Dualities for MV-algebras

MV-algebras

The functors \mathscr{I} and \mathscr{V}

The basic
arajurction

Semi-simple

Finitely
presented
MV-algebras

Future works

- Can we provide a method to construct such an adjunction for any given variety?
- What happens if we substitute the MV-algebra $[0,1]$ with some non-semi-simple algebra like $\Gamma(\mathbb{Z} \overline{\times} \ldots \overline{\times} \mathbb{Z},(1,0,0, \ldots, 0))$ or $[0,1]^{*}$?
- Can the construction be generalised to cope with prime ideals, rather than maximal ones?

Finitely

References

Chang, C. C., 'Algebraic analysis of many valued logic', Trans. Amer. Math. Soc, 88 (1958), 467-490.

Johnstone, P. T., Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1986.

Marra, V., and L. Spada, 'The dual adjunction between MV-algebras and Tychonoff spaces'. To appear on a special issue of Studia Logica dedicated to the memory of Leo Esakia, 2011.

Mundici, D., Advanced Łukasiewicz Calculus and MV-algebras, vol. 35 of Trends in Logic - Studia Logica Library, Springer, New York, 2011.
Stone, M. H., 'The theory of representations for Boolean algebras', Trans. Amer. Math. Soc., 40 (1936), 1, 37-111.

The functors and \mathscr{V}

The basic
adjunction

Semi-simple MV-algebras

Finitely
presented
MV-algebras

