DUALITIES FOR MV-ALGEBRAS In memoriam Leo Esakia.

Luca Spada Joint work with Vincenzo Marra.

Dipartimento di Matematica Università di Salerno http://logica.dmi.unisa.it/lucaspada

Ordered Groups and Lattices in Algebraic Logic. Tbilisi, Georgia. 22^d September, 2011 Dualities for MV-algebras Luca Spada Introduction MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Aim of the talk

Either it is soft or not.

If an apple is red or yellow, then put it in the first basket.

The higher a men is, the easier is that he is blond

If is too cold increase heating a bit.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Aim of the talk

Dualities for MV-algebras Luca Spada

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Aim of the talk

Either it is soft or not.

The higher a men is, the easier is that he is blond

If is too cold increase heating a bit.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Space and numbers

René Descartes 1596 – 1650 There exists a correspondence between points in the space and tuples of numbers. Dualities for MV-algebras

Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

An formal correspondence

David Hilbert 1862 – 1943 The correspondence can be lifted to subspaces and set of equations.

$$\mathbb{V}\left(p(\bar{x}) = q(\bar{x})\right) = \left\{(a_1, ..., a_n) \mid p(a_1, ..., a_n) = p(a_1, ..., a_n)\right\}$$

and

$$\mathbb{I}\left((a_1,..,a_n)\right) = \big\{p(\bar{x}) = q(\bar{x}) \mid p(a_1,..,a_n) = q(a_1,..,a_n)\big\}.$$

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Totally disconnected spaces

Marshall Stone 1903 – 1989

Every boolean algebra is isomorphic to the algebra of clopen sets of a totally disconnected, compact, Hausdorff space.

 $A \mapsto \operatorname{Spec}(A) = \{ M \subseteq A \mid M \text{ is an maximal filter} \}.$

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Totally disconnected spaces

Every boolean algebra is isomorphic to the algebra of clopen sets of a totally disconnected, compact, Hausdorff space.

Marshall Stone
1903 – 1989

$$\frac{\mathcal{F}_{\mu}}{I} \cong A \mapsto \{ \mathbf{a} \in \{0,1\}^{\mu} \mid t(\mathbf{a}) \approx 1 \text{ for any } t \in I \}.$$

Dualities for MV-algebras

Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

MV-algebras

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Jan Łukasiewicz 1878 – 1956

Łukasiewicz logic

Łukasiewicz logic is a many-valued logical system involving the basic connectives \rightarrow (implication) and \neg (negation), and axiomatised by the four axiom schemata:

1.
$$\alpha \rightarrow (\beta \rightarrow \alpha)$$
,
2. $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$,
3. $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha)$,
4. $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$,

with *modus ponens* as the only deduction rule.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Semantics of Łukasiewicz logic

Łukasiewicz logic is a subsystem of classical logic and has a many-valued semantics: assignments μ to atomic formulæ range in the unit interval $[0,1] \subseteq \mathbb{R}$.

They are extended compositionally to compound formulæ via

$$\begin{aligned} \mu(\neg \alpha) &= 1 - \mu(\alpha) \,, \\ \mu(\alpha \to \beta) &= \min \left\{ 1, 1 - \mu(\alpha) + \mu(\beta) \right\} \end{aligned}$$

Tautologies are defined as those formulæ that evaluate to 1 under every such assignment.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

MV-algebra

In 1958 Chang considered the Tarski-Lindenbaum algebras of Łukasiewicz logic and called them MV-algebras.

Definition

An MV-algebra is a structure $\mathcal{A} = \langle \mathcal{A}, \oplus, ^*, 0 \rangle$ such that:

- $\mathcal{A} = \langle \mathcal{A}, \oplus, 0 \rangle$ is a comm. monoid,
- * is an involution, i.e. $(x^*)^* = x$,
- ► the rules of interaction between ⊕ and * are given by:
 - $\blacktriangleright x \oplus 0^* = 0^*$
 - $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Chen Chung Chang 19?? –

Example 1: The standard MV-algebra

In modern terms one says that MV-algebras are the equivalent algebraic semantics of Łukasiewicz logic.

Example

Consider the set of real number $\left[0,1\right]$ endowed with the following operation:

$$\neg x = 1 - x$$
 and $x \oplus y = \min\{1, x + y\}$ (truncated sum).

Then $\langle [0,1],\oplus,\neg,0\rangle$ is an MV-algebra.

Actually the above algebra generates the variety of all MV-algebras. So the equations that hold for any MV-algebra are exactly the ones that hold in [0,1].

Dualities for MV-algebras Luca Spada Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Example 2: lattice ordered groups

A (commutative) lattice ordered group G, ℓ -group for short, is a (commutative) group $\langle G, +, -, 0 \rangle$ with an order \leq which is compatible with the operation +, i.e.

 $x \leqslant y$ implies $x + z \leqslant y + z$.

If g is a positive element in G, then the interval [0,g], endowed with the truncation of the operations is an MV-algebra. So, for instance, the MV-algebra above is obtained from the ℓ -group $\langle \mathbb{R}, +, -, 0 \rangle$ by taking g = 1. Actually, every MV-algebra can be obtained as the interval of some ℓ -group.

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Semi-simple MV-algebras

Definable function

The fact that $\left[0,1\right]$ has a standard structure of MV-algebra will be tacitly used throughout the presentation.

Definition

Given $S \subseteq [0,1]^{\mu}$ and $T \subseteq [0,1]^{\nu}$, a function $\lambda \colon S \to T$ is definable if there exists a ν -tuple of terms $(I_{\beta})_{\beta < \nu}$, with $I_{\beta} \in \mathcal{F}_{\mu}$, such that

$$\lambda(\mathbf{p}) = (I_{\beta}(\mathbf{p}))_{\beta < \iota}$$

for every $p \in S$. Any such ν -tuple is called a family of defining terms for λ .

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The functors \mathscr{I} and \mathscr{V}

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The basic adjunction

I shall consider the category $\mathsf{T}_{\mathsf{def}\,\mathbb{Z}}$ of subspaces of the Tychonoff cubes $[0,1]^\mu$, with definable maps as morphisms.

Further, let MV_{p} be the category of presented MV-algebras, i.e. MV-algebra of the form $\frac{\mathcal{F}_{\mu}}{\theta}$, where \mathcal{F}_{μ} is the free MV-algebra on some cardinal μ and θ is a congruence of \mathcal{F}_{μ} , together with their homomorphisms.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The basic adjunction

My aim for the moment is to construct a pair of functors

$$\mathscr{I} \colon \, T^{op}_{def \mathbb{Z}} \longrightarrow MV_p \,\,, \quad \mathscr{V} \colon \, MV_p \longrightarrow T^{op}_{def \mathbb{Z}} \,\,.$$

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The functor \mathscr{I} : Objects.

Given $\mathcal{S}\subseteq [0,1]^\mu$, let, for arbitrary terms $\textit{s},\textit{t}\in \mathcal{F}_\mu$,

 $(s, t) \in \mathbb{I}(S)$ if and only if $[0, 1] \models s(p) \approx t(p)$

for every $\mathbf{p} \in \mathbf{S} \subseteq [0,1]^{\mu}$.

Remark

The defining condition for $\mathbb{I}(S)$ is equivalent to for any $\forall p \in S \quad s(p) = t(p)$ as real numbers.

As for any $S \subseteq [0,1]^{\mu}$, it is easy to check that $\mathbb{I}(S)$ is a congruence on \mathcal{F}_{μ} one may define

$$\mathscr{I}(S) = \mathcal{F}_{\mu} / \mathbb{I}(S) .$$

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Semi-simple MV-algebras Finitelv presented MV-alaebras The functor \mathscr{I} : Arrows.

Given $S \subseteq [0,1]^{\mu}$ and $T \subseteq [0,1]^{\nu}$, let $\lambda \colon S \to T$ be a definable map, and let a be a ν -tuple of defining terms for λ . Then there is an induced function

$$\mathscr{I}(\lambda): \mathscr{I}(T) \to \mathscr{I}(S)$$

which acts on each $s \in \mathcal{F}_{\nu}$ by substitution as follows:

$$\frac{\mathbf{s}(\mathbf{x})}{\mathbb{I}(T)} \in \mathscr{I}(T) \quad \stackrel{\mathscr{I}(\lambda)}{\longmapsto} \quad \frac{\mathbf{s}(\mathbf{x}/\mathbf{d})}{\mathbb{I}(S)} \in \mathscr{I}(S) \; .$$

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and $\overline{\mathscr{V}}$ The basic adjunction Semi-simple MV-algebras

Remark on well-definition

Remark

1. There can be several distinct defining terms for a definable function $\lambda: S \to [0, 1]$. However, d and d' are defining terms for the same function λ if and only if $(d, d') \in \mathbb{I}(S)$.

2. Further, the definition of $\mathscr{I}(\lambda)$ above does not depend on the choice of the representing term *s*, for if *s'* is another term such that $(s, s') \in \mathbb{I}(T)$, then $s([X_{\beta} \setminus I_{\beta}]_{\beta < \nu})$ is congruent to $s'([X_{\beta} \setminus I_{\beta}]_{\beta < \nu})$ modulo $\mathbb{I}(S)$, because substitutions commute with congruences. Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The functor \mathscr{V} : Objects.

Given $R = \{(s_i, t_i) \mid i \in I\} \subseteq \mathcal{F}_{\mu} \times \mathcal{F}_{\mu}$, for I an index set, the vanishing locus of R is

$$\mathbb{V}(R) = \{ p \in [0,1]^{\mu} \mid [0,1] \models s_i(p) \approx t_i(p) \text{ for each } i \in I \}.$$

As for any congruence θ on \mathcal{F}_{μ} we have $\mathbb{V}\left(\theta\right)\subseteq[0,1]^{\mu}$ we set

$$\mathscr{V}\left(\mathcal{F}_{\mu}\left/ heta
ight) \ = \ \mathbb{V}\left(heta
ight).$$

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Semi-simple

MV-algebras

Finitely presented MV-algeb<u>ras</u> The functor \mathscr{V} : Arrows.

For each $\alpha < \mu$, let π_{α} be the α^{th} projection term.

Let $h: \mathcal{F}_{\mu} / \theta_1 \to \mathcal{F}_{\nu} / \theta_2$ be a homomorphism of MV-algebras. Fix, for each α , an arbitrary $f_{\alpha} \in h(\pi_{\alpha} / \theta_1)$.

For any $\mathbf{p} \in \mathbb{V}(\theta_2)$, set

 $\mathscr{V}(h)(\mathbf{p}) \;=\; ig(f_lpha(\mathbf{p})ig)_{lpha<\mu}.$

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Semi-simple MV-algebras Finitelv presented MV-alaebras

The basic adjunction

MV-algebras Luca Spada Introduction

Dualities for

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

A Galois adjunction

Lemma

For each $S \subseteq [0,1]^{\mu}$ and $R \subseteq \mathcal{F}_{\mu} \times \mathcal{F}_{\mu}$,

 $R \subseteq \mathbb{I}(S)$ if, and only if, $S \subseteq \mathbb{V}(R)$.

In other words, the functions \mathbb{V} and \mathbb{I} form a (isotone) Galois connection.

Dualities for MV-algebras Luca Spada Introduction MV-algebras The functors

 \mathscr{I} and \mathscr{V}

The basic adjunction

Semi-simple MV-algebras

Consequences of the Galois adjunction

Corollary

Let $S_1, S_2 \subseteq [0,1]^{\mu}$ and $R_1, R_2 \subseteq \mathcal{F}_{\mu} \times \mathcal{F}_{\mu}$, then

- a) The functions \mathbb{I} and \mathbb{V} are isotone i.e. $S_1 \subseteq S_2$ implies $\mathbb{I}(S_2) \subseteq \mathbb{I}(S_1)$ and $R_1 \subseteq R_2$ implies $\mathbb{V}(R_2) \subseteq \mathbb{V}(R_1)$.
- b) The compositions \mathbb{IV} and \mathbb{VI} are extensive, i.e. $S_1 \subseteq \mathbb{V}(\mathbb{I}(S_1))$ and $R_1 \subseteq \mathbb{I}(\mathbb{V}(R_1))$.
- c) The compositions \mathbb{IV} and \mathbb{VI} give fixed points, i.e. $\mathbb{I}(\mathbb{V}(\mathbb{I}(S_1))) = \mathbb{I}(S_1)$ and $\mathbb{V}(\mathbb{I}(\mathbb{V}(R_1))) = \mathbb{V}(R_1)$.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The unit

A unit $\eta \colon \mathbb{1}_{\mathsf{MV}_{\mathsf{P}}} \to \mathscr{I}^{\mathscr{V}}$ exists

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Finitelv presented

The co-unit

A a co-unit $\varepsilon \colon \mathscr{V}\mathscr{I} \to \mathbb{1}_{\mathsf{T}^{\mathsf{op}}_{\mathsf{def}\mathbb{Z}}}$ exists.

Dualities for MV-algebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Finitely presented

Naturality

Further, for any $A \in MV_p$:

and for any $K \in \mathsf{T}^{op}_{\mathsf{def }\mathbb{Z}}$:

Dualities for MV-alaebras Luca Spada Introduction MV-algebras The functors \mathscr{I} and \mathscr{V} The basic adjunction Semi-simple MV-algebras Finitelv presented MV-alaebras

The basic adjunction

Theorem

 $\mathscr{V}\dashv\mathscr{I}$, in words, the functor \mathscr{V} is left adjoint to the functor \mathscr{I} .

It should be noted at this point that subspaces of the cubes are in 1-1 correspondence with compact Hausdorff spaces. However, just as a concrete presentation of the MV-algebra is needed to associate the space, also a concrete embedding of a compact Hausdorff space into the cube is needed for definable functions to make sense. Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Semi-simple MV-algebras

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Semi-simple MV-algebras

Recall that

Definition

An algebra is called simple, if it has no non-trivial congruences (equivalently, if it is a quotient over a maximal congruence).

Further,

Definition

An algebra is called **semi-simple** if it is the subdirect product of simple algebras.

Dualities for MV-algebras Luca Spada Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The fixed points of the adjunction

Point=Maximal congruence

For any set $S \subseteq [0,1]^{\mu}$, and for any congruence θ on \mathcal{F}_{μ} , the following hold.

- **1**. If θ is a maximal congruence then $\mathbb{V}(\theta)$ is a singleton.
- **2**. If S is a singleton then $\mathbb{I}(S)$ is a maximal congruence.

Proposition (Nullstellensatz)

- 1. For any $R \subseteq \mathcal{F}_{\mu} \times \mathcal{F}_{\mu}$, $\mathbb{I}(\mathbb{V}(R)) = \operatorname{Rad}(\mathcal{F}_{\mu} / \langle R \rangle) = \bigcap \{\theta \text{ max. cong. in } \mathcal{F}_{\mu} \mid R \subseteq \theta \}$
- 2. The algebra \mathcal{F}_{μ}/θ is semi-simple if, and only if, $\mathbb{I}(\mathbb{V}(\theta)) = \theta$.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

The fixed points of the adjunction

Complete regularity by definable functions

For any point $p \in [0,1]^{\mu}$ and any closed set $K \subseteq [0,1]^{\mu}$ with $p \notin K$, there is a definable function $\lambda \colon [0,1]^{\mu} \to [0,1]$ that takes value 0 over K, and value > 0 at p.

Co-Nullstellensatz

- 1. For any $S \subseteq [0,1]^{\mu}$, $\mathbb{V}(\mathbb{I}(S)) = \mathbf{cl}(S)$.
- 2. The set $S \subseteq [0,1]^{\mu}$ is closed if, and only if, $\mathbb{V}(\mathbb{I}(S)) = S$.

Dualities for MV-algebras Luca Spada

MV-algebras

Introduction

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

A duality for semi-simple MV-algebras

The above propositions immediately give:

Theorem

The category MV_p^{ss} is dually equivalent to the full subcategory of $T_{def\mathbb{Z}}$ given by closed subspaces of the cubes.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Finitely presented MV-algebras

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Finitely presented MV-algebras

Definition

A (presented) MV-algebra \mathcal{F}_{μ}/θ is finitely presented if μ is a non-negative integer, and θ is a finitely generated congruence, equivalently, θ is a compact element in the algebraic lattice of congruences on A.

Lemma

Let s, t, u, v be elements of \mathcal{F}_m , then $(u, v) \in \langle (s, t) \rangle$ if, and only if, $\mathbb{V}(s, t) \subseteq \mathbb{V}(u, v)$.

The proof of this lemma involves a geometric argument, Chang's Completeness Theorem, and the easily proved fact that definable functions are piecewise linear maps.

Wójcicki's Theorem

Every finitely presented MV-algebra is semi-simple.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Finitely definable sets

Definition

A subset $S \subseteq [0,1]^{\mu}$ is called finitely definable if there is a finite index set *I*, along with a set of pairs $R = \{(s_i, t_i) \in \mathcal{F}_{\mu} \times \mathcal{F}_{\mu} \mid i \in I\}$, such that $S = \mathbb{V}(R)$.

The full subcategory of $T_{def\mathbb{Z}}$ whose objects are finitely definable subsets of $[0, 1]^m$, as *m* ranges over all non-negative integers, is denoted $D_{def\mathbb{Z}}$.

Finitely definable set=Compact congruence

- If D is a finitely definable set, then I (D) is a finitely generated congruence.
- 2. If θ is a finitely generated congruence, then $\mathbb{V}(\theta)$ is a finitely definable set.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

A duality for finitely presented MV-algebra

So one immediately gets

Theorem

The adjunction $\mathscr{V} \dashv \mathscr{I}$ restricts to an equivalence of categories between $\mathsf{MV}_{\mathsf{fp}}$ and $\mathsf{D}^{\mathsf{op}}_{\mathsf{def}\,\mathbb{Z}}$.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Rational polyhedral geometry

Finally, the category $\mathsf{D}_{\mathsf{def}\,\mathbb{Z}}$ can be described in a concrete way.

Definition

A rational polytope is the convex hull of a finite set of **rational** points.

Dualities for MV-algebras Luca Spada Introduction MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Rational polyhedral geometry [Cont.d]

Definition

A rational polyhedron is the union of a finite number of rational polytopes.

Definition

A $\mathbb{Z}\text{-}\mathsf{map}$ is a continuous piecewise linear function with integer coefficients.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

McNaughton theorem

Theorem (McNaughton 1951)

Let $P \subseteq [0,1]^m$ be a rational polyhedron, and let $\lambda \colon P \to [0,1]$ be any function. Then λ is a \mathbb{Z} -map if, and only if, λ is a definable function.

Proposition (folklore)

A set $S \subseteq [0,1]^m$ is a rational polyhedron if, and only if, there is a \mathbb{Z} -map vanishing precisely on S.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

Duality for finitely presented MV-algebras

Corollary

The category $\mathsf{D}_{\mathsf{def}\,\mathbb{Z}}$ is the category of rational polyhedra and $\mathbb{Z}\text{-maps.}$

Dualities for MV-algebras Luca Spada

MV-algebras The functors

Introduction

The basic adjunction

 \mathscr{I} and \mathscr{V}

Semi-simple MV-algebras

Future works

- Can we provide a method to construct such an adjunction for any given variety?
- What happens if we substitute the MV-algebra [0,1] with some non-semi-simple algebra like Γ(ℤ×...×ℤ, (1,0,0,...,0)) or [0,1]*?
- Can the construction be generalised to cope with prime ideals, rather than maximal ones?

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras

References

CHANG, C. C., 'Algebraic analysis of many valued logic', *Trans. Amer. Math. Soc*, 88 (1958), 467–490.

JOHNSTONE, P. T., *Stone spaces*, vol. 3 of *Cambridge Studies in Advanced Mathematics*, Cambridge University Press, Cambridge, 1986.

MUNDICI, D., Advanced Łukasiewicz Calculus and MV-algebras, vol. 35 of Trends in Logic — Studia Logica Library, Springer, New York, 2011.

STONE, M. H., 'The theory of representations for Boolean algebras', *Trans. Amer. Math. Soc.*, 40 (1936), 1, 37–111.

Dualities for MV-algebras Luca Spada

Introduction

MV-algebras

The functors ${\mathscr I}$ and ${\mathscr V}$

The basic adjunction

Semi-simple MV-algebras