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Aim of the talk

..If is too cold increase heating a bit.

.The higher a men is, the easier is that he is blond

.If an apple is red or yellow, then
put it in the first basket..Either it is soft or not.
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Space and numbers

René Descartes
1596 – 1650

There exists a correspondence be-
tween points in the space and tuples
of numbers.
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An formal correspondence

David Hilbert
1862 – 1943

The correspondence can be lifted to
subspaces and set of equations.

V
(

p(x̄) = q(x̄)
)
=

{
(a1, .., an) | p(a1, .., an) = p(a1, .., an)

}
and

I
(
(a1, .., an)

)
=

{
p(x̄) = q(x̄) | p(a1, .., an) = q(a1, .., an)

}
.
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Totally disconnected spaces

Marshall Stone
1903 – 1989

Every boolean algebra is isomorphic
to the algebra of clopen sets of a
totally disconnected, compact, Haus-
dorff space.

A 7→ Spec(A) = {M ⊆ A | M is an maximal filter}.
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Totally disconnected spaces

Marshall Stone
1903 – 1989

Every boolean algebra is isomorphic
to the algebra of clopen sets of a
totally disconnected, compact, Haus-
dorff space.

Fµ

I
∼= A 7→ {a ∈ {0, 1}µ | t(a) ≈ 1 for any t ∈ I}.
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Łukasiewicz logic

Jan Łukasiewicz
1878 – 1956

Łukasiewicz logic is a many-valued logical
system involving the basic connectives →
(implication) and ¬ (negation), and axioma-
tised by the four axiom schemata:

.

.
1. α → (β → α) ,
2. (α → β) → ((β → γ) → (α → γ)) ,
3. ((α → β) → β) → ((β → α) → α) ,
4. (¬α → ¬β) → (β → α) ,

with modus ponens as the only deduction
rule.



Dualities for
MV-algebras

Luca Spada

Introduction

MV-algebras

The functors
I and V

The basic
adjunction

Semi-simple
MV-algebras

Finitely
presented
MV-algebras

Semantics of Łukasiewicz logic

Łukasiewicz logic is a subsystem of classical logic and has a
many-valued semantics: assignments µ to atomic formulæ
range in the unit interval [0, 1] ⊆ R.
They are extended compositionally to compound formulæ via

.
.

µ(¬α) = 1 − µ(α) ,
µ(α → β) = min {1, 1− µ(α) + µ(β)}

Tautologies are defined as those formulæ that evaluate to 1
under every such assignment.
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MV-algebra

Chen Chung Chang
19?? –

In 1958 Chang considered the Tarski-
Lindenbaum algebras of Łukasiewicz
logic and called them MV-algebras.
.
De nition..

.. ..

.

.

An MV-algebra is a structure
A = ⟨A,⊕, ∗, 0⟩ such that:

I A = ⟨A,⊕, 0⟩ is a comm. monoid,
I ∗ is an involution, i.e. (x∗)∗ = x,
I the rules of interaction between ⊕

and ∗ are given by:
I x ⊕ 0∗ = 0∗

I (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x
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Example 1: The standardMV-algebra

In modern terms one says that MV-algebras are the
equivalent algebraic semantics of Łukasiewicz logic.
.
Example..

.. ..

.

.

Consider the set of real number [0, 1] endowed with the
following operation:

¬x = 1− x and x ⊕ y = min{1, x + y} (truncated sum).

Then ⟨[0, 1],⊕,¬, 0⟩ is an MV-algebra.

Actually the above algebra generates the variety of all
MV-algebras. So the equations that hold for any MV-algebra
are exactly the ones that hold in [0,1].
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Example 2: laice ordered groups

A (commutative) lattice ordered group G, ℓ-group for short,
is a (commutative) group ⟨G,+,−, 0⟩ with an order 6 which
is compatible with the operation +, i.e.

x 6 y implies x + z 6 y + z .

If g is a positive element in G, then the interval [0, g],
endowed with the truncation of the operations is an
MV-algebra. So, for instance, the MV-algebra above is
obtained from the ℓ-group ⟨R,+,−, 0⟩ by taking g = 1.
Actually, every MV-algebra can be obtained as the interval
of some ℓ-group.
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De nable function

The fact that [0, 1] has a standard structure of MV-algebra
will be tacitly used throughout the presentation.
.
De nition..

.. ..

.

.

Given S ⊆ [0, 1]µ and T ⊆ [0, 1]ν , a function λ : S → T is
definable if there exists a ν-tuple of terms (lβ)β<ν , with
lβ ∈ Fµ, such that

λ( p ) = ( lβ( p ) )β<ν

for every p ∈ S. Any such ν-tuple is called a family of
defining terms for λ.
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The basic adjunction

I shall consider the category TdefZ of subspaces of the
Tychonoff cubes [0, 1]µ, with definable maps as morphisms.

Further, let MVp be the category of presented MV-algebras,
i.e. MV-algebra of the form Fµ

θ , where Fµ is the free
MV-algebra on some cardinal µ and θ is a congruence of
Fµ, together with their homomorphisms.
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The basic adjunction

My aim for the moment is to construct a pair of functors

I : Top
defZ −→ MVp , V : MVp −→ Top

defZ .
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The functor I : Objects.

Given S ⊆ [0, 1]µ, let, for arbitrary terms s, t ∈ Fµ,

(s, t) ∈ I (S) if and only if [0, 1] |= s(p) ≈ t(p)

for every p ∈ S ⊆ [0, 1]µ.
.
Remark..

.. ..

.

.

The defining condition for I (S) is equivalent to for any
∀p ∈ S s(p) = t(p) as real numbers.

As for any S ⊆ [0, 1]µ, it is easy to check that I (S) is a
congruence on Fµ one may define

..
I (S) = Fµ / I (S) .
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The functor I : Arrows.

Given S ⊆ [0, 1]µ and T ⊆ [0, 1]ν , let λ : S → T be a
definable map, and let d be a ν-tuple of defining terms for λ.
Then there is an induced function

I (λ) : I (T) → I (S)

which acts on each s ∈ Fν by substitution as follows:

.
.

s(x)
I (T) ∈ I (T) I (λ)7−→ s(x/d)

I (S) ∈ I (S) .
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Remark on well-de nition

.
Remark..

.. ..

.

.

1. There can be several distinct defining terms for a definable
function λ : S → [0, 1]. However, d and d′ are defining terms
for the same function λ if and only if (d, d′) ∈ I (S).

2. Further, the definition of I (λ) above does not depend
on the choice of the representing term s, for if s′ is another
term such that (s, s′) ∈ I (T), then s

(
[Xβ\lβ]β<ν

)
is

congruent to s′
(
[Xβ\lβ]β<ν

)
modulo I (S), because

substitutions commute with congruences.
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The functor V : Objects.

Given R = {(si, ti) | i ∈ I} ⊆ Fµ×Fµ, for I an index set,
the vanishing locus of R is

V (R) = {p ∈ [0, 1]µ | [0, 1] |= si(p) ≈ ti(p) for each i ∈ I} .

As for any congruence θ on Fµ we have V (θ) ⊆ [0, 1]µ we
set

..
V (Fµ /θ) = V (θ) .
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The functor V : Arrows.

For each α < µ, let πα be the αth projection term.

Let h : Fµ /θ1 → Fν /θ2 be a homomorphism of
MV-algebras.
Fix, for each α, an arbitrary fα ∈ h(πα/θ1).

For any p ∈ V (θ2), set

..
V (h)(p) =

(
fα(p)

)
α<µ

.
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AGalois adjunction

.
Lemma..

.. ..

.

.

For each S ⊆ [0, 1]µ and R ⊆ Fµ×Fµ,

R ⊆ I (S) if, and only if, S ⊆ V (R) .

In other words, the functions V and I form a
(isotone) Galois connection.
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Consequences of the Galois adjunction

.
Corollary..

.. ..

.

.

Let S1,S2 ⊆ [0, 1]µ and R1,R2 ⊆ Fµ×Fµ, then

a) The functions I and V are isotone i.e. S1 ⊆ S2 implies
I (S2) ⊆ I (S1) and R1 ⊆ R2 implies V (R2) ⊆ V (R1).

b) The compositions IV and V I are extensive, i.e.
S1 ⊆ V (I (S1)) and R1 ⊆ I (V (R1)).

c) The compositions IV and V I give fixed points, i.e.
I (V (I (S1))) = I (S1) and V (I (V (R1))) = V (R1).
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The unit

A unit η : 1MVp → I V exists

..Fµ

θ1
.Fν
θ2

.h

.I V (
Fµ

θ1
) .I V (Fν

θ2
)

.I V (h)

.ηFµ
θ1

.ηFν
θ2
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The co-unit

A a co-unit ε : V I → 1Top
def Z

exists.

..S .T.λ

.V I (S) .V I (T)
.V I (λ)

.εS .εT
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Naturality

Further, for any A ∈ MVp:

..V (A) .V I V (A) .V (A)
.V (ηA) .εV (A)

.1V (A)
,

and for any K ∈ Top
defZ:

..I (K) .I V I (K) .I (K)
.I (εK) .ηI (K)

.1I (K)
.
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The basic adjunction

.
Theorem..

.. ..

.

.

V ⊣ I , in words, the functor V is left adjoint to the functor
I .

It should be noted at this point that subspaces of the cubes
are in 1-1 correspondence with compact Hausdorff spaces.
However, just as a concrete presentation of the MV-algebra
is needed to associate the space, also a concrete embedding
of a compact Hausdorff space into the cube is needed for
definable functions to make sense.
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Semi-simple MV-algebras
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Semi-simple MV-algebras

Recall that
.
De nition..

.. ..

.

.

An algebra is called simple, if it has no non-trivial
congruences (equivalently, if it is a quotient over a maximal
congruence).

Further,
.
De nition..

.. ..

.

.

An algebra is called semi-simple if it is the subdirect product
of simple algebras.
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The xed points of the adjunction

.
Point=Maximal congruence..

.. ..

.

.

For any set S ⊆ [0, 1]µ, and for any congruence θ on Fµ, the
following hold.
1. If θ is a maximal congruence then V (θ) is a singleton.
2. If S is a singleton then I (S) is a maximal congruence.

.
Proposition (Nullstellensatz)..

.. ..

.

.

1. For any R ⊆ Fµ×Fµ,
I (V (R)) = Rad (Fµ /⟨R⟩) =

∩
{θ max. cong. in Fµ |

R ⊆ θ}

2. The algebra Fµ /θ is semi-simple if, and only if,
I (V (θ)) = θ.
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The xed points of the adjunction

.
Complete regularity by de nable functions..

.. ..

.

.

For any point p ∈ [0, 1]µ and any closed set K ⊆ [0, 1]µ with
p ̸∈ K, there is a definable function λ : [0, 1]µ → [0, 1] that
takes value 0 over K, and value > 0 at p.

.
Co-Nullstellensatz..

.. ..

.

.

1. For any S ⊆ [0, 1]µ, V(I (S)) = cl(S).
2. The set S ⊆ [0, 1]µ is closed if, and only if,

V(I (S)) = S.
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A duality for semi-simple MV-algebras

The above propositions immediately give:

.
Theorem..

.. ..

.

.

The category MVss
p is dually equivalent to the full

subcategory of TdefZ given by closed subspaces of the cubes.
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Finitely presentedMV-algebras

.
De nition..

.. ..

.

.

A (presented) MV-algebra Fµ /θ is finitely presented if µ is
a non-negative integer, and θ is a finitely generated
congruence, equivalently, θ is a compact element in the
algebraic lattice of congruences on A.

.
Lemma..

.. ..

.

.

Let s, t, u, v be elements of Fm, then (u, v) ∈ ⟨(s, t)⟩ if, and
only if, V (s, t) ⊆ V(u, v).

The proof of this lemma involves a geometric argument,
Chang’s Completeness Theorem, and the easily proved fact
that definable functions are piecewise linear maps.
.
Wójcicki's Theorem..
.. ..

.

.Every finitely presented MV-algebra is semi-simple.
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Finitely de nable sets

.
De nition..

.. ..

.

.

A subset S ⊆ [0, 1]µ is called finitely definable if there is a
finite index set I, along with a set of pairs
R = {(si, ti) ∈ Fµ×Fµ | i ∈ I}, such that S = V(R).

The full subcategory of TdefZ whose objects are finitely
definable subsets of [0, 1]m, as m ranges over all
non-negative integers, is denoted DdefZ.
.
Finitely de nable set=Compact congruence..

.. ..

.

.

1. If D is a finitely definable set, then I (D) is a finitely
generated congruence.

2. If θ is a finitely generated congruence, then V (θ) is a
finitely definable set.
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A duality for nitely presentedMV-algebra

So one immediately gets
.
Theorem..

.. ..

.

.

The adjunction V ⊣ I restricts to an equivalence of
categories between MVfp and Dop

defZ.
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Rational polyhedral geometry

Finally, the category DdefZ can be described in a concrete
way.

.
De nition..

.. ..

.

.

A rational polytope is the convex hull of a finite set of
rational points.

. .•.nm

.nm .pq
.

. .
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Rational polyhedral geometry [Cont.d]

.
De nition..

.. ..

.

.

A rational polyhedron is the union of a finite number of
rational polytopes.

.
. .

.

.
De nition..

.. ..

.

.

A Z-map is a continuous piecewise linear function with
integer coefficients.
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McNaughton theorem

.
Theorem (McNaughton 1951)..

.. ..

.

.

Let P ⊆ [0, 1]m be a rational polyhedron, and let
λ : P → [0, 1] be any function. Then λ is a Z-map if, and
only if, λ is a definable function.

.
Proposition (folklore)..

.. ..

.

.

A set S ⊆ [0, 1]m is a rational polyhedron if, and only if,
there is a Z-map vanishing precisely on S.
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Duality for nitely presentedMV-algebras

.
Corollary..

.. ..

.

.

The category DdefZ is the category of rational polyhedra and
Z-maps.
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Future works

I Can we provide a method to construct such an
adjunction for any given variety?

I What happens if we substitute the MV-algebra [0,1]
with some non-semi-simple algebra like
Γ(Z×̄...×̄Z, (1, 0, 0, ..., 0)) or [0, 1]∗?

I Can the construction be generalised to cope with prime
ideals, rather than maximal ones?
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