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An expansion of Basic Logic with fixed points

Luca Spada

In memoriam Franco Montagna

Abstract We introduce an expansion of Basic Logic (BL) with new connectives
which express fixed points of continuous formulas, i.e. formulas of BL whose connec-
tives are among {&,∨,∧}. The algebraic semantics of this logic is studied together
with some of its subclasses corresponding to extensions of the above-mentioned
expansion. The axiomatic extensions are proved to be standard complete.
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1 Introduction

This article collects some unpublished results contained in the author’s PhD thesis,
written under the guidance of Franco Montagna. Although these findings cannot
compare to Franco’s remarkable scientific production, they connect in various ways
to his research on many-valued logics. For this reason the author wishes to dedicate
this small note to his memory, with deep gratitude and the highest esteem.

In [10], Hájek proposed Basic Logic (BL) as a common fragment of all tradi-
tional many-valued logics ( Lukasiewicz, Gödel and Product Logics). In [5], BL was
proved to be complete with respect to the interpretations where the (monoidal)
conjunction & and the corresponding implication →, are understood as a contin-
uous t-norm and its residuum, respectively; such a completeness is often referred
as standard completeness. Although soon generalised by the system MTL (see [9,
13]), Basic Logic remains an important common base for many-valued logics and
fuzzy logic.

In [12] two unary operators, L and U , were introduced in the context of BL,
to deal with linguistic modifiers like very, quite, etc. (see also [11]). The algebraic
interpretation of L(x) and U(x) are respectively the “greatest idempotent below” x
and the “least idempotent above” x. In [18], Montagna studies a similar operator,
called storage operator, with the aim of defining multiplicative quantifiers. These are
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quantifiers which generalise the t-norm in the same way as standard quantifiers
generalise the lattice conjunction and disjunction. Another important feature of
the storage operator is that it allows to write a (necessarily infinitary) rule that
guarantees the strong standard completeness of the related logic [19]. Among other
things, the author notices that the storage operator is the maximum fixed point of a
formula. Following this hint we introduce an expansion of BL with new connectives
which can be interpreted as the (maximum) fixed points of their correspondent
formulas. This work can be see as a natural continuation (and generalisation) of
the study undertaken in [21,22,15].

A peculiar feature of the aforementioned studies on fixed points in many-
valued logics is that the existence of fixed points does not hinge on Tarski’s fixed
point theorem for monotone operators on complete lattices (cf. first order logic
with fixed points [7,1], or the modal µ-calculus [14]). Indeed, in the framework
of many-valued logic one can consider formulas which have an interpretation as
continuous functions from [0, 1]n to [0, 1]; the existence of their fixed points is then
ensured by Brouwer’s fixed point theorem. An advantage of such an approach is
that, in certain systems like  Lukasiewicz logic [22], even negation admits fixed
points. This provides for instance with a realisation of the liar’s formula ϕ↔ ¬ϕ,
namely 1

2 . Notice that recently an approach to fixed points in  Lukasiewicz logic
through Tarski’s fixed point theorem has also been investigated with interesting
applications in computer science [17,16].

Nevertheless, in the case of BL, the two approaches turn out to be very similar.
Indeed, to meet Brouwer’s Theorem requirements on continuity one has to restrict
to formulas whose interpretation is guaranteed to be continuous. An obvious choice
is to restrict the attention to formulas whose only connectives are &,∧ and ∨
(continuous formulas). But such formulas are also guaranteed to have a monotone
interpretation, hence Tarski or Brouwer’s theorems can be used interchangeably
to ensure the existence of their fixed points.

We will show that the maximum fixed point of any continuous formula can
be found simply by looking at combinations of meet and joins of formulas of the
form xn&a. Notably, the maximum fixed point of such formulas can be only of
two kinds. In particular, the maximum fixed point of formulas of the form xn&a,
for n > 1 is the greatest idempotent below a whereas the maximum fixed point of
x&a sits somewhere in between a and the fixed point of xn&a.

Notice that whereas the operator L(a) of [12] is exactly the storage operator of
[18], hence the fixed point of x2&a, it is not clear whether U(a) is derivable from
the connectives of BL with storage operator. The näıve guess that a minimum

fixed point might give such an operator is wrong, since the minimum fixed point
of formulas such as xn&a is 0 for any n and any a.

Finally, regarding other possible extensions of BL, note that adding fixed points
to Gödel logic does not increase its expressive power. Indeed the connectives of
Gödel logic are either are idempotent or not continuous. Also Product logic does
not seem to behave well under this approach: the minimum fixed point is always 0
and the maximum fixed point is given just by the ∆ operator. Finally, an expansion
of  Lukasiewicz logic with fixed points was studied in [22].

The paper is organised as follows. Section 2 recollects some preliminary proper-
ties of BL-algebras, this section may be easily skipped by the reader familiar with
hoops and ordinal decomposition. In section 3 we introduce the system BL with
fixed points. In section 4 we study νBL-algebras and their congruences. In Theo-
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rem 3 we prove that all subdirectly irreducible νBL-algebras are linearly ordered.
In section 5 we study sub-quasi-varieties of νBL for which the fixed points behave
in a simpler way. Finally, in section 6 we prove that all these sub-quasi-varieties
are generated by their standard members. Unfortunately we could not prove the
same result for the whole quasi-variety of νBL-algebras.

2 Preliminaries

For an updated and extensive account on BL we refer the reader to [6]. Here we
briefly recall what is needed in the remainder of the paper. Formulas in Hájek’s
Basic Logic (BL) are built like in classical logic, with the exception that we now
have two conjunctions: a strong conjunction & and a lattice conjunction ∧. A
complete set of connectives is given by implication →, strong conjunction & and
falsum ⊥. Other connectives can be understood as abbreviations as follows:

¬ϕ stands for ϕ→ ⊥
ϕ↔ ψ stands for (ϕ→ ψ)&(ψ → ϕ)
ϕ ∧ ψ stands for ϕ&(ϕ→ ψ)
ϕ ∨ ψ stands for ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ).

In this paper we will mainly make use of algebraic methods, we therefore recall
some basic facts on the equivalent algebraic semantics of BL.

Definition 1 (Hoop [3]) A hoop is a structure 〈A, ·,⇒, 1〉 such that 〈A, ·, 1〉 is a
commutative monoid, and ⇒ is a binary operation such that:

x⇒ x = 1, (1)

x⇒ (y ⇒ z) = (x · y)⇒ z (2)

x · (x⇒ y) = y · (y ⇒ x). (3)

In any hoop, the operation ⇒ induces a partial order ≤ defined by x ≤ y iff
x ⇒ y = 1. Moreover, hoops are precisely the partially ordered commutative
integral residuated monoids (pocrims) in which the meet operation ∧ is definable
by x ∧ y = x · (x ⇒ y). Finally, it can be easily checked that hoops satisfy the
following divisibility condition:

If x ≤ y, then there is an element z such that z · y = x. (4)

A hoop is said to be basic iff it satisfies

(((x⇒ y)⇒ z) · ((y ⇒ x)⇒ z)) = 1 (5)

A Wajsberg hoop is a hoop satisfying:

(x⇒ y)⇒ y = (y ⇒ x)⇒ x (6)

A cancellative hoop is a hoop satisfying:

x⇒ (x · y) = y (7)

A bounded hoop is a hoop with an additional constant 0 satisfying the equation
0 ≤ x. A Wajsberg algebra is a bounded Wajsberg hoop.
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Definition 2 (BL-algebras) BL-algebras are exactly the bounded basic hoops or
equivalently the bounded hoops which are isomorphic to subdirect products of
linearly ordered bounded hoops.

Definition 3 (Ordinal sum [2]) Let 〈I,≤〉 be a totally ordered set with minimum
i0. For all i ∈ I, let Wi be a hoop such that for i 6= j, Wi ∩Wj = {1}, and assume
that Wi0 is bounded. Then

⊕
i∈IWi (the ordinal sum of the family (Wi)i∈I) is the

structure whose base set is
⋃
i∈IWi, whose bottom is the minimum of Wi0 , whose

top is 1, and whose operations are

x⇒ y =


x⇒Wi y if x, y ∈Wi

y if ∃i > j (x ∈Wi and y ∈Wj)

1 if ∃i < j (x ∈Wi \ {1} and y ∈Wj)

x · y =


x ·Wi y if x, y ∈Wi

x if ∃i < j (x ∈Wi, y ∈Wj \ {1})
y if ∃i < j (y ∈Wi, x ∈Wj \ {1})

.

In [2] the following is proved:

Theorem 1 Every linearly ordered BL-algebra A is the ordinal sum of an indexed

family 〈Wi : i ∈ I〉 of linearly ordered Wajsberg hoops, where I is a linearly ordered set

with minimum i0, and Wi0 is bounded.

In the sequel, the Wajsberg hoops Wi in Theorem 1 will be called the Wajsberg

components of A (or just components).
Using the fact that the Wi are closed under hoop operations, it is easy to prove

(cf. [2]) that, with reference to Theorem 1, the subalgebras of A =
⊕
i∈IWi are

those of the form B =
⊕
i∈I Ui, where for i ∈ I, Ui is a subhoop of Wi (possibly

trivial if i 6= i0), and Ui0 is a Wajsberg subalgebra of Wi0 .
Let [0, 1]W be the standard Wajsberg algebra, namely the algebra 〈[0, 1], ⇒W ,

¬W , 0, 1〉 where x ⇒W y = min{1, 1 − x + y} and ¬W x = 1 − x. Let (ω)[0, 1]W
denote the ordinal sum of ω copies of [0, 1]W . Then:

Theorem 2 ([2]) The variety of BL-algebras is generated as a quasivariety by (ω)[0, 1]W .

3 BL with Fixed Points

We will consider fixed points of formulas only involving &,∨, and ∧, namely the
connectives that have a continuous interpretation in the standard BL-algebras
on [0, 1]. Such formulas will be called continuous formulas and the correspond-
ing terms continuous terms. We will conventionally write ϕ(x, y1, ..., yn) meaning
that all propositional variables occurring in ϕ belong to {x, y1, ..., yn}; the same
convention applies to terms and their variables.

Remark 1 Let f(x, a1, .., an) be a continuous map from [0, 1]n+1 into [0, 1]. Notice
that the function that gives the maximum fixed points of f , as the parameters
a1, .., an range in [0, 1]n, can have discontinuities. For this reason we will introduce
maximum fixed points of continuous formulas statically as a family of new func-
tions, rather than with a single fixed point operator; this approach is also used in
modal logic (see e.g., [20]).
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Definition 4 The language of ν Basic Logic (for short, νBL) is an expansion of
BL with a new n-ary connective νp.ϕ(p, q1, ..., qn) for any continuous BL-formula
in n+ 1 propositional variables ϕ(p, q1, ..., qn). The system νBL is axiomatised by
all axioms and rules of BL (see e.g. [10, Definition 2.2.4] or [6, Vol. 1, pag. 355])
plus the following ones:

1. ϕ(νp.ϕ(p, q̄), q̄)↔ νp.ϕ(p, q̄),
2. If [ϕ(ψ, q̄)↔ ψ] then ψ → νp.ϕ(p, q̄),
3.
(
νp.(p2&ψ)

)
∨
(
νp.(p2&ξ)

)
↔ νp.(p2&(ψ ∨ ξ)),

4. (νp.ψ(p, r))&(νp.ψ(p, s))→ νp.(ψ(p, r&s));

here q̄ stands for a tuple of propositional variables of suitable arity.

Henceforth, we write xn for the n-time product x · .... · x, we conventionally set
x0 = 1. It is trivial to see that the equivalent algebraic semantics of νBL is given
by the following quasi-variety of structures.

Definition 5 (νBL-algebras) Let C be the set of continuous terms i.e., terms in
the language of BL-algebras in which only the connectives ·, ∨ and ∧ appear. A
νBL-algebra is a structure

〈A, ·,⇒,∨,∧, 0, 1, {νx.t(x, ȳ)}t(x,ȳ)∈C〉

such that 〈A, ·,⇒,∨,∧, 0, 1〉 is a BL-algebra, and the following equations hold:

t(νx.t(x, ȳ), ȳ) = νx.t(x, ȳ), (νBL1)

If [t(u, ȳ) = u] then u ≤ νx.t(x, ȳ), (νBL2)

(νx.x2 · y) ∨ (νx.x2 · z) = νx.(x2 · (y ∨ z)), (νBL3)

(νx.t(x, y)) · (νx.t(x, z)) ≤ νx.(t(x, y · z)). (νBL4)

It is understood in the notation that the variable x is bound in νx.t(x, ȳ), and the
usual rules for substitutions in presence of bindings apply.

Example 1 If ∗ is a continuous t-norm and ⇒ is its residuum, 〈[0, 1], ∗,⇒, 0, 1〉 is
a BL-algebra; the derived operations ∧ and ∨ coincide here with minimum and
maximum between two numbers. Such algebras are often referred as the standard

BL-algebras. The interpretations of continuous terms in these algebras contain only
the operations ∗,∧ and ∨, which are obviously continuous w.r.t. the Euclidean
topology on [0,1]. So, if t(x, y1, ..., yn) is a continuous term, its interpretation t̃ in
a standard BL-algebra is a continuous function from [0, 1]n+1 into [0, 1]. Under
these assumptions the term νx.t(x, y1, ..., yn) is a function from [0, 1]n into [0, 1]
obtained as follows. For any tuple a1, ..., an ∈ [0, 1] the function t̃(x, a1, ..., an) is a
continuous function from [0,1] into [0,1], so by Brouwer’s theorem it has at least
a fixed point in, hence it has a maximum fixed point a; we set ν̃x.t(a1, ..., an) = a.
By varying the tuple a1, ..., an in [0, 1], we obtain the whole interpretation of ν̃x.t.

To understand the intuitive meaning of the above axioms one should look at
the term t(x, y1, ..., yn) as a function from An+1 to A. So, νx.t(x, y1, ..., yn) is a
n-ary function. Axiom (νBL1) then states that νx.t(x, a1, ..., an) is a solution to
the equation t(x, ā) = x. Axiom (νBL2) states that it is the largest such. Finally,
axioms (νBL3) and (νBL4) are technical requirements that guarantee that νBL-
algebras are subdirect products of linearly ordered ones. While [18, p. 308] contains
an example showing that (νBL3) is necessary if one wants to work with a pre-
linear class of algebras, we could not find an example showing that (νBL4) is not
redundant.
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4 General properties of νBL-algebras

Lemma 1 For every νBL-algebra and every a ∈ A the element given by νx.(x2 · a) is

the largest idempotent below a.

Proof. We start by noticing that the solutions to the equation x2 · a = x are
exactly all idempotents below a. Indeed, if e is such a solution, then since in any
BL-algebra x · y ≤ x, y, we have e ≥ e2 ≥ e2 · a = e, so e is idempotent. Moreover
a ≥ e2 · a = e, so e is below a. Vice versa, if e is an idempotent below a, then
e2 · a = e · a ≥ e · e = e; where the last inequality holds because in any BL-algebra ·
is increasing in both coordinates. In addition, e2 · a ≤ e, so combining the two last
inequalities we obtain e2 · a = e and the first claim is proved.

By axiom (νBL1), νx.(x2 · a) is a solution to the equation x2 · a = x, so by the
above reasoning it is idempotent. Further by axiom (νBL2), it is the maximum
among the idempotents below a and the lemma is proved. �
We note that, whereas in [18] the author needs to assume the existence of the
maximum idempotent below any element in the definition of a weakly saturated

BL-algebra, with our approach this is not necessary as those elements must exist,
being the images of functions of the algebra.

Corollary 1 In every νBL-algebra one has νx.(x2 · a) = νx.(x2 · (νx.(x2 · a)))

Proof. By Lemma 1 νx.(x2 · a) is an idempotent so νx.(x2 · (νx.(x2 · a))) is the
largest idempotent below νx.(x2 · a), which is νx.(x2 · a) itself. �
In the light of Remark 1, the second term in the statement of Corollary 1 seems
not admissible, as it presents nested occurrences of νx. However, the term can be
obtained by a substitution of y for νx.(x2 · a) in the term νx.x2 · y.

Corollary 2 Every term in the language of BL-algebras with storage operator can be

faithfully translated in a term of νBL-algebras.

Proof. To translate a term in the language of BL-algebras with storage operators
in a νBL term we only have to substitute all the occurrences of the storage oper-
ator applied to a certain variable x by the νBL term νy.(y2 · x), Lemma 1 ensures
that such a substitution gives an equivalent term. �

Lemma 2 For every νBL-algebra A and a ∈ A, νx.(x2 · a) = νx.(xn · a), whenever

n ≥ 2.

Proof. Let d = νx.(x2 · a), then by Lemma 1 d = d2 = dn, so d = d2 · a = dn · a.
Hence by (νBL2) νx.(x2 · a) ≤ νx.(xn · a). For the other inequality notice that,
letting e = νx.(xn · a), we have e = en · a ≤ en ≤ e2 ≤ e, so e is an idempotent
below a. But by Lemma 1, d is the largest such, hence νx.(x2 · a) ≥ νx.(xn · a) �

Lemma 3 For any a ≤ b in a νBL algebra A, νx.(x2 · a) is also a solution for the

fixed point equation x2 · b = x.

Proof. Obviously (νx.(x2 · a))2 · b ≤ νx.(x2 · a), but for the monotonicity of ·,
νx.(x2 · a) = (νx.(x2 · a))2 · a ≤ (νx.(x2 · a))2 · b and the claim is proved. �
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Lemma 4 For every m ∈ N,

νx.(x2 · a1 · ... · an) = νx.(x2 · am1 · ... · amn ).

Proof. Set b := νx.(x2 · a1 · ... · an), then we have that

b2 · am1 · ... · amn = (b2 · a1 · ... · an) · am−1
1 · ... · am−1

n =

= b2 · am−1
1 · ... · am−1

n = ... =

= b.

where the second and fourth equalities hold because b is a fixed point of that term
and it is idempotent. So we conclude by axiom (νBL2), that b ≤ νx.(x2 ·am1 ·...·amn ).
On the other hand am1 · ... · amn ≤ a1 · ... · an, so by Lemma 3 νx.(x2 · a)m1 · ... · amn is
a fixed point for x2 · a1 · ... · an and so, again by (νBL2), νx.(x2 · a)m1 · ... · amn ≤ b

and the claim is proved. �

Remark 2 Notice that since the variety of BL-algebras is generated by its linearly
ordered members, each continuous term t(x, y1, ..., yn) is equivalent over BL to one
of the form ∨

i∈I

∧
j∈J

(
xk0ij · yk1ij1 · ... · yknij

n

)
. (8)

Lemma 5 Let A be a νBL-algebra and a1, ..., an ∈ A. Then for every continuous term

t(x, y1, ..., yn) one has that νx.(x2 · a1 · ... · an) ≤ νx.t(x, a1, ..., an).

Proof. Recall that by Remark 2, t(x, y1, ..., yn) can be thought to be of the form∨
i∈I

∧
j∈J

(
xk0ij · yk1ij1 · ... · yknij

n

)
.

Let m be the maximum among all klij , for l ≤ n, i ∈ I and j ∈ J . Then

am1 · ...amn ≤ a
k1ij
1 · ... · aknij

n

for all l ≤ n, i ∈ I and j ∈ J , so by Lemmas 2 and 3 and

t
(
(νx.(x2 · a)m1 · ...amn ), a1, ..., an

)
= νx.(x2 · a)m1 · ...amn .

But, by Lemma 4, νx.(x2 · a)m1 · ...amn = νx.(x2 · a)1 · ...an, so by axiom (νBL2),
νx.(x2 · a1 · ... · an) ≤ νx.t(x, a1, ..., an). �

Let us call νBL+ the variety generated by νBL-algebras. Obviously all equa-
tions true in νBL are also true in νBL+. In order to characterise subdirectly irre-
ducible νBL+-algebras, we study congruences in νBL+-algebras and the associated
νBL-filters.

Definition 6 If A is a νBL+, we call F ⊆ A a νBL-filter if it is a filter of the
BL-reduct and has the following closure property:

If a1, ..., an ∈ F then νx.(x2 · a1 · ... · an) ∈ F. (9)
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Recall that in BL-algebras there is a bijective correspondence between filters and
congruences given by the association:

θ 7→ Fθ := {a ∈ A | aθ1} (10)

F 7→ θF := {(a, b) | a⇒ b ∈ F and b⇒ a ∈ F}. (11)

Such a correspondence extends to νBL-filters and congruences.

Lemma 6 Let A be a νBL+-algebra. There is a bijective correspondence between νBL-

filters and congruences on A given by (10) and (11).

Proof. If θ is a νBL-congruence, then Fθ is obviously a BL-filter. To prove (9),
suppose that a1θ1, ..., anθ1, then for any i ≤ n,

(
νx.(x2 ·ai)

)
θ
(
νx.x2 ·1

)
, i.e.

(
νx.(x2 ·

ai)
)
θ1. So,

(νx.(x2 · a1)) ∈ F, ..., (νx.(x2 · an)) ∈ F.

Hence

(νx.(x2 · a1)) · ... · (νx.(x2 · an)) ∈ F,

so, by (νBL4)

(νx.(x2 · a1 · ... · an)) ∈ F.

Vice versa, if F is a ν-BL filter, we already know that θF is a BL-congruence.
To see that indeed it is a νBL-congruence, suppose that a1θb1, ..., anθbn. Then by
definition a1 ⇒ b1, ..., an ⇒ bn ∈ F . So by (9), for i ≤ n, νx.x2 · (ai ⇒ bi) ∈ F .
By Lemma 5, this implies that for any continuous term t, νx.t(x, ai ⇒ bi) ∈ F .
Finally, by (νBL4) νx.t(x, a) · νx.t(x, a⇒ b) ≤ νx.t(x, a · (a⇒ b)) ≤ νx.t(x, b), so by
residuation

νx.t(x, a⇒ b) ≤ νx.t(x, a)⇒ νx.t(x, b).

So, νx.t(x, ai)⇒ νx.t(x, bi) ∈ F . Similarly one can prove that νx.t(x, bi)⇒ νx.t(x, ai) ∈
F , hence θ is a νBL-congruence. �

Lemma 7 Let A be a νBL+-algebra and a ∈ A. The νBL-filter generated by a, Fa is

given by the set {x ∈ A | x ≥ νx.(x2 · a)}.

Proof. Call the above set F (a). Clearly νx.(x2 · a) ∈ Fa and since a νBL-filter
is upward closed F (a) ⊆ Fa. For the other inclusion we only have to prove that
F (a) is a νBL-filter, as Fa is the minimal filter containing a. Clearly 1 ∈ F (a). If
x, x⇒ y ∈ F (a) then

νx.(x2 · a) = (νx.(x2 · a)) · (νx.(x2 · a)) ≤ x · (x⇒ y) ≤ y,

hence y ∈ F (a). Finally if z ∈ F (a), then by Corollary 1

νx.x2 · z ≥ νx.x2 · (νx.(x2 · a)) = νx.(x2 · a),

so νx.x2 · z ∈ F (a) �

Lemma 8 Every subdirectly irreducible νBL+-algebra is linearly ordered.
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Proof. If A is subdirectly irreducible νBL+-algebra then it has a minimal non-
trivial congruence. The νBL-filter associated to this congruence by Lemma 6 is
minimal and non-trivial as well, hence it is generated by some c ∈ A different
from 1. Let us indicate this filter by Fc. Suppose that there exist a, b ∈ A such
that neither a ≤ b or b ≤ a, then Fa⇒b and Fb⇒a are both non-trivial filters, so
they both contain Fc. This implies, by Lemma 7, that c ≥ νx.(x2 · (a ⇒ b)) and
c ≥ νx.(x2 ·(b⇒ a)), which gives c ≥ [νx.(x2 ·(a⇒ b))]∨[νx.(x2 ·(b⇒ a))]. By axiom
(νBL3) of Definition 5, this implies c ≥ [νx.(x2 ·(a⇒ b)∨(b⇒ a))] = νx.(x2 ·1) = 1,
a contradiction. �

Theorem 3 Every νBL-algebras is the subdirect product of linearly ordered νBL+-

algebras.

Proof. By Birkhoff’s subdirect representation theorem any νBL-algebra A is the
subdirect product of subdirectly irreducible algebras and they all belong to νBL+.
Hence, by Lemma 8, A is the subdirect product of linearly ordered νBL+-algebras.
�

Lemma 9 Every term of the form νx.t(x) is equivalent to∧∨
i∈I

νx.(xni · ai)

where, conventionally, we write νx.x0 ·a = a. In other words in every continuous term

the functions νx can be pushed inside until the basic parts of the form xn · a.

Proof. Since every continuous term is equivalent to a formula
∧∨

i∈I(x
ni · ai) we

only have to prove that νx commutes with ∧ and ∨. But in every linearly ordered
νBL+-algebra the following equations hold

νx. (t1(x) ∨ t2(x)) = νx.t1(x) ∨ νx.t2(x)

and

νx. (t1(x) ∧ t2(x)) = νx.t1(x) ∧ νx.t2(x).

Hence, by Theorem 3 they hold in every νBL-algebra. �

In [18], the storage operator of a is characterised as the largest solution to the
equation x2 ·a = x. In Lemma 2 we showed that it is also the largest solution to the
equation xn ·a = x, for any n ≥ 2. So the only fixed points which are not definable
trough the storage operator are the ones of the form νx.x ·a. The following remark,
combined with Theorem 2, deceptively suggests that the two fixed points coincide.

Remark 3 For any a in the BL-algebra (ω)[0, 1]W , one has νx.(x2 · a) = νx.(x ·
a). Indeed, x · y is defined in [0, 1]W as max{x + y − 1, 0}, so [0, 1]W has only
two idempotent elements which are 0 and 1. An easy calculation shows that the
maximum solution to the equation x ·a = x is 1 if a = 1 and 0 otherwise. But then
in (ω)[0, 1]W , νx.(x · a) is the greatest idempotent below a, whence νx.(x2 · a) =
νx.(x · a).
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Unfortunately although this result holds for the “generic” algebra (ω)[0, 1]W ,
it does not hold in general, as next example proves. This proves also that fixed
points are not equationally definable in BL-algebras.

Example 2 Consider the BL-algebra CH = C ⊕ Z− where C is the Chang’s MV-
algebra (see for instance [4] for details) and Z− is the negative cone of the integer
numbers. Take a ∈ Z−, then since there are no idempotents in Z−, but 0 and 1,
νx.(x2 · a) = 0 if, and only if, a 6= 1. But the maximum fixed point of x · a is the
maximum of C. So CH can be expanded to a νBL algebra in which νx.(x · a) 6=
νx.(x2 · a).

5 Subclasses of νBL

Since the only relevant fixed points are νx.(x · a) and νx.(x2 · a), it makes sense to
further investigate their properties.

Let us define �(a) = νx.(x2 · a) and 4(a) = νx.(x · a). Let us also use the
following shorthands:

4n(a) = 4(4n−1(a)),

4(a)n = 4(a) · ... · 4(a)︸ ︷︷ ︸
n times

,

Lemma 10

1. For every n ≥ 1, 4(a)n ≥ �(a),

2. For every n ≥ 1, 4n(a) ≥ �(a) and �(4n(a)) = �(a),

3. If m ≤ n then 4m(a) ≥ 4n(a) and 4(a)m ≥ 4(a)n,

4. For any n ∈ N \ {0} 4(a)n ≥ 42(a).

Proof.

1. The element �(a) is idempotent hence �(a) = �(a)2 · a = �(a) · a, so �(a) is
a solution to the equation x · a = x but by definition 4(a) is the greatest one,
so 4(a) ≥ �(a). But then 4(a)n ≥ �(a)n = �(a).

2. By induction on n. One part of the basic step, namely that 4(a) ≥ �(a),
is proved in the claim above; furthermore �(4(a)) = �(a) is true because
�(a) ≤ 4(a) ≤ a, whence the largest idempotent below a is also the largest
idempotent below 4(a).
For the inductive step suppose that 4n(a) ≥ �(a) and �(4n(a)) = �(a),
then �(4n(a)) · 4n(a) = �(4n(a))2 · 4n(a) = �(4n(a)). Hence �(4n(a)) ≤
4n+1(a), but, by induction hypothesis �(4n(a)) = �(a). Finally �(4n+1(a)) =
�(a) because a ≥ 4n+1(a)) ≥ �(a).

3. We have that

4n(a) = 4n(a) · 4n−1(a) =

= 4n(a) · 4n−1(a) · 4n−2(a) = ... =

= 4n(a) · 4n−1(a) · ... · 4m(a) ≤ 4m(a).

The second claim is obvious.
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4. By induction on n. The basic step holds because of item 3 above.
If 4(a)n ≥ 42(a) then 4(a)n+1 ≥ 42(a) · 4(a) = 42(a).

�

Proposition 1 Let A be a νBL-algebra, then for every a ∈ A, the following are equiv-

alent:

∃n > 1(4(a)n = 4(a)), (12)

∃n > 1(4n(a) = 4(a)), (13)

4(a) = �(a). (14)

Proof. (12) implies (13). We have that:

4(a) = 4(a)n ≤ ... ≤ 4(a)2 ≤ 4(a),

whence 4(a) = 4(a) · 4(a), so 4(a) ≤ 42(a). Since by Lemma 10 item 2, 4(a) ≥
42(a), hence they must be equal.
(13) implies (14). Consider the following chain of implications:

4n(a) = 4(a) implies 4(4n−1(a)) = 4(a) implies 4n−1(a) · 4(a) = 4(a)

implies 4n−1(a) ≥ 4n−1(a) · 4(a) = 4(a) implies 4n−1(a) = 4(a).

Then we get that 42(a) = 4(a), hence 4(a) is an idempotent and since a ≥
4(a) ≥ �(a) it must be 4(a) = �(a), because �(a) is the largest idempotent
below a. Finally, that (14) implies (12) is an immediate consequence of Lemma 1.
�

Definition 7 An archimedean νBL-algebra is an algebra in which, for any element
a, one of the equivalent conditions of Proposition 1 holds.

Archimedean νBL-algebras are a proper sub-quasi-variety of νBL-algebras, as
can be seen from Example 2.

The properties listed in Proposition 1 do not completely characterise the be-
havior of 4 w.r.t. �. A comparison between the algebra introduced in Example 2
and the one on next example, can be instructive at this point.

Example 3 Let Z− be as in Example 2 and let us call (ω)Z− the ordinal sum of
the standard Wajsberg algebra [0, 1]W and ω copies of the hoop Z−. Let us take
a in the highest component of the ordinal sum. Since there are no idempotents in
(ω)Z−, but 0 and 1, νx.(x2 · a) = 0 if, and only if, a 6= 1. Notice that given b 6= 1
in a component different from the first νx.x · b is the maximum of the previous
component. From this we deduce that for any n > 0, 4n(a) 6= �(a).

So another interesting (proper) subclass of νBL-algebras is given by those
members in which there exists n > 0 for which 4n(a) = 4n−1(a). We will see that
also in this case 4(a) and �(a) are related.

Lemma 11 For any element a of a νBL-algebra the following hold:

1. ∃n(4n(a) = 4n−1(a)) if, and only if, ∃m(4m(a) = �(a));
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2. ∃n(4(a)n = 4(a)n−1) if, and only if, ∃m(4(a)m = �(a));

Proof.

1. One direction is obvious. For the other one notice that if 4n(a) = 4n−1(a)),
then 4n−1(a) = 4(4n−1(a)) = 4n−1(a) · 4n(a) = 4n−1(a) · 4n−1(a). But
�(a) is the largest idempotent below a, hence 4n−1(a) = �(a).

2. For the left-to-right implication consider that 4(a)2n = 4(a)n−1 · 4(a)n−1 =
4(a)n · 4(a)n−2 = 4(a)n−1 · 4(a)n−2 = ... = 4(a)n. Hence 4(a)n = �(a).
For the other direction just notice that 4(a)m ≥ 4(a)m+1 ≥ 4(a)2m = 4(a)m.

�
Note that by Lemma 10 item 4, the two parts of condition 2 of the proposition
above are stronger than the two parts of condition 1. To see that the two conditions
are not equivalent one may consider the algebra of the Example 2, where, with a

as in the example, there exists n such that 4n(a) = �(a) but for no m one has
that 4(a)m = �(a).

Definition 8

– A νBL-algebra is said m-archimedean if it satisfies 4(a)m = �(a).
– A νBL-algebra is said m-archimedean if it satisfies 4m(a) = �(a).
– A νBL-algebra is said ∞-archimedean if it satisfies

∃m > 1(4m(a) = �(a)).

– A νBL-algebra is said ∞-archimedean if it satisfies

∃m > 1(4m(a) = �(a)).

Notice that archimedean, m-archimedean and m-archimedean νBL-algebras are
equationally definable subclasses of νBL-algebras, hence sub-quasi-varieties. ∞-
archimedean and ∞-archimedean can be seen as unions, for m ∈ N, of the quasi-
varieties of m-archimedean and m-archimedean, respectively.

Figure 1 should make clear their reciprocal relationships.

Fig. 1 Subclasses of the variety of νBL-algebras
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6 Standard Completeness

Although we are not able to give a proof of the standard completeness of the
logic νBL, all the other extensions introduced in the previous section are standard
complete. The key remark is that if A is an algebra in one of the subclasses above
then the following holds:

∀a ∈ A ∃n such that for every u, v ≥ n 4u(a) = 4v(a). (15)

This implies that when considering a finitely generated νBL-algebra we can assume
without loss of generality that the set of generators is already closed under 4 and
�. This property will allow us to embed every finitely generated νBL-algebra
satisfying (15) in a standard νBL-algebra.

The proof of the following lemma follows the lines of [18].

Lemma 12 Every finitely generated subdirectly irreducible∞-archimedean νBL+-algebra

is the ordinal sum of its Wajsberg components containing its generators.

Proof. Let A be a finitely generated subdirectly irreducible νBL+-algebra, whose
set of generators is G = {g1, ..., gn}. Without loss of generality we may suppose
0 ∈ G and that if g ∈ G then �(g),4(g) ∈ G. Since �(�(g)) = �(g) and for some
m, 4m(g) = 4m+1(g), this does not break the finiteness of G.

Let W1, ...,Wn be the (non necessary distinct) Wajsberg components to which
every g ∈ G belongs. Since A is finitely generated, every b ∈ A is the interpreta-
tion of some term all of whose variables are in G. We prove by induction on the
complexity of this term that b ∈

⋃
i≤nWi.

Since 0 is in G and 1 belongs to every component, the basic step holds. Concern-
ing the inductive cases of · and⇒, the statement directly comes from the definition
of ordinal sum, indeed if ai ∈Wi and aj ∈Wj then ai · aj , ai ⇒ aj ∈Wi ∪Wj .

As regards the case of ν, since we are in a ∞-archimedean algebra, it is enough
to check that if a belongs to some Wi then, for a suitable m, 4m(a) and �(a) are
in
⋃
j≤nWj . Note that if a and b are in the same component then if �(a) does

not belong to the same component it must be equal to �(b). This also holds for
4(a) and 4(b), for if 4(a) does not belong to the same component of a it must
be the maximum of the previous component and the same holds for b. But then it
is sufficient to take �(gi) (resp. 4m(gi)) where gi is the generator which belongs
to the same component of a. As �(gi) (resp. 4m(gi)) is in Wi by hypothesis the
claim is proved. �

Theorem 4 Every finitely generated subdirectly irreducible∞-archimedean νBL+-algebra

can be embedded in a standard one.

Proof. Let A be such an algebra, by Lemma 8 A is linearly ordered. Let A =⊕
i≤nAi be as given by Lemma 12. Then, for all i ≤ n, Ai is either a Wajsberg

algebra or a cancellative hoop whose previous component is the two elements
algebra. In the first case, by Di Nola’s theorem [8] Ai embeds in an ultrapower of
the  Lukasiewicz standard algebra. Otherwise Ai−1 ⊕ Ai embeds in an ultrapower
of the standard product algebra.

Let us now build a standard νBL-algebra. We start substituting every Wajsberg
algebra with the standard  Lukasiewicz algebra, and every ordinal sum Wi−1⊕Wi,
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where Wi is cancellative and Wi−1 is the two-elements hoop, with the standard
product algebra; the structure obtained is a νBL-algebra (where the ν-functions
are defined in the obvious way).

As a second step we replace every standard algebra by an isomorphic copy
having domain [ i−1

k , ik ]. What we obtain is a standard νBL-algebra which is iso-
morphic to the previous. We only need to prove that A embeds into some of its
ultrapowers.

In [2] it is proved that if every basic hoop Hi embeds in an ultrapower of a
basic hoop Ki, then the ordinal sum

⊕
i∈I Hi embeds in an ultrapower of

⊕
i∈I Ki.

Hence in this case we have that the BL reduct A embeds in the BL reduct of the
standard algebra we just constructed, call Ψ such an embedding.

It remains to prove that such an embedding preserves fixed points, namely that
Ψ(νx.t(x, y1, ..., yn)) = νx.(t(x, Ψ(y1), ..., Ψ(yn))). But this directly comes from the
fact that Ψ preserves the order of the components. �

Corollary 3 The quasi-varieties of archimedean, m-archimedean and m-archimedean

νBL-algebras are generated by their standard members.

Proof. If a quasi-equation q fails in the quasi-variety of archimedean νBL-algebras,
then it fails in some subdirectly irreducible archimedean νBL+-algebra. But quasi-
equations are preserved by taking subalgebras, so by Theorem 4, q fails in a stan-
dard algebra, and the claim is proved. �
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