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1. Introduction.

This is the transcript of a featured talk given on the 15th of September 2011 at
the XIX Congeresso dell’Unione Matematica Italiana held in Bologna, Italy. It is
based on a joint work with Vincenzo Marra of the University of Milan that was
published in [11]. During the lecture proofs were given just as hints, so also this
document does not carry any formal detail other than the complete statements of
the results. When it is possible hints at the proof strategy as well as the concepts
involved are given. For complete proofs of all unreferenced statements here, the
reader should kindly refer to [11] and references therein.

This work was started with the hope of getting a better insight on relationship
between finitely presented MV-algebras and rational polyhedra and how this can be
framed in a more general perspective about geometric dualities. Indeed, in the last
decade a number of results in the theory of MV-algebras were proved associating to
each finitely presented structure an algebra of special functions (called McNaughton
functions) restricted to a rational polyhedron contained in a hypercube [0, 1]n. It
was already known to the practitioners of the field that this correspondence can be
made functorial, but previous studies concentrated on its applications rather than
on its own nature.

The outcomes of this study are:

(1) The relation between finitely presented MV-algebras and rational polyhedra
is a categorical duality (see Theorem 8.5) which stems from a more general
categorical duality between semisimple MV-algebras and Tychonoff spaces
with definable maps (see Corollary 6.2).

(2) This duality arises exactly in the same way as Stone’s dualities and can be
seen as a generalisation of the adjunction between affine varieties over an
algebraically closed field, and their structure rings (see Lemma 3.8).
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(3) The general adjunction from which this correspondence arises seems to
be a quite more general phenomenon that can be formally carried out in
any given variety of algebras, once some special element in this variety
has been fixed (see Theorem 3.11). Depending on the properties enjoyed
by this distinguished element the general adjunction can be strengthen to
categorical duality.

We will start form item (3). Although we treat the particular case of MV-
algebras, it will transpire that this is a completely abstract construction which
can be carried out in any variety. As mentioned in item (2) the construction is
formally identical to the classical adjunction between affine algebraic varieties and
polynomial ideals.

In his two landmark papers [14, 15], Marshall Stone showed that the set of prime
(=maximal) ideals of a Boolean algebra carries a natural topology, one in which
the open sets correspond to arbitrary ideals. Spaces arising in this manner are
known today as Stone spaces. The clopen sets, i.e. closed and open in the topology,
correspond to principal ideals, and hence to elements of the algebra. Thus, the
original algebra can be recovered from its space of prime ideals; the bridge is in
fact a two-way road. It is a simple exercise to rephrase also Stone’s dualities in the
framework of this general adjunction.

To get to item (1) we will gradually involve results coming from the general
theory of MV-algebras. Although we will not refrain from using technical lemmas
specifically valid for these structures, it will again transpire that a handful of basic
properties of the distinguished algebra [0, 1] are all is needed to prove a character-
isation of the fixed points of this adjunction, whence the duality will follow as an
immediate corollary.

We then turn to the full subcategory of finitely presented MV-algebras. Us-
ing further advanced results about MV-algebras, we obtain a duality between the
category of finitely presented MV-algebras and the category of finitely definable
subspaces of Tychonoff cubes. Finally, we give a characterisation in geometrical
terms of the abstract category of finitely definable sets. This yields the geometric
duality between finitely presented MV-algebras and the category of rational poly-
hedra with Z-maps as morphisms. The result that affords this characterisation
is McNaughton’s Theorem, which allows us to identify definable maps on rational
polyhedra with piecewise linear maps having integer coefficients.

2. Preliminaries.

MV-algebras are the equivalent algebraic semantics of  Lukasiewicz logic, a many-
valued propositional system going back to the 1920’s. Chang [4] first singled out the
axioms of MV-algebras by studying the structure of classes of equivalent formulas
of  Lukasiewicz logic (aka the Lindenbaum-Tarski algebra of the logic). Shortly
thereafter, in his ground-breaking paper [5], he obtained an algebraic proof of the
completeness theorem. The standard reference for the elementary theory of MV-
algebras is [6], whereas [12] is a treatment at the frontier of current research.

Let us recall that an MV-algebra is an algebraic structure (M,⊕,¬, 0), where
0 ∈ M is a constant, ¬ is a unary operation satisfying ¬¬x = x, ⊕ is a unary
operation making (M,⊕, 0) a commutative monoid, the element 1 defined as ¬0
satisfies x⊕ 1 = 1, and the law

(*) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x
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holds. Any MV-algebra has an underlying structure of distributive lattice bounded
below by 0 and above by 1. Joins are defined as x ∨ y = ¬(¬x⊕ y)⊕ y. Thus, the
characteristic law (*) states that x∨y = y∨x. Meets are defined by the De Morgan
condition x ∧ y = ¬(¬x ∨ ¬y). Boolean algebras are precisely those MV-algebras
that are idempotent, meaning that x ⊕ x = x holds, or equivalently, that satisfy
the tertium non datur law x ∨ ¬x = 1.

The interval (of truth values) [0, 1] ⊆ R can be made into an MV-algebra, often
called the standard MV-algebra. It has 0 as neutral element, x⊕y = min {x+ y, 1},
and ¬x = 1 − x. The underlying lattice order of this MV-algebra coincides with
the natural order that [0, 1] inherits from the real numbers.

A key point in Stone’s duality for Boolean algebra is that prime ideals are the
kernels of the homomorphisms into the prototypical Boolean algebra {0, 1}. So
Stone’s duality asserts that the original structure of the Boolean algebra can be
recovered from the information on the ways a Boolean algebra can be mapped
homomorphically into {0, 1}. In MV-algebras a similar role is played by the algebra
[0,1]. The analogy is not complete in that all Boolean algebras are semisimple
while there are non semisimple MV-algebras. This is the reason why the general
adjunction for MV-algebras needs to be restricted to semisimple algebras to become
a duality while it is already so in the framework of Boolean algebras.

We will be concerned here with the category MVp of presented MV-algebras, i.e.
the category whose objects are MV-algebras of the form Fµ /θ, where µ is a car-
dinal, Fµ is the MV-algebra freely generated by the set {Xα | α < µ, α an ordinal},
and θ is a congruence on Fµ; morphisms are homomorphisms of MV-algebras. Us-
ing the Axiom of Choice, it is an exercise to show that MVp is equivalent to the
category of all MV-algebras. Therefore, our duality results extend to the category
of abstract MV-algebras, too. It will transpire in the course of the development,
however, that an extension obtained in this manner carries no genuine new math-
ematical information: we know of no way of associating to an abstract MV-algebra
its dual object, as constructed in this paper, other than by arbitrarily choosing a
presentation of the algebra. Thus, we opt for honesty and work with presented
algebras throughout.

Notation. Throughout, µ and ν invariably denote cardinal numbers, whereas α
and β invariably denote ordinal numbers. Although elements of Fµ are equivalence
classes of terms in the language of MV-algebras, we often use single terms as rep-
resentatives for their equivalence classes. If s is a term, the notation s

(
(Xα)α<µ

)
means that the (finitely many) variables occurring in s are among those in the tuple
(Xα)α<µ. If s

(
(Xα)α<µ

)
∈ Fµ and {tα}α<µ ⊆ Fν , we denote by s

(
[Xα\tα]α<µ

)
the term obtained from s by uniformly replacing each variable Xα with the term
tα. Obviously, s

(
[Xα\tα]α<µ

)
∈ Fν . We write [0, 1]µ for the Cartesian product

of µ copies of [0, 1]. If p ∈ [0, 1]µ, then s(p) denotes the evaluation of the term s in
the MV-algebra [0, 1] under the assignment Xα 7→ πα(p), where πα : [0, 1]κ → [0, 1]
is the projection onto the αth coordinate, for each ordinal α < κ.

We finally introduce the arrows of all our dual categories. The reader will readily
see how this definition is just a specific instance of a classical concept considered in
mathematical logic.

Definition 2.1. Given S ⊆ [0, 1]µ and T ⊆ [0, 1]ν , a function λ : S → T is definable
if there exists a ν-tuple of terms (lβ)β<ν , with lβ ∈ Fµ, such that
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λ( (pα)α<µ ) = ( lβ( (pα)α<µ ) )β<ν

for every (pα)α<µ ∈ S. We call any such ν-tuple a family of defining terms for
λ. In the special case that ν = 1, the ν-tuple may be regarded as a single term
l ∈ Fµ, called a defining term for λ.

We will denote by Top
def Z the category whose objects are subsets of [0, 1]µ as µ

ranges over all cardinals and arrows are definable functions.

3. The basic adjunction.

Our first aim is to construct a pair of adjoint functors

I : Top
def Z −→ MVp , V : MVp −→ Top

def Z .

The construction of the functors as well the proof of the categorical adjunction
is completely universal-algebraic: nothing more is needed beyond picking up an
algebra in the variety, which in our case will be the distinguished algebra [0, 1] with
its own MV-algebraic structure.

Definition 3.1 (The functor I on objects). Given S ⊆ [0, 1]µ, let us define a
relation I (S) on Fµ by stipulating that, for arbitrary terms s, t ∈ Fµ,

(s, t) ∈ I (S) if and only if [0, 1] |= s(p) ≈ t(p)
for every p ∈ S ⊆ [0, 1]µ.

When S = {p} is a singleton, we write I (p) in place of I ({p}). For any S ⊆ [0, 1]µ,
it is easy to check that I (S) is a congruence on Fµ. In view of this, for any subset
S ⊆ [0, 1]µ we define

I (S) = Fµ / I (S) .

Definition 3.2 (The functor I on arrows). Given S ⊆ [0, 1]µ and T ⊆ [0, 1]ν , let
λ : S → T be a definable map, and let (lβ)β<ν be a ν-tuple of defining terms for λ.
Then there is an induced function

I (λ) : I (T )→ I (S)

which acts on each s ∈ Fν by substitution as follows:

s
(

(Xβ)β<ν
)

I (T )
∈ I (T )

I (λ)7−→
s
(

[Xβ\lβ ]β<ν
)

I (S)
∈ I (S) .

Remark 3.3. 1. There can be several distinct defining terms for a definable function
λ : S → [0, 1]. However, when l defines λ for each p ∈ S one has λ(p) = l(p), hence
any pair of defining terms for the same definable function belongs to I (S).

2. Since terms commute with substitutions, it is also clear that the definition
of I (λ) above does not depend on the choice of the representing term s, for if
s′ is another term such that (s, s′) ∈ I (T ), then s

(
[Xβ\lβ ]β<ν

)
is congruent to

s′
(

[Xβ\lβ ]β<ν
)

modulo I (S)
3. The two items above together imply that the definition of I (λ) does not

depend on the choice of the family of defining terms (lβ)β<ν either.

Proposition 3.4 (Functoriality of I ). Let λ1 : S1 → S2 and λ2 : S2 → S3 be
definable maps, where each Si is a subset of [0, 1]µi , for some cardinal µi, i = 1, 2, 3.
Then
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(1) I (λ1) : I (S2)→ I (S1) is a homomorphism of MV-algebras.
(2) If λ1 is the identity map, then so is I (λ1).
(3) I (λ2 ◦ λ1) = I (λ1) ◦I (λ2).

Therefore I is a functor from Top
def Z into MVp.

Proof. These are all consequences of simple universal algebraic arguments. �

Definition 3.5 (The functor V on objects). Given R = {(si, ti) | i ∈ I} ⊆
Fµ×Fµ, for I an index set, we define the set

V (R) = {p ∈ [0, 1]µ | [0, 1] |= si(p) ≈ ti(p) for each i ∈ I} .

By the very definition of V, for any congruence θ on Fµ we have V (θ) ⊆ [0, 1]µ.
We therefore set

V (Fµ /θ) = V (θ) .

Definition 3.6 (The functor V on arrows). Let h : Fµ /θ1 → Fν /θ2 be a homo-
morphism of MV-algebras. For each α < µ, let πα be the projection term on the
αth coordinate, and let πα/θ1 denote the equivalence class of πα modulo θ1. Fix,
for each α, an arbitrary fα ∈ h(πα/θ1). For any (pβ)β<ν ∈ V (θ2), set

V (h)((pβ)β<ν) =
(
fα( (pβ)β<ν )

)
α<µ

.

Also in this case one observes that the definition of V (h) does not depend on
the choices of the fα’s.

Proposition 3.7 (Functoriality of V ). Let h : Fµ /θ1 → Fν /θ2 and i : Fν /θ2 →
Fξ /θ3 be homomorphisms of MV-algebras. Then

(1) The function V (h) is a definable map from V (θ2) to V (θ1).
(2) If h is the identity map, then so is V (h).
(3) V (i ◦ h) = V (h) ◦ V (i).

Just as happens in algebraic geometry the pair V and I, seen as functions between
the powersets of Fµ×Fµ and [0, 1]µ, form a Galois connection.

Lemma 3.8 (Basic Galois connection). For each S ⊆ [0, 1]µ and R ⊆ Fµ×Fµ,

R ⊆ I (S) if, and only if, S ⊆ V (R) .

Proof. Direct inspection of the definitions. �

As an immediate corollary valid for any Galois connection (see [8] for further
references), we get

Corollary 3.9. For V and I as above one has:

(1) For any S1, S2 ⊆ [0, 1]µ,
a) S1 ⊆ V (I (S1)),
b) S1 ⊆ S2 implies I (S2) ⊆ I (S1),
c) I (V (I (S1))) = I (S1), and
d) I reverses arbitrary unions:

I (
⋃
i∈I
Si) =

⋂
i∈I

I (Si) ,

where Si is a subset of [0, 1]µ, and I is an arbitrary index set.
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(2) For any R1, R2 ⊆ Fµ×Fµ,
a) R1 ⊆ I (V (R1)),
b) R1 ⊆ R2 implies V (R2) ⊆ V (R1),
c) V (I (V (R1))) = V (R1), and
d) V reverses arbitrary unions:

V (
⋃
i∈I
Ri) =

⋂
i∈I

V (Ri) ,

where Ri is a subset of Fµ×Fµ, and I is an arbitrary index set.

Remark 3.10. A function C : 2A → 2A, where 2A is the powerset of a set A, is a
closure operator on A [3, I.5.1] if it is extensive (X ⊆ C(X) for each X ∈ 2A),
isotone (X ⊆ Y implies C(X) ⊆ C(Y ) for each X,Y ∈ 2A), and idempotent
(C(C(X)) = C(X) for each X ∈ 2A). The preceding lemma shows that the com-
position V ◦ I is a closure operator on [0, 1]µ, and the composition I ◦V is a closure
operator on Fµ×Fµ.

Throughout the paper, we write 1O to denote the identity arrow on the object
O of a category C, and 1C to denote the identity functor on C. Further, we write
composition as juxtaposition whenever convenient, e.g. we write V I in place of
V ◦I .

Theorem 3.11 (The basic adjunction between MV-algebras and spaces). The
functor V : MVp −→ Top

def Z is left adjoint to the functor I : Top
def Z −→ MVp. In

symbols, V a I .

Proof. To prove the statement we must exhibit two natural transformations

η : 1MVp → I V and ε : V I → 1Top
def Z

called unit and co-unit. In the first case we need to exhibit components ηFµ
θ1

and

ηFν
θ2

for any two objects Fµ/θ1 and Fν/θ2 of MVp such that the following diagram

commutes.

Fµ
θ1

I V (
Fµ
θ1

)

Fν
θ2

I V (Fνθ2 )

h

I V (h)

ηFµ
θ1

ηFν
θ2

Note that I V (Fµ/θ1) = I (V(θ1)) = Fµ/I(V(θ1)). By 1c) in Lemma 3.8, θ1 ⊆
I (V (θ1)), hence it is readily seen that the canonical homomorphism from Fµ/θ1 to
I V (Fµ/θ1), which sends a generic element s/θ1 of Fµ/θ1 into s/ I (V (θ1)) suits
the task. The arrow ηFν /θ2 is defined in the same way.
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In the second case we need to show that for any two objects S and T of Top
def Z

there are εS and εT such the following diagram commutes.

S

V I (S)

T

V I (T )

λ

V I (λ)

εS εT

Recall that V I (S) = V (Fµ / I(S)) = V(I(S)), so by 1a) in Lemma 3.8 we can take
the dual of the inclusion arrow S ↪→ V(I(S)). The arrow εT is defined analogously.

Next, we need to show that for any A ∈ MVp the diagram below commutes.

V (A) V I V (A) V (A)
V (ηA) εV (A)

1V (A)
.

IfA = Fµ/θ, then V (Fµ/θ) = V(θ) and V I V (Fµ/θ) = V I (V(θ)) = V (Fµ / I(V(θ))) =
V(I(V(θ))). Again the claim is settled by Lemma 3.8 which asserts that V (Fµ/θ) =
V I V (Fµ/θ), the rest is a matter of checking the definitions of the arrows.

Finally, for any K ∈ Top
def Z, the diagram below commutes.

I (K) I V I (K) I (K)
I (εK) ηI (K)

1I (K)

Again we have that I (K) = I(θ) and I V I (K) = I(V(I(θ))), which are equal by
2a) in Lemma 3.8. �

4. The co-Nullstellensatz.

Once an adjunction has been established it is natural to look for the fixed points
of the adjunction, i.e. objects on which the unit and co-unit of the adjunction are
isomorphisms. The reason is that the adjunction restricted to the above objects
is a categorical duality, hence an explicit description of the fixed points affords a
complete characterisation of two subcategories which are equivalent. In categor-
ical terms this translates in an explicit description of the co-unit and unit of the
adjunction in Theorem 3.11, which is our aim in this section.

We will see that the analogue of the Zariski topology on affine space now enters
the picture. If we let the definable subsets (i.e. the sets V (θ) for some congruence
θ) be the closed sets of a topology, the result is precisely the Tychonoff (product)
topology on [0, 1]µ. This is the content of Lemma 4.3; we call it co-Nullstellensatz
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in that it is the category-theoretic dual of the analogue of Hilbert’s Nullstellensatz
in algebraic geometry.

The analogy with classical algebraic geometry is not merely a category-theoretic
formality. Several results in algebraic geometry compare the Zariski (definable)
topology on an affine variety (over C) with the complex-analytic topology the vari-
ety inherits from its embedding into Cn; for irreducible varieties, for example, it is
well known that every Zariski-open set is a dense open set in the complex-analytic
topology. Lemma 4.3 is precisely a result of this sort: it compares the notion
of algebraically definable closed set with the “natural” notion of closed set in a
Tychonoff cube, to find out that they coincide.

Here and henceforth we follow Engelking’s treatise on topology [7]. From now
on, each Cartesian product [0, 1]µ will be endowed with its Tychonoff, or product,
topology, where on [0, 1] we assume the usual Euclidean topology. Recall that a
topological space X is completely regular, or Tychonoff (or T3 1

2
) if it is T1, and

points and closed sets can be separated by continuous [0, 1]-valued functions: if
x ∈ X, Y ⊆ X is closed, and x 6∈ Y , there is a continuous function f : X → [0, 1]
such that Y ⊆ f−1(0), and f(x) > 0. It is a standard fact that [0, 1]µ is a Tychonoff
space. We are going to prove in Lemma 4.2 below the stronger result that points
and closed sets in [0, 1]µ can be separated by definable functions. As a final piece
of notation, let us write S, for S ⊆ [0, 1]µ, to denote the closure of S in [0, 1]µ, i.e.
the intersection of all closed subsets of [0, 1]µ containing S.

Remark 4.1. Since the operations of the standard MV-algebra [0, 1] are continuos
with respect to the Euclidean topology, it is clear that any definable map λ : S → T
is continuous, where S and T are endowed with the subspace topology they inherit
from the Tychonoff topology of [0, 1]µ and [0, 1]ν , respectively. Thus, if we regard
each object of Tdef Z as a topological space with the subspace topology from [0, 1]µ,
Tdef Z is a subcategory of the category of Tychonoff spaces and continuous maps.

Lemma 4.2 (Complete regularity by definable functions). For any point p ∈ [0, 1]µ

and any closed set K ⊆ [0, 1]µ with p 6∈ K, there is a definable function λ : [0, 1]µ →
[0, 1] that takes value 0 over K, and value > 0 at p.

Proof. It follows immediately from [1, Corollary 2.8], that for each open interval
(a, b) ⊆ [0, 1] and each p ∈ (a, b), there are terms s and t such that the function
λ : [0, 1]→ [0, 1] defined by the term s ∧ ¬t satisfies λ(p) > 0 and ( [0, 1] \ (a, b) ) ⊆
λ−1(0). The statement then follows from this and the regularity of [0, 1]µ. �

Lemma 4.3 (Co-Nullstellensatz for MV-algebras). For any S ⊆ [0, 1]µ,

V(I (S)) = S .

So the set S ⊆ [0, 1]µ is closed if, and only if, V(I (S)) = S.

Proof. The inclusion S ⊆ V (I (S)) follows from the fact that S ⊆ V (I (S)) always
holds by Lemma 3.8, the fact that [0, 1] is Hausdorff and definable functions are
continuous, hence the solution set of f = g is a closed set.

The converse inclusion is an immediate consequence of Lemma 4.2 �

Remark 4.4. The co-Nullstellensatz implies in particular that V ◦ I is a topological
closure operator, i.e. a closure operator satisfying C(

⋃
i∈I Xi) =

⋃
i∈I C(Xi), be-

cause topological closure is.
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5. The Nullstellensatz.

As next step we are going to characterise the action of the components of the
co-unit η on presented MV-algebras. In this case the parallel with Hilbert’s Null-
stellesatz will be plain.

Let us recall some terminology from universal algebra applied to our case (for
details see [3]). An MV-algebra is simple if it has no proper congruence but the
identity congruence, and it is semisimple if it is a subdirect product of simple MV-
algebras. Equivalently, an MV-algebra A is semisimple if the intersection of its
maximal congruences, called radical congruence and denoted by Rad (A), is the
identity relation.

We will show that the fixed points in this case are the algebras presented by a
radical congruence. A crucial ingredient in the proof will be the fact that every
simple algebra can be embedded in our distinguished algebra [0, 1]. This is a folklore
result which goes under the name of Hölder’s Theorem for MV-algebras.

Lemma 5.1 (Hölder’s Theorem for MV-algebras). Let C be a non-trivial, simple
MV-algebra. Then there is a unique injective homomorphism C → [0, 1].

Lemma 5.2 (Point=Maximal congruence). For any set S ⊆ [0, 1]µ, and for any
congruence θ on Fµ, the following hold.

(1) If θ is a maximal congruence then V (θ) is a singleton.
(2) If S is a singleton then I (S) is a maximal congruence.

Proof. Both items can be proved using (the topological!) Lemma 4.2 and the fact
that I and V are a Galois adjunction (Lemma 3.8). Lemma 5.1 is crucial in the
proof of item (1). �

Further, given S ⊆ Fµ×Fµ, let us write 〈S〉 for the congruence on Fµ generated
by S, i.e. the intersection of all congruences containing S.

Lemma 5.3 (Nullstellensatz for MV-algebras). For any S ⊆ Fµ×Fµ,

I (V (S)) =
⋂
{θ′ ∈ (Fµ)2 | S ⊆ θ′ and θ′ maximal congruence} = Rad (Fµ /〈S〉) .

So the algebra Fµ /θ is semisimple if, and only if, I (V (θ)) = θ.

Proof. This is proved by combining Lemma 3.8 and Lemma 5.2. �

6. The categorical duality for semisimple MV-algebras.

The Nullstellensatz and co-Nullstellensatz above give an explicit characterisation
of the fixed point of the categorical adjunction I ` V , we recapitulate them in the
following.

Theorem 6.1 (Co-unit & Unit as Closure & Radical).

(1) The co-unit ε : V I → 1Top
def Z

acts as the closure operator associated to the

Tychonoff topology of [0, 1]µ.
In other words, if S ⊆ [0, 1]µ, the component εS : V I (S)→ S is (the dual
of) the inclusion arrow S ↪→ S that embeds S in its closure.

(2) The unit η : 1MVp → I V acts by modding out radicals.
In other words, if θ is a congruence on Fµ, the component ηFµ /θ : Fµ /θ →
I V (Fµ /θ) is the natural quotient map Fµ /θ � (Fµ /θ)/Rad (Fµ /θ)
induced by the congruence Rad (Fµ /θ).
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Hence,

(1) εS is an isomorphism if, and only if, S is closed.
(2) ηFµ /θ is an isomorphism if, and only if, Fµ /θ is semisimple.

Let MVss
p be the full subcategory of MVp whose objects are (presented) semisimple

MV-algebras. Further, let Kop
def Z be the full subcategory of Top

def Z whose objects are
closed subsets of Tychonoff cubes.

As mentioned at the beginning of this section Theorem 6.1 entails at once a
categorical duality:

Corollary 6.2 (Duality theorem for semisimple MV-algebras). The adjunction
V a I in Theorem 3.11 restricts to an equivalence of categories between MVss

p and

Kop
def Z.

Let us conclude with an important remark. Each space in Kop
def Z is compact

and Hausdorff [7, 3.1.2, 2.1.6]; conversely, each compact Hausdorff space can be
embedded in some Tychonoff cube [7, 2.3.23]. It should be carefully noted, however,
that the notion of definable map between compact Hausdorff spaces H and K only
makes sense if H and K come endowed with a specific embedding into [0, 1]µ and
[0, 1]ν , respectively. In other words, an object of Kop

def Z cannot be conceived of
as an abstract compact Hausdorff space K, but is rather a continuous embedding
K ↪→ [0, 1]µ.

7. The duality for finitely presented MV-algebras.

For the rest of this paper, we let m be a non-negative integer. The aim of this
section is show that the adjunction given by the pair I ,V restricts to an equivalence
for finitely presented algebras. To this end we introduce the full subcategory of
Tdef Z which is the V -image of finitely presented algebras.

Definition 7.1. A subset S ⊆ [0, 1]µ is called finitely definable if there is a finite
index set I, along with a set of pairs R = {(si, ti) ∈ Fµ×Fµ | i ∈ I}, such that
S = V(R). The full subcategory of Tdef Z whose objects are finitely definable subsets
of [0, 1]m, as m ranges over all natural numbers, is denoted Ddef Z.

Remark 7.2. In MV-algebras, finitely generated and principal (=singly generated)
congruences coincide.

Next Lemma shows that finitely definable sets coincide with the vanishing loci
of compact congruences. The proof requires two related non-trivial results from
the theory of MV-algebras: a geometrical characterisation of principally generated
ideals, asserting that if s, t, u, v are elements of Fm, then

(u, v) ∈ 〈(s, t)〉 if, and only if, V (s, t) ⊆ V(u, v) ,

and Wójcicki’s Theorem

Theorem 7.3 (Wójcicki’s Theorem). Every finitely presented MV-algebra is semi-
simple.

Putting these two results together we have

Lemma 7.4 (Finitely definable set=Compact congruence).

(1) If D ⊆ [0, 1]m is a finitely definable set, then I (D) ⊆ Fm×Fm is a finitely
generated congruence.
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(2) If θ ⊆ Fm×Fm is a finitely generated congruence, then V (θ) ⊆ [0, 1]m is
a finitely definable set.

As in the previous section, this immediately entails the following.

Theorem 7.5. The adjunction V a I restricts to an equivalence of categories
between MVfp and Dop

def Z.

8. Concrete description of the categorical dual of finitely
presented MV-algebras.

The abstract category Ddef Z can be characterised in purely geometrical terms.
This yields the geometric duality between finitely presented MV-algebras and ra-
tional polyhedra. For the general background on polyhedra, see [13].

If S ⊆ Rm is any subset, we let convS denote the convex hull of S. Recall
that a polytope is a subset of Rm of the form convS, for some finite S ⊆ Rm, and
a (compact) polyhedron is a union of finitely many polytopes in Rm. A polytope
convS is rational if S ⊆ Qm. Similarly, a polyhedron is rational if it may be
written as a union of finitely many rational polytopes.

Definition 8.1. We call Z-map a continuous piecewise linear function with integer
coefficients from a rational polyhedron P ⊆ [0, 1]m into [0, 1]n.

We denote the category of rational polyhedra and Z-maps by PZ. The key fact
is that Z-maps between rational polyhedra are precisely the definable maps.

Lemma 8.2 (McNaughton’s Theorem for rational polyhedra). Let P ⊆ [0, 1]m be
a rational polyhedron, and let λ : P → [0, 1] be any function. Then λ is a Z-map if,
and only if, λ is a definable function.

Remark 8.3. Lemma 8.1 may well fail for more general sets than rational polyhedra.
Indeed, while definable maps are always Z-maps, the converse inclusion does not
hold in general.

Lemma 8.4. The category Ddef Z coincides with the category PZ.

Proof. Note preliminarily the general fact that S is a rational polyhedron if, and
only if, there is a Z-map ζ : [0, 1]m → [0, 1] vanishing precisely on S. By Remark
7.2, one has that any finitely definable set S is the solution set over [0, 1]m of
the equation s = 0. By Lemma 8.2, s is a Z-map, and therefore S is a rational
polyhedron. Conversely, if S is a rational polyhedron in [0, 1]m, there is a Z-map
ζ : [0, 1]m → [0, 1] such that ζ−1(0) = S. By Lemma 8.2 there is a term s ∈ Fm
such that ζ is the function defined by s, and therefore, since S = V (s, 0), S is
finitely definable. �

Corollary 8.5 (The duality theorem for finitely presented MV-algebras1). The
adjunction V a I in Theorem 3.11 restricts to an equivalence of categories between
MVfp and Pop

Z .

Proof. Immediate consequence of Theorem 7.5 and Lemma 8.4. �

1This result was already known to practitioners of the field, although we know of no detailed
argument given in literature. An alternative proof was recently given in [10], although this aims

at succinctness rather than investigating the origin of the correspondence.
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[8] Erné, M., J. Koslowski, A. Melton, and G. E. Strecker, ‘A primer on Galois connec-

tions’, in Papers on general topology and applications (Madison, WI, 1991 ), vol. 704 of Ann.

New York Acad. Sci., New York Acad. Sci., New York, 1993, pp. 103–125. 3
[9] Johnstone, P. T., Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics,

Cambridge University Press, Cambridge, 1986.

[10] Marra, V., and L. Spada, ‘Duality, projectivity, and unification in  Lukasiewicz lo-
gic and MV-algebras’. Annals of Pure and Applied Logic, 164 (2013), 192–210, doi:

10.1016/j.apal.2012.10.001. 1

[11] Marra, V., and L. Spada, ‘The dual adjunction between MV-algebras and Tychonoff spaces’,
Studia Logica, 100 (2012), 1–26. 1

[12] Mundici, D., Advanced  Lukasiewicz Calculus and MV-algebras, vol. 35 of Trends in Logic—

Studia Logica Library, Springer, New York, 2011. 2
[13] Rourke, C. P., and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-

Verlag, Berlin, 1982. 8
[14] Stone, M. H., ‘The theory of representations for Boolean algebras’, Trans. Amer. Math.

Soc., 40 (1936), 1, 37–111. 1

[15] Stone, M. H., ‘Applications of the theory of Boolean rings to general topology’, Trans.
Amer. Math. Soc., 41 (1937), 3, 375–481. 1

(Temporary) Institute for Logic, Language, and Computation – Universiteit van Am-

sterdam Science Park 107 - 1098 XG Amsterdam, The Netherlands

(Permanent, on leave) Dipartimento di Matematica. Università di Salerno. Via Gio-
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