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Abstract. We offer a proof of the duality theorem for finitely presented MV-algebras

and rational polyhedra, a folklore and yet fundamental result. Our approach develops
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endowed with the transformations that are definable in the language of MV-algebras. We

then show that this dual adjunction restricts to a duality between semisimple MV-algebras

and closed subspaces of Tychonoff cubes. The duality theorem for finitely presented objects

is obtained by a further specialisation. Our treatment is aimed at showing exactly which

parts of the basic theory of MV-algebras are needed in order to establish these results,

with an eye towards future generalisations.
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1. Introduction.

In an address delivered before the Mathematical Society of Japan on the
21st of May, 1956, Marshall Stone offered a piece of advice to the working
mathematician [21, p. 498]:

It is very often the case that some contact with another field [of mathem-
atics] is necessary before fruitful directions of development [in connection
with a specific problem] can be chosen. This is something which the young
mathematician needs to keep in mind.

While just over fifty years of age by then, Stone felt that he had already
“rounded out his period of youthful energy and creativity” [21, p. 493].
Be that as it may, there is no doubt that he knew what he was talking
about, when it came to lay bridges across different fields. Back in the late
thirties, his two landmark papers [19, 20] had annihilated the apparent dis-
tance between topology and algebra. Stone discovered that the set of prime
ideals of a Boolean algebra carries a natural topology, one in which the open
sets correspond to arbitrary ideals. Spaces arising in this manner are known
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today as Stone spaces. The clopen sets — those sets which are both closed
and open in the topology — correspond to principal ideals, and hence to
elements of the algebra. Thus, the original algebra can be recovered from
its space of prime ideals; the bridge is in fact a two-way road. In the Intro-
duction to his book on Stone spaces, Johnstone writes [12, p. XV]:

Now this was a really bold idea. Although the practitioners of abstract gen-
eral topology [...] had by the early thirties developed considerable expertise
in the construction of spaces with particular properties, the motivation of
the subject was still geometrical [...] and (as far as I know) nobody had
previously had the idea of applying these techniques to the study of spaces
constructed from purely algebraic data.

Stone’s “bold idea” germinated, and eventually reached well beyond its
Boolean cradle. This is not the place to trace the growth of each shoot;
[12] is a useful starting point for the interested reader. Suffice it to say that,
while Stone’s motivations were rooted in functional analysis — as indeed
his background was — his work is of major importance in the realm of lo-
gic: Boolean algebras, of course, are the equivalent algebraic semantics of
classical propositional logic; Stone spaces are precisely the spaces of models
of theories in classical propositional logic. Generalisations of Stone dual-
ity — the reformulation of Stone’s results from the thirties in the efficient
language of category theory — may therefore be motivated by generalisa-
tions of classical propositional logic. A prominent instance of this line of
development is provided by the work of the late Leo Esakia. Beginning with
[10], Esakia extended Stone’s results to a duality between Heyting algeb-
ras (the equivalent algebraic semantics of intuitionistic propositional logic)
and a class of partially ordered spaces satisfying certain conditions. Today,
such spaces are aptly called Esakia spaces, and the ensuing theory is known
as Esakia duality. It should be emphasised in this connection that the to-
pological morphisms featuring in Esakia duality are not simply continuous,
order-preserving maps; the duality here is not with a full subcategory of
ordered topological spaces. From several similar instances, it appears that
lack of fullness is a price one often has to pay in generalising Stone duality:
non-trivial conditions on morphisms are frequently required. We shall see
another case in point in the present paper. Our initial motivation, once
again, comes from non-classical logic.

 Lukasiewicz logic is a many-valued propositional system going back to
the 1920’s; cf. the early survey [13, §3], and its annotated English translation
in [22, pp. 38–59]. Completeness of an axiomatisation with respect to the
many-valued semantics was established by syntactic means in [17]. Chang
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[5] first considered the equivalent algebraic semantics of  Lukasiewicz logic,
and called the ensuing structures MV-algebras. Shortly thereafter, in his
ground-breaking paper [6], he obtained an algebraic proof of the complete-
ness theorem. The standard reference for the elementary theory of MV-
algebras is [7], whereas [16] is a treatment at the frontier of current research.
Let us recall that an MV-algebra is an algebraic structure (M,⊕,¬, 0), where
0 ∈M is a constant, ¬ is a unary operation satisfying ¬¬x = x, ⊕ is a unary
operation making (M,⊕, 0) a commutative monoid, the element 1 defined
as ¬0 satisfies x⊕ 1 = 1, and the law

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (*)

holds. Any MV-algebra has an underlying structure of distributive lattice
bounded below by 0 and above by 1. Joins are defined as x∨y = ¬(¬x⊕y)⊕y.
Thus, the characteristic law (*) states that x∨ y = y ∨ x. Meets are defined
by the De Morgan condition x ∧ y = ¬(¬x ∨ ¬y). To recover the algebraic
counterpart of  Lukasiewicz implication from the MV-algebraic signature,
set x → y = ¬x ⊕ y. Conversely, the logical counterpart of the monoidal
operation ⊕ is definable in  Lukasiewicz logic as α ⊕ β = ¬α → β. The
algebraic constants 0 and 1 = ¬0 respectively correspond to an arbitrary
but fixed contradiction and tautology of the logic. Boolean algebras are
precisely those MV-algebras that are idempotent, meaning that x ⊕ x = x
holds, or equivalently, that satisfy the tertium non datur law x ∨ ¬x = 1.

The interval (of truth values) [0, 1] ⊆ R can be made into an MV-algebra,
often called the standard MV-algebra. It has 0 as neutral element, x⊕ y =
min {x+ y, 1}, and ¬x = 1 − x. The underlying lattice order of this MV-
algebra coincides with the natural order that [0, 1] inherits from the real
numbers.

We are concerned here with the category MVp of presented MV-algebras,
i.e. the category whose objects are MV-algebras of the form Fµ /θ, where µ
is a cardinal, Fµ is the MV-algebra freely generated by the set {Xα | α <
µ, α an ordinal}, and θ is a congruence on Fµ; morphisms are homomorph-
isms of MV-algebras. Using the Axiom of Choice, it is an exercise to show
that MVp is equivalent to the category of all MV-algebras — every abstract
MV-algebra has a presentation, by universal algebra. Therefore, our duality
results extend to the category of abstract MV-algebras, too. It will tran-
spire in the course of the development, however, that an extension obtained
in this manner carries no genuine new mathematical information: we know
of no way of associating to an abstract MV-algebra its dual object, as con-
structed in this paper, other than by arbitrarily choosing a presentation of
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the algebra. Thus, we opt for honesty and work with presented algebras
throughout.

Notation. Throughout, µ and ν invariably denote cardinal numbers, whereas
α and β invariably denote ordinal numbers. Although elements of Fµ are
equivalence classes of terms in the language of MV-algebras, we often use
single terms as representatives for their equivalence classes. If s is a term, the
notation s

(
(Xα)α<µ

)
means that the (finitely many) variables occurring in s

are among those in the tuple (Xα)α<µ. If s
(
(Xα)α<µ

)
∈ Fµ and {tα}α<µ ⊆

Fν , we denote by s
(

[Xα\tα]α<µ
)

the term obtained from s by uniformly
replacing each variable Xα with the term tα. Obviously, s

(
[Xα\tα]α<µ

)
∈

Fν . We write [0, 1]µ for the Cartesian product of µ copies of [0, 1]. If
p ∈ [0, 1]µ, then s(p) denotes the evaluation of the term s in the MV-algebra
[0, 1] under the assignment Xα 7→ πα(p), where πα : [0, 1]κ → [0, 1] is the
projection onto the αth coordinate, for each ordinal α < κ.

Since [0, 1] is an MV-algebra, each subset R ⊆ Fµ×Fµ determines a
subset V (R) of the Cartesian product [0, 1]µ, namely, the common solution
set over [0, 1]µ of the equations s ≈ t, s, t ∈ R. Conversely, each subset
S ⊆ [0, 1]µ determines a subset I (S) ⊆ Fµ×Fµ, namely, the set of all
pairs of terms (s, t) such that the evaluations of s and t at each element
of S agree. In Section 2 we show that this correspondence yields a dual
adjunction between MVp and the category Tdef Z whose objects are arbitrary
subsets of [0, 1]µ (as µ ranges over all cardinals) and whose morphisms are
definable maps, i.e. those (contravariant) transformations induced by the
MV-algebraic homomorphisms, in the following precise sense.

Definition 1.1. Given S ⊆ [0, 1]µ and T ⊆ [0, 1]ν , a function λ : S → T is
definable if there exists a ν-tuple of terms (lβ)β<ν , with lβ ∈ Fµ, such that

λ( (pα)α<µ ) = ( lβ( (pα)α<µ ) )β<ν

for every (pα)α<µ ∈ S. We call any such ν-tuple a family of defining terms
for λ. In the special case that ν = 1, the ν-tuple may be regarded as a single
term l ∈ Fµ, called a defining term for λ.

The basic adjunction of Section 2 is formally analogous to the one between
affine algebraic varieties over an algebraically closed field, and their struc-
ture rings; the I–V notation we adopt here conforms to that model. The
proof of the basic adjunction is universal-algebraic: little is needed beyond
the observation that [0, 1] comes with its own MV-algebraic structure. The
situation changes when the analogue of the Zariski topology on affine space
enters the picture. If we let the definable subsets S ⊆ [0, 1]µ (i.e. those of
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the form V (R), for some R ⊆ Fµ×Fµ) be the closed sets of a topology, the
result is precisely the Tychonoff (product) topology on [0, 1]µ, where [0, 1]
is endowed with its Euclidean topology. This is the content of Lemma 3.6;
we call it co-Nullstellensatz in that it is the category-theoretic dual of the
analogue of Hilbert’s Nullstellensatz in algebraic geometry.1 The analogue of
the Nullstellensatz itself is Lemma 3.10: the definable subsets R ⊆ Fµ×Fµ
(i.e. those of the form I (S), for some S ⊆ [0, 1]µ) are precisely the congru-
ences on Fµ such that the quotient algebra Fµ /R is semisimple. (Here, as
usual, semisimple algebras are subdirect products of simple algebras.) These
results quickly lead to a characterisation of the unit and co-unit of the ba-
sic adjunction (Theorem 3.1), to the effect (Corollary 3.2) that semisimple
MV-algebras are dually equivalent to the full subcategory of Tdef Z whose
objects are closed subspaces of Tychonoff cubes. We then turn to MVfp, the
full subcategory of MVp whose objects are finitely presented MV-algebras.
A presented MV-algebra Fµ /θ is finitely presented if µ is a non-negative
integer, and θ is a finitely generated congruence. Recall [4, II.5.6] that a
congruence θ on an algebra A is finitely generated if it is the intersection of
all congruences on A containing a finite set F ⊆ A × A. Equivalently [4,
II.5.7], θ is a compact element in the algebraic lattice of congruences on A.
The crucial fact is that finitely presented MV-algebras are semisimple, a res-
ult known as Wójcicki’s Theorem [7, 3.6.9] in the MV-algebraic literature.
Since finitely generated free MV-algebras are trivially finitely presentable,
and simple MV-algebras are isomorphic to subalgebras of [0, 1] by the MV-
algebraic analogue of Hölder’s Theorem for Archimedean totally ordered
groups (Lemma 3.8 below), we see that Wójcicki’s Theorem entails Chang’s
Completeness Theorem [7, 2.5.3]: the variety of MV-algebras is generated
by [0, 1]. In fact, all proofs we know of Wójcicki’s Theorem use the com-
pleteness theorem. In our version, the latter is incorporated in Lemma 4.3.
Using Wójcicki’s Theorem, we obtain a duality between MVfp and the full
subcategory of Tdef Z whose objects are finitely definable subspaces of Ty-
chonoff cubes, namely, sets of the form V (R), R finite. Finally, we improve

1In view of a comment by the anonymous referee, let us clarify that the term ‘co-
Nullstellensatz’ is adopted here for lack of a standard alternative; however, let us also
stress that the analogy with classical algebraic geometry is not merely a category-theoretic
formality. Several results in algebraic geometry compare the Zariski (definable) topology
on an affine variety (over C) with the complex-analytic topology the variety inherits from
its embedding into Cn; for irreducible varieties, for example, it is well known that every
Zariski-open set is a dense open set in the complex-analytic topology. Lemma 3.6 is
precisely a result of this sort: it compares the notion of algebraically definable closed set
with the “natural” notion of closed set in a Tychonoff cube, to find out that they coincide.
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this duality by characterising in geometrical terms the abstract category of
finitely definable sets. This yields the geometric duality between finitely
presented MV-algebras and the category of rational polyhedra with Z-maps
as morphisms. (Please see Section 4 for definitions.) The result that affords
this characterisation is McNaughton’s Theorem [7, 9.1.5], which allows us
to identify definable maps on rational polyhedra with piecewise linear maps
having integer coefficients; see Lemma 4.9 for an exact statement. The du-
ality theorem for finitely presented MV-algebras is stated as Corollary 4.12.

The duality theorem for finitely presented MV-algebras is a known res-
ult that is best described as folklore;2 the approach presented here is ori-
ginal with this paper. We have taken pains to tell apart as far as possible
results which rest on general considerations, and results with a genuinely
MV-algebraic content. Naturally enough, the further we proceed from the
abstract (the basic adjunction) to the concrete (the geometric duality for fi-
nitely presented objects), the more specific information about MV-algebras
is needed. Future work may explore the applicability of our present approach
to general varieties of algebras, subject to appropriate conditions.

2. The basic adjunction.

Our aim in this section is to construct a pair of adjoint functors

I : Top
def Z −→ MVp , V : MVp −→ Top

def Z .

The functor I : Objects. Given S ⊆ [0, 1]µ, let us define a relation I (S)
on Fµ by stipulating that, for arbitrary terms s, t ∈ Fµ,

(s, t) ∈ I (S) if and only if [0, 1] |= s(p) ≈ t(p)

for every p ∈ S ⊆ [0, 1]µ. We call I (S) the vanishing congruence3 of S.
When S = {p} is a singleton, we write I (p) in place of I ({p}). Of course,
the defining condition for I (S) is equivalent to

s( (pα)α<µ ) = t( (pα)α<µ ) ,

2A recent paper of ours [15] includes a proof of the duality theorem that is instru-
mental to the problem tackled there. That proof is optimised for brevity, and the present
treatment has hardly any overlap with it.

3The terminology is due to the fact that congruences on MV-algebras are represented
by ideals [7, 1.2].
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for any (pα)α<µ ∈ S, where ‘=’ is equality between real numbers. For any
S ⊆ [0, 1]µ, it is easy to check that I (S) is a congruence on Fµ. In view of
this, for any subset S ⊆ [0, 1]µ we define

I (S) = Fµ / I (S) .

The functor I : Arrows. Given S ⊆ [0, 1]µ and T ⊆ [0, 1]ν , let λ : S → T
be a definable map, and let (lβ)β<ν be a ν-tuple of defining terms for λ. Then
there is an induced function

I (λ) : I (T )→ I (S)

which acts on each s ∈ Fν by substitution as follows:

s
(

(Xα)β<ν
)

I (T )
∈ I (T )

I (λ)7−→
s
(

[Xβ\lβ]β<ν
)

I (S)
∈ I (S) .

Remark 2.1. 1. There can be several distinct defining terms for a definable
function λ : S → [0, 1]. However, let l ∈ Fµ be a defining term for λ. Let
further l′ be any element of Fµ. Then (l, l′) ∈ I (S) if, and only if, l′ is a
defining term for λ. Indeed, by definition we have (l, l′) ∈ I (S) if, and only
if, l(p) = l′(p) holds for each p ∈ S. On the other hand, l′ is a defining term
for λ if, and only if, λ(p) = l′(p) holds for each p ∈ S. The stated equivalence
then follows from the assumption that l defines λ, i.e. λ(p) = l(p) for each
p ∈ S.

2. It is clear that the definition of I (λ) above does not depend on
the choice of the representing term s, for if s′ is another term such that
(s, s′) ∈ I (T ), then s

(
[Xβ\lβ]β<ν

)
is congruent to s′

(
[Xβ\lβ]β<ν

)
modulo

I (S), because substitutions commute with congruences. Further, the defin-
ition of I (λ) does not depend on the choice of the family of defining terms
(lβ)β<ν either. Indeed, suppose (l′β)β<ν is another ν-tuple of defining terms
for λ, and let p ∈ S. For each β < ν we have (lβ, l

′
β) ∈ I (S) by 1 in this

remark, so that ( s( (lβ)β<ν ) , s( (l′β)β<ν )) ) ∈ I (S) because congruences are
compatible with operations. Thus we see that I is well-defined.

Lemma 2.2. Let λ : S → T be a definable map between subsets S ⊆ [0, 1]µ

and T ⊆ [0, 1]ν . Then I (λ) : I (T ) → I (S) is a homomorphism of MV-
algebras.

Proof. Let (lβ)β<ν be a family of defining terms for λ. First of all note
that, since each lβ ∈ Fµ, the equivalence class s

(
[Xβ\lβ]

)
/ I (S) indeed

belongs to I (S), as s
(
[Xβ\lβ]

)
∈ Fµ. Let now s

(
(Xβ)β<ν

)
/ I (T ) and
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t
(
(Xβ)β<ν

)
/ I (T ) be elements of I (T ). The following computation shows

that I (λ) preserves ⊕.

I (λ)

(
s

I (T )

)
⊕I (λ)

(
t

I (T )

)
=

=
s
(
[Xβ\lβ]

)
I (S)

⊕
t
(
[Xβ\lβ]

)
I (S)

=
s
(
[Xβ\lβ]

)
⊕ t
(
[Xβ\lβ]

)
I (S)

=
(s⊕ t)

(
[Xβ\lβ]

)
I (S)

= I (λ)

(
s⊕ t
I (T )

)
.

The arguments for ¬ and 0 are similar.

It is immediately seen that I preserves identity arrows. The next lemma
shows that I is in fact a functor.

Lemma 2.3. Let λ1 : S1 → S2 and λ2 : S2 → S3 be definable maps, where each
Si is a subset of [0, 1]µi, for some cardinal µi, i = 1, 2, 3. Then I (λ2 ◦ λ1) =
I (λ1) ◦I (λ2).

Proof. Let (lα)α<µ2 and (mβ)β<µ3 be families of defining terms for λ1 and
λ2, respectively, and let s be an element of Fµ3 . Then:

(I (λ1) ◦I (λ2))

(
s

I (S3)

)
=

= I (λ1)

(
s
(

[Xβ\mβ]β<µ3

)
I (S2)

)

=
s
(

[Xβ\ (mβ[Yα\lα]α<µ2)]β<µ3

)
I (S1)

= (I (λ2 ◦ λ1))
(

s

I (S3)

)
The last equality holds because of the fact, proved by direct inspection of
the definitions, that if (lα)α<µ2 and (mβ)β<µ3 are families of defining terms
for λ1 and λ2 respectively, then (mβ[Yα\lα]α<µ2)β<µ3 is a family of defining
terms for λ2 ◦ λ1.
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The functor V : Objects. Given R = {(si, ti) | i ∈ I} ⊆ Fµ×Fµ, for I
an index set, the vanishing locus4 of R is

V (R) = {p ∈ [0, 1]µ | [0, 1] |= si(p) ≈ ti(p) for each i ∈ I} .

Once again, note that [0, 1] |= si(p) ≈ ti(p) means si(p) = ti(p). When R =
{(s, t)} is a singleton, it will be convenient to write V (s, t) as a shorthand
for V ({(s, t)}). By the very definition of V, for any congruence θ on Fµ we
have V (θ) ⊆ [0, 1]µ. We therefore set

V (Fµ /θ) = V (θ) .

The functor V : Arrows. Let h : Fµ /θ1 → Fν /θ2 be a homomorphism
of MV-algebras. For each α < µ, let πα be the projection term on the αth

coordinate, and let πα/θ1 denote the equivalence class of πα modulo θ1. Fix,
for each α, an arbitrary fα ∈ h(πα/θ1). For any (pβ)β<ν ∈ V (θ2), set

V (h)((pβ)β<ν) =
(
fα( (pβ)β<ν )

)
α<µ

.

To see that V (h) is well-defined, fix α < µ. By definition, if p is a point of
V (θ2), and if g ∈ Fν is such that (fα, g) ∈ θ2, then fα(p) = g(p). Therefore,
the definition of V (h) does not depend on the choices of the fα’s.

Lemma 2.4. Given a homomorphism h : Fµ /θ1 → Fν /θ2, the function
V (h) is a definable map from V (θ2) to V (θ1).

Proof. Since each fα is an element of Fν , the function V (h) is definable.
We now show that the range of V (h) is contained in V (θ1). To this end,
note that if (s, t) ∈ θ1 then

s
(
(h(πα/θ1))α<µ

)
= h

(
s((πα/θ1)α<µ)

)
, (1)

h
(
s((πα/θ1)α<µ)

)
= h

(
t((πα/θ1)α<µ)

)
, (2)

h
(
t((πα/θ1)α<µ)

)
= t
(
(h(πα/θ1))α<µ

)
. (3)

Here, (1) and (3) hold because h is a homomorphisms and thus commutes
with terms, and (2) holds because (s, t) ∈ θ1. For each α < µ, choose an
fα ∈ h(πα/θ1). We claim that the element s( (fα)α<µ ) of Fν belongs to
s
(
(h(πα/θ1))α<µ

)
, a congruence class induced on Fν by θ2. Indeed, we

have s
(
(h(πα/θ1))α<µ

)
= s

(
(fα/θ2)α<µ

)
by our choice of the fα’s, and

4Cf. Footnote 3.
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s
(
(fα/θ2)α<µ

)
= s
(
(fα)α<µ

)
/θ2 because terms commute with congruences.

By the same token, t( (fα)α<µ ) ∈ t
(
(h(πα/θ1))α<µ

)
. By (1–3), then,(

s( (fα)α<µ ) , t( (fα)α<µ )
)
∈ θ2 . (4)

Now let (pβ)β<ν ∈ V (θ2). Then

s(V (h)((pβ)β<ν)) =

s
( (

fα( (pβ)β<ν )
)
α<µ

)
= t
( (

fα( (pβ)β<ν )
)
α<µ

)
(5)

= t(V (h)((pβ)β<ν)) ,

where (5) holds because of (4) together with the definition of vanishing locus.
This shows that the range of V (h) indeed is contained in V (θ1).

As in the case of I , it is readily seen that V preserves identity arrows;
the following lemma shows that V preserves compositions.

Lemma 2.5. Let h : Fµ /θ1 → Fν /θ2 and i : Fν /θ2 → Fξ /θ3 be homo-
morphisms of MV-algebras. Then

V (i ◦ h) = V (h) ◦ V (i) .

Proof. Fix, for each α, an arbitrary fα ∈ h(πα/θ1) and, for each β, an
arbitrary gβ ∈ i(πβ/θ2). Then:

(
V (h) ◦ V (i)

)
= V (h)

(
( gβ)β<ν

)
=
(
fα

(
(gβ)β<ν

))
α<µ

= V (i ◦ h) ,

where the last equality holds because, for each α < µ,

(
fα

(
(gβ)β<ν

))
∈ (i ◦ h)

(
πα
θ1

)
.

Indeed

(i ◦ h)

(
πα
θ1

)
= i

(
fα ((πβ)β<ν)

θ2

)
=
fα ((i(πβ))β<ν)

θ3
=
fα ((gβ)β<ν)

θ3
.
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The basic adjunction. We shall use some easy facts about Galois con-
nections. For background and further references the reader can consult the
survey5 [9]. Let P and Q be posets (partially ordered by 6). A pair of
functions f : P → Q, g : Q→ P induce a Galois connection between P and
Q if:

For every p ∈ P and q ∈ Q we have p 6 g(q) if, and only if, q 6 f(p) .

The operators V and I are functions between partially ordered sets, namely,
the powersets of Fµ×Fµ and [0, 1]µ.

Lemma 2.6 (Basic Galois connection). For each S ⊆ [0, 1]µ and R ⊆ Fµ×Fµ,

R ⊆ I (S) if, and only if, S ⊆ V (R) .

In words, the functions V and I form a Galois connection. In particular, the
following properties are entailed.

1. For any S1, S2 ⊆ [0, 1]µ,

a) S1 ⊆ V (I (S1)),

b) S1 ⊆ S2 implies I (S2) ⊆ I (S1),

c) I (V (I (S1))) = I (S1), and

d) I reverses arbitrary unions: I (
⋃
i∈ISi) =

⋂
i∈I I (Si), where Si is a

subset of [0, 1]µ, and I is an arbitrary index set.

2. For any R1, R2 ⊆ Fµ×Fµ,

a) R1 ⊆ I (V (R1)),

b) R1 ⊆ R2 implies V (R2) ⊆ V (R1),

c) V (I (V (R1))) = V (R1), and

d) V reverses arbitrary unions: V (
⋃
i∈IRi) =

⋂
i∈I V (Ri), where Ri is

a subset of Fµ×Fµ, and I is an arbitrary index set.

Proof. Assume R ⊆ I (S) and let p ∈ S. If (s, t) ∈ R then s(p) = t(p)
by the definition of I, so that p ∈ V (R). Conversely, assume S ⊆ V (R)
and suppose (s, t) ∈ R. If p ∈ S then s(p) = t(p) by the definition of V, so
that (s, t) ⊆ I (S). The remaining assertions are standard facts about Galois
connections; see [9] for further references.

5Let us point out that [9] treats covariant, or isotone, Galois connections, whereas here
it is more expedient to use the contravariant, or antitone, notion.
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Remark 2.7. A function C : 2A → 2A, where 2A is the powerset of a set A,
is a closure operator on A [4, I.5.1] if it is extensive (X ⊆ C(X) for each
X ∈ 2A), isotone (X ⊆ Y impies C(X) ⊆ C(Y ) for each X,Y ∈ 2A), and
idempotent (C(C(X)) = C(X) for each X ∈ 2A). The preceding lemma
shows that the composition V ◦ I is a closure operator on [0, 1]µ, and the
composition I ◦V is a closure operator on Fµ×Fµ.

Throughout the paper, we write 1O to denote the identity arrow on
the object O of a category C, and 1C to denote the identity functor on C.
Further, we write composition as juxtaposition whenever convenient, e.g. we
write V I in place of V ◦I .

Theorem 2.8 (The basic adjunction between MV-algebras and spaces). The
functor V : MVp −→ Top

def Z is left adjoint to the functor I : Top
def Z −→ MVp.

In symbols, V a I .

Proof. Let us start by exhibiting a co-unit, i.e. a natural transformation
ε : V I → 1Top

def Z
. That is, for any two objects S and T of Top

def Z we need to

exhibit components εS and εT such that for every arrow λ : S → T in Top
def Z

the following diagram commutes.

S

V I (S)

T

V I (T )

λ

V I (λ)

εS εT

We have V I (S) = V (Fµ / I(S)) = V(I(S)). By 1a) in Lemma 2.6 there is
an inclusion arrow S ↪→ V(I(S)); so for εS we take its dual arrow in Top

def Z.
Let also εT be defined analogously. If λ is defined by the family of terms
(lα)α<µ, direct application of the definitions gives that V I (λ) = (lα)α<µ.
Therefore,

εT ◦ V I (λ) = εT

(
(lα)α<µ

)
= (lα)α<µ = λ = (εS ◦ λ) .

Now let us construct a natural transformation η : 1MVp → I V , the unit
of the adjointness. In other words, for any two objects Fµ/θ1 and Fν/θ2
of MVp we need to exhibit components ηFµ

θ1

and ηFν
θ2

such that for every
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homomorphism h : Fµ/θ1 → Fν/θ2 the following diagram commutes.

Fµ
θ1

I V (
Fµ
θ1

)

Fν
θ2

I V (Fνθ2 )

h

I V (h)

ηFµ
θ1

ηFν
θ2

Note that I V (Fµ/θ1) = I (V(θ1)) = Fµ/I(V(θ1)). Since, by 1c) in Lemma
2.6, θ1 ⊆ I (V (θ1)), there is a canonical homomorphism from Fµ/θ1 to
I V (Fµ/θ1), which sends a generic element s/θ1 of Fµ/θ1 into s/ I (V (θ1)).
Let ηFµ /θ1 be this arrow. Similarly, let ηFν /θ2 be the arrow which sends a
generic element t/θ2 of Fν/θ2 to t/ I (V (θ2)). Next, notice that I V (h) =
I
(

(fα)α<µ
)

for an arbitrary fα ∈ h(πα/θ1). So I
(

(fα)α<µ
)

is the
function that sends a generic equivalence class s((Xα)α<µ)/ I(V(θ1)) into
s([Xα\fα]α<µ)/ I(V(θ2)). Hence:(
ηFν
θ2

◦ h
)(

s((Xα)α<µ)

θ1

)
=

= ηFν
θ2

(
h(s((Xα)α<µ))

θ2

)
=

(
h(s((Xα)α<µ))

I(V(θ2))

)
=
s([Xα\fα]α<µ)

I(V(θ2))
= (I V (h))

(
s((Xα)α<µ)

I(V(θ1))

)
=

(
I V (h) ◦ ηFν

θ1

)(
s((Xα)α<µ)

θ1

)
.

Next, we need to show that for any A ∈ MVp the diagram below com-
mutes.

V (A) V I V (A) V (A)
V (ηA) εV (A)

1V (A)
.

If A = Fµ/θ, then V (Fµ/θ) = V(θ) and V I V (Fµ/θ) = V I (V(θ)) =
V (Fµ / I(V(θ))) = V(I(V(θ))). So, by 2c) in Lemma 2.6, V (Fµ/θ) =



14 V. Marra and L. Spada

V I V (Fµ/θ). By definition, ηA sends the projections (πα/θ)α<µ in A
onto the projections (πα/ I(V(θ)))α<µ in I V (A). Hence

V (ηA) ((pα))α<µ =
(

(πα ((pα)α<µ))
)
α<µ

= (pα)α<µ .

On the other hand, εV (A) is the dual arrow of the embedding of V (A) into
V I V (A); but V (A) = V I V (A), so that εV (A) is also the identity, as
was to be shown.

Finally, for any K ∈ Top
def Z, the diagram below commutes.

I (K) I V I (K) I (K)
I (εK) ηI (K)

1I (K)

Indeed, the map εK is the dual of the embedding of K into V I (K), so that
the projection maps are defining terms for εK . Thus if s((Xα)α<µ)/ I(K) ∈
I (K) then

I (εK)(s(Xα)α<µ)/ I(K)) = s((Xα\Xα)α<µ)/ I(V(I(K)))

= s((Xα)α<µ)/ I(K) .

On the other hand, the arrow ηI (K) is the dual of the inclusion of I (K)
in I V I (K). But I (K) = I(θ) and I V I (K) = I(V(I(θ))), which are
equal by 2a) in Lemma 2.6. Hence, ηI (K) is the identity, and the theorem
is proved.

3. Semisimple algebras.

A congruence on an MV-algebra A is maximal if it is proper (i.e. 6= A×A),
and it is not properly contained in any proper congruence. An MV-algebra is
simple if it has no proper congruences but the identity congruence, and it is
semisimple6 if it is a subdirect product of simple MV-algebras. Equivalently,
an MV-algebra A is semisimple if its radical congruence Rad (A) — the
intersection of all maximal congruences on A — is the identity relation [7,
p. 72]. All of these are instances of universal-algebraic notions, see [4, p. 18,
II.8.8 and VI.12.1].

6Note that in [7, p. 70] the trivial, one-element MV-algebra does not count as a simple
algebra, and consequently neither does it count as a semisimple algebra.
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In all matters topological we follow Engelking’s treatise [8]. From now
on, each Cartesian product [0, 1]µ will be endowed with its Tychonoff, or
product, topology, where on [0, 1] we assume the usual Euclidean topology.
Recall [8, 2.3] that the product topology is the coarsest topology on [0, 1]µ

that makes all projection functions πα : [0, 1]µ → [0, 1] continuous. As a final
piece of notation, let us write S, for S ⊆ [0, 1]µ, to denote the closure of S
in [0, 1]µ, i.e. the intersection of all closed subsets of [0, 1]µ containing S.

Our aim in this section is to establish the following explicit description
of the co-unit and unit of the adjunction in Theorem 2.8.

Theorem 3.1 (Co-unit & Unit as Closure & Radical).

1. The co-unit ε : V I → 1Top
def Z

of Theorem 2.8 acts as the closure operator

associated to the Tychonoff topology of [0, 1]µ. That is, for any S ⊆
[0, 1]µ, the component εS : V I (S) → S is the dual in Top

def Z of the
inclusion arrow S ↪→ S in Tdef Z that embeds S in its closure. Hence, εS
is an isomorphism if, and only, if S is closed.

2. The unit η : 1MVp → I V of Theorem 2.8 acts by modding out radicals.
That is, for any congruence θ on Fµ, the component ηFµ /θ : Fµ /θ →
I V (Fµ /θ) is the natural quotient map Fµ /θ � (Fµ /θ)/Rad (Fµ /θ)
induced by the congruence Rad (Fµ /θ). Hence, ηFµ /θ is an isomorphism
if, and only if, Fµ /θ is semisimple.

Let MVss
p be the full subcategory of MVp whose objects are (presented)

semisimple MV-algebras. Further, let Kop
def Z be the full subcategory of Top

def Z
whose objects are closed subsets of Tychonoff cubes.7 Theorem 3.1 entails
at once a duality:

Corollary 3.2 (Duality theorem for semisimple MV-algebras). The ad-
junction V a I in Theorem 2.8 restricts to an equivalence of categories
between MVss

p and Kop
def Z.

The rest of this section is devoted to proving Theorem 3.1 via a number of
lemmas.

7Each such space is compact and Hausdorff [8, 3.1.2, 2.1.6]; conversely, each compact
Hausdorff space can be embedded in some Tychonoff cube [8, 2.3.23]. It should be carefully
noted, however, that the notion of definable map between compact Hausdorff spaces H
and K only makes sense if H and K come endowed with a specific embedding into [0, 1]µ

and [0, 1]ν , respectively. In other words, an object of Kop
def Z cannot be conceived of as an

abstract compact Hausdorff space K, but is rather a continuous embedding K ↪→ [0, 1]µ.
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The co-Nullstellensatz. We begin summarising our terminology about
separation axioms; see [8, 1.5].

A topological space X is T1 if its points are closed: {x} is closed for
every x ∈ X. Further, X is Hausdorff (or T2) if any two distinct points are
contained in disjoint open sets, and it is regular (or T3) if it is T1, and points
and closed sets can be separated by open sets: given x ∈ X and Y ⊆ X,
if x 6∈ Y and Y is closed, then there are disjoint open sets O1 and O2 with
x ∈ O1 and Y ⊆ O2. Moreover, X is is completely regular, or Tychonoff (or
T3 1

2
) if it is T1, and points and closed sets can be separated by continuous

[0, 1]-valued functions: if x ∈ X, Y ⊆ X is closed, and x 6∈ Y , there is a
continuous function f : X → [0, 1] such that Y ⊆ f−1(0), and8 f(x) > 0.
We now have the implications T3 1

2
⇒ T3 ⇒ T2 ⇒ T1, none of which can be

reversed. It is a standard fact that [0, 1]µ is a Tychonoff space. We are going
to prove in Lemma 3.5 below the stronger result that points and closed sets
in [0, 1]µ can be separated by definable functions.

Remark 3.3. Since the operations of the standard MV-algebra [0, 1] are con-
tinuos with respect to the Euclidean topology, it is clear that any definable
map λ : S → T is continuous, where S and T are endowed with the subspace
topology they inherit from the Tychonoff topology of [0, 1]µ and [0, 1]ν , re-
spectively. Thus, if we regard each object of Tdef Z as a topological space with
the subspace topology from [0, 1]µ, Tdef Z is a subcategory of the category of
Tychonoff spaces and continuous maps.

We shall use a result from [1]. For terms s and t, set s� t = ¬(¬s⊕¬t).
Let us write nt as a shorthand for t⊕ · · · ⊕ t (n− 1 occurrences of ⊕), and
tn as a shorthand for t � · · · � t (n − 1 occurrences of �). We inductively
define the set of basic literals (in the variable Xα) as follows.

• Xα is a basic literal;

• each term s either of the form s = nt or of the form s = tn, for some
integer n > 0, is a basic literal, provided that t is a basic literal;

• nothing else is a basic literal.

Given integers n1 > 1, and n2, . . . , nu > 1, we write (n1, n2, . . . , nu)Xα to
denote the basic literal (· · · ((ni · · · ((n1Xα)n2 · · · ))ni+1) · · · ).

Lemma 3.4. For each open interval (a, b) ⊆ [0, 1] and each p ∈ (a, b), there
are basic literals L = (a1, . . . , au)X1 and R = (b1, . . . , bw)X1 such that the

8As in [8], it is common to require f(x) = 1 in the definition of complete regularity;
the difference is promptly seen to be immaterial.
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function λ : [0, 1]→ [0, 1] defined by the term L ∧ ¬R satisfies λ(p) > 0 and
( [0, 1] \ (a, b) ) ⊆ λ−1(0).

Proof. By [1, Corollary 2.8] there is L as in the statement such that, if
we write λL for the function defined by L, λ−1L (0) is an interval [0, a′] with
a 6 a′ < p, and λL is monotone increasing. By the same result, there is R as
in the statement such that λ−1R (1) is an interval [b′, 1] with p < b′ < b, and
λR is monotone increasing. (In the terminology of [1], λL stems from a′, and
λR culminates at b′.) Then L∧¬R obviously has the desired properties.

Lemma 3.5 (Complete regularity by definable functions). For any point p ∈
[0, 1]µ and any closed set K ⊆ [0, 1]µ with p 6∈ K, there is a definable function
λ : [0, 1]µ → [0, 1] that takes value 0 over K, and value > 0 at p.

Proof. Since the space [0, 1]µ is regular [8, 2.3.11], there is an open set
O containing p such that O ∩ K = ∅. Then O contains a basic open set
containing p, for any fixed base for the topology. By [8, 2.3.1], the family of
all sets of the form

∏
α<µWα such that Wα ⊆ [0, 1] is an open interval, and

Wα 6= [0, 1] for finitely many indices only, is a base for the Tychonoff topology
on [0, 1]µ. Therefore, if we write πα : [0, 1]µ → [0, 1] as usual for the projec-
tion map, there are finitely many ordinals α1, . . . , αn < µ and open inter-
vals (a1, b1), . . . , (an, bn) ⊆ [0, 1] such that, setting U =

⋂n
i=1 π

−1
αi ( (ai, bi) ),

we have p ∈ U ⊆ O. By Lemma 3.4, let λi : [0, 1]µ → [0, 1] be a defin-
able function whose defining term is built from Xαi only, that vanishes off
π−1αi ( (ai, bi) ), and that is non-zero at p, for each i = 1, . . . , n. Then the
function λ : [0, 1]µ → [0, 1] that is the pointwise minimum of λ1, . . . , λn is
trivially definable (using ∧). Observe that, by construction, λ vanishes off
each π−1αi ( (ai, bi) ), i = 1, . . . , n — hence it vanishes off U . Since K misses
U entirely, λ vanishes on K. Since, moreover, λ(p) > 0 by construction, the
lemma is proved.

Lemma 3.6 (Co-Nullstellensatz for MV-algebras).

1. For any S ⊆ [0, 1]µ, V(I (S)) = S.

2. The set S ⊆ [0, 1]µ is closed if, and only if, V(I (S)) = S.

Proof. 1. If X is any space, and Y is Hausdorff, then for any two continu-
ous functions f, g : X → Y the solution set of the equation f = g is a closed
subset of X, [8, 1.5.4]. Now [0, 1] is Hausdorff; definable functions are con-
tinuous (Remark 3.3); and V(R) =

⋂
(s,t)∈R V (s, t) holds by definition. We

conclude that V(R) is closed for any subset R of Fµ×Fµ. Thus the inclusion
S ⊆ V (I (S)) follows from the fact that S ⊆ V (I (S)) always holds by 1a) in
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Lemma 2.6 . For the converse inclusion, suppose p ∈ (V (I (S)) \ S). Then
{p} ∩ S = ∅. By Lemma 3.5, there is a definable function λ : [0, 1]µ → [0, 1]
such that λ vanishes on S, and satisfies λ(p) > 0. If s is a defining term
for λ then the pair (s, 0) belongs to I (S), and therefore to I (S). But then,
since s(p) > 0, we have p 6∈ V (I (S)) — a contradiction.

2. Immediate consequence of the previous item in this lemma.

Remark 3.7. Recall Remark 2.7 and the notation therein. The closure op-
erator C is topological [4, p. 21] if C(

⋃
i∈I Xi) =

⋃
i∈I C(Xi), for each finite

index set I, and Xi ∈ 2A. The co-Nullstellensatz implies in particular that
V ◦ I is a topological closure operator, because topological closure is.

The Nullstellensatz. The following crucial lemma goes back to [11], the
founding paper of the theory of ordered groups. It is essentially [7, 3.5.1], al-
though it is not called Hölder’s Theorem there, and the uniqueness assertion
is not stressed. The argument in [7, 3.5.1], however, rests on results that
amount to our Lemma 3.9 below, in which we will need to apply Hölder’s
Theorem. In keeping with our general aim of showing precisely how much
of the standard theory of MV-algebras is needed to establish the dualit-
ies of this paper, we therefore emphasise that a proof of Lemma 3.8 only
requires the construction of Chang’s enveloping group for totally ordered
MV-algebras [6, Lemma 6], and Hölder’s Theorem for Archimedean ordered
groups [2, 2.6.3]. We omit the routine details.

Lemma 3.8 (Hölder’s Theorem for MV-algebras). Let C be a non-trivial,
simple MV-algebra. Then there is a unique injective homomorphism C →
[0, 1].

Lemma 3.9 (Point=Maximal congruence). For any set S ⊆ [0, 1]µ, and for
any congruence θ on Fµ, the following hold.

1. If θ is a maximal congruence then V (θ) is a singleton.

2. If S is a singleton then I (S) is a maximal congruence.

Proof. 1. Set C = Fµ /θ, and let q : Fµ → C be the natural quotient map.
Since θ is maximal, C is simple by [7, 1.2.10] (more generally, by [4, II.8.9]).
By Lemma 3.8, there is an injective homomorphism h : C → [0, 1]. Since h
is injective, it has trivial kernel; since the kernel of q is θ by assumption, we
conclude that the composition e = h ◦ q also has kernel θ, i.e. e(s) = e(t) for
each (s, t) ∈ θ. Since e commutes with terms, we have s( (e(Xα))α<µ) ) =
t( (e(Xα))α<µ) ). Letting p = (e(Xα)α<µ) ∈ [0, 1]µ, this means that p ∈



Adjunction between MV-algebras and Tychonoff spaces 19

V (θ), i.e. V (θ) is non-empty. Suppose now that p 6= q ∈ V (θ), and consider
I (q). If (s, t) ∈ θ then s(q) = t(q) because q ∈ V (θ), so that (s, t) ∈ I (q).
Hence θ ⊆ I (q). Since [0, 1]µ is Hausdorff, points are closed. By Lemma 3.5,
therefore, there is s ∈ Fµ such that s(q) = 0 and s(p) > 0. This shows that
(s, 0) ∈ I (q) but (s, 0) 6∈ θ, because p ∈ V (θ). Hence θ ⊂ I (q). But note
that I (q) is proper — the top element 1 of Fµ does not vanish at q, whereas
its bottom element 0 does, whence (1, 0) 6∈ I (q). Hence θ ⊂ I (q) contradicts
the maximality of θ, and therefore V (θ) = {p}.

2. We first show that if θ is any maximal congruence on Fµ, then there
is q ∈ [0, 1]µ such that θ = I (q). By 2a) in Lemma 2.6 , θ ⊆ I (V (θ)). By
1 in this lemma, V (θ) = {q} for some q ∈ [0, 1]µ, so θ ⊆ I (q). Since θ is
maximal, I (q) is either coincident with θ, or else with Fµ×Fµ. To see that
the latter is not the case, observe that I (q) is proper because (1, 0) 6∈ I (q).
Hence θ = I (q). Now say S = {p}, p ∈ [0, 1]µ. Then I (p) is proper, again
because (1, 0) 6∈ I (p). Let θ be a congruence on Fµ with I (p) ⊆ θ. By
[7, 1.2.12 and 1.2.14], we may safely assume that θ is maximal. By what
we have just shown, there is q ∈ [0, 1]µ such that θ = I (q). We show that
q = p. For suppose not. Then, since [0, 1]µ is Hausdorff, so that its points
are closed, by Lemma 3.5 there is s ∈ Fµ such that s(p) = 0 , and s(q) > 0.
Therefore, (s, 0) ∈ I (p), but (s, 0) 6∈ I (q). This contradicts the inclusion
I (p) ⊆ I (q), and thus shows that q = p.

For an MV-algebra A, let us write MaxSpec (A) to denote the collection
of maximal congruences on A, the maximal spectrum of A. Further, given
S ⊆ Fµ×Fµ, let us write 〈S〉 for the congruence on Fµ generated by S,
i.e. the intersection of all congruences containing S. When, in particular,
S = {(s, t)} consists of a single pair, we write 〈(s, t)〉 in place of 〈{(s, t)}〉.

Lemma 3.10 (Nullstellensatz for MV-algebras).

1. For any S ⊆ Fµ×Fµ, I (V (S)) =
⋂
{θ′ ∈ MaxSpec (Fµ) | S ⊆ θ′}

= Rad (Fµ /〈S〉).
2. The algebra Fµ /θ is semisimple if, and only if, I (V (θ)) = θ.

Proof. 1. Notice that we have

I (V (S)) = I (
⋃

p∈V (S)

{p}) =
⋂

p∈V (S)

I (p) ,

where the last equality is given by 1d) of Lemma 2.6. It thus suffices to
show that {I (p) | p ∈ V (S)} is the set of all maximal congruences on Fµ
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containing S. Indeed, each I (p) is a maximal congruence by 2 in Lemma
3.9, and I (p) extends S by 1b) in Lemma 2.6. Vice versa, if θ is a maximal
congruence, then by 1 in Lemma 3.9 we have V(θ) = {q} for some q ∈ [0, 1]µ.
Next, we have θ ⊆ I (q) by 2a) in Lemma 2.6, and therefore θ = I (q) by the
maximality of θ and I (q). Finally, if θ extends S, then V(θ) ⊆ V(S) by 2b)
in Lemma 2.6, so that q ∈ V(S).

The last equality in 1 follows from the easily proved universal-algebraic
fact that the sublattice of those congruences on Fµ that extend θ is iso-
morphic to the lattice of congruences on Fµ /θ, [4, II.6.20].

2. Suppose I (V (θ)) = θ. Then θ is an intersection of maximal congru-
ences, because I (V (θ)) is by the previous item in this lemma. Conversely,
suppose θ is such an intersection. By 2a) in Lemma 2.6, θ ⊆ I (V (θ)) always
holds. Since, by the previous item in this lemma, I (V (θ)) is the intersection
of all maximal congruences extending θ, we have I (V (θ)) ⊆ θ, and the proof
is complete.

Remark 3.11. Recall Remarks 2.7 & 3.7, and the notation therein. The
closure operator C is algebraic [4, p. 22] if C(X) =

⋃
Y⊆X C(Y ), where

X ∈ 2A, and the union is restricted to finite subsets Y . The closure operator
I ◦V is not algebraic. Let R = {(s, t) ∈ F1×F1 | s(p) = t(p) for all p ∈
[0, 1] in an open neighbourhood of 0}. Then 〈R〉 = R. We have (X0, 0) 6∈ R,
but (X0, 0) ∈ I (V (R)), because V (R) = {0}. Using these observations, one
shows that I (V (R)) is not the union of the I ◦V-closure of its finite subsets.
The quotient F1 / I (V (R)) is the two-element Boolean algebra, which is
trivially semisimple; the quotient F1 /R is often called Chang’s algebra, and
it is totally ordered, but not semisimple. The former algebra is obtained
from the latter by modding out its radical congruence.

End of Proof of Theorem 3.1. The theorem is now an immediate con-
sequence of Theorem 2.8, the definitions of V and I in terms of V and I,
respectively, and Lemmas 3.6 and 3.10.

4. Finitely presented algebras.

For the rest of this paper, we let m be a non-negative integer. The aim of
this section is show that the adjointness given by the pair I ,V restricts to
an equivalence for finitely presented algebras. To this end we introduce the
full subcategory of Tdef Z which is the V -image of finitely presented algebras.
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Definition 4.1. A subset S ⊆ [0, 1]µ is called finitely definable if there is a
finite index set I, along with a set of pairs R = {(si, ti) ∈ Fµ×Fµ | i ∈ I},
such that S = V(R). The full subcategory of Tdef Z whose objects are finitely
definable subsets of [0, 1]m, as m ranges over all non-negative integers, is
denoted Ddef Z.

Remark 4.2. It is an exercise [7, (1.8–1.9)] to show that, given any R =
{(si, ti) ∈ Fµ×Fµ | i ∈ I}, I finite, there is a term s ∈ Fµ such that
V (R) = V (s, 0). In particular, finitely generated and principal (=singly
generated) congruences coincide.

We will see in Lemma 4.4 that finitely definable sets coincide with the
vanishing loci of compact congruences. The proof requires non-trivial results
from the theory of MV-algebras, beginning with the next lemma.

Lemma 4.3. Let s, t, u, v be elements of Fm, then (u, v) ∈ 〈(s, t)〉 if, and
only if, V (s, t) ⊆ V(u, v).

Proof. This is [7, 3.4.8]. The proof involves a geometric argument, Chang’s
Completeness Theorem, and the easily proved fact that definable functions
are piecewise linear maps (the easy implication in Lemma 4.9 below).

Lemma 4.4. Let s, t ∈ Fm then V(s, t) = V(〈(s, t)〉).

Proof. Since {(s, t)} ⊆ 〈(s, t)〉, by 2b) in Lemma 2.6 we have V (〈(s, t)〉) ⊆
V (s, t). For the other direction, notice that

V (〈(s, t)〉) = V

 ⋃
(u,v)∈〈(s,t)〉

{(u, v)}

 =
⋂

(u,v)∈〈(s,t)〉

V (u, v),

by the definition of V. By Lemma 4.3, whenever (u, v) ∈ 〈(s, t)〉 then
V (s, t) ⊆ V (u, v), so we have V (s, t) ⊆ V (〈(s, t)〉), as was to be shown.

Using Lemmas 4.3 and 4.4, we obtain:

Lemma 4.5 (Wójcicki’s Theorem). If θ is a finitely generated congruence
on Fm, there exists a set D ⊆ [0, 1]m such that θ = I(D). It follows that
every finitely presented MV-algebra is semisimple.

Proof. The last assertion (the usual statement of Wójcicki’s Theorem) is a
consequence of the first: if a congruence θ on Fµ can be written as I(D), for
some D ⊆ [0, 1]µ, then I(V(θ)) = I(V(I(D))) = I(D) = θ, by 1c) in Lemma
2.6; by 2 in Lemma 3.10, Fµ /θ is semisimple.
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By Remark 4.2, we can assume θ = 〈(s, t)〉, for s, t ∈ Fm. Set D =
V(s, t). We have 〈(s, t)〉 ⊆ I(V(〈(s, t)〉)) = I(V(s, t)), where the inclusion
holds because I ◦V is a closure operator (Remark 2.7), and the equality
holds by Lemma 4.4. So we have θ = 〈(s, t)〉 ⊆ I(V(s, t)) = I(D). For the
other inclusion, let (u, v) ∈ I(D). By definition, this means that for any
d ∈ D the equality u(d) = v(d) holds, whence D = V(s, t) ⊆ V(u, v). But
by Lemma 4.3 this implies (u, v) ∈ 〈(s, t)〉, hence I(D) ⊆ 〈(s, t)〉 = θ, and
the lemma is proved.

Lemma 4.6 (Finitely definable set=Compact congruence).

1. If D ⊆ [0, 1]m is a finitely definable set, then I (D) ⊆ Fm×Fm is a
finitely generated congruence.

2. If θ ⊆ Fm×Fm is a finitely generated congruence, then V (θ) ⊆ [0, 1]m

is a finitely definable set.

Proof. To prove 1, recall that by Remark 4.2 there exist terms s, t ∈ Fm
such that D = V (s, t), and the latter equals V (〈s, t〉) by Lemma 4.4. So
I(D) = I(V(〈s, t〉)) = 〈s, t〉, where the last equality holds by Lemma 4.5.
Item 2 follows at once from Lemma 4.4.

Theorem 4.7. The adjunction V a I in Theorem 2.8 restricts to an equi-
valence of categories between MVfp and Dop

def Z.

Proof. If Fm /θ is finitely presented, so that θ is finitely generated, then
by 2 in Lemma 4.6, V (θ) is a finitely definable set. Further, the component
ηFm /θ of the unit at Fm /θ is an isomorphism, by Theorem 3.1, because
Fm /θ is semisimple, by Lemma 4.5.

If D ⊆ [0, 1]m is a finitely definable set, then it is a closed set (cf. the
proof of Lemma 3.6), and therefore the component εD of the co-unit at D
is an isomorphism, by Theorem 3.1. By 1 in Lemma 4.6, I (D) is finitely
generated, hence I (D) = Fm / I (D) is finitely presented.

A concrete equivalent of Ddef Z. The abstract category Ddef Z can be
characterised in purely geometrical terms. This yields the geometric duality
between finitely presented MV-algebras and rational polyhedra. As a general
background reference on polyhedra, see [18].

A convex combination of a finite set of vectors v1, . . . , vu ∈ Rm is any
vector of the form r1v1 + · · · + ruvu, for non-negative real numbers ri > 0
satisfying

∑u
i=1 ri = 1. If S ⊆ Rm is any subset, we let convS denote the

convex hull of S, i.e. the collection of all convex combinations of finite sets
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of vectors v1, . . . , vu ∈ S. A polytope is any subset of Rm of the form convS,
for some finite S ⊆ Rm, and a (compact) polyhedron is a union of finitely
many polytopes in Rm. A polytope is rational if it may be written in the
form convS for some finite set S ⊆ Qm of vectors with rational coordinates.
Similarly, a polyhedron is rational if it may be written as a union of finitely
many rational polytopes.

Definition 4.8 (Cf. Definition 3.1 in [16]). Given a rational polyhedron
P ⊆ [0, 1]m and a continuous map ζ = (ζ1, ..., ζn) : P → [0, 1]n, for n > 0
an integer, we say that ζ is a Z-map if for each i = 1, . . . , n, ζi is piecewise
linear with integer coefficients: in other words, if there is a finite number of
(affine) linear polynomials with integer coefficients li,1, . . . , li,ji : [0, 1]m → R
such that for every x ∈ P there is j ∈ {1, . . . , ji} with ζi(x) = li,j(x). Finally,
if Q ⊆ [0, 1]n is a rational polyhedron, a function ζ : P → Q is a Z-map if
there is a Z-map ζ ′ : P → [0, 1]n such that ζ and ζ ′ agree at each element of
their common domain P .

It is an exercise to show that the composition of Z-maps between rational
polyhedra in unit cubes is again a Z-map. Moreover, identity maps on
such rational polyhedra are obviously Z-maps. Therefore, rational polyhedra
lying in [0, 1]m, for some integer m > 0, and Z-maps between them, form
a category; we denote it PZ. The key fact is that Z-maps between rational
polyhedra are precisely the definable maps.

Lemma 4.9 (McNaughton’s Theorem for rational polyhedra). Let P ⊆ [0, 1]m

be a rational polyhedron, and let λ : P → [0, 1] be any function. Then λ is a
Z-map if, and only if, λ is a definable function.

Proof. A proof of the case P = [0, 1]m, usually known as McNaughton’s
Theorem tout court, is in [7, 9.1.5]. For the generalisation to rational poly-
hedra, see [16, 3.2]. For references to other proofs, including McNaughton’s
original one, please see [7].

Remark 4.10. The notion of Z-map ζ : P → [0, 1]n in Definition 4.8 can be
generalised from rational polyhedra P to arbitrary subspaces S ⊆ [0, 1]m

in the obvious manner. Let ZS be the set of all such generalised Z-maps
from S ⊆ [0, 1]m to [0, 1]. On the other hand, we can consider the set DS

of definable functions from S ⊆ [0, 1]m to [0, 1]. The content of Lemma
4.9 is that ZS = DS whenever S is a rational polyhedron. This may well
fail for more general sets than rational polyhedra. Indeed, the inclusion
DS ⊆ ZS holds for any choice of S, but the converse inclusion does not.
For example, let S ⊆ [0, 1]2 be the union of A = {(x, y) ∈ [0, 1]2 | y = 0}
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and B = {(x, y) ∈ [0, 1]2 | y = x2}. Consider the (continuous) function
λ : S → [0, 1] given by λ(x, y) = x if (x, y) ∈ A, and λ(x, y) = y if (x, y) ∈ B.
Then λ is a Z-map. However, using the fact that the graph of the function
f(x) = x2 is tangent to the x-axis at 0, it is possible to prove that λ is not
definable.

Lemma 4.11. The category Ddef Z coincides with the category PZ.

Proof. By [14, Proposition 5.1], S is a rational polyhedron if, and only if,
there is a Z-map ζ : [0, 1]m → [0, 1] vanishing precisely on S, that is, such
that ζ−1(0) = S. If S ⊆ [0, 1]m is finitely definable, it is of the form V (R)
for some finite R ⊆ Fm×Fm. By Remark 4.2, we may assume that R is a
singleton {(s, 0)}, so that S is the solution set over [0, 1]m of the equation
ζs = 0, where ζs is the function defined by s. By Lemma 4.9, ζs is a Z-map,
and therefore, since S = ζ−1s (0) by construction, we see that S is a rational
polyhedron. Conversely, if S is a rational polyhedron in [0, 1]m, there is a
Z-map ζ : [0, 1]m → [0, 1] such that ζ−1(0) = S. By Lemma 4.9 there is a
term s ∈ Fm such that ζ is the function defined by s, and therefore, since
S = V (s, 0), S is finitely definable. We have proved that Ddef Z and PZ
have the same objects. The fact that they have the same morphisms is an
immediate consequence of Lemma 4.9.

Corollary 4.12 (The duality theorem for finitely presented MV-algebras).
The adjunction V a I in Theorem 2.8 restricts to an equivalence of cat-
egories between MVfp and Pop

Z .

Proof. Immediate consequence of Theorem 4.7 and Lemma 4.11.
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[11] Hölder, O., ‘Die Axiome der Quantität und die Lehre vom Maß’, Leipz. Ber., 53

(1901), 1–64.

[12] Johnstone, P. T., Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathem-

atics, Cambridge University Press, Cambridge, 1986.

[13]  Lukasiewicz, J., and A. Tarski, ‘Untersuchngen über den Aussagenkalkül.’, C. R.

Soc. Sc. Varsovie, 23 (1930), 30–50.

[14] Marra, V., and D. Mundici, ‘The Lebesgue state of a unital abelian lattice-ordered

group’, J. Group Theory, 10 (2007), 5, 655–684.

[15] Marra, V., and L. Spada, ‘Duality, projectivity, and unification in  Lukasiewicz logic

and MV-algebras’. Submitted, 2011.

[16] Mundici, D., Advanced  Lukasiewicz Calculus and MV-algebras, vol. 35 of Trends in

Logic—Studia Logica Library, Springer, New York, 2011.

[17] Rose, A., and J. B. Rosser, ‘Fragments of many-valued statement calculi’, Trans.

Amer. Math. Soc., 87 (1958), 1–53.

[18] Rourke, C. P., and B. J. Sanderson, Introduction to piecewise-linear topology,

Springer-Verlag, Berlin, 1982.

[19] Stone, M. H., ‘The theory of representations for Boolean algebras’, Trans. Amer.

Math. Soc., 40 (1936), 1, 37–111.

[20] Stone, M. H., ‘Applications of the theory of Boolean rings to general topology’,

Trans. Amer. Math. Soc., 41 (1937), 3, 375–481.

[21] Stone, M. H., ‘The future of mathematics’, J. Math. Soc. Japan, 9 (1957), 493–507.

[22] Tarski, A., Logic, semantics, metamathematics. Papers from 1923 to 1938, Oxford

at the Clarendon Press, 1956.



26 V. Marra and L. Spada

Vincenzo Marra
Dipartimento di Informatica e Comunicazione
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